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Highlights  Abstract  

▪ A global adaptive group maintenance strategy 

oriented to degrading systems is proposed. 

▪ Maintenance is delayed to balance failure risk 

mitigation and resource preparation. 

▪ A global dynamic union of group PM and OM 

is realized within an infinite time horizon. 

▪ A heuristic reverse group search algorithm is 

devised to improve optimization efficiency.  

 Group maintenance management is pivotal to ensure operational safety 

and performance of multi-component plants attributed to its capacity to 

share maintenance resources/time. Most group maintenance models, 

however, are globally/partially static following pre-specified 

maintenance sequences, with limited focus on the adaptability of group 

partition procedure. To fill this gap, we devise an innovative global-

dynamic condition-based group maintenance policy. In contrast to 

existing methods, it allows for (a) postponement of component 

maintenance upon inspection to facilitate flexible resource allocation, 

and (b) automatic refinement of group maintenance structures to 

promote adaptivity. The proposed policy is shown to establish a global 

renewal mechanism for maintenance group partition over an infinite 

time horizon, which constitutes a dynamic union of both scheduled 

maintenance and opportunistic maintenance to mitigate downtime. A 

heuristic grouping algorithm is developed to realize efficient 

maintenance group planning, which verifies model effectiveness via 

numerical experiments. 
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1. Introduction 

As an important carrier of digital technology in the field of 

system health management, intelligent maintenance powered by 

autonomous decision-making plays an important role in 

reducing maintenance costs, improving service reliability, and 

enhancing comprehensive service efficiency of diverse 

industrial plants [1-4]. On the one hand, many failures stem 

from inadequate maintenance management, so that modern 

maintenance must transcend the traditional ‘no damage, no 

repair’ framework [5]. On the other hand, with the gradual 

development of industrial systems such as high-speed rail, 

aircraft engines, wind farms, and inertial navigation towards 

scale and complexity, expenses involved in rental, development, 

procurement and maintenance are constantly increasing. In 

particular, the maintenance cost accounts for up to 40-45% of 

the entire lifecycle cost for complex equipment such as aircraft 

and wind turbines [6-10]. Therefore, enhancing the scientific 

rigor and intelligence of maintenance strategies holds practical 

importance in ensuring the reliability and performance of 
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diverse complex industrial systems. 

Maintenance scheduling of multi-component systems is 

usually affected by resource sharing, structural correlation, or 

fault interaction between components [11-17]. Therefore, it is 

not practical to simply stack individual maintenance to form 

group maintenance. For example, the maintenance operations of 

offshore wind farms incur significant costs in personnel 

transportation, material preparation, system shutdown, 

dismantling, and other activities [18,19]. Likewise, 

maintenance works of railway trains require first waiting for 

train dispatch, vehicle cleaning, and structural dismantling, 

resulting in certain time delays and shutdown costs [20,21]. 

Such costs can be shared in a reasonable combination of 

maintenance activities with significant cost-effectiveness 

improvement, which emphasizes the importance of group 

maintenance planning [22]. 

Substantially, scheduled group maintenance and 

opportunistic maintenance are two typical maintenance 

strategies capturing economic relevance [23-26]. The former 

combines multiple preventive maintenance tasks together and 

executes them based on calendar time. The latter utilizes 

downtime window to execute extra maintenance activities, 

including shutdown due to preventive maintenance [27,28], 

failure maintenance [29-31], and environmental factors or 

production planning [32]. A common decision criterion is 

operational age or reliability [33,34], which converts health 

condition into reliability indicators to promote execution. 

However, such methods confront with the challenges when 

conducting analytical group structure, and the resolution 

velocity relies on the group size. Under a large group size, 

quantitative analysis is intractable by analytical model and can 

only be achieved through simulation methods. Another 

traditional group maintenance strategy is the block maintenance 

[35], according to which maintenance intervals of all 

components is set to a multiple of a certain basic interval, which 

can be seen as an extension of periodic maintenance. Although 

facilitating resource scheduling, such approach faces the 

challenges of adaptability to health condition variations or 

environmental disturbances, since most work are limited to 

static framework. More general preventive maintenance 

combination strategies are required to achieve global 

optimization. Martinod et al. [36] employed the clustering 

center as the maintenance execution time for similar 

components. Zheng et al. [37] proposed a multi-level PM 

decision-making approach, establishing a group maintenance 

strategy for multi heterogeneous NC machine tools using actual 

fault data. Ma et al. [38] proposed a maintenance policy for  

a two-unit warm standby cooling system via the joint 

optimization of temperature control limits and age thresholds. 

Park and Pham [39] proposed a fault delay replacement strategy 

for redundant systems, which replaces components uniformly 

after a certain number of accumulated failures. Moghaddam et 

al. [40] divided maintenance plans into discrete cycles for  

a repairable system with increasing failure rates, and 

comprehensively used dynamic programming and branch-and-

bound methods for solution.  

The multi-stage rolling horizon approach (RHA) proposed 

by Wildeman et al. [41] is a good candidate for interpretable 

group maintenance optimization by exploring the structure of 

cost savings due to resource sharing. Its core idea is to 

organically combine maintenance activities based on individual 

maintenance plan [42], establishing an analytical functional 

relationship between component-level and system-level 

maintenance. This method realizes iterations of long-term 

maintenance plans by performing grouping operations within  

a given range and moving to subsequent windows to repeat 

operations until the planning period expires. Destombes et al. 

[43] explored a group maintenance strategy for a k-out-of-n 

installation base, and analyzed the impact of resource sharing 

on system availability and maintenance capabilities. Lu et al. 

[44] developed a cost-based maintenance operation decision-

making approach based on quality and reliability evaluation. 

Nguyen et al. [45] proposed a grouping maintenance 

optimization strategy for offshore wind farms, taking into 

account factors such as weather conditions and equipment 

location, to determine the grouping maintenance plan. Bouvard 

et al. [46] and Van Horenbeek [47] extended this approach to 

degrading systems and proposed predictive maintenance 

strategies. 

Despite the effectiveness of RHA in adapting to system state 

variation and improving maintenance interpretation, its 

application to complex degrading industrial systems confronts 

with a few challenges. First, RHA essentially belongs to static 

decision-making approach, although the scheduling horizon 
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rolls iteratively. The correlation between adjacent maintenance 

activities is not considered, so that adaptively updating system 

plans is difficult. For example, when there is a time change in 

the current maintenance plan, subsequent plans are not able to 

be automatically modified, either advanced or delayed. Such 

ignorance of adjustments may increase the risk of failure and 

reduce economic benefits. Second, RHA is limited to iterating 

within a specified time span, confirming its regional statics, 

which increases the difficulties of maintenance planning for 

systems with long service periods. Third, the impact of random 

failures is difficult to estimate, as the economic dependence of 

preparation costs during failures, as well as economic benefits 

brought by maintenance opportunities are seldomly considered, 

limiting the scope for enhancing cost efficiency in complex 

systems. 

To address the foregoing research gaps, this paper 

innovatively introduces a globally dynamic group maintenance 

approach for multi-component degrading systems with self-

adaption mechanism, which serves as a dynamic union of (a) 

delayed condition-based maintenance and (b) immediate 

opportunity maintenance. The most prominent advantage of this 

method is its global-dynamic self-adaption updating ability, 

which is free of time horizon limitation presumed in most group 

maintenance models. This real-time updating feature plays  

a pivotal role in cost containment and availability enhancement, 

as it enables the swift adjustment of component health status 

and maintenance plans, thereby enhancing the timeliness, agility, 

and precision of system-level maintenance. To fulfill this 

capacity, the first group is selected and the remaining groups are 

discarded at every grouping decision, so as to ensure policy 

flexibility and reduce redundancy. Second, unlike previous 

group maintenance models, we consider delayed maintenance 

during worn-out stages of system polymorphism degradation. 

As such, the matched maintenance and support resources can be 

fully prepared between the state identification and actual 

maintenance execution, contributing to (a) reducing downtime 

losses due to immediate maintenance, and (b) exploring the 

potentials of remaining life. Third, this is the first to formulate 

a global dynamic union of both postponed predictive 

replacement and unscheduled opportunistic replacement, so as 

to sufficiently improve downtime utilization capacity, in 

particular from unexpected failures. Finally, an efficient 

heuristic algorithm is developed to achieve analysis of group 

partition dynamic programming, which is effective to reduce 

computational complexity and alleviate analytical dimension 

explosion due to system scale. The effectiveness of the proposed 

maintenance framework is verified by comparative numerical 

experiment conducted on train bogie. 

To sum up, this study contributes to group maintenance 

planning of complex industrial systems from the following four 

perspectives: 

◼ A globally dynamic group maintenance strategy oriented 

to degrading systems is proposed for the first time, which 

automatically adjust maintenance plans based on self-

adapting updating of both component health estimation 

and maintenance plans, so as to capture the correlation 

between adjacent maintenance plans, enhancing the agility 

and precision of decision-making; 

◼ Preventive maintenance is allowed during the worn-out 

stage to be delayed, which realizes a balance between 

failure risk mitigation and maintenance resource 

preparation, and provides sufficient flexibility for group 

maintenance partition; 

◼ Delayed group maintenance and immediate opportunity 

maintenance are firstly integrated in a global dynamic 

manner, which fully captures both positive and negative 

effect of unexpected failures and their economic 

dependencies to improve downtime loss control; 

◼ An efficient heuristic dynamic programming and reverse 

search algorithm is developed for sequentially updating 

maintenance groups and execution time. It effectively 

reduces model complexity and improves optimization 

efficiency through automatic dimensional reduction 

mechanism. 

The rest of the paper is organized as follows. Section 2 

introduces the innovative group maintenance policy. Section 3 

constructs component-level condition-based maintenance 

model. Section 4 formulates the group maintenance model.  

A high-speed rail bogie is taken as an example to demonstrate 

the applicability in Section 5. Section 6 concludes the paper. 
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Acronyms and notations 

PR preventive replacement 

CR corrective replacement 

CBM condition-based maintenance 

DPGR delayed preventive group replacement 

IOR immediate opportunistic replacement 

RHA rolling horizon approach 

𝑋𝑖(𝑡) deterioration level of component 𝑖 at time 𝑡 

𝜉𝑖 control limit triggering preventive maintenance of component 𝑖 

𝐿𝑖 failure threshold of component 𝑖 

𝜏 inspection interval 

𝑗𝑖𝜏 time for delayed preventive maintenance of component 𝑖 

𝑔𝑖(𝑥, 𝛥𝑡) density function of degradation increment of component 𝑖 over time △ 𝑡 

𝑓𝑖(𝑙|𝑥0) density function of the remaining lifetime provided component degradation level𝑥0 

𝐶𝑖,𝐼 inspection cost of component 𝑖 

𝐶𝑆,𝑅 fixed set-up maintenance cost 

𝐶𝑖,𝑅 independent maintenance cost of component 𝑖 

𝐶𝑖,𝑑 downtime loss per unit time of component 𝑖 

𝐶𝑖,𝑓 economic loss caused by the untimely logistics support of component  

𝑝𝑖
𝑃𝑅(𝑘) density function of detection frequency 𝑘 between two preventive replacements 

𝑝𝑖
𝐶𝑅(𝑘) density function of detection frequency 𝑘 between two corrective replacements 

𝑇𝑑 the average downtime caused by failure concealment 

𝜂𝑖 the long-term maintenance cost rate of component  

𝑘𝑖𝜏 the offset maintenance time of component 𝑖 

𝑆𝑖 the failure time variable of component 𝑖 

𝐶𝑜𝑃𝑖(𝑘𝑖|𝜏𝑖) cost penalty function of component 𝑖 at time 𝜏𝑖 

𝐶(𝐺) gain function of the group maintenance 

𝐺∗ composition of the DPGR group  

𝑘∗ execution time of the DPGR group 

𝐺𝑂𝑀
∗  composition of the current IOR group 

2. Global Dynamic Group Maintenance Policy 

We innovatively devise a global dynamic group maintenance 

policy oriented to a multi-component system subject to 

continuous degradation. As shown in Fig. 1, the policy enables 

a global dynamic union of (a) scheduled group maintenance and 

(b) unscheduled opportunistic maintenance within an infinite 

time horizon, through devising the adaptive updating 

mechanism upon inspection and group maintenance. In other 

words, the maintenance clustering process is always self-

adaptive following the latest component-level health 

information and maintenance optimization outcome, iterating 

without time limitation. 

 

(1) Inspection-driven adaptive updating. Inspections are 

equally spaced to reveal the underlying component 

degradation, whose health are assessed adaptively once 

acquiring the latest degradation observation; 

(2) Maintenance-empowered adaptive updating. 

Whenever a group maintenance is completed, the health 

status as well as individual CBM plans of all components 

are updated immediately. Accordingly, subsequent 

maintenance group sequence is re-scheduled. In other 

words, only the first group of each group set is chosen 

for implementation, while the remaining ones are 

abandoned after the implementation. This process 

continuously iterates in infinite time horizon.  



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

Figure 1 illustrates the realization process of global-dynamic 

group maintenance procedure following tentative scheduling of 

component maintenance plans. Subsequent to accessing the 

most recent system inspection, a subset of components 

potentially necessitating maintenance is selected to constitute a 

tentative delayed preventive group replacement (DPGR) group, 

which contains component experiencing delayed replacement 

for life extension purpose. This is an ideal situation as the 

unpredictability and abruptness of system malfunctions prompt 

an immediate conversion from a DPGR plan to the immediate 

opportunistic replacement (IOR) plan. To ensure real-time 

decision-making and strategy adaptability, the updated status 

upon the time of each (a) maintenance decision, (b) DPGR 

execution, and (c) IOR execution are documented to offer 

feedback to the subsequent inspection epoch for comparison. In 

the absence of system status alterations, the original 

maintenance plan will be executed as planned; conversely, any 

modifications will trigger a renewal of the plan. In this regard, 

the effectiveness of maintenance postponement and the 

promptness of opportunistic maintenance can be ensured.

 

Figure 1. Flowchart of the proposed strategy.

Through such self-adaption updating mechanism, the 

proposed maintenance policy possesses owes the superiorities 

of globality, dynamicity and cost-effectiveness, as outlined 

below. 

a) Globality: The maintenance sequence updating 

process is no longer limited to pre-set time interval, 

which can be extended to infinite time horizon; 

b) Dynamicity: Component conditions are dynamically 

updated through both (a) health inspection and (b) 

group maintenance execution; 

c) Cost-effectiveness: The proposed framework realizes 

the global dynamic union of scheduled maintenance 

and unscheduled maintenance, so as to sufficiently 

share maintenance resources and control maintenance 

downtime. 

2.1. Component-Level Postponed Maintenance Planning 

A degradation-centered postponed replacement policy is 

employed at the component level, such that to set a benchmark 

for system group maintenance. To be specific, inspections are 

equally spaced with an interval 𝜏  to reflect the underlying 

degradation of each component. If the degradation of  
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a component 𝑖, 𝑖 = 1,2,⋯ , 𝑛 at an inspection exceeds a control 

limit 𝜉𝑖 , a preventive replacement (PR) is scheduled 𝑗𝑖𝜏  time 

units later; otherwise if the degradation exceeds the failure 

threshold 𝐿𝑖(𝐿𝑖 > 𝜉𝑖) , corrective replacement (CR) is 

immediate.  

The reason to postpone replacement is two-fold: (a) 

allowing more sufficient time for abundant resource preparation 

compared to immediate replacement; and (b) offering windows 

for opportunistic maintenance, which facilitates the scheduling 

and updating of group maintenance, as we will show in the rest 

of this paper. 

2.2. System-level Dynamic Group Scheduling 

Following the component-level maintenance optimization 

outcomes, the global dynamic group maintenance policy is 

devised. Within an infinite time horizon, all component 

information are iteratively updated upon the completion of each 

group maintenance, whereas the subsequent group sequence are 

rescheduled following the updated information.  

To be specific, multiple components with similar time are 

clustered into a maintenance group to minimize maintenance 

costs. Note that the triggering of maintenance relies on the 

variation of system status indicators. Specifically, we categorize 

the state set of a component into three types {0,1,2} . State 0 

indicates that the component is in a normal state, state 1 

indicates that it has been detected as exceeding 𝜉𝑖, and state 2 

indicates that it has been detected as exceeding 𝐿𝑖. If the state 

of any a component changes, the new group maintenance 

planning is initiated immediately; while other the original plan 

remains unchanged.  

Recall that the proposed maintenance policy is a dynamic 

union of two types of group maintenance: delayed preventive 

group replacement (DPGR) and immediate opportunistic 

replacement (IOR). In the following, we specify these two 

replacement types.  

◼ Delayed preventive group replacement (DPGR) 

planning 

As shown in Fig. 2, at each group decision point, the DPGR 

determines: a) the size of the maintenance group and b) the 

execution time. To ensure the flexibility and timeliness of the 

proposed strategy, only the first group is chosen to be 

implemented. After a replacement is completed, we update the 

status information of the components. Notably, if a component 

failure is detected at any inspection prior to the planned 

maintenance point, the current DPGR plan is abandoned 

immediately and transferred to the IOR plan.

 

Figure 2. Illustration of the preventive replacement grouping.

◼ Immediate opportunistic replacement (IOR) planning 

As shown in Fig. 3, IOR grouping is immediately 

implemented when a component is found failed. Selective 

preventive replacement is executed on surviving components 

while corrective replacement of the failed components is carried 

out. Similar to DPGR planning, the status information is 

updated after IOR is completed. Subsequently, the 

aforementioned DPGR method is employed to plan the 

subsequent DPGR groups, facilitating the joint optimization of 

IOR and DPGR. Therefore, at each IOR decision point, a) the 

size of the current IOR group and b) the size and execution time 

of the next DPGR maintenance group are determined.
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Figure 3. Illustration of the opportunity replacement grouping.

3. Component-Level Delayed Maintenance Optimization 

In this section, we characterize the degradation behaviors of 

system components, and formulate the maintenance 

optimization model at the component level. The optimization 

outcome serves as a benchmark for subsequent group 

maintenance planning. 

3.1. Degradation Process Modelling  

Define the degradation of component 𝑖, 𝑖 = 1,2,3,⋯ , 𝑛 as 𝑋𝑖(𝑡), 

which leads to failure if the degradation attains a specific 

threshold 𝐿𝑖 . We characterize the underlying degradation 

process via a generalized stochastic process with Brownian 

motion process error, as structured by 𝑋𝑖(𝑡) = 𝑋𝑖(0) +

𝑣𝑖𝛬(𝑡; 𝛽𝑖) + 𝜎𝑖𝐵(𝛬(𝑡; 𝛽𝑖)) , which can effectively explain the 

degradation characteristics of nonlinear and non-monotonic of 

practical systems [48,49]. Here 𝑣𝑖𝛬(𝑡; 𝛽𝑖)is the drift function; 

𝛬(𝑡; 𝛽𝑖) is the space-time scale transform 

function;𝐵(𝑡)~𝑁(0, 𝑡)  is the standard Brownian motion. The 

advantage of this model lies in that: (a) it scales well in fitting 

non-linear trajectory due to the adaptively adjustable parameter 

𝛽𝑖; and (b) the remaining useful life model can be analytically 

calculated. Following the statistical independence property, the 

degradation increment 𝑋𝑖(𝑡 +△ 𝑡) − 𝑋𝑖(𝑡) yields 

𝑔𝑖(𝑥,△ 𝑡) =
1

𝜎𝑖⋅√2𝜋𝜁(Δ𝑡)
𝑒
−
1

2
(
𝑥−𝑣𝑖𝜁(Δ𝑡)

𝜎𝑖√𝜁(Δ𝑡)
)

2

,  (1) 

where 𝑔𝑖(𝑥,△ 𝑡) represents the probability density function of 

the degradation increment over time △ 𝑡 , and 𝜁(𝛥𝑡) = 𝛬(𝑡 +

𝛥𝑡; 𝛽𝑖) − 𝛬(𝑡; 𝛽𝑖). Since the time to hit the failure threshold 𝐿𝑖 

for the first time follows the Inverse Gaussian distribution, the 

remaining life 𝑙 given the latest observation 𝑥0 follows  

𝑓𝑖(𝑙|𝑥0) =
𝐿𝑖−𝑥0

𝜎𝑖⋅√2𝜋𝜁(𝑙)
3
𝑒
(−

(𝑣𝜁(𝑙)−𝐿𝑖−𝑥0)
2

2𝜎2𝜁(𝑙)
)
𝑑𝜁(𝑙)

𝑑𝑙
, 𝑙 > 0.      (2) 

Prior to the maintenance modeling, we define some basic 

settings. Inspections are non-destructive and perfect, whose 

execution time is negligible compared to maintenance intervals. 

Each inspection incurs a cost 𝐶𝑖,𝐼 . In this study, the focus is 

solely on replacement actions, and we interchangeably use the 

terms maintenance and replacement throughout the remainder 

of the study. As for spare replacement actions, both the 

shareable set-up maintenance cost 𝐶𝑠,𝑅  (including personnel 

scheduling, material scheduling, and other support costs) and 

the independent component maintenance cost 𝐶𝑖,𝑅 are involved 

which yields𝐶𝑖,𝑅 ≫ 𝐶𝑖,𝐼 . In addition, corrective replacement 

brings additional losses, including: downtime losses per unit 

time 𝐶𝑖,𝑑 resulted from failure concealment; and 𝐶𝑖,𝑓 caused by 

the untimely logistics support. 

3.2. Maintenance Interval Optimization 

Now we begin the component-level maintenance modeling. 

Remember that, when the degradation level of the component 𝑖 

is detected in (𝜉𝑖 , 𝐿𝑖), preventive replacement is carried out after 

a delayed time 𝑗𝑖𝜏. When, however, the degradation is found to 

exceeds 𝐿𝑖, corrective replacement is immediate. Accordingly, 

the density function of the average detections’ frequency 𝑘 

between two preventive replacements is 

𝑝𝑖
𝑃𝑅(𝑘) = 𝑃(𝑁𝑖

𝑃𝑅 = 𝑘) =

{
 

 
0                                                                                          𝑘 ≤ 𝑗𝑖 + 1,

∫ ∫ 𝑔𝑖
𝑗𝑖(𝑢) ⋅ 𝑔𝑖(𝑥)

𝐿𝑖−𝑥

0

𝐿𝑖

𝜉𝑖
𝑑𝑢𝑑𝑥                                       𝑘 = 𝑗𝑖 + 2,

∫ ∫ ∫ 𝑔𝑖
𝑗𝑖(𝑠)𝑔𝑖(𝑢)𝑔𝑖

𝑘−𝑗𝑖−2(𝑥)
𝐿𝑖−𝑥−𝑢

0

𝐿𝑖−𝑥

𝜉𝑖−𝑥

𝜉𝑖

0
𝑑𝑠𝑑𝑢𝑑𝑥   𝑘 ≥ 𝑗𝑖 + 3.

                    (3) 
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where 𝑔𝑖
𝑞
(𝑥) = 𝑔𝑖(𝑥, 𝑞𝜏)  represents the probability density 

function of incremental degradation over time 𝑞𝜏 . Specially, 

when 𝑞 = 1, 𝑔𝑖(𝑥) = 𝑔𝑖(𝑥, 𝜏) yields.  

We make some interpretations about Eq. (3). When 𝑘 ≤ 𝑗𝑖 +

1, this situation was not allowed because the initial degradation 

level was zero; Both two subcases in 𝑘 ≥ 𝑗𝑖 + 2  indicate that 

the component was found to be exceeding the control limit, and 

still remained in this state even after a delay time 𝑗𝑖𝜏 . Only 

through this approach can the initiation of PR planning be 

facilitated. The difference between these two subcases lies in 

the historical detection times prior to attaining the control limit, 

as shown in Fig. 4 (a). 

 

(a) PR process

 

(b) CR process

Figure 4. Diagram of component-level maintenance planning. 

Similarly, the probability density function of the average 

detections’ frequency 𝑘  between two corrective replacements 

can be determined as

𝑝𝑖
𝐶𝑅(𝑘) = 𝑃(𝑁𝑖

𝐶𝑅 = 𝑘) =

{
 
 

 
 
0                                                                                                                                                             𝑘 = 1,

�̄�𝑖(𝐿𝑖)                                                                                                                                                    𝑘 = 2,

∑ ∑ ∫ ∫ ∫ ∫ 𝑔𝑖(𝜐) ⋅ 𝑔𝑖
𝑗𝑖−𝑚−1(𝑠) ⋅ 𝑔𝑖(𝑢) ⋅ 𝑔𝑖

𝑛−1(𝑥)
+∞

𝐿𝑖−𝑥−𝑢−𝑠

𝐿𝑖−𝑥−𝑢

0

𝐿𝑖−𝑥

𝜉𝑖−𝑥

𝜉𝑖
0

+∞
𝑛=1 𝑑𝜐𝑑𝑠𝑑𝑢𝑑𝑥

𝑗𝑖
𝑚=1

+∫ 𝑔𝑖
𝑘−2(𝑥)�̄�𝑖(𝐿𝑖 − 𝑥)𝑑𝑥

𝜉𝑖
0

𝑘 ≥ 3,

         (4) 

 

where 𝐺𝑖(𝑥) = ∫ 𝑔𝑖(𝑢, 𝜏)𝑑𝑢
𝑥

0
  represents the distribution 

function of the degradation increment over 𝜏 . Accordingly, if  

a component is found to be faulty at the next detection point 

after the time starting or replacement ended point, 𝑘 = 2 is met. 

There are two subcases when 𝑘 ≥ 3 . The former scenario 

signifies that the previous detection was normal, but a sudden 

failure occurred subsequently, as shown in the above of Fig. 4 

(a). While the latter represents the original PR plan has 

encountered failure, as shown in the below of Fig. 4 (b). 

The average downtime 𝑇𝑑 caused by failure concealment is 

obtained from the following equation. Notably, 𝑘  cannot 

increase to +∞ because (a) the actual number of state detections 

is limited, and (b) it is meaningless to calculate the downtime 

once 𝑘𝜏 severely exceed the actual failure detection points 

𝑇𝑑 = 𝐸(𝑡𝑑) = ∑ [∫ (𝑘𝜏 − 𝑡)𝑓(𝑡|0)
𝑘𝜏

(𝑘−1)𝜏
𝑑𝑡 ⋅ (1 − ∫ 𝑓(𝑡|0)

(𝑘−1)𝜏

0
𝑑𝑡)]+∞

𝑘=1 .(5) 

According to the renewal-reward theory, the long-term 

maintenance cost rate 𝜂𝑖 is defined as 

𝜂𝑖(𝑗𝑖) =
𝐶𝑖,𝐼∑ 𝑘⋅(𝑝𝑖

𝑃𝑅(𝑘)+𝑝𝑖
𝐶𝑅(𝑘))+∞

𝑘=1 +𝐶𝑖,𝑅+(𝐶𝑖,𝑓+𝐶𝑖,𝑑⋅𝑇𝑑)⋅∑ 𝑝𝑖
𝐶𝑅(𝑘)+∞

𝑘=1

∑ (𝑘−1)⋅𝜏⋅(𝑝𝑖
𝑃𝑅(𝑘)+𝑝𝑖

𝐶𝑅(𝑘))+∞
𝑘=1

.       (6) 

The essence of our proposed maintenance strategy hinges on 

effectively partitioning the maintenance activities of 

components into suitable maintenance groups to distribute setup 

costs 𝐶𝑠,𝑅 . In the following, we investigate the group 

maintenance modeling approach that sufficiently share set-up 

cost and downtime. 
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4. Dynamic Group Maintenance Scheduling 

This section focuses on the global dynamic scheduling of the 

entire multi-component system, following the component-level 

maintenance optimization outcome. The dynamic predictive 

group maintenance model, as well as the dynamic opportunistic 

maintenance model are formulated separately, and a heuristic 

grouping algorithm is developed for sequential and efficient 

maintenance group partition. 

4.1. Penalty Modelling 

Despite the importance of sharing resources/downtime, group 

maintenance may cause the synchronous maintenance time to 

deviate from its individual optimal execution time. We define  

a cost penalty function to characterize such loss, which is further 

partitioned into: (a) penalty by advancing maintenance, and (b) 

penalty by postponing maintenance.

(a) advancing situation (b) postponing situation

Figure 5. Cost penalty scenarios when the maintenance time is deviated.

(1) Penalty by advancing maintenance  

The deviation of maintenance time may lead to an extension 

(or reduction) of the average service life, an avoidance (or 

saving) of failure downtime, and urgent needs for logistics 

support. Correspondingly, it results in loss functions on cost 

parameter dimensions 𝜂𝑖
∗, 𝐶𝑖,𝑑 , 𝐶𝑖,𝑓. Due to the concealment and 

uncertainty of failure, the penalty function can be solved in three 

subcases under the premise of advancing maintenance, as 

shown in the Fig. 5 (a). Let the original delayed maintenance 

time be 𝑗𝑖𝜏 , the offset maintenance time be 𝑘𝑖𝜏(𝑘𝑖 < 𝑗𝑖) . The 

failure time variable is set as 𝑆𝑖. 

a1). In this case, 𝑠𝑖 < 𝑘𝑖𝜏. Since corrective replacement is 

immediate upon failure identification, only CR will be 

performed, which incurs no extra loss Therefore, the loss 

function yields 

                   𝐶𝑜𝑃𝑎1 = 0.   (7) 

a2). In this case, 𝑘𝑖𝜏 < 𝑠𝑖 < 𝑗𝑖𝜏 . The advancing of 

maintenance execution time avoids possible additional 

downtime cost 𝐶𝑖,𝑑 ⋅ 𝑡𝑑 and untimely logistics support cost 𝐶𝑖,𝑓, 

but it also leads to a shortened service lifetime, whose losses are 

manifested by 𝜂𝑖
∗. The penalty function is expressed as 

𝐶𝑜𝑃𝑎2 = −𝐶𝑖,𝑑 ∙ ∫ 𝑓(𝑠) ∙ (⌈
𝑠

𝜏
⌉ 𝜏 − 𝑠)

𝑗𝑖𝜏

𝑘𝑖𝜏

𝑑𝑠 

            −𝐶𝑖,𝑓 ∙ [𝐹(𝑗𝑖𝜏) − 𝐹(𝑘𝑖𝜏)] 

            + ∫ 𝜂𝑖
∗ ∙ (⌈

𝑠

𝜏
⌉ − 𝑘𝑖) ∙ 𝜏 ∙ 𝑓(𝑠)

𝑗𝑖𝜏

𝑘𝑖𝜏
𝑑𝑠.                                   (8) 

a3). In this case, 𝑗𝑖𝜏 < 𝑠𝑖. It indicates that failure occurrence 

will not affect the deviation of component’s maintenance task 

as it belongs to a future event after maintenance execution. 

Therefore, only the punishment of shortening service lifetime 

should be introduced. Consequently, the penalty function is 

𝐶𝑜𝑃𝑎3 = 𝜂𝑖
∗ ⋅ (𝑗𝑖 − 𝑘𝑖) ⋅ 𝜏 ⋅ 𝑅(𝑗𝑖𝜏).  (9) 

To conclude, the penalty function in advancing maintenance 

case can be summarized as 

𝐶𝑜𝑃𝑎 = 𝐶𝑜𝑃𝑎1 + 𝐶𝑜𝑃𝑎2 + 𝐶𝑜𝑃𝑎3 

= −𝐶𝑖,𝑑 ⋅ ∫ 𝑓(𝑠) ⋅ (⌈
𝑠

𝜏
⌉ 𝜏 − 𝑠)

𝑗𝑖𝜏

𝑘𝑖𝜏

𝑑𝑠 − 𝐶𝑖,𝑓 ⋅ [𝐹(𝑗𝑖𝜏) − 𝐹(𝑘𝑖𝜏)] 

+∫ 𝜂𝑖
∗ ⋅ (⌈

𝑠

𝜏
⌉ − 𝑘𝑖) ⋅ 𝜏 ⋅ 𝑓(𝑠)

𝑗𝑖𝜏

𝑘𝑖𝜏

𝑑𝑠 + 𝜂𝑖
∗ ⋅ (𝑗𝑖 − 𝑘𝑖) ⋅ 𝜏 ⋅ 𝑅(𝑗𝑖𝜏) 

= ∫ 𝑓(𝑠) ⋅ [−𝐶𝑖,𝑑 ⋅ (⌈
𝑠

𝜏
⌉ 𝜏 − 𝑠) + 𝜂𝑖

∗ ⋅ (⌈
𝑠

𝜏
⌉ − 𝑘𝑖) ⋅ 𝜏]

𝑗𝑖𝜏

𝑘𝑖𝜏

𝑑𝑠 

 −𝐶𝑖,𝑓 ⋅ [𝐹(𝑗𝑖𝜏) − 𝐹(𝑘𝑖𝜏)] + 𝜂𝑖
∗ ⋅ (𝑗𝑖 − 𝑘𝑖) ⋅ 𝜏 ⋅ 𝑅(𝑗𝑖𝜏).         (10) 
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(2). Penalty by postponing maintenance  

The postponing maintenance case is also partitioned into 

three subcases, as shown in Fig. 5 (b). Let the originally 

scheduled time be 𝑗𝑖𝜏, the offset maintenance time be 𝑘𝑖𝜏(𝑘𝑖 >

𝑗𝑖). 

b1). In this case, 𝑠𝑖 < 𝑗𝑖𝜏. The failure occurrence pulls the 

delayed maintenance back to the original scheduled time 

without any losses. Therefore, 

   𝐶𝑜𝑃𝑏1 = 0.            (11) 

b2). In this case, 𝑗𝑖𝜏 < 𝑠𝑖 < 𝑘𝑖𝜏. Although postponement of 

maintenance execution extends the service life (also manifested 

by 𝜂𝑖
∗ ), it inevitably leads to downtime cost 𝐶𝑖,𝑑 ⋅ 𝑡𝑑  and 

untimely logistics support cost 𝐶𝑖,𝑓. Hence, the penalty function 

is expressed as 

𝐶𝑜𝑃𝑏2 = 𝐶𝑖,𝑓 ⋅ [𝐹(𝑘𝑖𝜏) − 𝐹(𝑗𝑖𝜏)] 

  +𝐶𝑖,𝑑 ⋅ ∫ 𝑓(𝑠) ⋅ (⌈
𝑠

𝜏
⌉ 𝜏 − 𝑠)

𝑘𝑖𝜏

𝑗𝑖𝜏

𝑑𝑠 

      − ∫ 𝜂𝑖
∗ ⋅ (⌈

𝑠

𝜏
⌉ − 𝑗𝑖) ⋅ 𝜏 ⋅ 𝑓(𝑠)𝑑𝑠

𝑘𝑖𝜏

𝑗𝑖𝜏
.                      (12) 

b3). In this case, 𝑘𝑖𝜏 < 𝑠𝑖  . The failure occurrence has no 

impact on the scheduled maintenance work, but indirectly 

extends the service life. Thus 

      𝐶𝑜𝑃𝑏3 = −𝜂𝑖
∗ ⋅ (𝑘𝑖 − 𝑗𝑖) ⋅ 𝜏 ⋅ 𝑅(𝑘𝑖𝜏).  (13) 

To sum up, the penalty function for postponed maintenance 

is

𝐶𝑜𝑃𝑏 = 𝐶𝑜𝑃𝑏1 + 𝐶𝑜𝑃𝑏2 + 𝐶𝑜𝑃𝑏3 

                        = ∫ 𝑓(𝑠) ⋅ [𝐶𝑖,𝑑 ⋅ (⌈
𝑠

𝜏
⌉ 𝜏 − 𝑠) − 𝜂𝑖

∗ ⋅ (⌈
𝑠

𝜏
⌉ − 𝑗𝑖) ⋅ 𝜏]

𝑘𝑖𝜏

𝑗𝑖𝜏
𝑑𝑠 + 𝐶𝑖,𝑓 ⋅ [𝐹(𝑘𝑖𝜏) − 𝐹(𝑗𝑖𝜏)] − 𝜂𝑖

∗ ⋅ (𝑘𝑖 − 𝑗𝑖) ⋅ 𝜏 ⋅ 𝑅(𝑘𝑖𝜏).             (14) 

 

It can be easily found that the mentioned penalty functions 

have a similar form, because the two cases are time-reversal 

forms of each other both mathematically and physically. We 

therefore integrate Equations (10) and (14) into a unified 

penalty function

𝐶𝑜𝑃𝑖(𝑘𝑖|𝜏𝑖) = 𝑠𝑔𝑛( 𝑗𝑖 − 𝑘𝑖) ⋅ {
∫ 𝑓(𝑠) ⋅ [−𝐶𝑖,𝑑 ⋅ (⌈

𝑠

𝜏
⌉ 𝜏 − 𝑠) + 𝜂𝑖

∗ ⋅ (⌈
𝑠

𝜏
⌉ − 𝑚𝑖𝑛{𝑘𝑖, 𝑗𝑖}) ⋅ 𝜏]

𝑚𝑎𝑥{𝑘𝑖𝜏,𝑗𝑖𝜏}

𝑚𝑖𝑛{𝑘𝑖𝜏,𝑗𝑖𝜏}
𝑑𝑠

+𝜂𝑖
∗ ⋅ |𝑗𝑖 − 𝑘𝑖| ⋅ 𝜏 ⋅ 𝑅(𝑚𝑎𝑥{𝑘𝑖𝜏, 𝑗𝑖𝜏}) − 𝐶𝑖,𝑓 ⋅ |𝐹(𝑘𝑖𝜏) − 𝐹(𝑗𝑖𝜏)|

},  (15) 

 

where 𝑠𝑔𝑛( 𝑗𝑖 − 𝑘𝑖) is a sign function defined as 

 𝑠𝑔𝑛( 𝑗𝑖 − 𝑘𝑖) = {

−1       𝑗𝑖 < 𝑘𝑖 ,
 0         𝑗𝑖 = 𝑘𝑖 ,
+1       𝑗𝑖 > 𝑘𝑖 .

 

4.2. DPGR Scheduling in CBM Framework 

Setting aside the negative impact caused by the aforementioned 

time deviation, a major advantage of combining multi-

component maintenance activities is that maintenance costs 𝐶𝑆,𝑅 

can be shared. We define the maintenance gain function as the 

difference between the saved and penalty cost, to quantitatively 

analyze the resource savings by grouping. For a certain 

maintenance group |𝐺|, there is a gain function 𝐶(𝐺):

𝐶(𝐺) = (|𝐺| − 1) ⋅ 𝐶𝑆,𝑅 −∑ 𝐶𝑜𝑃𝑖(𝑘𝑖|𝜏𝑖)𝑖∈𝐺 = (|𝐺| − 1) ⋅ 𝐶𝑆,𝑅 − ∑ 𝑠𝑔𝑛( 𝑗𝑖 − 𝑘𝑖) ⋅ {
∫ 𝑓(𝑠) ⋅ [−𝐶𝑖,𝑑 ⋅ (⌈

𝑠

𝜏
⌉ 𝜏 − 𝑠) + 𝜂𝑖

∗ ⋅ (⌈
𝑠

𝜏
⌉ −𝑚𝑖𝑛{𝑘𝑖 , 𝑗𝑖}) ⋅ 𝜏]

𝑚𝑎𝑥{𝑘𝑖𝜏,𝑗𝑖𝜏}

𝑚𝑖𝑛{𝑘𝑖𝜏,𝑗𝑖𝜏}
𝑑𝑠

+𝜂𝑖
∗ ⋅ |𝑗𝑖 − 𝑘𝑖| ⋅ 𝜏 ⋅ 𝑅(𝑚𝑎𝑥{𝑘𝑖𝜏, 𝑗𝑖𝜏}) − 𝐶𝑖,𝑓 ⋅ |𝐹(𝑘𝑖𝜏) − 𝐹(𝑗𝑖𝜏)|

}𝑖∈𝐺 .    (16) 

 

The size and execution time of the maintenance group 

should be optimized, so as to obtain the maximum 𝐶(𝐺) within 

given range 

{𝐺∗, 𝑘𝑖
∗} = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐶 (𝐺) 

               = 𝑎𝑟𝑔𝑚𝑎𝑥[(|𝐺| − 1) ⋅ 𝐶𝑆,𝑅 −∑ 𝐶𝑜𝑃𝑖(𝑘𝑖|𝜏𝑖)𝑖∈𝐺 ].  (17) 

Dynamic programming is a typical optimization algorithm 

for solving multi-stage decision problems, which has been 

widely applied in production scheduling and resource allocation. 

Within the hierarchical framework of dynamic programming, 

boundary conditions are used as the start of the algorithm, and 

the optimal solution is sought step by step through recursion. 

This effect makes the entire strategy generation constantly 

changing based on state. In our framework, the status is updated 

after maintenance or detection, and each maintenance grouping 

structure relies on the previous one, continuously rolling and 

iterating throughout the lifespan. Therefore, our structure is 

similar to the issues that dynamic programming can solve. 

We relax the maintenance optimization problem to the 
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global-level and further utilize the ‘continuous grouping’ 

assumption to efficiently approach the optimal solution. 

However, due to (a) the correlation between successive groups; 

and (b) the updated system information, we only take the first 

set of solutions from the optimal sequence. This global 

optimization method actually trades efficiency for partial 

optimality. Here, 𝐺𝐿 is defined as all components which have 

been detected to have exceeded 𝜉𝑖 and are not assigned to any 

current maintenance group. These components are divided into 

mutually exclusive groups 𝐺𝐿 = {𝐺1, 𝐺2, ⋯ , 𝐺𝑚} , in which 

⋃ 𝐺𝑖𝑖∈𝑚 = 𝐺 , ∀𝑖 ≠ 𝑗 ∈ 𝐺, 𝐺𝑖 ∩ 𝐺𝑗 = ∅ . Hence, the optimal 

group structure should be obtained by 

{𝑘∗, 𝐺𝑆∗} = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐶 (𝐺𝐿) = 𝑎𝑟𝑔𝑚𝑎𝑥 {∑ (|𝐺𝑗| − 1) ⋅𝐺𝑗∈𝐺𝐿

                   𝐶𝑆,𝑅 −∑ 𝐶𝑜𝑃𝑖(𝑘𝑗|𝜏𝑖)𝑖∈𝐺𝑗
}.                          (18) 

To be specific, let {𝑗1
∗, 𝑗2

∗, 𝑗3
∗,⋯ , 𝑗𝑛

∗, }  be the optimal 

independent maintenance time at one detection point, which is 

arranged in ascending order, corresponding to the component 

index {𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑛} . (If 𝑗𝑖
∗ = 𝑗𝑗

∗ , the component with higher 

sensitive penalty function should be arranged ahead). When 

better-performed components are included in maintenance 

while the worse ones are still in operation, it will inevitably lead 

to a more negative penalty but have no impact on saving 𝐶𝑆,𝑅.

 

Figure 6. Flowchart for solving the optimal maintenance structure.

To clarify the maintenance group process, let 𝑠𝑝 denote the 

beginning state at stage 𝑝, indicating the group size where 𝑖𝑝−1 

was in. 𝑥𝑝 = 0 means that 𝑖𝑝 starts a new group at stage 𝑝. 𝑥𝑝 =

1 means 𝑖𝑝 joins the current group. Correspondingly, the state 

transition equation and the introduced cost saving function are 

decided by Eq. (19), and the Bellman Equation is determined by 

Eq. (20). We obtain the maintenance group structure in reverse 

order. Notably, only the first group should be taken as the 

optimal maintenance group to ensure the dynamism of the 

strategy. 

{
𝑠𝑝+1 = 1 𝑎𝑛𝑑 𝑣𝑝(𝑠𝑝 , 𝑥𝑝) = 0,     𝑥𝑝 = 0,

𝑠𝑝+1 = 𝑠𝑝 + 1 𝑎𝑛𝑑 𝑣𝑝(𝑠𝑝 , 𝑥𝑝),    𝑥𝑝 = 1.
         (19) 

{
𝑓𝑝(𝑠𝑝) = 𝑚𝑎𝑥

𝑥𝑝∈𝐷𝑝(𝑠𝑝)
{𝑣𝑝(𝑠𝑝, 𝑥𝑝) + 𝑓𝑝+1(𝑠𝑝+1)}, 𝑝 = 𝑛, 𝑛 − 1,⋯ ,2,

𝑓𝑛+1(𝑠𝑛+1) = 0.
        (20) 

Through the aforementioned steps, we effectively transform 

the grouping problem into a multi-stage decision-making 
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framework, where the sequential decision-making process 

involves determining whether to incorporate components into 

existing groups. This process is illustrated in the backward 

Dynamic Programming Algorithm (DPA) depicted in Fig. 6. 

4.3. IOR Scheduling in CBM Framework 

Recalling that IOR is immediate corrective replacement on 

failed components and preventive replacement on survival parts. 

Here, the optimized range has no need to relax to the same as 

DPGR (components have been detected to exceed 𝜉𝑖 ). 

Assuming that component ℎ is detected to have failed before 𝜏ℎ, 

it will be certainly removed from the "continuous grouping" 

optimization structure. To ensure maintenance effectiveness, 

those surviving components 𝐺ℎ, whose independent time was 

before 𝜏ℎ , were directly incorporated into this IOR group, so 

there is no need to be included into ‘continuous grouping’. 

Notably, after the IOR completion, status has been updated (the 

unreplaced components have been updated in detection). As  

a result, the IOR and subsequent DPGR plans can be updated 

synchronously. Joint optimization is achieved by maximizing 

the total cost savings 

𝐶𝑂&𝑃(𝐺𝑂𝑅) = 𝐶𝑓(𝐺𝑂𝑅) + 𝐶
∗(𝐺𝑃𝑅|𝐺𝑂𝑅

∗ ),  (21) 

𝐺𝑂𝑅
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑂&𝑃 (𝐺𝑂𝑅) = 𝑎𝑟𝑔𝑚𝑎𝑥 [|𝐺𝑂𝑅| ⋅ 𝐶𝑆,𝑅 −

                     ∑ 𝐶𝑜𝑃𝑖 (
𝜏ℎ−𝜏𝑖

𝜏
|𝜏𝑖) + 𝐶

∗(𝐺𝑃𝑅|𝐺𝑂𝑅
∗ )𝑖∈𝐺𝑂𝑅 ],           (22) 

where 𝐺𝑂𝑅  represents the IOR group that excluded 𝐺ℎ  and ℎ , 

𝐶∗(𝐺𝑃𝑅|𝐺𝑂𝑅
∗ )  is the maximum cost savings of the DPGR 

combination under the optimal IOR group 𝐺𝑂𝑅
∗ , and 𝜏𝑖 is set as 

the time first detected to exceed 𝜉𝑖. Ultimately, the optimal IOR 

is determined by 𝐺𝑂𝑀
∗ = 𝐺ℎ ∪ 𝐺𝑂𝑅

∗ . 

5. Numerical Experiment 

In this section, the proposed intelligent maintenance framework 

is applied to a high-speed railway bogie, to validate its 

effectiveness and verify its superiority through comparisons 

with other strategies. 

5.1. Experimental Background 

As the important part of rail vehicles, the bogie bears the roles 

of (a) supporting the vehicle body and distributing external 

loads from the wheel rail and vehicle body; (b) guiding vehicles 

to smoothly pass through bends; (c) buffering the vibration and 

impact between railways and vehicles; and (d) transmitting 

traction and braking forces to ensure normal operation. The 

bogie is composed of various components, as shown in Fig. 7.  

 

Figure 7. Structural diagram of bogie. 

As important rotating mechanical components, due to the 

high load, high frequency of curved driving, uneven road 

surface, and fast/frequent starting/braking working conditions, 

the axle box bearing bears the peeling from the rolling working 

surface. Likewise, the gearbox bears the tooth breakage and 

surface damage from the gear. And the wheelset bears the cracks 

caused by the wear of the wheel tread and rail, which have  

a high failure rate. These fault modes are hidden, and can only 

be detected through inspections. The intelligent maintenance 

engineering for bogies is of great significance for ensuring the 

safe operation and effectively controlling operating costs. The 

health status of the bogie is revealed in structural monitoring, 

and the priority of group maintenance is determined by 

analyzing the current degradation stage of each component. To 

clarify the proposed model, we used maintenance data provided 

by a railway operation & maintenance company, covering 

detection and maintenance records (including fault time, fault 

frequency, detection data, maintenance time, etc.) of three key 

components, including wheel tread, bearings, and gears. 

5.2. Component-Level Optimization Outcome 

By fitting the historical degradation and maintenance data of the 

aforementioned components, we have established that the time-
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space scale transform function is a power function, with the 

relevant parameters detailed in Table 1. Here, we have taken six 

components, namely wheel tread, gears, and axle box bearings, 

as illustrative examples. The planning steps remain consistent 

even with the inclusion of additional components within our 

strategy. Our measurement coordinate is based on train mileage, 

maintaining the same significance t as previously mentioned. At 

present, high-speed rail can achieve relatively real-time vehicle-

ground detection. The single service cycle of high-speed rail is 

long, so we choose 5 × 104𝑘𝑚  to be the detection time (for 

maintenance) interval. For rolling bearings, the root mean 

square data (unit: dB) of the outer ring vibration signal after 

denoising is selected as the degradation indicator. Similarly, for 

wheel tread and gearbox gears, vibration signals (unit: dB) are 

also used as indicators.  

Table 1. Degradation parameters setting of the relevant bogie 

components. 

Component 𝜷𝒊 𝝈𝒊
𝟐 𝒗𝒊 𝑳𝒊 𝝃𝒊 

① tread #1 1.06 0.00000248 15.4351 48 32 

② tread #2 1.06 0.00000248 15.1564 48 32 

③ gear #1 1.35 0.00000952 10.0756 90 61 

④ gear #2 1.35 0.00000952 10.1102 90 61 

⑤ bearing #1 1.17 0.0000152 3.9283 26 20 

⑥ bearing #2 1.17 0.0000152 4.0259 26 20 

The relationships between the delayed maintenance time 𝑗𝑖 

and the maintenance cost rate 𝜂𝑖 of the above components are 

shown in Fig. 8, with the optimal results summarized in Table 

2. Moreover, Table 3 shows the relevant cost setting. It can be 

easily seen that the rate of decrease in maintenance cost rate 

basically maintains stability before reaching the optimal. 

Afterwards, the rate of increase in maintenance cost rate as 𝑗𝑖 

increases is relatively fast. On one hand, CR operation is not 

triggered at a relatively small 𝑗𝑖, so its corresponding cost item 

is almost zero. At this time, the average maintenance interval 

slowly increases with the increase of 𝑗𝑖 , steadying the 

magnitude of changes in 𝜂𝑖 . On the other hand, as 𝑗𝑖  grows 

larger, the delayed maintenance time diminishes the 

significance of PR. The corresponding CR cost is much greater 

than PR, resulting in a sudden spike in overall costs. 

Table 2. Optimal solution of component-level maintenance. 

Component 
𝒋𝒊/ 

time 

𝜼𝒊
∗/ 

(CNY/Km) 
Component 

𝒋𝒊/ 

time 

𝜼𝒊
∗/ 

(CNY/Km) 

① tread #1 14 1.9323 ④ gear #2 32 1.1183 

② tread #2 16 1.7522 ⑤ bearing #1 25 1.3137 

③ gear #1 36 0.9590 ⑥ bearing #2 22 1.3236 

Table 3. Cost parameters setting of the relevant bogie 

components. 

Component 
𝑪𝒊,𝑰 

(×104CNY) 

𝑪𝒊,𝑹  

(×104CNY) 

𝑪𝒊,𝒇  

(×104CNY) 

𝑪𝒊,𝒅  

(×104CNY) 

tread 5 200 1200 100 

gear 5 140 1000 100 

bearing 5 125 900 100 

 

(a) variations of tread #1                                                      (b) variations of tread #2 
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(c) variations of gear #1                                            (d) variations of gear #2 

 

(e) variations of bearing #1                                              (f) variations of bearing #2 

Figure 8. Variations of maintenance cost rate to delayed maintenance time.

5.3. System-Level Optimization Outcome 

Assuming the shareable maintenance cost is 50 × 104𝐶𝑁𝑌 . 

Table 4 presents the scheduled maintenance without any failure 

in 310(× 5 × 104)𝑘𝑚 . After the first maintenance, the 

replacement time for all components is {96, 107, 110, 119, 142, 

148}, with the corresponding sequence being {tread # 1, tread # 

2, bearing # 2, bearing # 1, gear # 2, gear # 1}. It is reasonable 

to conduct the second combination DPGR on {tread # 1, tread 

# 2, bearing # 2} for their close repair time. Similarly, the third 

maintenance group only includes bearing # 1. If viewed in 

chronological order, the next maintenance group should be 

{gear # 2, gear # 1}. However, since tread # 1 and tread # 2 have 

already been replaced before, and their next replacement time is 

{143, 156}, {tread # 1, tread # 2, gear # 2, gear # 1} will form 

the next group. The above analysis results meet the 

predetermined "continuous grouping". 

Table 4. Optimal DPGR scheduling without failure. 

Order 
Maintenance 

group 

DPGR time 

(×5×104 km) 

Cost saving 

(×104 CNY) 

1 {①，②} 55 29.4618 

2 {①，②，⑥} 104 47.7731 

3 {⑤} 119 0 

4 {③，④，①，②} 152 64.6342 

5 {①，②，⑤} 213 21.1283 

6 {⑥} 234 0 

7 {①，②} 287 24.6489 

8 {③，④} 303 33.0086 

Assuming that component ④ suddenly fails at 138(× 5 ×

104)𝑘𝑚, the originally planned {③, ④, ①, ②} PGM will be 

temporarily suspended and immediately switched to the IOR 

triggered by component ④. Joint optimization of (a) the current 
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IOR and (b) the next DPGR planning will be carried out, and 

subsequent planning will proceed normally, as shown in Table 

5. Fig. 9 provides a schematic diagram of the first five group. 

By comparing Table 4 and Table 5, it can be found that the 

overall maintenance frequency increases, and the maintenance 

groups of components ①, ②, ⑤, ⑥ have a great change. The 

sudden IOR have a significant impact on the global maintenance 

plan.

 

Figure 9. Diagram of the system-level planning (with sudden failure).

Table 5. Optimal IOR scheduling with sudden failure. 

Order 
Maintenance 

group 

DPGR time  

(×5×104 km) 

Cost saving  

(×104 CNY) 

1 {①，②} 55 29.4618 

2 {①，②，⑥} 104 47.7731 

3 {⑤} 119 0 

 {③，④，①} 138 56.3166 

4 {②} 156 0 

5 {①} 180 0 

6 {②，⑤，⑥} 223 63.6743 

7 {①} 279 0 

8 {②，③，④} 282 26.0224 

5.4. Maintenance Strategies Comparison 

This section compares the proposed strategy with three 

maintenance strategies widely used in industry to demonstrate 

the superiority of in reducing maintenance costs. The 

optimization target of all policies is to minimize the average 

maintenance cost during a certain service period. The strategies 

are outlined below: 

◼ Policy A. Independent maintenance without grouping 

strategy. The strategy outlined in Section 3 is used for all 

components, and an immediate CR should be carried out 

upon failure; 

◼ Policy B. Time-based Maintenance Policy. The 

maintenance cycles of all components are set to be integer 

multiples of a benchmark interval, automatically 

combined at overlapping maintenance points. 

◼ Policy C. The classic rolling horizon approach. It realizes 

static combination of PR activities during the planning 

period, while CR is carried out immediately upon failure 

without opportunity replacement. 

◼ Policy D. The group maintenance policy proposed in this 

paper. 

Notably, strategies A, B, and C are actually fixed 

maintenance plans. The average maintenance cost of Policy A 

is easy to be determined, while the average maintenance cost of 

B and C can be defined as: 

𝐶(𝐺𝑎𝑙𝑙) = ∑ ((𝐶𝑆,𝑅 +∑ 𝐶𝑖,𝑅𝑖∈𝐺 ) + ∑ (𝐶𝑆,𝑅 + 𝐶𝑖,𝑓) ⋅ 𝑝𝑖(𝑡𝐺)𝑖∈𝐺𝑎𝑙𝑙 )𝐺∈𝐺𝑎𝑙𝑙 ,    (23) 

where 𝐺𝑎𝑙𝑙represents all the fixed PR groups during the service 

period. 𝐺 indicates a certain maintenance combination. 𝑝𝑖(𝑡𝐺) 

describes the failure probability of component 𝑖 within 𝑡𝐺 (time 

between the maintenance group 𝐺 and its previous group). 

Fig. 10 shows the total maintenance costs of the above 

strategies within different service cycles. It can be found that 

the proposed strategy is significantly more cost-effectiveness 

than the other three cases. Due to the large enough magnitude 

of 𝐶𝑆,𝑅, Policy A, the non-group strategy, is significantly inferior 

to the others, while Policy B and C are somewhat similar 
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because they are both fixed schedules, lacking dynamism and 

flexibility. Such disadvantages need to be replaced by an 

increase in cost. 

 

Figure 10. Variations of maintenance cost rate to delayed 

maintenance time. 

Table 6 shows the sensitivity of each strategy to the set-up 

cost 𝐶𝑆,𝑅  within 300(× 5 × 104)𝑘𝑚 . At lower values, the 

economic benefits of grouping are not significant, resulting in  

a narrower gap. With the increase of 𝐶𝑆,𝑅, this gap has a growing 

trend, indirectly supporting the important economic benefits of 

group maintenance, which coincides with the findings of Zheng 

[37]. Also, when the cost of corrective maintenance is too high, 

the delay in maintenance time will have a trend of decreasing, 

as shown in Table 7. This is because under the premise of 

uncertainty in failure, if the after-failure cost is too high, the 

preventive maintenance task will be more inclined to perform 

earlier than the possible failure point. The economic losses 

caused by advancing the maintenance time and not fully 

utilizing the remaining life are much lower than those caused by 

corrective maintenance. 

Table 6. Sensitivity of each strategy to 𝐶𝑆,𝑅 within 300(× 5 ×

104)𝑘𝑚. 

Maintenance 

Policy 

𝑪𝑺,𝑹(× 𝟏𝟎
𝟒) 

30 40 50 60 70 

Policy A 4.05 4.19 4.36 4.49 4.57 

Policy B 4.03 4.10 4.17 4.22 4.26 

Policy C 3.96 4.03 4.06 4.08 4.09 

Policy D 3.94 4.02 3.88 3.86 4.01 

Table 7 Sensitivity of each strategy to 𝐶𝑆,𝑅  within 300(× 5 ×

104)𝑘𝑚. 

𝑪𝒊,𝒇(× 𝟏𝟎
𝟒) 200 300 400 500 600 700 

Postponement 

interval 
14 14 14 13 13 12 

6. Conclusion 

In this paper, a global-dynamic group maintenance strategy with 

self-adaptive information renewal is devised, which is 

applicable to generic multi-components degrading systems. 

Unlike previous studies, this policy allows for group 

information renewal upon both (a) health inspection and (b) 

group maintenance execution, so as to promote decision-

making agility and precision. Moreover, the policy successfully 

integrates postponed preventive maintenance and immediate 

opportunistic maintenance into a unified decision-making 

framework, significantly improving the flexibility of downtime 

control and resource allocation. In the comparative experiments 

on high-speed train bogies, the heuristic maintenance strategy 

reveals the superior model compared to some widespread 

adopted strategies. 

There are four promising extensions to the current model 

framework. Firstly, imperfect repair with random effects can be 

considered to support more flexible source allocation [50,51]. 

Secondly, the joint optimization of production and maintenance 

for manufacturing systems is worth exploration, which strives 

to seek a balance between reducing inventory cost, ensuring 

production batches, and improving system reliability [52]. 

Thirdly, group maintenance models oriented to multiple failure 

modes (including but not limited to degradation-centered failure, 

shock-induced failures) are potential interesting topics worth 

examination [53-55]. Ultimately, it is highly valuable to delve 

into the impact of resource constraint, such as spare, repair tools 

and maintenance teams on group condition-based maintenance, 

which is realistic in practice [56,57]. 

 

 

 

 

 

 

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

Reference 

1. Gao W, Wang Y, Zhang X, et al. Quasi-periodic inspection and preventive maintenance policy optimisation for a system with wiener 

process degradation. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2023; 25(2). https://doi.org/10.17531/ein/162433 

2. Zhang C, Qian Y, Dui H, et al. Opportunistic maintenance strategy of a Heave Compensation System for expected performance degradation. 

Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2021; 23(3): 512–521. https://doi.org/10.17531/ein.2021.3.12 

3. Nguyen K A, Do P, Grall A. Multi-level predictive maintenance for multi-component systems. Reliability Engineering & System Safety. 

2015; 144: 83-94. https://doi.org/10.1016/j.ress.2015.07.017 

4. Wu D, Han R, Ma Y, et al. A two-dimensional maintenance optimization framework balancing hazard risk and energy consumption rates. 

Computers & Industrial Engineering. 2022; 169: 108193. https://doi.org/10.1016/j.cie.2022.108193 

5. de Pater I, Mitici M. Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a 

limited stock of spare components. Reliability Engineering & System Safety. 2021; 214: 107761. 

https://doi.org/10.1016/j.ress.2021.107761 

6. Huynh K T, Vu H C, Nguyen T D, et al. A predictive maintenance model for k-out-of-n: F continuously deteriorating systems subject to 

stochastic and economic dependencies. Reliability Engineering & System Safety. 2022; 226: 108671. 

https://doi.org/10.1016/j.ress.2022.108671 

7. Yang L, Chen Y, Ma X. A State-age-dependent Opportunistic Intelligent Maintenance Framework for Wind Turbines Under Dynamic Wind 

Conditions. IEEE Transactions on Industrial Informatics. 2023; 19(10): 10434-10443. https://doi.org/10.1109/tii.2023.3240727 

8. Kowalski M, Izdebski M, Zak J, et al. Planning and management of aircraft maintenance using a genetic algorithm. Eksploatacja i 

Niezawodnosc - Maintenance and Reliability. 2021; 23(1): 143–153. https://doi.org/10.17531/ein.2021.1.15 

9. Peng H, van Houtum G J. Joint optimization of condition-based maintenance and production lot-sizing. European Journal of Operational 

Research. 2016; 253(1): 94-107. https://doi.org/10.1016/j.ejor.2016.02.027 

10. Zhang C, Zhang Y, Dui H, et al. Importance measure-based maintenance strategy considering maintenance costs. Eksploatacja i 

Niezawodnosc – Maintenance and Reliability. 2022; 24(1): 15-24. https://doi.org/10.17531/ein.2022.1.3 

11. Ramirez IS, Mohammadi-Ivatloob B, Marqueza FP G. Alarms management by supervisory control and data acquisition system for wind 

turbines. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2021; 23(1): 110-6. https://doi.org/10.17531/ein.2021.1.12 

12. Wang L, Song L, Qiu Q, et al. Warranty Cost Analysis for Multi-State Products Protected by Lemon Laws. Applied Sciences. 2023, 13(3): 

1541. https://doi.org/10.3390/app13031541 

13. Olde Keizer MCA, Flapper S D P, Teunter R H. Condition-based maintenance policies for systems with multiple dependent components: 

A review. European Journal of Operational Research. 2017; 261(2): 405-420. https://doi.org/10.1016/j.ejor.2017.02.044 

14. Thomas L C. A survey of maintenance and replacement models for maintainability and reliability of multi-item systems. Reliability 

Engineering. 1986; 16(4): 297-309. https://doi.org/10.1016/0143-8174(86)90099-5 

15. Zheng R, Zhou Y. A dynamic inspection and replacement policy for a two-unit production system subject to interdependence. Applied 

Mathematical Modelling. 2022; 103: 221-237. https://doi.org/10.1016/j.apm.2021.10.028 

16. Cao X, Shi X, Zhao J, et al. Dynamic grouping maintenance optimization by considering the probabilistic remaining useful life prediction 

of multiple equipment. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2024. https://doi.org/10.17531/ein/187793 

17. Yang L, Zhou S, Ma X, et al. Group machinery intelligent maintenance: Adaptive health prediction and global dynamic maintenance 

decision-making. Reliability Engineering & System Safety. 2024; 110426. https://doi.org/10.1016/j.ress.2024.110426 

18. Gutierrez-Alcoba A, Hendrix EMT, Ortega G, et al. On offshore wind farm maintenance scheduling for decision support on vessel fleet 

composition. European Journal of Operational Research. 2019; 279(1): 124–131. https://doi.org/10.1016/j.ejor.2019.04.020 

19. Leigh J M, Dunnett S J. Use of Petri nets to model the maintenance of wind turbines. Quality and Reliability Engineering International. 

2016; 32(1): 167-180. https://doi.org/10.1002/qre.1737 

20. Liu J, Jiang Z, Zhou H. Integrated operation and maintenance optimization for high-speed train fleets considering passenger flow. 

Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2022; 24(2): 297-305. https://doi.org/10.17531/ein.2022.2.11 

21. D’Ariano A, Meng L, Centulio G, et al. Integrated stochastic optimization approaches for tactical scheduling of trains and railway 

infrastructure maintenance. Computers & Industrial Engineering. 2019; 127: 1315-1335. https://doi.org/10.1016/j.cie.2017.12.010 

https://doi.org/10.1016/j.ress.2021.107761
https://doi.org/10.1016/j.ress.2022.108671
https://doi.org/10.1109/tii.2023.3240727
https://doi.org/10.1016/j.ejor.2016.02.027
https://doi.org/10.1016/0143-8174(86)90099-5
https://doi.org/10.1016/j.apm.2021.10.028
https://doi.org/10.1002/qre.1737
https://doi.org/10.17531/ein.2022.2.11


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

22. Wang C, Xu J, Wang H, et al. A criticality importance-based spare ordering policy for multi-component degraded systems. Eksploatacja i 

Niezawodnosc – Maintenance and Reliability. 2018; 20(4): 662-670. https://doi.org/10.17531/ein.2018.4.17 

23. Nguyen T A T, Chou S Y. Maintenance strategy selection for improving cost-effectiveness of offshore wind systems. Energy Conversion 

and Management. 2018; 157: 86-95. https://doi.org/10.1016/j.enconman.2017.11.090 

24. Dinh D H, Do P, Iung B. Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and 

assembly/disassembly impacts. Reliability Engineering & System Safety. 2022; 217: 108055. https://doi.org/10.1016/j.ress.2021.108055 

25. Zheng R, Zhao X, Hu C, et al. A repair-replacement policy for a system subject to missions of random types and random durations. 

Reliability Engineering & System Safety. 2023; 232: 109063. https://doi.org/10.1016/j.ress.2022.109063 

26. Yang L, Chen Y, Ma X, et al. A Prognosis-Centered Intelligent Maintenance Optimization Framework Under Uncertain Failure Threshold. 

IEEE Transactions on Reliability. 2024; 73(1): 115-130. https://doi.org/10.1109/tr.2023.3273082 

27. Zhang X, Zeng J. Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems. 

European Journal of Operational Research. 2017; 262(2): 479-498. https://doi.org/10.1016/j.ejor.2017.03.019 

28. Shang L, Liu B, Gao K, et al. Random Warranty and Replacement Models Customizing from the Perspective of Heterogeneity. 

Mathematics. 2023; 11(15): 3330. https://doi.org/10.3390/math11153330 

29. Shafiee M, Finkelstein M. An optimal age-based group maintenance policy for multi-unit degrading systems. Reliability Engineering & 

System Safety. 2015; 134: 230-238. https://doi.org/10.1016/j.ress.2014.09.016 

30. Zhu W, Fouladirad M, Bérenguer C. A multi-level maintenance policy for a multi-component and multifailure mode system with two 

independent failure modes. Reliability Engineering & System Safety. 2016; 153: 50-63. https://doi.org/10.1016/j.ress.2016.03.020 

31. Babishin V, Hajipour Y, Taghipour S. Optimisation of non-periodic inspection and maintenance for multicomponent systems. Eksploatacja 

i Niezawodnosc – Maintenance and Reliability. 2018; 20(2): 327-42. https://doi.org/10.17531/ein.2018.2.20 

32. Yang L, Wei F, Qiu Q. Mission Risk Control via Joint Optimization of Sampling and Abort Decisions. Risk Analysis. 2024; 44(3): 666-

685. https://doi.org/10.1111/risa.14187 

33. Song S, Li Q, Felder F A, et al. Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based 

maintenance. Computers & Industrial Engineering. 2018; 120: 288–297. https://doi.org/10.1016/j.cie.2018.04.051 

34. Qu L, Liao J, Gao K, et al. Joint Optimization of Production Lot Sizing and Preventive Maintenance Threshold Based on Nonlinear 

Degradation. Applied Sciences. 2022; 12(17): 8638. https://doi.org/10.3390/app12178638 

35. Radouane Laggoune, Chateauneuf A, Djamil Aissani. Impact of few failure data on the opportunistic replacement policy for multi-

component systems. Reliability Engineering & System Safety. 2010; 95(2): 108–119. https://doi.org/10.1016/j.ress.2009.08.007 

36. Martinod RM, Bistorin O, Castaneda LF, et al. Maintenance policy optimisation for multi-component systems considering degradation of 

components and imperfect maintenance actions. Computers & Industrial Engineering. 2018; 124: 100-112. 

https://doi.org/10.1016/j.cie.2018.07.019 

37. Zheng R, Qian X, Gu L. Group Maintenance for Numerical Control Machine Tools: A Case Study. IEEE Transactions on Reliability. 2023; 

72 (4): 1407–19. https://doi.org/10.1109/tr.2022.3233893 

38. Ma X, Liu B, et al. Reliability analysis and condition-based maintenance optimization for a warm standby cooling system. Reliability 

Engineering & System Safety. 2020, 193: 106588. https://doi.org/10.1016/j.ress.2019.106588 

39. Park M, Pham H. A generalized block replacement policy for a k-out-of-n system with respect to threshold number of failed components 

and risk costs. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2011; 42(2): 453-463. 

https://doi.org/10.1109/tsmca.2011.2162499 

40. Moghaddam K S, Usher J S. Preventive maintenance and replacement scheduling for repairable and maintainable systems using dynamic 

programming. Computers & Industrial Engineering. 2011; 60(4): 654-665. https://doi.org/10.1016/j.cie.2010.12.021 

41. Wildeman R E, Dekker R, Smit A C J M. A dynamic policy for grouping maintenance activities. European Journal of Operational Research. 

1997; 99(3): 530–51. https://doi.org/10.1016/s0377-2217(97)00319-6 

42. Chen Y, Wu T, et al. System Maintenance Optimization Under Structural Dependency: A Dynamic Grouping Approach. IEEE Systems 

Journal. 2024; 18(3): 1605-1616. https://doi.org/10.1109/JSYST.2024.3422284 

43. de Smidt-Destombes K S, van der Heijden M C, van Harten A. Availability of k-out-of-N systems under block replacement sharing limited 

https://doi.org/10.1016/j.ress.2022.109063
https://doi.org/10.1016/j.ejor.2017.03.019
https://doi.org/10.1016/j.cie.2018.04.051
https://doi.org/10.1016/j.cie.2018.07.019
https://doi.org/10.1109/tr.2022.3233893
https://doi.org/10.1016/s0377-2217(97)00319-6


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

spares and repair capacity. International Journal of Production Economics. 2007; 107(2): 404-421. 

https://doi.org/10.1016/j.ijpe.2006.08.013 

44. Lu B, Zhou X. Quality and reliability oriented maintenance for multistage manufacturing systems subject to condition monitoring. Journal 

of Manufacturing Systems. 2019; 52: 76-85. https://doi.org/10.1016/j.jmsy.2019.04.003 

45. Nguyen T A T, Chou S Y. Maintenance strategy selection for improving cost-effectiveness of offshore wind systems. Energy Conversion 

and Management. 2018; 157: 86-95. https://doi.org/10.1016/j.enconman.2017.11.090 

46. Bouvard K, Artus S, Bérenguer C, et al. Condition-based dynamic maintenance operations planning & grouping. Application to commercial 

heavy vehicles. Reliability Engineering & System Safety. 2011; 96(6): 601–610. https://doi.org/10.1016/j.ress.2010.11.009 

47. Van Horenbeek A, Pintelon L. A dynamic predictive maintenance policy for complex multi-component systems. Reliability Engineering 

& System Safety. 2013; 120: 39-50. https://doi.org/10.1016/j.ress.2013.02.029 

48. Li K, Ren L, Li X, et al. Remaining useful life prediction of equipment considering dynamic thresholds under the influence of maintenance. 

Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2024; 26(1). https://doi.org/10.17531/ein/174903 

49. Song M, Zhang Y, Yang F, et al. Maintenance policy of degradation components based on the two-phase Wiener process. Eksploatacja i 

Niezawodnosc – Maintenance and Reliability. 2023; 25(4). https://doi.org/10.17531/ein/172537 

50. Wang J, Zhou S, Peng R, et al. An inspection-based replacement planning in consideration of state-driven imperfect inspections. Reliability 

Engineering & System Safety. 2022; 232: 109064. https://doi.org/10.1016/j.ress.2022.109064 

51. Qiu Q, Cui L, et al. Maintenance Policies for Energy System Subject to Complex Failure Processes and Power Purchasing Agreement. 

Computers & Industrial Engineering. 2018; 119: 193-203. https://doi.org/10.1016/j.cie.2018.03.035 

52. Zheng R, Zhou Y, Gu L, et al. Joint optimization of lot sizing and condition-based maintenance for a production system using the 

proportional hazards mode. Computers & Industrial Engineering. 2021; 154: 107157. https://doi.org/10.1016/j.cie.2021.107157 

53. Wang J, Zheng R, Lin T. Maintenance modeling for balanced systems subject to two competing failure modes. Reliability Engineering & 

System Safety. 2022; 225: 108637. https://doi.org/10.1016/j.ress.2022.108637 

54. Meng Y, Lin M, Xu Z, et al. Joint optimization of condition-based maintenance policy and buffer capacity for a two-component self-

repairable serial system. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2024; 26(2). https://doi.org/10.17531/ein/185581 

55. Ma J, Cai L, Liao G, et al. A multi-phase Wiener process-based degradation model with imperfect maintenance activities. Reliability 

Engineering & Systems Safety. 2023; 232: 109075. https://doi.org/10.1016/j.ress.2022.109075 

56. Wang C, Xu J, Wang H, Zhang, Z. A criticality importance-based spare ordering policy for multi-component degraded systems. 

Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2018; 20(4): 662-670. https://doi.org/10.17531/ein.2018.4.17 

57. Shang L, Liu B, Qiu Q, et al. Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles. 

Reliability Engineering & System Safety. 2023; 239:109506. https://doi.org/10.1016/j.ress.2023.109506 

https://doi.org/10.1016/j.ress.2013.02.029
https://doi.org/10.17531/ein/174903
https://doi.org/10.1016/j.ress.2022.109064
https://doi.org/10.17531/ein/185581
https://doi.org/10.1016/j.ress.2022.109075

