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Highlights  Abstract  

▪ On-line prediction method for forthcoming 

machine state is proposed. 

▪ Degradation model with three machine states 

(healthy, warning and alarm) is used. 

▪ α-stable HMM method is developed for non-

Gaussian (impulsive) HI data. 

 Machinery health management becomes an essential issue in many 

sectors. The ultimate goal is to predict machinery degradation and 

accordingly plan maintenance actions. However, prediction becomes 

much harder if data is noisy. We propose a procedure for on-line 

prediction of the forthcoming machine state. This procedure is dedicated 

to the non-Gaussian (impulsive) health index (HI) data. It is based on a 

simplified degradation model with three machine states, i.e. healthy, 

warning and alarm, described in terms of a Hidden Markov Model 

(HMM). Using simulated trajectories we demonstrate that the α-stable 

HMM dedicated to time series with impulsive behaviour outperforms the 

classical Gaussian approach and can be an efficient alternative in such a 

case.  In particular, the percentage errors of the predicted alarm state 

transition points decrease from 20%−45% to 1%−6%, if the α-stable 

HMM is used instead of the Gaussian one. We illustrate the proposed 

methodology for two datasets acquired during experiment on the 

VIBstand test rig and for a benchmark FEMTO dataset. 
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1. Introduction 

In various industries mechanical equipment holds a central role 

and its dependable operation is a key factor that greatly 

influences production efficiency. Any harm or breakdown in 

this equipment can have broad repercussions on the entire 

production process, resulting in economic losses. In order to 

achieve optimal operating costs, maintenance actions should be 

performed during planned outages. Unplanned shutdowns 

should be avoided, as they cause the largest losses. Therefore, 

prognostics and health management (PHM) have gained 

increasing significance in the industrial environment. The PHM 

commonly involves four key technical processes: data 

acquisition, health indicator (HI) calculation, health state (HS) 

estimation, and remaining useful life (RUL) prediction. Initially, 

data, such as vibration signals, are gathered from sensors to 

monitor machinery health. Subsequently, HIs are formulated 

from these data using techniques like signal processing and 
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artificial intelligence, representing the machinery's health status. 

Following this, the entire lifespan of the machinery is 

segmented into distinct HSs based on the changing degradation 

trends of HIs. Next, within HSs displaying discernible 

degradation trends, RUL is predicted by analysing degradation 

patterns and a predefined failure threshold. It is crucial to note 

that the accuracy of RUL prediction is significantly influenced 

by the quality of the HS division. This is the case, for instance, 

when determining the initiation point for starting time for RUL 

estimation. Detecting this point prematurely may lead to the 

underestimation of RUL. Conversely, a delayed detection could 

result in a failure occurrence before any decision-making is 

done. Therefore, developing precise approaches for accurate on-

line HS division is imperative for effective RUL prediction and 

decision-making in PHM. 

However, analysis and segmentation of HIs are often 

complicated, as data from real life assets might exhibit non-

Gaussian behaviour. In this paper, we consider the HI being 

statistics constructed based on vibration signals. Their non-

Gaussian (impulsive) characteristics are mostly related to the 

type of machine (as well as the process carried out by the 

machine) and its operational regime. Examples include 

compressors, wind turbines, mining equipment (such as sieving 

screens, crushers, etc.), and engines for both automobiles and 

airplanes. The second reason why non-Gaussian behaviour can 

occur in HI data is related to the progressive degradation 

process of the machine. It was recognised that along with  

a change of the machine state (healthy-warning-alarm), the 

distribution of the HI time series may also change. More 

precisely, the analysis of real HI data shows that at the healthy 

state the heavy-tailed impulsive behaviour is not as apparent as 

in the alarm state, see e.g. [1], and this regularity is observed for 

many machines. 

The main objective of this paper is to propose  

a methodology for on-line machine state prognosis that can be 

efficiently applied, even if the examined HI data follows non-

Gaussian distribution. The second goal is to show that  

a Gaussian-based approach is useful, provided that the data 

exhibit behaviour adequate for this distribution. In the case of 

on-line prognosis of heavy-tailed distributed data, more 

advanced techniques need to be applied. The methodology 

presented here complements previous research devoted to the 

analysis and modelling of non-Gaussian long-term data, see e.g., 

[2] and their off-line segmentation, see e.g. [3]. In both areas 

(modelling and segmentation), it was proved that the application 

of the methods that are dedicated to non-Gaussian data is crucial 

for their efficiency. 

In this paper, we use the hidden Markov model (HMM) 

approach for predicting machine state based on HI data analysis 

in a high-noise environment. First, an HMM is trained using 

data with the full history of the degradation process (i.e., healthy, 

warning, and alarm states) from a similar asset to the monitored 

one. Next, it is used to predict the probability of being in a given 

state at the next time point for new data (i.e., for the monitored 

asset) without assuming that it represents all states of the 

degradation process. Based on this, we can predict the 

forthcoming machine state. The HMM is, therefore, applied in 

an online mode, which has higher practical importance for 

condition monitoring systems than post-processing and offline 

segmentation. To account for possible non-Gaussianity of the 

data, we apply an HMM with an α-stable distribution. The 

prediction performance of the α-stable HMM is compared with 

the corresponding Gaussian HMM, based on simulated data 

from the adopted degradation model with a possible non-

Gaussian distribution. The HMM-based methods for online 

prognosis are also applied to three real datasets. The first dataset, 

FEMTO data, is a benchmark time series frequently used for HI 

data analysis. The other datasets were acquired on a test rig 

during an experiment where the growth of the shaft unbalance 

was introduced. To our knowledge, the proposed methodology 

based on the α-stable HMM is being used for the first time for 

online prognosis of HI data and tested on real time series. 

The rest of the paper is organised as follows. In Section 2 

we present state of the art in the area of interest. Next, in Section 

3 we describe the real data used in the further analysis as well 

as the degradation model used in simulations. In Section 4 we 

describe the methodology for machine state prediction based on 

two versions of HMM, namely the Gaussian and the 𝛼-stable 

ones. Further, in Section 5 we verify the proposed HMM-based 

approaches for simulated data from the degradation model, 

while in Section 6 we demonstrate the usefulness of the 

proposed methodology for the real HI datasets. Last section 

concludes the paper. 
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2. State of the art 

One of the most common approaches used in the prediction of 

machine health state based on HI data utilises an adopted model. 

In recent years, substantial research has been conducted in this 

domain, broadly categorised into three classes: data-driven 

models [7-11], physics-based models [12], and hybrid models 

[13, 14]. Physics-based models attempt to represent the 

degradation process using mathematical equations derived from 

failure and damage mechanics. While this approach can yield 

precise results, it often necessitates a highly accurate physical 

model, which may be unavailable or entail significant 

computational costs. On the contrary, data-driven approaches 

aim to construct models that describe the degradation process 

using historical data. This category shows promise for complex 

applications where the derivation of physics-based models is 

challenging. Data-driven approaches can be further classified 

into two main subclasses: machine learning-based (see e.g. [15, 

16]) and statistical model-based (see e.g. [17-19]) approaches. 

Machine learning-based methods are powerful tools for 

modelling, segmentation, and prediction, commonly used in 

complex applications. However, they require substantial data 

for training, which may not be accessible in many real-world 

scenarios. On the other hand, statistical model-based 

approaches do not require large amount of training data, but  

a careful selection of an appropriate model to describe the 

process remains of paramount importance. The statistical 

approaches offer probabilistic results, a crucial advantage in 

dealing with uncertainty in the degradation process. Hence, in 

this paper we follow this approach. It should be noted that in the 

literature some hybrid models aiming to harness the strengths of 

both of the aforementioned classes have been discussed. For 

further details on the hybrid models and their applications, the 

interested readers are referred to the following references [13, 

14, 20]. 

For the on-line prediction of the degradation state based on 

the adopted model one of the most common approaches is to use 

the predefined fault detection thresholds. The thresholds are 

often supplied by manufacturers and typically delineate the 

transition from a healthy state (good condition) to a warning 

state and from a warning state to an alarm state (called also 

critical state). Unfortunately, in numerous instances, the limit 

values and desired lifetimes remain unknown, particularly for 

unique or customised machinery. Moreover, it is essential to 

note that these thresholds are typically established by 

manufacturing industries based on specific operating and 

environmental standards, which may lose validity when 

conditions deviate. When machinery operates in harsh 

environments, where the collected data show impulsive 

behaviour, this task becomes notably more complex. This 

problem was discussed e.g. in [21], where authors indicated 

some possible solutions in this area. It is worth to note that the 

problem of limit setting did not draw large attention of the 

research community and some authors highlight the lack of 

appropriate solutions and address this problem, see [12]. In this 

paper, we follow another approach and detect changes in the 

probabilistic behaviour of the HI data as an indicator for the 

degradation state. 

The problem of prediction of machine state based on HI data 

can be considered as the on-line segmentation of such data. This 

issue was discussed in the literature. Shiri et al. [4] introduced 

on-line methods that worked based on the development of  

a robust switching Kalman filter, tailored to non-Gaussian 

distribution of the data. Nevertheless, this model relies on 

deterministic components that may be affected by non-linearity 

in the HI trends. Furthermore, numerous studies in the literature 

have attempted to address this issue (on-line detection) by 

applying one-class classification methods [22-24]. However, 

this approach is primarily effective for identifying transition 

points between the healthy and alarm states. 

Most of the methods used for HI data modelling are based 

on the assumption of Gaussian (or Gaussian-like) distribution 

of the data, see e.g. [25-29]. However, in the literature there are 

also considered non-Gaussian processes useful for diagnostic 

features, like Gamma process [30], Generalised Cauchy process 

[31, 32] or even processes with heavy-tailed distributions, such 

as fractional Lévy stable motion, see e.g., [33, 34]. See also the 

positions [34-37], where authors highlight this aspect indicating 

that in practice, the data related to degradation of industrial 

equipment obey non-Gaussian distributions. There are also 

methods based on the extended Kalman filter dedicated for HI 

data modelling with non-Gaussian characteristics [38-41]. 

Applications of the Markov jumps systems [42, 43] or state-

space models [44] are also used in that context. The alternative 

approaches are presented e.g., in [45]. For other reliability 
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models describing the non-Gaussian HI data variation see e.g., 

[9, 46-49].  

The methodology for on-line prognosis proposed in this 

paper is based on HMMs, which were theoretically introduced 

in 1960s by Baum [50]. Since then they were used for modelling 

data in a variety of fields, see [51] for a comprehensive review 

of the possible applications of HMMs. Since HMMs are suitable 

for a description of a latent temporal patterns in recorded signals, 

they are often used for segmentation purposes in fault diagnosis 

problems. They were used, among others, for condition 

monitoring of spent nuclear fuel shearing machines [52], 

diagnosis of rotating components [53], detecting weld defects 

[54], analysis of vibration signals representing various bearing 

conditions [55], or diagnosis of fatigue cracks of a helicopter 

gearbox [56]. For other applications of HMMs in machine fault 

detection see e.g. [57-60]. As a natural follow-up of these 

modelling approaches, HMMs were also used for machine fault 

prediction. The authors of [61] proposed to use a combination 

of a Gaussian HMM and an expert based system with 

environmental factors for real-time failure prognosis. A method 

involving several HMMs for prediction of degradation state was 

considered by [62, 63], while [64] used log-likelihood profiles 

for the different trained HMMs in a drill bit failure prediction. 

In the context of machinery diagnostics HMMs and their 

extensions were used also for the remaining useful life (RUL) 

prediction, see e.g. [65]. A survey on the applications of HMMs 

in machinery fault prediction can be found in [66]. The most 

common setup of HMMs for failure modelling is a discrete or 

Gaussian distribution of the observed data. 

A three-state HMM approach for non-Gaussian HI data 

segmentation was proposed in [3]. It was based on the 𝛼-stable 

distribution [6], which generalises the Gaussian distribution and 

accounts also for heavy-tailed cases. The 𝛼-stable distribution 

was first used for financial applications [67] in 1960. From that 

time it was applied in various areas of interest, also including 

condition monitoring, see e.g. [68-71]. It is important to note 

that the selection of the α-stable distribution is not arbitrary. 

Firstly, the α-stable distribution, akin to the Gaussian 

distribution in the finite-variance scenario, is the sole limiting 

distribution for infinite-variance samples. This phenomenon is 

described by the generalised central limit theorem (GCLT), an 

extension of the classical central limit theorem (CLT). 

According to the GCLT, α-stable distributions attract 

distributions of sums of random variables with diverging 

variances, much like the Gaussian law attracts distributions with 

finite variances (as per the CLT). Thus, this class of distributions 

can be considered a general one. It was shown in [3] that 

generalising the Gaussian HMM model to the 𝛼 -stable one, 

leads to a significant improvement in the accuracy of the off-

line segmentation of HI data. Such a methodology can be 

applied only when the whole history of the time series (i.e. data 

corresponding to healthy, warning and alarm states) is already 

available. However, it has less practical importance for on-line 

condition monitoring. Thus, in this paper we extend the 

approach proposed in [3] for the on-line operation mode and 

forthcoming state prognosis. 

3. Description of the considered datasets 

3.1. FEMTO dataset 

FEMTO stands for Franche-Comté Electronics Mechanics 

Thermal Science and Optics-Sciences and Technologies 

institute. FEMTO dataset has been acquired using the 

PRONOSTIA platform. It was also used at the IEEE 

International Conference of PHM 2012 during a prognosis 

challenge. This dataset contains 17 various signals (acceleration 

and temperature) describing bearing degradation. The 

experiments have been carried out under stationary load/speed 

conditions. For the FEMTO dataset it is assumed that a bearing 

failure occurs when the amplitude of the vibration signal has 

increased above 20 g  [48]. The dataset is widely used in 

prognostic community (see e.g. [72, 73]). Some researchers 

used this dataset for fault diagnostics [74, 75]. Islam et al. [76] 

introduce a data-driven framework for predicting the health of 

rolling element bearings using a degree-of-defectiveness (DD) 

metric in the frequency domain, employ Bayesian inference-

aided one-class LSSVM for anomaly detection, and apply their 

proposed approach to the FEMTO dataset. In addition, this 

dataset is widely used as a benchmark dataset for the application 

of RUL estimation [77-81]. The analysed HI is constructed as 

the RMS of the raw time series. 

3.2. AMC Tech dataset 

The AMC Tech dataset is a new one and it was acquired 

specifically for this research. It was acquired during experiment 
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on the VIBstand test rig. The rig design has numerous structural 

resonances and thus it is very similar to real machines, which 

have complex designs and generate vibration signals rich in 

nonlinear components and noise. Many faults can be introduced, 

namely unbalance, misalignment, looseness as well as bearing 

and gear faults. For the dataset generation, unbalance was 

chosen as the introduced fault. Unbalance is a common fault 

mode for virtually every rotating machine type. It can be caused 

by variety of reasons, e.g. erosion of a blade, build-up of 

deposits, thermal effect, assembly errors. During the experiment 

unbalance was slowly and steadily increased by adding 

additional weights to the disk on the rotor. Due to a complex 

structure of the test rig, there was almost no increase of HIs 

typically associated with unbalance, e.g. peak-peak amplitude 

or RMS, despite significant increase in added weights. Actually, 

HIs which were sensitive to the unbalance were narrowband 

energy HIs. There were two bands analysed in the dataset, the 

first one has a carrier frequency of 16 Hz, tracking energy of the 

first harmonic of the shaft, later referred to as the "AMC Tech 

dataset 1". The second one, further called the "AMC Tech 

dataset 2′′, has a carrier frequency of 107 Hz, which was one of 

higher harmonics (no. 6). Note that bands were calculated with 

3% bandwidth from the center frequency and the actual shaft 

rotational speed was 917rpm (equals 15.28 Hz). As mentioned 

earlier, vibrations were affected by complex kinematic of the 

test rig and resulted with very rich signals with numerous signal 

components. Another benefit was gradually increasing level of 

impulsive disturbances, accurately reproducing real life data. 

Vibration signals were acquired from MTN2200 accelerometers 

with a commercial condition monitoring system of AVM4000 

type. The sampling frequency was 25kHz and 1s long series of 

raw vibration data were taken to calculate each HI. There were 

2350 signals acquired during the whole experiment, thus there 

were 2350 data points in each analysed HI. Experiment was 

stopped when the unbalance caused excessive vibration of the 

rig and could not be safely continued. The analysed HI datasets 

are presented in top panels of Figures 8 and 9. 

The FEMTO and AMC Tech datasets complement each 

other. The first is clear and it is easy to distinguish visually 

between health states. The latter is much more similar to a real 

life complex data, where distinctions are more ambiguous but 

still they follow the three-state model. Thus, the three-state 

degradation model based on the FEMTO dataset is used in  

a simulation study. It is worth to note that existence of three 

states is a common case for real-life machinery maintenance in 

daily basis. Certainly, the three states may differ in duration, 

magnitude and other parameters. Sometimes when fault initiates, 

the HI growth is so quick and in that case the alarm state follows 

healthy state without the warning (or with a very short warning 

state). Nevertheless, the degradation model is capable of 

handling such situations, so such a rare cases do not undermine 

the validity of the general model. 

3.3. Degradation model 

The degradation model used in this paper for simulating HI data 

is based on the one introduced in [2]. Let us mention, that the 

model does not correspond to any specific HI type (like RMS 

etc.) but it is considered as a general model applicable for 

various health indicators. We assume that a degradation process 

𝑆𝑡 , 𝑡 = 1,… , 𝑇, is represented as 

𝑆𝑡 = 𝑋𝑡 + 𝜂(𝑡), (1) 

where 𝑋𝑡  and 𝜂(𝑡)  are, respectively, random and trend parts 

(note the difference in notation for random and deterministic 

components). Based on the HI characteristics we assume that 𝑆𝑡 

is given by a three-state model: for 1 ≤ 𝑡 < 𝜏1 it is in state 1 

(corresponding to the healthy state), for 𝜏1 ≤ 𝑡 < 𝜏2 − in state 

2 (warning), and for 𝜏2 ≤ 𝑡 ≤ 𝑇 - in state 3 (alarm). Parameters 

𝜏1  and 𝜏2  are called change points. The states of the process 

determine the behaviour of both 𝑋𝑡  and 𝜂(𝑡)  components. 

However, as the proposed procedure will be further applied to 

detrended data, in the following description of the model we 

focus only on the random term. 

According to the assumptions of the considered model, the 

random part of the process is a product of two components 

𝑋𝑡 = 𝑆𝐶(𝑡)𝑍𝑡 , (2) 

where 𝑆𝐶(𝑡)  is a state-dependent deterministic function 

representing a time-varying scale of the process. In state 1, we 

assume that the scale is constant and equal to 𝑆𝐶(1) =

𝑆𝐶(𝜏1) = 𝑠1. In state 2, the scale grows linearly from 𝑆𝐶(𝜏1) =

𝑠1 to 𝑆𝐶(𝜏2) = 𝑠2, and in state 3 - the growth is exponential, 

from 𝑆𝐶(𝜏2) = 𝑠2 to 𝑆𝐶(𝑇) = 𝑠3.  In other words, we assume 

the following formula for the scale 
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𝑆𝐶(𝑡) =

=

{
 
 

 
 

𝑠1,                                                                   0 ≤ 𝑡 < τ1,

𝑠1 + (𝑠2 − 𝑠1)
𝑡 − τ1
τ2 − τ1

,                                 τ1 ≤ 𝑡 < τ2,

𝑠2  𝑒𝑥𝑝 (
𝑙𝑛 𝑠3 − 𝑙𝑛 𝑠2
𝑇 − τ2

(𝑡 − τ2)) , τ2 ≤ 𝑡 ≤ 𝑇.

 

In this paper we assume that the 𝑍𝑡  component is an 

autoregressive model (AR (𝑝))  with different coefficients in 

each state. This model of 𝑍𝑡  was identified in [2] where 

different HI data were analysed. We recall, the AR (𝑝) model is 

defined as 
  

𝑍𝑡 =∑𝜙𝑗
(𝑖)
𝑍𝑡−𝑗

𝑝

𝑗=1

+ 𝜉𝑡 , (3) 

where 𝜙1
(𝑖)
, … , 𝜙𝑝

(𝑖)
  are the AR model coefficients in the 𝑖 -th 

state. Let us note that in particular states, the actual AR model 

orders might be different. In our case we assume that the 

innovations 𝜉𝑡  are independent identically distributed (i.i.d.) 

random variables with zero mean, here assumed to be 

symmetric 𝛼 -stable distributed with stability parameter 𝛼𝑖  in 

the 𝑖-th state (0 < 𝛼𝑖 ≤ 2). Recall that the symmetric 𝛼-stable 

distribution can be defined through the characteristic function 

Φ(𝑡) = exp (−𝑐𝛼|𝑡|𝛼) and for 𝛼 = 2 it reduces to the Gaussian 

distribution with the scale parameter 𝜎 = √2𝑐 . It is the only 

case when the variance is finite. Thus, in the particular case of 

𝛼 = 2 , the innovations 𝜉𝑡  in the model (3) are Gaussian 

distributed. For other 𝛼 values the 𝛼-stable distribution belongs 

to the so-called heavy-tailed class of distributions for which 

large observations are more probable than in the Gaussian case, 

see [82] for more details. Here, we assume 𝑐 =
1

√2
 , what 

corresponds to the standard normal distribution 𝒩(0,1) in the 

Gaussian case. 

The procedure used for the estimation of the degradation 

model parameters and the algorithm for simulation of the 

degradation model trajectories are described in the Appendix A. 

Sample trajectories of the fitted degradation model are plotted 

in Figure 2. 

4. Methodology for machine state prediction 

For machine state prediction we use two HMM methods, 

coming from a simplification of the degradation model [3]. In 

this section, first, we describe two proposed HMMs and, then, 

the methodology used for predicting a machine state. Note that 

the online prediction methodology complements the approach 

from [3], which is dedicated to the offline segmentation. The 

procedure utilising HMM methodology proposed in this paper 

consists of two crucial steps: training and prediction. In Sections 

4.2 and 4.3 we describe them in details. Let us emphasise that 

the methodology is dedicated to detrended data (i.e. to data 

without a deterministic trend 𝜂(𝑡) , see Eq. (1)). Thus, in the 

preliminary step of the analysis the trend is estimated using the 

moving median technique (see [2] for details) and subtracted 

from HI data.  Sample trajectories of simulated time series 𝑆𝑡, 

used for the trend estimation, are plotted in Figure 2 (middle 

panel for the Gaussian case and bottom panel for the α-stable 

one). A similar approach in the context of the HMM-based 

segmentation was used in [3], where the authors compared three 

HMM approaches: designed for original HI data, for detrended 

HI data and for detrended and normalized HI data. The most 

accurate results were obtained for detrended data, what 

indicates that the HMM approach is more suitable for detecting 

degradation changes in the probabilistic part of the signal. 

Therefore, here, we only use such an approach. Note that the 

detrended HI data corresponds to the random component 𝑋𝑡 of 

the degradation model (1). 

4.1. Description of HMMs 

We assume that the detrended HI data is given by a three-state 

HMM with states corresponding to the healthy, warning and 

alarm states of the machine. Let {𝑅𝑡}0≤𝑡≤𝑇  denote the Markov 

chain, 𝑅𝑡: Ω → {1,2,3}.  In this paper, we consider two HMMs, 

namely with the Gaussian and the 𝛼-stable distributions. In the 

Gaussian HMM method we assume that the detrended HI data 

is given by 

𝑋𝑡 ∼ {

𝒩(0, 𝜎1),  if 𝑅𝑡 = 1,

𝒩(0, 𝜎2),  if 𝑅𝑡 = 2,

𝒩(0, 𝜎3),  if 𝑅𝑡 = 3,

(4) 

while in the 𝛼-stable HMM method we assume 

𝑋𝑡 ∼ {

𝒮(2,0, 𝑐1, 0),  if 𝑅𝑡 = 1,

𝒮(𝛼2, 0, 𝑐2, 0),  if 𝑅𝑡 = 2,

𝒮(𝛼3, 0, 𝑐3, 0),  if 𝑅𝑡 = 3,

(5) 

where 𝒩(0, 𝜎𝑖) is the zero-mean Gaussian distribution with the 

variance 𝜎𝑖
2  and 𝒮(𝛼𝑖 , 0, 𝑐𝑖 , 0)  is the symmetric 𝛼 -stable 

distribution [82], with the characteristic function Φ(𝑡) =

exp (−𝑐𝑖
𝛼𝑖|𝑡|𝛼𝑖). Parameters 𝜎𝑖 , 𝑐𝑖, describe the scale, while 𝛼𝑖 - 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

the heaviness of the distribution tails. Note that the location 

parameter in both models is set to 0, since only detrended HI 

data is further analysed. 

The state process 𝑅𝑡  is assumed to be an unobserved 

Markov chain with the following transition matrix 

𝐏 = (
𝑝11 1 − 𝑝11 0
0 𝑝22 1 − 𝑝22
0 0 1

) , (6) 

where 𝑝𝑖𝑗 = 𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝑅𝑡 = 𝑖)  is the probability of 

switching from state 𝑖  at time 𝑡  to state 𝑗  at time 𝑡 + 1 . Note 

that the form of the transition matrix is driven by the assumption 

that the states come successively, i.e. the change from the 

warning (corresponding to 𝑅𝑡 = 2  ) to the normal 

(corresponding to 𝑅𝑡 = 1  ) state as well as from the alarm 

(corresponding to 𝑅𝑡 = 3 ) to the warning or normal state is not 

possible. Finally, although the moments of switching are not 

directly observable, we assume that the first observation 𝑥1 in 

the data comes from the healthy state, i.e. 𝑃(𝑅1 = 1) = 1. 

Let us note that the proposed HMMs given in Eqs. (4) and 

(5) can be considered as a simplification of the degradation 

model described in Section 3.3. In both HMMs we assume the 

changing scale parameter, similar as in the assumed degradation 

model. However, in contrast to the degradation model, within  

a given state the scale parameter is considered as a constant 

value in both HMM methods. Moreover, the interdependence of 

the data is not taken into account in contrast to the assumed 

degradation model, where AR component is included. 

4.2. Training 

Predicting the future state of HI data requires a knowledge about 

the process characteristics in each of the three states (healthy, 

warning and alarm). Thus, at this step we follow a common 

approach (see e.g. [62, 64, 83]), and assume that the long-term 

data with full history is available and the training of the HMMs 

is performed on such time series (after removing the 

deterministic trend). To this end we use the Expectation-

Maximization (EM) algorithm of [84]. It yields estimators of the 

HMM model parameters 𝜃 = (𝜎1, 𝜎2, 𝜎3, 𝐏)  (or  𝜃 =

(𝛼2, 𝛼3, 𝑐1, 𝑐2, 𝑐3, 𝐏) in the 𝛼-stable HMM) and at the same time 

also probabilities of the state process values 𝑃(𝑅𝑡 = 𝑖 ∣

𝑥1, 𝑥2, … , 𝑥𝑇) , based on the observed HI data (𝑥1, 𝑥2, … , 𝑥𝑇) . 

The EM algorithm is an iterative two-step procedure. It starts 

with an arbitrarily chosen vector of initial parameters 𝜃(0). Next, 

the state probabilities 𝑃(𝑅𝑡 = 𝑖 ∣ 𝑥1, … , 𝑥𝑇; 𝜃
(0))  are derived 

based on the Bayes rule and the initial parameters 𝜃(0). These 

probabilities are then used for deriving new maximum 

likelihood (ML) estimates 𝜃(1)  of the parameter vector. Next, 

the state probabilities 𝑃(𝑅𝑡 = 𝑖 ∣ 𝑥1, … , 𝑥𝑇; 𝜃
(1))  are updated 

using new ML estimates 𝜃(1)  and they again are used for 

deriving new ML estimates of 𝜃 . Both steps: i) updating 

probabilities (called the E-step), and ii) updating ML estimates 

(called the M-step) are repeated until the (local) maximum of 

the likelihood function is reached. A detailed description of 

these two steps of the algorithm is given below, while  

a schematic diagram of the training procedure is plotted in 

Figure B.13. 

The E-step 

Assume that 𝜃(𝑛) is the parameter vector calculated in the 

M-step during the previous iteration and 𝑃(𝑅1 =  1 ∣

𝑥0; 𝜃
(𝑛)) = 1, according to the model assumption that 𝑃(𝑅1 =

1) = 1. Let 𝐱𝑡 = (𝑥1, 𝑥2, … , 𝑥𝑡) be the observed data up to time 

𝑡. Then [85]: 

1. Forward filtering: For 𝑡 = 2,3, … , 𝑇  iterate on 

equations: 

𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑡; 𝜃
(𝑛)) =

𝑃(𝑅𝑡=𝑖∣𝐱𝑡−1;𝜃
(𝑛))𝑓(𝑥𝑡∣𝑅𝑡=𝑖;𝐱𝑡−1;𝜃

(𝑛))

∑  3
𝑗=1  𝑃(𝑅𝑡=𝑗∣𝐱𝑡−1;𝜃

(𝑛))𝑓(𝑥𝑡∣𝑅𝑡=𝑗;𝐱𝑡−1;𝜃
(𝑛))

,        𝑖 = 1,2,3, 

where 𝑓(𝑥𝑡 ∣ 𝑅𝑡 = 𝑖; 𝐱𝑡−1; 𝜃
(𝑛)) is the density of the underlying 

data at time 𝑡 conditional that the process was in regime 𝑖 (𝑖 ∈

{1,2,3}) with parameters equal to 𝜃(𝑛), 

and 𝑃(𝑅𝑡+1 = 𝑖 ∣ 𝐱𝑡; 𝜃
(𝑛)) = ∑  3

𝑗=1 𝑝𝑗𝑖
(𝑛)
𝑃(𝑅𝑡 = 𝑗 ∣ 𝐱𝑡; 𝜃

(𝑛)), 

until 𝑃(𝑅𝑇 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛))  is calculated. Note that the first 

formula comes from the Bayes rule, while the second one comes 

directly from the definition of the transition matrix. 

2. Backward smoothing: for 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,2 

iterate on 

𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛)) = 

∑  3
𝑗=1

𝑃(𝑅𝑡+1=𝑗∣𝐱𝑇;𝜃
(𝑛))

𝑃(𝑅𝑡+1=𝑗∣𝐱𝑡;𝜃
(𝑛))

𝑝𝑖𝑗
(𝑛)
𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑡; 𝜃

(𝑛)).  

Note that the smoothing formula is calculated based on 

𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛)) = ∑  3

𝑗=1 𝑃(𝑅𝑡+1 = 𝑗, 𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛))  

and 
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𝑃(𝑅𝑡+1 = 𝑗, 𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛)) = 𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑇; 𝜃

(𝑛))𝑃(𝑅𝑡 = 𝑖 ∣ 𝑅𝑡+1 = 𝑗, 𝐱𝑇; 𝜃
(𝑛))

 = 𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑇; 𝜃
(𝑛))𝑃(𝑅𝑡 = 𝑖 ∣ 𝑅𝑡+1 = 𝑗, 𝐱𝑡; 𝜃

(𝑛))

 =
𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑇; 𝜃

(𝑛))𝑃(𝑅𝑡 = 𝑖, 𝑅𝑡+1 = 𝑗|𝐱𝑡; 𝜃
(𝑛))

𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑡; 𝜃
(𝑛))

,

 

where the second equality comes from the fact that for a known 

𝑅𝑡+1  value the observations 𝑥𝑡+1, 𝑥𝑡+2, … , 𝑥𝑇  do not contain 

more information on 𝑅𝑡  than already included in 𝑅𝑡+1 and 𝒙𝒕 

(see also [85] for a more detailed derivation). Finally, it can be 

rewritten as

𝑃(𝑅𝑡+1 = 𝑗, 𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛)) =

𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑇; 𝜃
(𝑛))𝑃(𝑅𝑡 = 𝑖|𝐱𝑡; 𝜃

(𝑛))𝑝𝑖𝑗
(𝑛)

𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑡; 𝜃
(𝑛))

.                (7)

Under the model assumptions (4)-(5), 𝑓(𝑥𝑡 ∣ 𝑅𝑡 = 𝑖; 𝐱𝑡−1; 𝜃
(𝑛)) 

is the 𝛼-stable or Gaussian density with parameters 𝛼𝑖 , 𝑐𝑖 or 𝜎𝑖, 

respectively. Since, in general, the 𝛼-stable distribution does not 

have a closed-form representation of the probability density 

function (pdf), for regimes with unknown 𝛼  parameter, i.e. 

𝑅𝑡 = 2  and 𝑅𝑡 = 3 , it is calculated numerically, using the 

method of Nolan, [86]. In the other cases, the Gaussian pdf is 

used. 

The M-step 

The probabilities derived in the E-step 𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛)), 

are then used for the calculation of the new ML estimates 𝜃(𝑛+1). 

The parameters of the distributions 𝛼𝑖  and 𝑐𝑖  (or 𝜎𝑖  in the 

Gaussian case) are estimated as the maximizers of the expected 

(due to the hidden states) log-likelihood function, 𝜃(𝑛+1) =

𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐿(𝜃; 𝒙𝑻), given by the formula  

𝐿(θ; 𝐱𝑇) = ∑  

𝑇

𝑡=2

∑ 

3

i=1

 𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛)) ln[𝑓(𝑥𝑡 ∣ 𝑅𝑡 = 𝑖; θ)] , (8) 

where the inner sum comes from the law of total expectation 

(see also [85] for more details). The new transition probabilities, 

𝑝𝑖𝑗
(𝑛+1)

, are estimated as: 

𝑝𝑖𝑗
(𝑛+1)

=
∑  𝑇−1
𝑡=1  𝑃(𝑅𝑡+1 = 𝑗, 𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃

(𝑛))

∑  𝑇−1
𝑡=1  𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃

(𝑛))
(9) 

and the joint probability 𝑃(𝑅𝑡+1 = 𝑗, 𝑅𝑡 = 𝑖 ∣ 𝐱𝑇; 𝜃
(𝑛)) can 

be calculated as in formula (7). 

Estimators obtained in the M-step are then used as a new 

parameter vector 𝜃(𝑛+1) in the next iteration of the E-step. The 

algorithm stops if |𝜃(𝑛+1) − 𝜃(𝑛)| < 𝛿  for some small 𝛿  and 

�̂� = 𝜃(𝑛+1) is set as the vector of trained HMM parameters. 

4.3. Prediction 

The prediction step is performed for new data. Let 𝑇′ be its 

length. We assume that the new data exhibit similar 

characteristics as the trajectory used at the training step. Having 

the trained HMM parameters �̂� we can calculate the conditional 

probabilities about the state process for a new trajectory. 

Precisely, for 𝑡 = 2,… , 𝑇′ we iterate on equations 

𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑡; �̂�) =

𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝐭−𝟏; �̂�)𝑓(𝑥𝑡 ∣ 𝑅𝑡 = 𝑖; 𝐱𝐭−𝟏; �̂�)

∑  3
𝑖=1  𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝐭−𝟏; �̂�)𝑓(𝑥𝑡 ∣ 𝑅𝑡 = 𝑖; 𝐱𝐭−𝟏; �̂�)

(10)
 

and 

𝑃(𝑅𝑡+1 = 𝑖 ∣ 𝐱𝑡; �̂�) =∑  

3

𝑗=1

  �̂�𝑗𝑖𝑃(𝑅𝑡 = 𝑗 ∣ 𝐱𝑡; �̂�), (11) 

yielding probabilities of states for each of the new 

observations under the trained HMM parameters. The starting 

point for the iteration is chosen as 𝑃(𝑅1 = 1 ∣ 𝐱𝟎; �̂�) = 1 , 

according to the assumption that 𝑃(𝑅1 = 1) = 1 . Finally, the 

trained HMM transition probabilities, �̂�𝑖𝑗, are updated based on 

the probabilities of states in the new data analogously to the 

calculations in the training step (8) 

𝑝𝑖𝑗
′ =

∑  𝑇′−1
𝑡=1  

𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑇′; �̂�)

𝑃(𝑅𝑡+1 = 𝑗 ∣ 𝐱𝑡; �̂�)
𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑡; �̂�)�̂�𝑖𝑗

∑  𝑇′−1
𝑡=1  𝑃(𝑅𝑡 = 𝑖 ∣ 𝐱𝑇′; �̂�)

. (12)
 

Such update of the transition matrix allows for adjusting the 

trained model to different proportions of the states' duration in 

the new data. The inferred state probabilities of the last 

observation, 𝑃(𝑅𝑇′ = 𝑖 ∣ 𝐱𝑇′; �̂�) , 𝑖 ∈ {1,2,3} , and the updated 

transition probabilities 𝑝𝑖𝑗
′   are then used for prediction of the 

state in the next time point 
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�̂�(𝑅𝑇′+1 = 𝑗 ∣ 𝐱𝑇′; �̂�) =∑  

3

𝑖=1

 𝑃(𝑅𝑇′ = 𝑖 ∣ 𝐱𝑇′; �̂�)𝑝𝑖𝑗
′ . (13) 

Finally, we can use the probabilities (13) to predict the next 

state. Namely, the predicted state is calculated as the most 

probable state in the next time point, i.e. the healthy state 

prediction corresponds to �̂�(𝑅𝑇′+1 = 1 ∣ 𝐱𝑇′; �̂�) > 0.5 , the 

warning state prediction to �̂�(𝑅𝑇′+1 = 2 ∣ 𝐱𝑇′; �̂�) > 0.5, while 

the alarm state prediction to �̂�(𝑅𝑇′+1 = 3 ∣ 𝐱𝑇′; �̂�) > 0.5. Note 

that in order to simplify the notation in the rest of the paper, we 

further omit conditioning on 𝐱𝑇′ and �̂� in the notation for the 

predicted probabilities, i.e. we use �̂�(𝑅𝑇′+1 = 𝑖). A schematic 

illustration of the whole procedure is given in Figure 1.

 

Figure 1. Illustration of the state prediction procedure for the HMM method (see Sections 4.2 and 4.3).

5. Comparison of the predictive performance of Gaussian 

and non-Gaussian models for simulated datasets 

In this section we demonstrate the efficiency of the proposed 

procedure for simulated data. Here in the training and prediction 

steps we use the simulated trajectories from the degradation 

model described in Section 3.3. 

5.1. Simulated data description 

The parameters used for the simulation are obtained based on 

the real time series from the FEMTO dataset (see Section 3.1 

and Appendix A for more details). The considered data is plotted 

in Figure 2 (top panel) together with the true change points 𝜏1 

and 𝜏2 (𝜏1 = 1176, 𝜏2 = 2649)  expressed in the number of 

observations. The other estimated parameters of the degradation 

model are (see the notation used in Section 3.3):  𝑠1 = 0.0018,

𝑠2 = 0.0235, 𝑠3 = 0.0816; 𝜙1
(1)
= 0.1177, 𝜙2

(1)
=

0.0427, 𝜙3
(1)
= 0.0328,  𝜙4

(1)
= 0;𝜙1

(2)
= 0.1654, 𝜙2

(2)
=

0.0278, 𝜙3
(2)
= 0.0054, 𝜙4

(2)
= 0.0100 , and 𝜙1

(3)
= 0.0666,  

𝜙2
(3)
= 0.0871, 𝜙3

(3)
= 0.3038, 𝜙4

(3)
= 0.  They were obtained 

by applying the procedure described in Appendix A.1 to the full 

FEMTO data. In the middle panel of Figure 2 we present an 

exemplary trajectory of the degradation model with the 

parameters corresponding to the FEMTO data and the Gaussian 

distribution of the innovations of the AR model (i.e. 𝜉𝑡 in Eq. 

(3)), while in the bottom panel we demonstrate an exemplary 

trajectory of the degradation model with the 𝛼 -stable 

distribution of 𝜉𝑡  with 𝛼 = 1.65 . The trajectories were 

simulated according to the algorithm described in Appendix A.2. 

The length of the trajectories were set to 𝑇 = 2704 

observations, as in the FEMTO dataset. One can clearly see that 

the overall pattern of both simulated trajectories corresponds to 

the FEMTO data (increasing trend, time-dependent scale). 

However, in the Gaussian case (middle panel of Figure 2) we do 

not observe any impulsive behaviour of the time series while in 
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the 𝛼-stable case large observations are clearly visible. 

 

Figure 2. FEMTO dataset (top panel) and the simulated 

trajectories of the degradation model with the Gaussian 

(middle panel) or the 𝛼-stable distribution (bottom panel). The 

parameter 𝛼 was set to 1.65. The true change points 𝜏1, 𝜏2 are 

marked with black, vertical lines in the top panel. 

5.2. State prediction with HMM methods 

5.2.1. Gaussian HMM 

We start with training the HMM using the Gaussian HMM 

method (4). To this end, we simulate a full HI trajectory 

according to the procedure described in Appendix A.2 with  

a Gaussian distribution and remove its deterministic trend using 

a moving median technique [2]. Next, this trajectory is used in 

the training step of the procedure (see Figure 1), in which we 

apply the EM algorithm. 

As a result we derive the trained HMM parameters: 𝜎1 =

0.0020, 𝜎2 = 0.0148, 𝜎3 = 0.1006, 𝑝11 = 0.9993  and 𝑝22 =

0.9992 . EM algorithm also yields the probabilities of the 

possible state process values. These probabilities are then used 

for the change points estimation. Precisely, we assign each 

observation to the most probable state, i.e. 𝑅𝑡 = 𝑖, if 𝑃(𝑅𝑡 = 𝑖 ∣

𝐱𝑇; �̂�) > 0.5 . The change points are then simply 𝜏1 =

min{𝑡: 𝑅𝑡 = 2}  for the first one and 𝜏2 = min{𝑡: 𝑅𝑡 = 3}  for 

the second one. The trained change points are equal to 𝜏1 =

1398 and 𝜏2 = 2633. 

After training the HMM parameters, we simulate next 100 

trajectories of the model (1) with the Gaussian distribution and 

random change points. These points are simulated according to 

the uniform distribution on the intervals [𝜏1 − 0.1(𝜏2 −

𝜏1), 𝜏1 + 0.1(𝜏2 − 𝜏1)]  and [𝜏2 − 0.1(𝑇 − 𝜏2), 𝜏2 + 0.1(𝑇 −

𝜏2)] for the first and the second change point, respectively. In 

other words, the possible values are simply chosen from an 

interval containing the points detected in the training trajectory 

±10% of the length of the corresponding state (see also Figure 

3 for illustration). 

Next, for the simulated trajectories we apply the prediction 

step of the procedure (see Figure 1). Precisely, for each of the 

time points 𝑇′ = 500,501, … , 𝑇 − 1  we subtract the moving 

median and calculate the predicted next state probability 

�̂�(𝑅𝑇′+1 = 𝑖) based on the data up to this point, i.e. from the 

interval [1, 𝑇′]. The calculations are done according to formula 

(13) with the trained HMM parameters. The average of the 

obtained values for the warning and alarm state, 𝑖 = 2,3, from 

all simulated trajectories is plotted in Figure 3. The range of the 

simulated, random change points is also marked in the figure 

with coloured areas. The mean of the predicted probabilities 

changes visibly within the range of the simulated change points 

for the corresponding states, which means that the change of 

states is predicted close to the simulated change points. At the 

same time, it is on expected levels (i.e. is close to 0 or 1) outside 

the change periods. 

As mentioned before, based on the predicted state 

probabilities we also calculate predictions of the change points 

as the first time point for which the probability of a given state 

is higher than 0.5, i.e., 

�̂�1 = min{𝑇
′: �̂�(𝑅𝑇′+1 = 2) > 0.5} + 1 

and 

�̂�2 = min{𝑇
′: �̂�(𝑅𝑇′+1 = 3) > 0.5} + 1. (14)

 

The obtained values are in the range of [821,1514]  or 

[2222,2649] , for the first and the second change point, 

respectively. The means of the predicted change points �̂�1 and 

�̂�2 are equal to 1251 and 2485. The state prediction shows on 

average earlier moments of change points than the simulated 

ones, but the differences are not high. 

Gaussian HMM method applied to the simulated trajectories 

with the Gaussian distribution yields reasonable state 

predictions. Now, we verify the performance of the Gaussian 

HMM method, when applied to heavy-tailed trajectories. Again, 

we simulate 100 trajectories of the model (1), but now with an 

𝛼 -stable distribution. The parameter 𝛼  is set to 1.65 and, for 

simplicity, we assume that it is the same for all states. 

Analogously as for the Gaussian simulations, the change points 
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are again drawn from a uniform distribution on the intervals 

[𝜏1 − 0.1(𝜏2 − 𝜏1), 𝜏1 + 0.1(𝜏2 − 𝜏1)]  and [𝜏2 − 0.1(𝑇 −

𝜏2), 𝜏2 + 0.1(𝑇 − 𝜏2)]  with 𝜏1 = 1398  and 𝜏2 = 2633 . Next, 

we remove the trend using a moving median and apply the 

Gaussian HMM method with the previously trained Gaussian 

HMM parameters, i.e. 𝜎1 = 0.0020, 𝜎2 = 0.0148, 𝜎3 = 0.1006, 

𝑝11 = 0.9993 and 𝑝22 = 0.9992, to predict the next state. We 

repeat the calculations for each of the time points 𝑇′ =

500,501, … , 𝑇 − 1  using only the values from the interval 

[1, 𝑇′].

 

Figure 3. Mean of the predicted next state probabilities for the Gaussian HMM method applied to the simulated Gaussian trajectories 

of the degradation model (1). The range of the simulated change points is marked with the light blue, or light red area for the first 

and second change, respectively. The trained change points 𝜏1 and 𝜏2 are marked with dashed, vertical lines. The mean was 

calculated from 100 simulations. 

 

Figure 4. Mean of the predicted next state probabilities for the Gaussian HMM method applied to the simulated 𝛼-stable trajectories 

of the degradation model (1). The range of the simulated change points is marked with the light blue, or light red area for the first 

and second change, respectively. The trained change points 𝜏1 and 𝜏2 are marked with dashed, vertical lines. The mean was 

calculated from 100 simulations. 

The obtained predicted probabilities are plotted in Figure 4. 

The predicted change points �̂�1  and �̂�2  are in the range 

[501,875] and [501,2212], while their means are equal to 531 

and 1443, for the first and the second change point, respectively. 

As can be observed, the Gaussian HMM method does not work 

well for the 𝛼-stable distributed data. The predicted points are 

much lower than the expected ones and the spread of the results 

is much wider than the simulated one. These are the effects of 

extreme observations, coming from heavy tails, that are being 

wrongly classified to the next state by the Gaussian HMM. 

5.2.2. 𝜶-stable HMM 

The results obtained in Section 5.2.1 show that the Gaussian 

HMM method does not work well, if it is applied to data with 

heavy-tailed distribution (here 𝛼-stable). Hence, in this section 

we consider the 𝛼-stable HMM method (5). Again, we start with 

training the HMM. To this end, we simulate a trajectory of HI 

data according to the procedure described in Appendix A.2 (see 
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also Section 5.1 for more details on the parameters). However, 

now we use the 𝛼-stable distribution for the random part 𝜉𝑡. We 

consider different cases of the 𝛼 parameter values, namely 𝛼 =

{1.65,1.7,⋯ ,2} and, for simplicity, we assume that they do not 

change with the states. Next, we remove the trend using  

a moving median technique and separately for each considered 

𝛼  value train the 𝛼 -stable HMM using the EM algorithm 

(training step of the procedure illustrated in Figure 1). As  

a result, in each case, we obtain trained HMM parameters as 

well as the change points for the training trajectories. 

After training the 𝛼 -stable HMM, we simulate next 100 

trajectories of the model (1) with the 𝛼-stable distribution and 

random change points. Again, we consider separately different 

values of 𝛼  ( 𝛼 =  {1.65,1.7,⋯ ,2})  and the change points are 

drawn from the uniform distribution on the interval [𝜏1 − 

0.1(𝜏2 − 𝜏1), 𝜏1 + 0.1(𝜏2 − 𝜏1)]  and [𝜏2 − 0.1(𝑇 − 𝜏2), 𝜏2 +

0.1(𝑇 − 𝜏2)] , where 𝜏1  and 𝜏2  are the points detected in the 

training trajectory with the corresponding 𝛼. Next, we perform 

the prediction step of the proposed procedure for the simulated 

trajectories and each of the time points 𝑇′ = 500,501, … , 𝑇 − 1. 

In order to evaluate the obtained predictions for different 

values of 𝛼, we calculate the mean absolute percentage errors 

of the predicted change points 

MAPE(𝜏𝑖) =
1

100
∑  

100

𝑛=1

 
|𝜏𝑖(𝑛) − �̂�𝑖(𝑛)|

𝜏𝑖(𝑛)
, (15) 

where 𝜏𝑖(𝑛) is the simulated change point for 𝑛-th trajectory, 

while �̂�𝑖(𝑛) is the corresponding prediction calculated as in (14). 

Results obtained for different values of 𝛼 are plotted in Figure 

5. In the case of the trained 𝛼 -stable HMM MAPE (𝜏1)  is 

between 11% − 34% and decreases with increasing parameter 

𝛼 , i.e. the predictions are more accurate for less heavy tails. 

MAPE (𝜏2)  is between 1% − 6%  and its level is similar for 

different 𝛼 values. 

In order to compare both HMM methods, i.e. the Gaussian 

as well as the 𝛼 -stable one, we also calculate MAPE for the 

previously trained Gaussian HMM (see Section 5.2.1) applied 

to the simulated trajectories with the 𝛼-stable distribution. The 

obtained MAPE values are also plotted in Figure 5. Note that 

the results obtained for the Gaussian HMM applied to the 

Gaussian simulations correspond to the case 𝛼 = 2. The errors 

of the predictions obtained with the Gaussian HMM applied to 

trajectories with heavy tails are from the range 35% − 62% and 

20% − 45%  for 𝜏1  and 𝜏2 , respectively. The obtained values 

are much higher than those calculated using the 𝛼-stable HMM 

method. The errors decrease with increasing 𝛼 , i.e. with the 

distribution used for simulations being closer to the trained 

model.

 

Figure 5. Mean absolute percentage errors of �̂�1 (left panel) or �̂�2 (right panel) prediction of trained Gaussian as well as 𝛼-stable 

HMM applied to simulated trajectories of the model (1) with the 𝛼-stable distribution. The means were calculated from 100 

simulations.

In Figure 6 we additionally illustrate the distribution of the 

percentage errors. As can be observed, most of the errors are too 

early predictions, represented by negative values of MAPE. 

This effect is especially pronounced for the Gaussian HMM 

applied to the 𝛼-stable simulations. For low values of 𝛼 (heavy 

tails) all of the predictions too early indicate on the state change. 

This is, again, the effect of wrongly classifying extreme 

observations, coming from heavy tails, to the next (worse) state. 

The errors of the trained 𝛼-stable HMM are closer to 0, but for 

𝜏1 predictions their spread, especially for lower values of 𝛼, is 
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higher. Such effect is also visible for 𝜏2 , but the scale of the errors is much lower.

 

Figure 6. Boxplots of the percentage errors of �̂�1 (left panels) or �̂�2 (right panels) prediction calculated from 100 simulated 

trajectories of the model (1) with the 𝛼-stable distribution. Results obtained with the trained Gaussian HMM are plotted in the top 

panels, while with the 𝛼-stable HMM in the bottom panels. 

 

6. Comparison of the predictive performance of Gaussian 

and non-Gaussian models for real datasets 

In this section we demonstrate the efficiency of the proposed 

methodology for real datasets. In contrast to the simulated data 

analysis, presented in Section 5, here at the training and 

prediction steps we use the real HI time series described in 

Section 3. For each case, both steps are applied for the same real 

HI trajectories. However, as mentioned above at the training 

step we analyse the data with full history. In real monitoring 

systems the proposed methodology can be applied in case when 

the training step and the prediction steps are applied for different 

HI trajectories assuming that they exhibit similar characteristics, 

i.e. when they represent the same HI and come from the same 

type of machine working under similar working conditions. 

Because we do not have such data, in this section the efficiency 

is presented based on exactly the same trajectories at both steps 

of the procedure. 

We start with training the Gaussian (see Eq. (4)) and the 𝛼-

stable (see Eq. (5)) HMMs using full detrended trajectories of 

the analysed HI data. Next, we use the trained HMM to predict 

the next step state from a given point in time based on the past 

data. We repeat the procedure for all available points, starting 

from the set of 500 observations, i.e. 𝑇′ = 500,501, … , 𝑇 − 1, 

where 𝑇 is the corresponding data length. The predicted states 

are calculated as the most probable state in the next time point, 

namely the healthy state prediction corresponds to �̂�(𝑅𝑇′+1 =

1) > 0.5, the warning state prediction to �̂�(𝑅𝑇′+1 = 2) > 0.5, 

while the alarm state prediction to �̂�(𝑅𝑇′+1 = 3) > 0.5. Note 

that, here, differently than in the simulation study, we use the 

same trajectories for training and deriving on-line predictions. 

The datasets, trained change points 𝜏1, 𝜏2  as well as the 

predicted states are plotted in Figures 7-9 for the FEMTO 

dataset, AMC Tech dataset 1 and 2, respectively. Note that the 

values of predicted states are calculated in the online mode. The 

observed transitions from the warning to the healthy state as 

well as from the alarm to the warning state come from the fact 

that at each time point new information (observed HI value) is 

included in the calculations.  It can result in lowering the 

forecasted warning or alarm state probability. The 
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corresponding predicted probabilities are plotted in Figures 

B.10-B.12 in the Appendix. For comparison we also show the 

predicted probabilities calculated using the switching Kalman 

filter (SKF) and switching maximum correntropy Kalman filter 

(SMCKF) methods (see the bottom panels in Figures B.10-B.12) 

that recently were proposed also for the analysis of HI data with 

possible non-Gaussian behaviour, see [4] for more details. 

 

Figure 7. On-line predictions of the next state using the 

Gaussian (middle panel) as well as the 𝛼-stable HMMs 

(bottom panel) applied to the detrended FEMTO dataset. The 

original HI data is plotted in the top panel. Change points 

detected based on the whole data (at the level of the training 

step of the procedure), are denoted by 𝜏1 and 𝜏2. 

For the FEMTO dataset (Figures 7 and B.10) the trained 

change points obtained from the whole data are earlier in the 

case of the 𝛼 -stable HMM, especially for 𝜏1 . Both methods 

show some too early predictions of the warning as well as the 

alarm state. On-line state prediction is based on smaller samples 

than the whole dataset, so the methods are more sensitive to 

short-time changes in the signal behaviour. This effect is more 

pronounced for the Gaussian HMM. On the other hand, there 

are no indications on the previous state after the trained change 

points are achieved for HMM methods. Looking at the 

corresponding predicted probabilities we observe a similar 

picture as most of the calculated values are either close to 0 or 

1, i.e. indicate on the given state with high certainty. Comparing 

the predicted HMM-based probabilities with the SKF and 

MCSKF methods, we observe that the false predictions 

diminish visibly faster in the former case. The predictions from 

the 𝛼 -stable HMM resemble the MCSKF results, while the 

Gaussian HMM yields similar picture as SKF. 

For the AMC Tech dataset 1 (Figures 8 and B.11 in the 

Appendix) we obtain almost identical results using the Gaussian 

and 𝛼-stable HMMs. Slight differences are visible in the values 

of the predicted probabilities, but they do not change the 

qualitative conclusions. Comparing the results with the SKF and 

MCSKF methods we observe that similar results were obtained 

with the latter one, with the only exception between points 1560 

and 1671. On the other hand, the SKF method predicts the alarm 

state for almost whole sample, starting from the point 𝑇′ = 520. 

Such a behaviour was caused by a smoother growth of the HI 

than in the former dataset. The alarm state not only caused HI 

increase, but also its strong variability. This was a result of the 

load type applied in the test rig.  

 

Figure 8. On-line predictions of the next state for the Gaussian 

(middle panel) as well as the 𝛼-stable HMM (bottom panel) 

applied to the detrended AMC Tech dataset 1. The original HI 

data is plotted in the top panel. Change points detected based 

on the whole data (at the level of the training step of the 

procedure), are denoted by 𝜏1 and 𝜏2. 

Finally, for the AMC Tech dataset 2 (Figures 9 and B.12 in 

the Appendix) the trained change points are earlier in the case 

of the Gaussian than for the 𝛼-stable HMM, especially in case 

of 𝜏1. Again, some too early predictions of the alarm state are 

visible for both methods and also of the warning state for the 𝛼-

stable HMM. However, in the latter case, these predictions are 

less certain than for the previous datasets, as the values of the 

probabilities are far from 0 and 1. After the point 1176 all 

predictions are made with high certainty. On the other hand, the 

SKF and MCSKF methods do not distinguish between the 
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healthy and warning state as most of the predicted probabilities 

are close to 0.5. Similarly as in the previous dataset, it was 

caused by the model of HI growth. Warning state was correctly 

detected when HI started to grow steadily. Later, alarm state was 

detected when HI grew further and increased its variability. This 

is very similar to what a human expert reaction should be. 

 

Figure 9. On-line predictions of the next state for the Gaussian 

(middle panel) as well as the 𝛼-stable HMM (bottom panel) 

applied to the detrended AMC Tech dataset 2. The original HI 

data is plotted in the top panel. Change points detected based 

on the whole data (at the level of the training step of the 

procedure), are denoted by 𝜏1 and 𝜏2. 

7. Conclusions 

In this paper, we discuss the problem of prediction of machine 

state based on HI data. To this end we propose to use the HMM-

based methodology. Due to the fact that the data may exhibit 

non-Gaussian impulsive behaviour, the classical HMM 

methodology is extended to the more general case, in which the 

α−stable distribution is assumed as describing the diagnostic 

features. The α−stable distribution is considered as a general 

class of distributions that captures the heavy- and light-tailed 

behaviour. The problem of non-Gaussian distribution of 

diagnostic features analysed in monitoring systems was 

highlighted by many authors. The non-Gaussianity of HI data 

may be related to the machine type that is diagnosed but also 

the level of non-Gaussianity may increase as the damage 

progresses. Thus, the discussed problem does not appear to be a 

singular issue, but a general problem which is observed in 

practical applications. 

The problem of machine state prediction can be considered 

as on-line segmentation of the HI data. This issue was discussed 

in the literature but most of the methods are dedicated to 

Gaussian distributed data. Here we are going a step forward. 

The proposed procedure is based on two steps: training and 

prediction. In the training step by using the EM algorithm we 

train the HMM based on benchmark data with full history, while 

in the prediction step the probability of being in a given state 

(healthy, warning and alarm) is calculated with every new 

datapoint. Based on that, one can identify the most probable 

state of the machine in the next time point. 

The efficiency of the α−stable HMM approach is verified for 

the simulated trajectories of the adopted degradation model with 

Gaussian and non-Gaussian distributions. We have verified that 

the method dedicated to the HI data with possible non-Gaussian 

distribution is more effective for on-line segmentation of data 

with large observations than the classical Gaussian HMM 

algorithm. In particular the obtained percentage errors (MAPE) 

of the transition points decreased from 35%-62% to 11%-

34%  for the warning state and from 20%-45% to 1%-6% for 

the alarm state, if the α−stable HMM approach was applied to 

non-Gaussian HI data instead of the Gaussian one. Finally, the 

proposed methodology is applied to three real HI datasets and 

compared with the Kalman filter-based approach. Models 

trained and verified in all three cases were very similar to  

a reaction of a human expert. Therefore, the proposed method 

can be further developed and possibly applied in an on-line 

condition monitoring system. With such a new functionality, 

CMS can reduce human effort required to properly configure 

anomaly detection procedures. Since in current engineering 

practice only a few of calculated HIs are actually analysed 

against anomaly detection, such a progress can significantly 

reduce unplanned shutdowns, which would improve availability 

of assets. 

The proposed methodology also has some limitations. First, 

the segmentation algorithm is designed for cases when the 

random component of the data changes. However, the 

deterministic components may also change over time, which is 

often the case in real scenarios. In the article [3], where the 

HMM-based approach was proposed for offline segmentation, 

the problem of changing trend was discussed, and a similar 

methodology could be adopted in our case. Additionally, we 
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assume the α-stable distribution for the analysed data. As 

mentioned, this class of distributions can be considered general, 

as it is a limit for infinite-variance (when α < 2) and finite-

variance (when α = 2) distributions. However, when the amount 

of data is relatively small, the limiting case may not be a good 

approximation. In such cases, it is recommended to use more 

appropriate distributions. Moreover, as can be observed in 

Figure 6, there are significant differences in the predicted results 

for different α values. In our methodology the α parameter is 

estimated during the training part of the procedure based on the 

distribution of data that is assumed to have similar behaviour to 

the considered one. However, it is also possible to additionally 

assess the α parameter before applying the HMM model for 

state prediction. The procedure might be similar to the one 

proposed in [2].
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Appendix A. Technical details on the degradation model 

Appendix A.1. Degradation model fitting procedure 

The procedure of fitting the degradation model for a HI sample 𝐒 = [𝑆1, … , 𝑆𝑇] (note that it must contain data from all three states) 

is as follows. First, we set the values of change points �̂�1 and �̂�2. If they are not known a priori, one can estimate them using a selected 

segmentation method, see e.g. [3, 4]. Then, we identify the trend part 𝜂(𝑡) using moving median with a given window length and 

subtract it from the original signal to obtain the realisation of the random part, i.e. 𝐗 = [𝑋1, … , 𝑋𝑇]. The next step is the identification 

of the time-varying scale component. For that purpose, we calculate a robust scale estimator 𝑄 [87] in a moving window over 𝐗 and 

obtain the series 𝐒𝐂 = [𝑆𝐶(1), … , 𝑆𝐶(𝑇)]. For a window 𝐖 = [𝑊1, … ,𝑊𝑁𝑤], this scale estimator is the following 𝑘-th order statistic 

times a constant 

𝑄𝐖 = 2.2191{|𝑊𝑖 −𝑊𝑗|; 𝑖 < 𝑗}(𝑘),  𝑘 = (
𝑐

2
) ≈ (

𝑁𝑤
2
) /4,  𝑐 = [

𝑁𝑤
2
] + 1, (𝐴. 1) 

where [⋅] denotes the integer part. 

Next, we standardise the 𝐗 sequence to obtain 𝐙 = [𝑍1, … , 𝑍𝑇], by setting 𝑍𝑡 = 𝑋𝑡/𝑆𝐶(𝑡). After that, we divide the 𝐒𝐂 sequence 
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state-wise, setting 𝐒𝐂(1) = [𝑆𝐶(1), … , 𝑆𝐶(�̂�1 − 1)], 𝐒𝐂
(2) = [𝑆𝐶(�̂�1), … , 𝑆𝐶(�̂�2 − 1)] and 𝐒𝐂(3) = [𝑆𝐶(�̂�2), … , 𝑆𝐶(𝑇)]. Afterwards, to 

each of these segments we fit appropriate functions corresponding to the model assumptions on the 𝑆𝐶(𝑡) function. The constant 

function of the state 1 (and, in consequence, the estimator �̂�1 ) is equal to the mean of 𝐒𝐂(1) sequence. For state 2 and 𝐒𝐂(2) series, we 

fit a linear function 𝑓2(𝑡) = 𝑎2𝑡 + 𝑏2  and set �̂�2 = 𝑓2(�̂�2) . Analogously, in case of state 3 and 𝐒𝐂(3)  vector, we fit an exponential 

function 𝑓3(𝑡) = 𝑎3exp (𝑏3𝑡) and calculate �̂�3 = 𝑓3(𝑇) using the least squares method. 

In a similar manner as above, we divide 𝐙  into 𝐙(1), 𝐙(2)  and 𝐙(3)  sequences; i.e. we set 𝐙(1) =  [𝑍1, … , 𝑍�̂�1−1], 𝐙
(2) =

[𝑍�̂�1 , … , 𝑍�̂�2−1] and 𝐙(3) = [𝑍�̂�2 , … , 𝑍𝑇]. Then, to each of these series, we fit a separate autoregressive model (3) using the robust Yule-

Walker method [88, 89]. This procedure for the series 𝐙(𝑖), 𝑖 = 1,2,3 , is as follows. First, let us define the robust autocovariance 

estimator for this series [89] 

�̂�(ℎ) =
1

4
[(𝑄𝐔+𝐕)

2 − (𝑄𝐔−𝐕)
2], (𝐴. 2) 

where 𝐔 is the vector consisting of 𝑁𝑖 − ℎ first observations of 𝐙(𝑖), and 𝐕 is the vector consisting of 𝑁𝑖 − ℎ last observations of 𝐙(𝑖). 

Here, 𝑁𝑖 denotes the length of 𝐙(𝑖) series. One can see that the considered robust autocovariance estimator is based on the robust scale 

estimator 𝑄 (A.1). Then, to obtain estimated coefficients �̂�1
(𝑖)
, … , �̂�𝑝

(𝑖)
, we solve the following system of equations 

Φ̂ = Γ̂−1�̂�, (𝐴. 3) 

where 

Φ̂ = [�̂�1
(𝑖)
, … , �̂�𝑝

(𝑖)
]
′
,  �̂� = [�̂�(1), … , �̂�(𝑝)]′ (𝐴. 4) 

and Γ̂ is a 𝑝 × 𝑝 matrix, where the element in 𝑘-th row and 𝑙-th column is defined as Γ̂𝑘,𝑙 = �̂�(𝑘 − 𝑙). The order 𝑝 is selected using the 

method described in [2]. For given 𝑝 = 1,2, … , 𝑝max (considered potential orders), we first fit an autoregressive model, i.e. calculate 

�̂�1
(𝑖)
, … , �̂�𝑝

(𝑖)
 from (A.3). Then, we calculate the residuals of the fitted model, that is, we put the estimated �̂�1

(𝑖)
, … , �̂�𝑝

(𝑖)
 values and the 

elements of 𝐙(𝑖) to the model equation (3) to calculate its right-hand (for 𝑡 equal to each of time indices contained in 𝐙(𝑖)). As a result, 

for each considered potential order 𝑝, we obtain the residual vector Ξ𝑝
(𝑖)

. Finally, we select 𝑝 that minimizes the following criterion 

𝐾(𝑝) = max
ℎ=1,…,ℎmax

 |�̂�𝑝(ℎ)|
2
, (𝐴. 5) 

where �̂�𝑝(ℎ) is the robust autocorrelation estimator for the residual series Ξ𝑝
(𝑖)

 given by [89] 

�̂�𝑝(ℎ) =
(𝑄𝐔+𝐕)

2 − (𝑄𝐔−𝐕)
2

(𝑄𝐔+𝐕)
2 + (𝑄𝐔−𝐕)

2
. (𝐴. 6) 

In (A.6), 𝑼 is the vector consisting of 𝑁𝑖 − ℎ first elements of Ξ𝑝
(𝑖)

, and 𝑽 is the vector consisting of 𝑁𝑖 − ℎ last elements of Ξ𝑝
(𝑖)

. 

Appendix A.2. Simulation of degradation model trajectories 

Using the model (1), we are able to simulate synthetic HI trajectories. First, we set the sample length 𝑇 and the change points 1 < 𝜏1 <

𝜏2 < 𝑇. Based on these values, the generation of the signal 𝑆𝑡 will be divided into three states with respect to 𝑡, according to the 

convention described in Subsection 3.3. Then, we simulate the innovations sequence 𝜉𝑡, from the Gaussian or symmetric 𝛼-stable 

distribution [90] with zero mean. After that, using this sequence, we simulate the AR model 𝑍𝑡 from (3) with different sets of the 

coefficients for each state 𝜙1
(𝑖)
, … , 𝜙𝑝

(𝑖)
[88]. Next, the sequence 𝑍𝑡 is multiplied by the 𝑆𝐶(𝑡) function with the assumed values 𝑠1, 𝑠2, 𝑠3 

to obtain the random component 𝑋𝑡 , (2). Finally, we add an assumed trend term 𝜂(𝑡) (see Eq. (1)) which completes the procedure of 

𝑆𝑡 signal simulation. 
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Appendix B. Additional figures 

 

Figure B.10. On-line predictions of the next state probability for the Gaussian as well as the 𝛼-stable HMM applied to the detrended 

FEMTO dataset. The original HI data is plotted in the top panel. For comparison, prediction results of the SKF and MCSKF methods 

are also plotted in the bottom panels. 
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Figure B.11. On-line predictions of the next state probability for the Gaussian as well as the 𝛼-stable HMM applied to the detrended 

AMC Tech dataset 1. The original HI data is plotted in the top panel. For comparison, prediction results of the SKF and MCSKF 

methods are also plotted in the bottom panels. 
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Figure B.12. On-line predictions of the next state probability for the Gaussian as well as the 𝛼-stable HMM applied to the detrended 

AMC Tech dataset 2. The original data HI is plotted in the top panel. For comparison, prediction results of the SKF and MCSKF 

methods are also plotted in the bottom panels. 
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Figure B.13. Scheme of the training procedure for the HMM parameters based on the EM algorithm (see Section 4.2).  

 

 


