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Highlights  Abstract  

▪ A response surface model with the adaptive 

residual fitting strategy is proposed to estimate 

the structural reliability. 

▪ The random moving uniform design method is 

proposed for the surrogate model construction. 

▪ A learning function that considers the 

feasibility of sample points is introduced. 

 It is quite challenging to attain an accurate reliability estimation on 

complex structures with low computational burden. Therefore, an active 

learning method combining the response surface model with the 

Gaussian process (GP) of residual fitting and reliability-based sequential 

sampling design is proposed for structural reliability analysis. This 

method first utilizes a random quadrilateral grid to perturb the uniform 

design sampling and generates a small set of initial design of 

experiments (DoE) to establish a high-precision initial response surface 

model efficiently. Then, a GP model for residual prediction is 

constructed by using the residuals of the initial response surface model, 

which allows the response surface function to be closer to the limit state 

function (LSF). Further, a reliability-based expected improvement (REI) 

learning function, which inherits the property of the EI function and 

considers the probability of feasibility of the samples, is developed for 

the selection of the most feasible points to update the response surface 

model and the GP model. The importance sampling (IS) combined with 

the proposed method is employed to assess the rare failure probability of 

structures. Ultimately, five numerical examples are used to validate the 

accuracy and efficiency of the proposed method. 
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1. Introduction 

In practical engineering, there exist various types of random 

uncertainties, such as material properties, assembly errors, and 

random loads, which directly affect structural safety. The 

structural reliability analysis (SRA) aims to evaluate the safety 

degree of a system by considering the above uncertainties. 

However, the reliability analysis is limited by sample sizes and 

strongly nonlinear limit state function (LSF), making it difficult 

to efficiently solve by traditional reliability estimation methods 

[1,2].  

The approximate analytical method is common for SRA, 

which mainly includes the first-order reliability method (FORM) 

[3] and the second-order reliability method (SORM) [4]. FORM 

is to replace the original function with the first-order 

approximate Taylor expansion expression. This method often 
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has low accuracy when dealing with high-dimensional 

nonlinear problems. SORM uses a second-order Taylor 

expansion approximation to replace the original function. 

However, the SORM calculation is far more complex than the 

FORM, and is not suitable for complex engineering problems 

[5]. Monte Carlo simulation (MCS) is one of the most stable and 

accurate simulation reliability analysis methods. However, 

MCS requires frequent calls to the performance function or 

numerical model, which leads to a low efficiency in dealing 

with strongly nonlinear problems [6]. Several improved MCS 

methods were developed to improve the efficiency, such as 

importance sampling (IS) [7,8], subset simulation (SS) [9], line 

sampling (LS) [10], and the directional sampling method (DS) 

[11]. These methods mainly achieve computational cost savings 

by limiting the sample size for evaluating the probability of 

failure to the required local accuracy. However, while dealing 

with high-dimensional or strongly nonlinear problems, these 

methods are still time-consuming due to high-frequency 

repetitive simulation calculations [12]. 

In recent years, the surrogate model is widely used for SRA, 

which can capture the complex mapping relationships between 

inputs and outputs, including response surface method (RSM) 

[13,14], radial basis function (RBF) [15,16], Kriging [17,18], 

support vector machine (SVM) [19,20], artificial neural 

network (ANN) [21,22], and Gaussian random process (GRP) 

[23,24]. Among them, RSM has received extensive attention 

from scholars in the field of reliability, due to the advantages of 

simple principle, high computational efficiency, and easy 

operation[25,26]. However, RSM tends to have insufficient 

ability to deal with strongly nonlinear LSFs [27]. Given the 

above problems, Roussouly et al. [28] proposed a sparse RSM 

to handle approximation error. Li et al. [29] introduced an 

improved quasi-sparse response surface model using the 

weighting method for low-dimensional simulation. Romer et al. 

[30] proposed an incremental experimental design method 

based on progressive lattice sampling (PLS) to progressively 

upgrade the RSM and estimate the approximate error contained 

in the response surface. Rathi et al. [31] proposed a response 

surface construction method based on the moving least squares 

method, which assigns higher weights to the most probable 

failure point (MPFP) to make the response surface function 

closer to the LSF at MPFP. Although the above works have 

made significant contributions to the application of RSM in 

SRA, the poor accuracy still needs to be improved for strongly 

nonlinear problems.  

Based on the above research, it is found that RSM cannot 

fully capture the characteristics of nonlinear problems due to the 

characteristics of its construction principle, resulting in large 

residual values. Furthermore, the residual values in RSM 

increase with the increase of the non-linearity of LSFs and 

present an uncertain trend. Inspired by this, residual values can 

be seen as a set of random variables distributed in the spatial 

domain [32,33], which can be represented by Gaussian random 

processes to provide accurate predictions for RSM. So this 

paper develops a response surface model with GP of residual 

fitting to solve the structural reliability problems with implicit 

LSFs. In addition, for most SRA methods, accurately 

establishing the LSF only requires a precise determination 

whether the function value is positive or negative [34]. This has 

led to the active learning methods based on surrogate models 

gradually becoming the mainstream method for complex SRA 

problems [35,36]. 

In summary, this paper introduces a novel active learning 

method that combines the response surface model with the 

Gaussian process of residual fitting and reliability-based 

sequential sampling design. Specifically, the algorithm follows 

the general process of active learning methods, which mainly 

includes initial experimental design, surrogate model 

construction, reliability assessment, learning function criteria, 

and stopping criteria. To improve the accuracy and efficiency of 

the initial surrogate model, this paper proposes a random 

moving uniform design method (RMUDM) by combining 

random moving quadrilateral grid samplings with uniform 

samplings. The training points obtained by the RMUDM will be 

of uniformity and randomness, which provides high-quality 

sample points for the construction of the surrogate model. To 

achieve global sequence updates of the model and consider the 

reliability of new sample points, this paper proposes  

a reliability-based expected improvement (REI) learning 

function criterion that takes reliability into account in the 

iterative process while selecting new points and allows infilling 

samples to explore the solutions with a high level of reliability. 

Finally, case studies are conducted to compare the proposed 

method with several typical reliability analysis methods. 
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The remaining sections are organized as follows. Section 2 

introduces the principles of RSM, GP model, and IS method as 

well as the proposed RMUDM and REI. Section 3 describes the 

main steps of the proposed method. In Section 4, several 

examples are given to validate the superiority of the proposed 

method. Section 5 gives the conclusions.  

2. Methodology 

In this section, the theoretical methods employed in the 

proposed method are introduced, including improved sampling 

methods, surrogate model methods, learning function strategies, 

and reliability assessment methods. 

2.1. RMUDM 

The fitting ability and accuracy of RSM are largely affected by 

the distribution of the training points in the space. Due to the 

lack of randomness and inability to estimate the main and 

interactive effects, the uniform design method (UDM) cannot 

effectively describe practical problems. Therefore, this paper 

proposes an improved UDM that uses a random quadrilateral 

grid to perturb the uniform design sampling. Assuming that the 

initial sample set has n-dimensional design variables with the 

boundaries being 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, 2,⋅⋅⋅, 𝑛 and the number of 

levels in the 𝑖𝑡ℎ dimension as 𝑞𝑖. The RMUDM can be described 

as follows: 

Step 1. The original design space is randomly reduced 

according to the dimensions and levels of variables, it can be 

denoted as [37] 

𝑢̂𝑖 = 𝑢𝑖 − 𝛼
𝑙𝑖−𝑢𝑖

𝑞𝑖−1
, 𝑖 = 1,2,⋅⋅⋅, 𝑛                       (1) 

𝑙𝑖 = 𝑢𝑖 + 𝛼
𝑙𝑖−𝑢𝑖

𝑞𝑖−1
, 𝑖 = 1,2,⋅⋅⋅, 𝑛     (2) 

where 𝛼 is the random reduction coefficient, 𝛼 =

1

2+𝑟𝑎𝑛𝑑
, 𝑟𝑎𝑛𝑑 ∈ [0,1], and ui and li denote the upper and lower 

limits of variable values in the i-th dimension. 

Step 2. The samples are generated by the uniform method in 

the random reduced space via an uniform design table. 

Step 3. To ensure the randomness of the samples, the 

resulting uniform samples are added to a random movement, 

which can be denoted as  

𝑑𝑖 =
𝛾𝑖𝑗

𝜆

𝑙𝑖−𝑢𝑖

𝑞𝑖−1
    (3) 

where 𝛾𝑖𝑗 = 𝑟𝑎𝑛𝑑(𝑞𝑖 , 1)  is the coefficient of motion, and 𝜆  is 

the coefficient of random movement, 𝜆 = 2 + 𝑟𝑎𝑛𝑑, 𝑟𝑎𝑛𝑑 ∈

[0,1]. To ensure the uniform distribution of sample points, the 

minimum distance between any two adjacent random moving 

sample points should satisfy Eq. (4), i.e. 

𝑑 ≥ 𝑚𝑖𝑛
1≤𝑖≤𝑚

[
𝑙𝑖−𝑢𝑖

2(𝑞𝑖−1)
(1 −

1

𝑞𝑖−1
)]   (4) 

Step 4. If the sampling point jumps out of reduced bounds, 

the value of the sample is equal to the near-boundary value. 

2.2. The polynomial RSM 

RSM is one of the most effective and representative surrogate 

models, and it can substitute actual structural LSFs with  

a simple polynomial function. It is assumed that the initial DoE 

is k n-dimensional samples 𝑥 = [𝒙1, 𝒙2, ⋯ , 𝒙𝑘]T , and 

corresponding response values are 

𝒀 = [𝐺(𝒙1), 𝐺(𝒙2), ⋯ , 𝐺(𝒙𝑘)]T . The first-order model 

expression of RSM is 

𝐺̂(𝒙) = 𝑎0 + ∑ 𝒃𝑖𝒙𝑖
𝑛
𝑖=1 + 𝜺   (5) 

where 𝒙𝑖 is the basic variable, 𝑛 is the number of variables, 𝑎0 

and 𝒃𝑖  are undetermined coefficients solved by the least-

squares fit, and 𝜺 is the random error. 

The most widely used mathematical expression of response 

surfaces with interactive terms is 

𝐺̂(𝒙) = 𝑎0 + ∑ 𝒃𝑖𝒙𝑖
𝑛
𝑖=1 + ∑ 𝒄𝑖𝒙𝑖

2𝑛
𝑖=1 + ∑ 𝒅𝑖𝑗𝒙𝑖𝒙𝑗

𝑛
𝑖,𝑗=1
𝑗>𝑖

+ 𝜺    (6) 

where 𝒙𝑖 is the basic variable, 𝑛 is the number of variables, 𝑎0, 

𝒃𝑖, 𝒄𝑖, and 𝒅𝑖𝑗  are the undetermined coefficients solved by the 

least-squares fit.  

In general, to reduce the computing efforts, the quadratic 

interactive terms are not considered, Eq. (6) can be simplified 

to Eq. (7): 

𝐺̂(𝒙) = 𝑎0 + ∑ 𝒃𝑖𝒙𝑖
𝑛
𝑖=1 + ∑ 𝒄𝑖𝒙𝑖

2𝑛
𝑖=1 + 𝜺  (7) 

According to the definition of RSM, an unified polynomial 

model can be described as 

𝐺̂(𝒙) = ∑ 𝝎𝑖𝒙𝑖
𝑘
𝑖=1 + 𝜺    (8) 

where 𝝎𝑖  is the undetermined coefficient, and k is the minimum 

number of test points required to determine the undetermined 

coefficient. It is determined based on the form of the response 

surface, for example, the three typical cases as shown in Table 

1 where n is the number of design variables. 

Table 1 shows the number of terms in the polynomial 

response surface model, which increases with the number of 
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variables, especially for quadratic functions with interactive 

terms. To obtain the coefficient 𝝎𝑖 , 𝑘 independent experiments 

need to be conducted. The estimated value of the response 

surface at that test point is obtained by incorporating 𝑚  test 

points𝑥(𝑖), 𝑖 = 1,2,⋅⋅⋅, 𝑚 into Eq. (9): 

𝐺̂(𝒙) = ∑ 𝝎𝑖𝒙𝑖
(𝑗)𝑘

𝑖=1 , 𝑗 = 1,2,⋅⋅⋅, 𝑚  (9) 

Usually, to save computational resources, the interactive 

terms are discarded during the construction of the polynomial 

response surfaces model, but this behavior greatly reduces the 

accuracy of RSM in practical applications. To demonstrate the 

robustness of the proposed method in dealing with problems 

with and without interactive terms, specific examples will be 

analyzed and explained in Section 4.  

Table 1. Form of response surface functions and the number k 

of undetermined coefficients 𝝎𝑖 . 

Form Number (k) 

linear function 𝑘 = 𝑛 + 1 

Separable quadratic function 

(Excluding interactive terms) 
𝑘 = 2𝑛 + 1 

Complete quadratic function 

(Including interactive terms) 
𝑘 =

(𝑛 + 1)(𝑛 + 2)

2
 

2.3. GP model 

The GP surrogate model accurately approximates functions in 

high-dimensional space and has been used in the field of SRA. 

Similarly, as for k n-dimensional samples and corresponding 

response values 𝑌 = [𝐺(𝑥1), 𝐺(𝑥2), ⋯ , 𝐺(𝑥𝑘)]𝑇 , the GP 

surrogate model can be constructed for predicting unknown 

response points. The GP is a set of random variables. Assuming 

that the function to be fitted conforms to a joint multivariate 

Gaussian prior distribution, the GP model function can be 

denoted as 

𝐺̂gp(𝒙) = 𝜇gp + 𝑧gp(𝒙)           (10) 

where 𝜇gp is the mean of the GP surrogate model, 𝑧gp(𝒙) is the 

GP, and 𝐸 (𝑧gp(𝒙)) = 0, the variance is VAR (𝑧gp(𝒙)) = 𝜎gp
2 . 

The covariance of 𝑧gp(𝒙) is denoted as 

𝑐𝑜𝑣( 𝑧gp(𝒙𝑖), 𝑧gp(𝒙𝑗)) = 𝜎gp
2 𝑹𝑖𝑗

gp
(𝑖, 𝑗 = 1,2, ⋯ 𝑘)   (11) 

Usually, 𝐺̂gp(𝒙) follows the multivariate normal distribution 

𝑁ns(1ns𝜇gp, Σ)  where Σ = 𝜎gp
2 𝑅gp is the correlation matrix 

composed of 𝑹𝑖𝑗
gp

, and the commonly used correlation functions 

of Gaussian are as follows: 

𝑹𝑖𝑗
gp

= ∏ 𝑒𝑥𝑝 (−𝜽𝑙
gp

|𝒙𝑖,𝑙 − 𝒙𝑗,𝑙|
2

)𝑑
𝑙=1   (12) 

where 𝜽𝑘
gp

= (𝜽1
gp

, 𝜽2
gp

,⋅⋅⋅, 𝜽𝑑
gp

) ∈ [0, ∞)𝑑is the hyperparameters 

vector of the GP surrogate model, the prediction of the value 

𝜇̂𝐺̂(𝒙0)  for the unknown point 𝒙0 , and the uncertainty of the 

prediction 𝜎𝑦̂
2(𝒙0) at the point 𝒙0can be calculated by Eqs. (13) 

and (14). 

𝜇̂𝐺̂(𝜃gp) = (1𝑛𝑠

𝑇(𝑹gp)−11𝑛𝑠
)−1(1𝑛𝑠

𝑇(𝑹gp)−1𝑌)     (13) 

𝜎𝑦̂
2(𝜃gp) =

(𝒀−𝟏𝑛𝑠𝜇̂gp(𝜽gp))𝑇(𝑹gp)−1(𝒀−𝟏𝑛𝑠𝜇̂gp(𝜽gp))

𝒏𝑠
     (14) 

Similar to the empirical Bayesian regression method, GP 

regression uses the maximum edge likelihood strategy to obtain 

the optimal hyperparameters. The negative logarithmic 

likelihood function for the hyperparameter 𝜽𝑘
𝑔𝑝

  can be 

calculated by Eqs. (15) and (16). 

−2 𝑙𝑜𝑔( 𝑳𝜃gp

gp
) = 𝑙𝑜𝑔( |𝑹gp|) + 𝑛𝑠 𝑙𝑜𝑔[ (𝒀 −

      𝟏𝑛𝑠𝜇̂gp(𝜽gp))𝑇(𝑹gp)−1(𝒀 − 𝟏𝑛𝑠𝜇̂gp(𝜽gp))]              (15) 

According to the maximum likelihood method, the optimal 

linear unbiased estimation at the prediction point 𝑥∗ is 

𝑦̂gp(𝒙∗) = 𝜇̂gp + 𝒓gp
𝑇 (𝑹gp)−1(𝒀 − 𝟏𝑛𝑠

𝜇̂gp) =

                            [
1−𝒓gp

𝑇 (𝑹gp)−1𝟏𝑛𝑠

𝟏𝑛𝑠
𝑇(𝑹gp)−1𝟏𝑛𝑠

𝟏𝑛𝑠

𝑇 + 𝒓gp
𝑇 ] (𝑹gp)−1𝒀                  (16) 

The corresponding mean square error is 

𝑠gp
2 (𝒙∗) = 𝐸[(𝑦̂gp(𝒙∗)-y(𝒙))2] = 𝜎gp

2 (𝟏 − 𝒓gp
𝑇 (𝑹gp)−1𝒓gp +

𝟏−𝟏𝑛𝑠
𝑇(𝑹gp)−1𝒓2

𝟏𝑛𝑠(𝑹gp)−1𝟏𝑛𝑠

)                                 (17) 

where the correlation function is 𝒓gp = (𝒓gp1(𝒙∗), 𝒓gp2(𝒙∗),⋅⋅⋅

, 𝒓gp𝑛𝑠
(𝒙∗)) , and the correlation function between different 

variables is 𝒓𝑔𝑝𝑖 = corr(𝑧(𝒙∗), 𝑧(𝑥𝑖)). During the construction 

of the GP model, parameters 𝜇̂gp, 𝜃gp and 𝜎gp
2  are replaced with 

corresponding estimated values [38]. 

2.4. Reliability-based expected improvement criterion 

(REI) 

The expected improvement (EI) criterion can realize the 

sequence update of the model in the global scope [39]. 

Assuming that the predicted response value of any point x in the 

m-dimensional design space follows a Gaussian distribution 

𝐺̂(𝒙) = 𝑁(𝜇𝐺̂(𝒙), 𝜎𝐺̂(𝒙))  (18) 

where 𝜇̂𝐺(𝒙)  is the mean and 𝜎𝐺̂(𝒙)  is the standard deviation 

provided by the prediction model. 

According to the EI criterion, the improvement of the 

surrogate model at sample point x can be expressed as 
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  𝐼(𝒙) = max(𝐺min − 𝐺̂(𝒙), 0)                     (19) 

where   𝐺min = min (𝑦
1
, 𝑦

2
,⋅⋅⋅, 𝑦

𝑚
)   is  the minimum value of the 

true response value of the performance function corresponding 

to the MCS sample point and 𝐺̂(𝒙)  is the predicted response 

value at sample point x. 

The expectation of the sample point x on the improvement 

function of the surrogate model can be expressed as 

𝐸(𝐼(𝒙)) =

{
{(𝐺min − 𝜇̂𝐺(𝒙))𝛷 (

𝐺min−𝜇̂𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
) + 𝜎𝐺̂(𝒙)𝜙 (

𝐺min−𝜇̂𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
)} , 𝜎𝐺̂(𝒙) > 0

0,                                                                  𝜎𝐺̂(𝒙) = 0

     

                             (20) 

where 𝛷(⋅) is the standard normal cumulative distribution 

function, and 𝜙(⋅)is the probability density function.  

With the increasing of the iterations, 𝐺min gradually 

decreases. When 𝐺min = 0, it indicates that the sample is on the 

structural LSF, and it is regarded as the best sample. Therefore, 

to improve the acquisition probability of the best sample, Eq. 

(20) can be improved to Eq. (21) [40]. 

𝐼𝐸(𝐼(𝒙)) =

{
{(−𝜇̂𝐺(𝒙))𝛷 (

−𝜇̂𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
) + 𝜎𝐺̂(𝒙)𝜙 (

−𝜇̂𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
)} , 𝜎𝐺̂(𝒙) > 0

0,                                                                  𝜎𝐺̂(𝒙) = 0
         

(21) 

To further improve the efficiency of screening samples in 

the active learning process, the reliability-based EI function that 

fully considers the probability of feasibility of the desired 

sampling point is proposed. Given the prediction of the GP 

model 𝑦̂(𝒙)~𝑁(𝜇𝐺̂(𝒙), 𝜎𝐺̂(𝒙)) , the reliability index 𝛽 and the 

reliability of predicted points 𝑅𝐺̂(𝒙)  can reflect the reliability 

level of the predicted samples, which are defined as  

𝛽 =
𝜇𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
, 𝑅𝐺̂(𝒙) ≈ 𝛷(𝛽)   (22) 

The REI criterion considers both the degree of feasibility 

and improvement of the predicted samples. According to the 

sampling characteristics of the REI criterion, the location of the 

updated sampling point is obtained by maximizing the REI 

criterion, which is defined as 

𝑅𝐸(𝐼(𝒙)) =

{
𝑅𝐺̂(𝒙) {(−𝜇̂𝐺(𝒙))𝛷 (

−𝜇̂𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
) + 𝜎𝐺̂(𝒙)𝜙 (

−𝜇̂𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
)} , 𝜎𝐺̂(𝒙) > 0

0,                                                                            𝜎𝐺̂(𝒙) = 0
   (23) 

𝑥∗ = arg max
𝑥

 (𝑅𝐸(𝐼(𝒙)))              (24) 

2.5. Importance sampling (IS) 

The IS method is a statistical experimental method named for 

its high computational efficiency and small computational 

efforts [41]. Its basic principle is to change the sampling center 

to make the sampling points having a higher likelihood of 

falling in the failure domain, to obtain more efficient 

information, and to achieve variance reduction.  

In general, the failure probability 𝑝̂𝑓 can be denoted as 

𝑝̂𝑓 = 𝑝(𝐺(𝒙) ≤ 0) = ∫ 𝐼(𝒙)𝐹𝑆
𝑓𝑋(𝒙)

𝑅𝑛 𝑑𝒙 = ∫ 𝑓𝑋(𝒙)𝑑
𝐺(𝒙)≤0

𝒙  

(25) 

where 𝒙 = {𝒙1, 𝒙2,⋅⋅⋅, 𝒙𝑘}𝑇  denotes the input random variable 

vector, 𝑅𝑛 represents the n-dimension variable space, 𝐺(𝒙)  is 

the LSF,  Fs is the failure region, and 𝑓𝑋  is joint probability 

distribution function (PDF) of the random variables. 𝐺(𝒙) ≤ 0 

indicates failure, and 𝐺(𝒙) > 0 indicates security. The indicator 

function 𝐼(𝒙)𝐹𝑆
 is defined 

 𝐼(𝒙)𝐹𝑆
= {

1, { | ( ) 0G x x x

0,                        𝑒𝑙𝑠𝑒
                       (26) 

Suppose the sampling function of the IS method is ℎ𝑋(𝒙), 

and Eq. (25) can be rewritten as 

𝑝̂𝑓 = ∫ 𝐼(𝒙)𝐹𝑆

𝑓𝑋(𝒙)

ℎ𝑋(𝒙)
ℎ𝑋(𝒙)

𝑅𝑛 𝑑x      (27) 

When the variables 𝒙𝑖  are independent, the probability of 

failure 𝑝̂𝑓 can be estimated using the MCS as 

𝑝̂𝑓 =
1

𝑁
∑ 𝐼(𝒙(𝑖))𝐹𝑆

𝑁
𝑖=1

𝑓𝑋(𝒙(𝑖))

ℎ𝑋(𝒙(𝑖))
  (28) 

where 𝒙𝑖  is the ith sample generated from the system 

importance sampling function hx(x), and N is the number of 

samples. 

3. Procedures of the proposed method 

The framework of the proposed algorithm is depicted in Fig. 1 

and its concrete steps are explained as follows: 

Step 1. Define the initial DoE 𝑿DoE = [𝑷1,⋅⋅⋅, 𝑷𝑁] with the 

proposed RMUDM and calculate the true LSF value 𝒀DoE. The 

size of the initial training points should be as small as possible 

because the additional points will be added to this DoE step by 

step. Noticeably, the number of initial training points is 

(𝑛 + 1) ⋅
𝑛+2

2
 at least, where n is the number of design variables. 

Step 2. According to the existing DoE, establish the initial 

response surface prediction model 𝐺̂1(𝒙)  by the least square 

method. 
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Step 3. Predict the initial 𝑿DOE  response values 𝒀̂DoE  by 

initial response surface prediction model 𝐺̂1(𝒙) . For existing 

DoE, calculate the residual 𝑹DoE between the actual values 𝒀DoE 

by the LSF and the predicted response values 𝒀̂DoE  of the 

response surface model. 

Step 4. First, transform the input variables into a standard 

normal distribution. Then, construct the GP prediction model 

𝐺̂GP(𝒙) by taking initial sample points 𝑿DOE and residual values 

𝑹DOE as input variables and input response values, respectively. 

Step 5. Obtain a new response surface model 𝐺̂2(𝒙)  by 

adding the function of residual 𝐺̂GP(𝒙) into the response surface 

model 𝐺̂1(𝒙). 

Step 6. Evaluate the failure probability 𝑝̂𝑓, and calculate the 

reliability index 𝛽. First, the prediction model 𝐺̂2(𝒙) is used to 

predict the sample points by IS. Then, the probability of failure 

is estimated with the signs of these predictions by using Eq. (28). 

Step 7. Evaluate the stopping condition. If the accuracy-

stopping criterion is satisfied, the algorithm goes to the last step. 

Otherwise, start active learning, and go to Step 8. 

To ensure the adaptive convergence of the algorithm, the 

stopping criterion based on the reliability index 𝛽 is employed 

to determine whether the algorithm stops or not, which can be 

denoted as  

|
𝛽𝑛−𝛽𝑛−1

𝛽𝑛 | ≤ 𝜀    (29) 

where 𝛽𝑛 and 𝛽𝑛−1  are the reliability index calculated for the 

nth and (n-1)th update, respectively, and 𝜀 is a small threshold 

with the value being 0.001. 

Step 8. Generate the population candidate samples 

𝑺MCS[𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑛]  by MCS and identify the next best point 

𝑺MCS to evaluate the LSF. Each sample point 𝑺MCS is calculated 

by 𝐺̂GP(𝒙) and 𝐺̂2(𝒙), which provides prediction variances and 

response values to the proposed learning function REI. Then, 

pick the best sample points 𝑺MCS  that satisfy 𝑥∗ = arg 

max
𝑥

 (𝑅𝐸(𝐼(𝒙))). 

Step 9. Update the previous DoE with the best point 𝑥∗. First, 

remove the standardization of the new sample 𝑥∗. Then, add the 

new sample 𝑥∗ and its actual response value by the LSF to the 

𝑿DoE . Following this, it is added to the DoE, 𝑁𝑖+1 = 𝑁𝑖 + 1 . 

Then, goes back to Step 2 to update the 𝐺̂2(𝒙). 

Step 10. Evaluate and output the failure probability 𝑝̂𝑓.

StartStartStartStart

Step 2: Construct response 

surface model       

according to the existing 

DoE

Step 1: Define initial DoE  

by RMUDE

Step 4: Establish the GP 

model          by       and    

1 1i iN N+ = +
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        and         
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Fig. 1. The reliability analysis flowchart of the proposed method.
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4. Example analysis 

In this section, several examples are given to conduct  

a comparative study of the proposed method. The performance 

of the proposed method is validated by the relative error 𝜀MCS 

compared to MCS. 𝜀MCS can be derived by 

𝜀MCS =
|𝑝𝑓

MCS−𝑝𝑓|

𝑝𝑓
MCS     (30) 

where 𝑝̂𝑓
MCS is the failure probability obtained by MCS, and 𝑝̂𝑓 

is the failure probability obtained by the proposed method. 

4.1. Example 1: A highly nonlinear problem 

The example examines the numerical performance of the 

proposed approach by considering a 2D nonlinear performance 

function [42,43,44]: 

𝑔(𝑥) = 𝑠𝑖𝑛
5𝑥1

2
−

(𝑥1
2+4)(𝑥2−1)

20
+ 2  (31) 

where 𝑥1 and 𝑥2 are two independent normal variables with unit 

standard deviations. The specific parameters are 𝑥1 ∼ 𝑁(1.5,1) 

and 𝑥2 ∼ 𝑁(2.5,1). 

In this example, the number of initial training points is 12, 

and the threshold for stopping criterion is set as [𝜀] = 0.001. To 

reduce the uncertainty of the results, the reliability analysis 

method based on the proposed point addition strategy is 

repeated 10 times. The reference result 𝑃̂𝑓 = 3.131 × 10−2 for 

a sample size 5 × 105 is generated by the MCS method [42]. 

𝑁𝑐𝑎𝑙𝑙  is the number of calls to the performance function.

 

(a)                                                                                 (b) 

Fig. 2. Performance of the proposed method for Example 1: (a) The initial DoE obtained by RMUDM; (b) The initial DoE obtained 

by LHS. 

 

(a) 
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(b) 

Fig. 3. Probability of failure and reliability index in the process of adding points for Example 1: (a) Probability of failure, (b) 

Reliability index.

The procedure of the proposed method starts with the initial 

DoE, and the iterative calculation of the algorithm is started by 

evaluation criteria. By adding new points and updating the 

prediction model, the prediction LSF is constructed. To prove 

the effectiveness of the proposed method, the initial DoE 

obtained by different sampling methods are used for the 

reliability analysis of Example 1. The results and the process are 

shown in Fig. 2 and Fig. 3. Fig. 2 (a) shows the predicted LSF 

(the black dashed line) in the region of failure probability to be 

evaluated is in good agreement with the original LSF (the 

magenta line) . Meanwhile, the added points are dispersed 

around the LSF, which helps to construct an effective surrogate 

model for reliability analysis. It is found that the initial training 

points obtained by the proposed RMUDM are more dispersed 

and have a certain randomness compared to LHS. Fig. 3 shows 

that the results from the initial DoE obtained by RMUDM are 

more consistent with the reference values in terms of failure 

probability and reliability index compared to LHS.

Table 2. Comparison of reliability analysis results for Example 1. 

Methods 𝑁𝑐𝑎𝑙𝑙  𝑝̂𝑓 𝜀𝑃𝐹(%) 𝛽 

MCS 5×105 3.131×10-2 - 1.8619 

AK-MCS+U 41 3.137×10-2 0.192 1.8610 

AK-MCS+EFF 37.3 3.133×10-2 0.064 1.8616 

Zheng et al. 38.5 3.130×10-2 0.032 1.8620 

Zhang et al. 37.7 3.150×10-2 0.607 1.8592 

Xiao et al. 76.9 3.125×10-2 0.192 1.8627 

Proposed method 29.5 3.135×10-2 0.127 1.8613 

Note:𝑁𝑐𝑎𝑙𝑙   denotes the number of calls to the limit state 

function, 𝜀𝑃𝐹 denotes the percentage error of failure probability 

in comparison with the MCS results, and 𝛽  represents the 

reliability index. 

In this example, the proposed method is compared with six 

different active learning methods from Reference [42]. It is 

observed from Table 2, all the 𝜀𝑃𝐹𝑠  are below 1%, which 

indicates that all the methods can provide accurate results. The 

other active learning methods listed are researched based on 

AK-MCS. For example, Xiao et al. [42] and Zhang et al. [44] 

proposed new learning functions to enhance the efficiency of 

reliability analysis. Optimization conditions were imposed on 

the U function in AK-MCS+U to obtain sample points by Zheng 

et al. [43]. These methods can reach a good trade-off between 
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accuracy and efficiency. Although the error of the proposed 

method is larger than that of AK-MCS+EFF and the results by 

Zhang et al., it has achieved accurate results with an error of less 

than 0.2% by utilizing the fewest calls to the LSF. 

4.2. Example 2: A three-dimensional nonlinear function 

This example is a three-dimensional nonlinear LSF. The basic 

variables 𝑥1 , 𝑥2 , and 𝑥3  are subjected to the standard normal 

distributions, i.e. 𝑥1 ∼ 𝑁(0,1), 𝑥2 ∼ 𝑁(0,1), and 𝑥3 ∼ 𝑁(0,1). 

The LSF is defined as 

𝑔(𝑥1, 𝑥2, 𝑥3) = 4 − 𝑥1 − 0.1(𝑥2 + 𝜂 𝑠𝑖𝑛( 𝜋𝑥2))2 −

                             0.1(𝑥3 + 𝜂 𝑠𝑖𝑛( 𝜋𝑥3))2                                  (32) 

In this example, as 𝜂 increases, the non-linearity of the LSF 

also increases. Fig. 4 shows the 3D surface of limit states with 

different 𝜂.

 

 (a)                                               (b)                                                    (c)     

Fig. 4. 3D surface of limit states with different 𝜂 of Example 2: (a) 𝜂 = 0, (b) 𝜂 = 0.5, (c) 𝜂 = 1.

As the dimensions of design variables increase, the number 

of terms used to construct response surface models rapidly 

increases, especially for the interactive terms between variables. 

This increases the computation cost required to build the initial 

response surface model. If the interactive term is not considered 

in constructing the initial response surface model, the accuracy 

of the model will be affected. To demonstrate the robustness of 

the proposed method in SRA, the failure probability of this 

problem is calculated by the proposed method using initial 

response surface models with and without interactive terms 

under different parameters, and compared with the reference 

results by MCS. The corresponding analysis results are 

illustrated in Fig. 5. The sizes of both initial DoE are taken as 

10 and 18, respectively.

 

(a)                                                                        (b) 

Fig. 5. Reliability analysis results under different η: (a) The variation of failure probabilities, (b) The variation of the number of 

functional calls and the errors; Note: ‘+‘ indicates the initial response surface model with interactive terms, and ‘-‘ indicates the 

initial response surface model without interactive terms.

It can be seen from Fig. 5 (a) that the proposed method has 

strong applicability to the LSF in this example with the variation 

of the parameter η. However, the presence or absence of 

coupling terms in the initial response surface model can have an 

impact on the efficiency and accuracy of reliability analysis. Fig. 

5 (b) shows that as η increases from 0 to 1, 𝑁𝑐𝑎𝑙𝑙  and 𝜀𝑃̂𝑓
 by the 

proposed method without interactive terms increase from 21 to 

40 and 0.117% to 3.469%, respectively. And 𝑁𝑐𝑎𝑙𝑙  and 𝜀𝑃̂𝑓
 by 
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the proposed method with interactive terms increase from 19 to 

43 and 0.025% to 1.614%, respectively. In addition, the 

proposed method without interactive terms has fewer functional 

calls than the proposed method with interactive terms, and its 

growth rate of relative error is greater. It is noted that the 

efficiency of the proposed method can be improved when the 

interactive terms are not considered in the initial response 

surface model, but at the cost of diminished accuracy, especially 

for the LSF with strong non-linearity. 

Table 3. Reliability analysis results of Example 2. 

Methods 𝑁𝑐𝑎𝑙𝑙  𝑝̂𝑓 𝛽 𝜀𝑃𝐹(%) 

MCS 1×108 1.513×10-4 3.6131 - 

AK-MCS+U 55 1.500×10-4 3.6153 0.849 

AK-MCS+EFF 58 1.520×10-4 3.6126 0.462 

IS 2002 1.527×10-4 3.6106 0.925 

SS 8100 1.497×10-4 3.6159 1.058 

RSM 52 1.360×10-4 3.6404 10.112 

Proposed method (-) 33 1.480×10-4 3.6188 2.181 

Proposed method (+) 39 1.501×10-4 3.6143 0.793 

To test the applicability of the proposed method, the results 

of reliability for Example 2 with 𝜂 = 0.5  are compared with 

other methods, as listed in Table 3. The reference results are 

calculated by MCS with a sample size of 1 × 108  and the 

corresponding failure probability is 𝑝̂𝑓 = 1.513 × 10−4 . The 

AK-MCS+U and AK-MCS+EFF can achieve a better trade-off 

between accuracy and efficiency compared with IS and SS. The 

RSM has improved the efficiency, but the corresponding 

relative error is more than 10%. The proposed method with 

interactive terms only requires an average of 39 functional calls 

to reach an estimation with comparable accuracy as AK-

MCS+U, AK-MCS+EFF, and IS. The proposed method without 

interactive terms is most efficient among the listed methods, and 

the maximum relative error is less than 2.2%. Overall, the 

proposed method is capable of achieving an outstanding trade-

off between accuracy and efficiency for this strong nonlinear 

case. Even if the response surface model without interactive 

terms is used to deal with this nonlinear case, it can still get 

relatively reasonable results.  

4.3. Example 3: Dynamic response of a nonlinear 

oscillator 

The following example is a problem with a moderate number of 

random variables. It consists of a non-linear undamped single-

degree-of-freedom system as shown in Fig. 6. The performance 

function is given as 

𝑔(𝑐1, 𝑐2, 𝑚, 𝑟, 𝑡1, 𝐹1) = 3𝑟 − |
2𝐹1

𝑚𝜔0
2 𝑠𝑖𝑛(

𝜔0
2𝑡1

2
)|       (33) 

where 𝜔0 = √(𝑐1 + 𝑐1)/𝑚  is the system frequency. Six 

random variables in this example follow normal distributions. 

The properties of all the random variables are summarized in 

Table 4. 

 

Fig. 6. A nonlinear oscillator. 

Table 4. Random variables of Example 3. 

Variables 
Distribution 

type 
Mean 

Standard 

deviation 

m Normal 1 0.05 

C1 Normal 1 0.1 

C2 Normal 0.1 0.01 

r Normal 0.5 0.05 

t1 Normal 1 0.2 

F1 (Case 1) Normal 1 0.2 

F1 (Case 2) Normal 0.6 0.1 

F1 (Case 3) Normal 0.45 0.075 

The reference result is obtained using MCS with a sample 

size of 1×106 and the corresponding probability of failure is 

2.859×10−2. The results of the proposed method are compared 

with those calculated by AK-MCS+U, AK-MCS+EFF, ESC+U, 

ESC+EFF, AKSE, and AKSE-b [45]. In addition, the results of 
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RSM combining SS or IS, the active learning reliability 

methods AK-MSS [46], and AWL-MCS [47] are also listed in 

Table 5.  

Table 5 shows that the listed active learning methods all 

acquire high-precision failure probabilities, among which the 

AK-SS requires the largest number of functional calls for this 

case and the proposed method needs the fewest number of 

functional calls. The computational efficiency of the proposed 

method increases by 10 times compared with the AK-SS. 

Although the efficiency and accuracy of the RSM are improved 

to a certain extent by combining the response surface with DS 

and IS, the relative error of the failure probability is still more 

than 10%. For this case, the proposed method exhibits excellent 

performance both in terms of accuracy and efficiency, which 

fully demonstrates the effectiveness of the proposed learning 

function and selected convergence criteria.  

Table 5. Comparison of reliability analysis results for Case 1 in 

Example 3. 

Methods 𝑁𝑐𝑎𝑙𝑙  𝑃̂𝑓 𝛽 𝜀𝑃𝐹(%) 

MCS 106 2.859×10-2 1.902 - 

AK-MCS+U 147.2 2.850×10-2 1.903 0.31 

AK-MCS+EFF 126.8 2.867×10-2 1.901 0.28 

AK-SS 410 2.833×10-2 1.906 0.91 

AK-MSS 86 2.870×10-2 1.900 0.38 

AWL-MCS 65 2.826×10-2 1.907 1.15 

ESC+U 56.2 2.866×10-2 1.901 0.24 

ESC+EFF 81.8 2.861×10-2 1.902 0.07 

AKSE 38.6 2.862×10-2 1.902 0.10 

AKSE-b 42 2.851×10-2 1.903 0.28 

Response 

Surface-DS 
62 3.400×10-2 1.820 18.92 

Response 

Surface-IS 
109 2.500×10-2 1.960 12.56 

Proposed 

method 
35 2.871×10-2 1.900 0.42 

In the proposed method, the proposed learning function REI 

is used to provide a new point for updating the surrogate model. 

To investigate the compatibility of the proposed method with 

REI, the reliability analysis results of case 1 in Example 3 by 

the proposed new response surface model with different 

learning functions are depicted in Fig. 7, where the scale on the 

horizontal coordinate is the abbreviation of the different 

learning functions.  

The results in Fig. 7 show the proposed method is sensitive 

to different learning functions in terms of the functional calls 

and the failure probability results. The number of functional 

calls in the ERF and the probability of failure in the EFF both 

generated outliers. It can be observed in Fig. 7 (a) that the 

median line of the REI is closer to the red dotted line. Although 

learning functions U and EI can provide relatively accurate 

failure probability results, the volatility of the results is 

significant. From Fig. 7 (b), the learning function EI has the 

highest fluctuation in the number of functional calls, and the 

REI is more stable, mainly concentrated between 32 and 37. 

Overall, the proposed learning function REI provides more 

stable results in terms of both efficiency and accuracy. 

 

(a) 

 

(b) 

Fig. 7. Boxplots for different methods: (a) Boxplot for the 

probability of failure with different methods, (b) Boxplot for 

𝑁𝑐𝑎𝑙𝑙  with different methods. 

This part focuses on two cases of rare failure in Example 3 

to examine the viability of the proposed method. The reference 

results by MCS are from Reference [48], where the sample sizes 

are 1.8×108 and 9×1010, respectively, and the corresponding 

failure probability are 9.090×10-6 and 1.550×10-8, 

respectively. The performance of the proposed method for two 

cases is illustrated in Tables 6 and 7, and the results by AK-
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ARBIS [48], AK-MCS, and AKSE [45] are compared. 

It is difficult for AK-MCS to achieve the estimation of 

failure probability less than 10-6 because the calculating process 

is time-consuming to select the best points from the rapidly 

increasing samples [48]. Although the combination of AK-MCS 

and IS improves the time-consuming problem to some extent, it 

still requires multiple functional calls to obtain an exact solution. 

In cases 2 and 3, AK-IS+EFF needs to call the function 126.8 

and 164.7 times, respectively, to obtain the convergent failure 

probability results. The new stopping criterion ESC and AKSE 

in the adaptive Kriging method has greatly improved the 

efficiency of AK-IS, but the relative error is also increased 

accordingly. For the failure probability of case 3, the relative 

error of the failure probability by ESC and AKSE-b methods are 

both more than 5%. It is noted that the number of functional 

calls of the proposed method is insensitive to the variety of the 

small failure probability. For all the cases in Example 3, the 

change in the number of function calls for each case compared 

to the previous case is less than 5.8%, of which the maximum 

relative error is less than 3.3%. Overall, the applicability and 

effectiveness of the proposed method for rare failure events 

have been demonstrated through Example 3. 

Table 6. Reliability analysis results of Case 2 in Example 3. 

Methods 𝑁𝑐𝑎𝑙𝑙  𝑃̂𝑓 𝛽 𝜀𝑃𝐹(%) 

MCS 1.8×108 9.090×10-6 4.286 - 

AK-IS+U 281.6 9.108×10-6 4.286 0.20 

AK-IS+EFF 126.8 9.161×10-6 4.284 0.78 

AK-ARBIS 71 9.090×10-6 4.286 0 

ESC-IS+U 56.2 9.178×10-6 4.284 0.97 

ESC-IS+EFF 81.8 9.240×10-6 4.283 1.65 

AKSE-IS 47.2 9.032×10-6 4.288 0.64 

AKSE-b-IS 49.3 9.130×10-6 4.285 0.44 

Proposed 

method-IS 
37 8.998×10-6 4.288 1.01 

Table 7. Reliability analysis results of Case 3 in Example 3. 

Methods 𝑁𝑐𝑎𝑙𝑙  𝑃̂𝑓 𝛽 𝜀𝑃𝐹(%) 

MCS 9×1010 1.550×10-8 5.536 - 

AK-IS+U 244 1.547×10-8 5.536 0.19 

AK-IS+EFF 164.7 1.535×10-8 5.538 0.97 

AK-ARBIS 76 1.560×10-8 5.535 0.65 

ESC-IS+U 54.7 1.533×10-8 5.538 1.10 

ESC-IS+EFF 80.7 1.666×10-8 5.524 7.48 

AKSE-IS 48.4 1.518×10-8 5.539 2.06 

AKSE-b-IS 61.5 1.447×10-8 5.548 6.65 

Proposed 

method-IS 

38.5 1.499×10-8 5.542 3.29 

4.4. Example 4: A planar ten-bar structure 

This example considers a cantilever tube structure with  

9 random variables. As shown in Fig. 8, the structure is 

subjected to the influence of three concentrated forces F1, F2, P, 

and a torque T. To ensure the reliability of the cantilever tube, it 

is necessary to ensure that the maximum stress acting on the 

cantilever tube is less than the allowable threshold. Therefore, 

the functional function of the structure is defined as 

𝐺（𝐱） = 𝑆𝑦 − 𝜎𝑚𝑎𝑥    (34) 

where Sy is the yield strength, 𝜎𝑚𝑎𝑥  is the maximum stress on 

the cantilever tube, which can be calculated according to the 

fourth strength theory: 

𝜎𝑚𝑎𝑥 = √𝜎𝑥
2 + 3𝜏𝑧𝑥

2    (35) 

where 𝜎𝑥  and 𝜏𝑧𝑥  represent the normal stress and torsional 

stress on the top surface of the cantilever tube at the origin 

position, respectively. 𝜎𝑥 and 𝜏𝑧𝑥 are specifically calculated as 

𝜎𝑥 =
𝑃+𝐹1 𝑠𝑖𝑛 𝜃1+𝐹2 𝑠𝑖𝑛 𝜃2

𝐴
+

𝑀𝑑

2𝐼
   (36) 

𝜏𝑧𝑥 =
𝑇𝑑

4𝐼
    (37) 

where A is the surface area of the pipe mouth, M is the cantilever 

tube subject to bending moment, and I is the extreme moment 

of inertia. Their calculation formulas are 

𝑀 = 𝐹1𝐿1 𝑐𝑜𝑠 𝜃1 + 𝐹2𝐿2 𝑐𝑜𝑠 𝜃2   (38) 

𝐴 =
𝜋

4
[𝑑2 − (𝑑 − 2𝑡)2]   (39) 

𝐼 =
𝜋

64
[𝑑4 − (𝑑 − 2𝑡)4]   (40) 

where L1 and L2 are the force arms of the concentrated forces F1 

and F2, respectively. Table 8 shows the uncertainty states of 

random variables in the cantilever tube. 

 

Fig. 8. The cantilever tube and involved variables. 

Table 8. Random variables and corresponding parameters of the 
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cantilever tubal structure 

Variables Distribution type Parameter 1 Parameter 2 

t (mm) Normal 5.0 0.1 

d (mm) Normal 42.0 0.5 

F1 (kN) Normal 3.0 0.3 

F2 (kN) Normal 3.0 0.3 

T (Nm) Normal 90.0 9 

Sy(MPa) Normal 220 22.0 

P (kN) Gumbel 27.0 2.7 

L1 (mm) Uniform 119.75 120.25 

L2 (mm) Uniform 59.75 60.25 

Note: For normal distribution, Parameters 1 and 2 represent 

mean and standard deviation, for Gumbel distribution, 

Parameters 1 and 2 represent location and scale parameters, for 

uniform distribution, Parameters 1 and 2 represent lower and 

upper bounds, respectively. 

Table 9. Computational results by different methods for 

Example 4. 

Methods 𝑁𝑐𝑎𝑙𝑙  𝑃̂𝑓 𝛽 𝜀𝑃𝐹(%) 

MCS 107 6.8226×10-3 2.4665 - 

AK-EFF 106.10 6.8278×10-3 2.4662 0.08 

AK-U 108.5 6.8180×10-3 2.4667 0.07 

AK-FNEIF 79.30 6.8309×10-3 2.4660 0.12 

Proposed method 65.5 6.8580×10-3 2.4646 0.52 

The reference results by MCS, AK-EFF, AK-U, and AK-

FNEIF are from Reference [49], where the sample size is 1×107. 

This example involves a high-dimensional problem with 

multiple distribution types. It can be seen form Table 9 that the 

classic AK-MCS method has achieved a higher precision in the 

assessment of failure probabilities by combining different 

learning functions and has also improved efficiency. The 

proposed method has similarly obtained satisfactory results 

when dealing with this problem, with significant efficiency 

improvements. By averaging over 65.5 calls to LSF, the 

proposed method obtained failure assessment results with an 

error of less than 1%. 

4.5. Example 5: A planar ten-bar structure 

This example is a planar ten-bar structure with implicit input-

output relationships, and its structural schematic is shown in Fig. 

9. The lengths of all members are L, the section area of each bar 

is 𝐴𝑖(𝑖 = 1,2,⋅⋅⋅ ,10), the elastic modulus is E, and the external 

load is𝑃𝑖(𝑖 = 1,2,3) . Assuming L, E, 𝐴𝑖(𝑖 = 1,2,⋅⋅⋅ ,10) , and 

𝑃𝑖(𝑖 = 1,2,3)  are all random normally distributed, the 

distribution parameters are shown in Table 10. Establish a limit 

state function with a vertical displacement D of node 3 not 

exceeding 3.5 mm: 𝑔(𝑥) = 0.0035 − 𝐺(𝑥) . The reference 

result for this case is obtained using MCS with a sample size of 

3×105 and the corresponding probability of failure is 0.0678 

[44]. The results of the proposed method compared with other 

methods are also listed in Table 11. 

Table 10. Distribution parameters of the input variables of the 

ten-bar structure. 

Random variables Mean Coefficient of variation 

L (m) 1 0.05 

E (GPa) 100 0.05 

Ai (m2) 0.001 0.15 

P1 (KN) 80 0.05 

P2 (KN) 10 0.05 

P3 (KN) 10 0.05 

 

Fig. 9. A truss with ten members. 

Table 11. Results of the reliability analysis for Example 5. 

Methods 𝑁𝑐𝑎𝑙𝑙  𝑃̂𝑓 𝜀𝑃𝐹(%) 

MCS 3×105 0.0678 / 

SS  105 0.0671 1.01 

Ori-Kriging  329 0.0683 0.74 

RVM-C  98 0.0680 0.74 

Adv-Kriging  83 0.0672 0.88 

Proposed method 55 0.0670 1.12 

According to the results in Table 11, although SS achieved 

relatively accurate results, it brings too much computation [50]. 

In contrast, the listed other methods can reach a good trade-off 

between accuracy and efficiency. Among them, the Ori-Kriging 

method has called 329 times finite element calculations and 

obtained close results [44]. Adv-Kriging is an active learning 

method based on an advanced Kriging model, which requires 

83 calls of finite element analysis to obtain approximate results 

[44]. Compared to Ori-Kriging, Adv-Kriging has greatly 

improved the efficiency of solving problems. In addition, RVM-

C utilizes correlation vector machines to approximate actual 

limit state functions and has greatly improved efficiency 
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compared to SS and Ori-Kriging [51]. It is noted that the 

proposed method yields an estimation with high accuracy using 

the least number of calls for finite elements. Overall, from the 

mentioned examples, the proposed method can provide efficient 

calculations with accurate results for structural reliability 

problems. 

5. Conclusions  

This paper proposes an active learning method for structural 

reliability analysis combining the response surface model with 

the Gaussian process of residual fitting and reliability-based 

sequential sampling design. This strategy predicts residuals 

generated by RSM using GP models and incorporates the 

predicted residuals into the constructed response surface model, 

thus greatly improving the prediction accuracy of RSM. The 

proposed RMUDM is used to construct the initial response 

surface model, which improves the construction efficiency and 

accuracy. The proposed REI function provides a more stable 

guarantee in terms of efficiency and accuracy for updating the 

response surface model and GP model. The proposed method 

can be integrated with IS for rare failure probability events.  

Compared with traditional RSMs, the proposed method has 

greatly improved the accuracy of failure probability assessment, 

especially for strongly nonlinear problems. Compared with 

some existing active learning methods, the proposed method 

shows outstanding efficiency and faster convergence for both 

strongly nonlinear and rare failure probability problems. In 

addition, the proposed method can be combined with other 

sampling methods and learning functions, which fully 

demonstrates its applicability and effectiveness. 

In this paper, the GP model is used to predict the response 

surface residuals, and it also has the limitations of the GP 

surrogate model. In actual engineering applications, the 

uncertainty of the parameter distribution patterns will affect the 

applicability of the proposed method. However, the basic idea 

of using surrogate models for residual adaptive fitting is general 

and applicable to different types of surrogate models. Future 

research will explore more efficient and accurate adaptive 

residual prediction methods under different application 

conditions, and continue to develop more complex actual 

engineering application models. 
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