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Highlights  Abstract  

▪ Multi-scale attention method with adaptive 

online updating for variable conditions. 

▪ Flexibly updates diagnostic models based on 

online data status. 

▪ Adaptive weight random undersampling 

balances inter-class data uniformly. 

 With the advance of industrial systems, the online equipment fault 

diagnosis has encountered many challenges such as data drift and data 

imbalance under varying operating conditions, thus making stable and 

accurate diagnosis increasingly critical. Considering the above issues, a 

multi-scale attention mechanism diagnosis method with adaptive model 

that can be updated based on deep learning has been proposed. The 

method is composed of four main steps: training the multi-scale offline 

diagnosis model, transferring the parameters of the offline model, 

assessing the degree of data drifting, and adaptively updating the 

diagnostic model. A data balance strategy with adaptive weight balances 

both inter-class and intra-class data. The method updates the diagnostic 

model flexibly according to online data status, to reduce the impact of 

data drifting. The method was verified on a bearing test rig, which can 

reproduce the common bearing faults under variable working conditions. 

The experimental results have shown that the proposed method can 

accurately and reliably identify the bearing faults. 
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1. Introduction 

In industrial systems, equipment failures have a significant 

impact on production efficiency and safety. Therefore, timely 

and accurate fault diagnosis of equipment is crucial [1-4]. 

Traditional fault diagnosis methods rely on mathematical and 

statistical signal analysis [5], [6], often supplemented by 

physical models and expert knowledge. However, these 

methods generally require stable environments and high-quality 

data, limiting their applicability in variable working conditions 

The primary challenges in such conditions include difficulty in 

extracting dynamic features and the scarcity of samples for fault 

analysis. In contrast to traditional methods, deep learning 

technology has emerged as a crucial tool for addressing these 

challenges. Recent years have seen a burgeoning adoption of 

data-driven methods [7], [8], particularly deep learning [9], in 
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the fault diagnosis field [10-13]. Research in this area has 

introduced various methods, including Deep Belief Networks 

(DBN) [2] [14], Convolutional Neural Networks (CNN) [15-18], 

Long Short-Term Memory (LSTM) [19], Sparse Autoencoders 

(SAE) [20], Deep Boltzmann Machines (DBM) [21], and 

Bayesian deep learning (BDL) [22]. Under different operating 

conditions, the application of deep learning algorithms has 

proven to be highly effective in diagnosing faults [11]. Notably, 

these methods predominantly belong to offline learning, 

offering controlled training processes and stability in data 

management. 

Variable working conditions necessitate comprehensive 

health monitoring [23]. Multiscale methods, which aggregate 

information across different scales, provide more exhaustive 

data and prove beneficial for practical applications. Currently, 

studies have successfully employed multiscale fault diagnosis 

methods to handle equipment faults under varying conditions 

[24-26]. While these methods can extract extensive information, 

they may also capture redundant data. Attention mechanisms 

can mitigate this by adjusting weight distributions to enhance 

the relevance of pertinent information and suppress irrelevant 

data. Combining attention mechanisms with multiscale methods 

optimizes the use of relevant information across different scales 

[24] [27]. When new data emerges, indicating changes in data 

distribution or patterns, models must be updated or retrained to 

adapt to these changes. Offline learning approaches lack the 

flexibility required for frequent model retraining, rendering 

them less suitable for scenarios with substantial online data, 

especially under variable operating conditions.  

In practical scenarios, equipment operates in nonstationary 

environments, and the status of equipment changes over time or 

with varying working conditions. Taking aircraft engines as an 

example, aircraft engine bearings operate in a complex and 

dynamic environment, influenced by various flight phases such 

as takeoff, cruise, climb, and landing. These bearings 

experience variations in speed, load, and temperature, as well as 

fluctuations in vibration, impact, and flight mission 

requirements [28]. In such a complex and dynamic scenario, 

data collected from bearings may experience data drift over time 

or with variations in the operating conditions of the bearings [1]. 

In other words, the characteristics of the bearing signals may 

change with time or with variations in the operating conditions 

of the bearings. These changes may be influenced by various 

complex factors, making it challenging to accurately predict the 

current bearing state using models trained with offline data. Due 

to these dynamic changes, diagnostic models trained offline 

may struggle to adapt to data drift, affecting their effectiveness 

in real-time fault diagnosis. Therefore, fault diagnosis methods 

must ensure accuracy while accommodating practical 

conditions to adapt to dynamically changing data and real-time 

updating requirements. Adaptability is crucial for addressing 

system changes and uncertainties, thereby enhancing system 

robustness and performance [29]. Online learning methods can 

update models promptly, offering strong real-time capabilities 

and adaptability. Some researchers have begun exploring online 

learning for fault diagnosis under variable working conditions 

[30-32]. Effective utilization of online data for model updates 

requires a strategic approach to enhance training flexibility. 

When training a fault diagnosis model, it is typically 

assumed that the number of data samples for each fault category 

is balanced. However, some researchers are investigating fault 

diagnosis methods that address class imbalance [27], [33], [34]. 

In practical scenarios, most online data collected from 

equipment represent normal operating states, with instances of 

faults being comparatively rare. The scarcity of fault state data 

poses a challenge for online learning methods, as these models 

may progressively accumulate more knowledge about normal 

states while receiving less information about fault conditions. 

This imbalance can lead to reduced sensitivity to fault 

characteristics, ultimately diminishing diagnostic accuracy. 

Therefore, designing a data balancing strategy to maintain 

relative equilibrium in data quantities is crucial for effective 

model training. 

To address the challenges of data drifting and imbalance, 

this study introduces a multi-scale attention mechanism for fault 

diagnosis method with adaptive online updating grounded in 

deep learning theory. This method can adaptively update the 

diagnostic model based on the status of online data. By 

combining multi-scale diagnosis models with attention 

mechanisms, it extracts more comprehensive diagnostic 

information and better handles the extraction of fault features 

under time-varying conditions. Additionally, an adaptive weight 

random under-sampling strategy is proposed, based on distance 

measurement and data imbalance rate. This strategy balances 
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inter-class data while ensuring a more uniform distribution of 

intra-class data, thereby enhancing the diagnostic model's 

ability to acquire comprehensive information. The proposed 

method effectively combines the advantages of both offline and 

online learning approaches to adapt to data drifting and address 

the imbalance in online data. Firstly, datasets are partitioned into 

different scales according to data distribution using distance 

measurement. A Deep Belief Network combined with Extreme 

Learning Machine (DBN-ELM) approach is then employed to 

train these datasets, resulting in a multi-scale fault diagnosis 

model. Attention mechanisms are used to assign different 

weights to models at each scale, yielding a robust and flexible 

multi-scale fault diagnosis model. Next, model transfer 

techniques migrate the offline fault diagnosis model into an 

online learning framework, where it undergoes real-time 

diagnosis with online data. Subsequently, the degree of data 

drifting is assessed by utilizing historical data. Based on the 

degree of data drifting and data imbalance rate, a determination 

is made on whether to update the online fault diagnosis model. 

The objective is to ensure that the model retains essential 

historical knowledge while exhibiting strong adaptability to 

changing data distributions. Once the decision to update the 

model is made, an adaptive weight random under-sampling 

strategy is employed to balance the data distribution, ensuring 

relative balance among data from different states. The proposed 

method demonstrates strengths in retaining historical 

knowledge, adapting to varying degrees of data drift for flexible 

model updates, maintaining relative balance in data quantities, 

and facilitating efficient transfer with fewer sample data. 

The organization of this article is as follows. Section 2 

mainly introduces the preliminary work. Section 3 mainly 

describes the structure and general process of the proposed 

method. The experimental verification of the proposed method 

and result analysis are described in Section 4. Section 5 

concludes this article. 

2. Preliminary work 

2.1. Time-varying working conditions 

Fig.1 displays the vibration signals collected for bearing health, 

inner race, outer race, and rolling element faults under different 

operating conditions. Constant speed working conditions data 

are sourced from publicly available datasets at Case Western 

Reserve University (healthy state data (Fig. 1(a)), inner race 

fault number IR007 (Fig. 1(d)), outer race fault number 

OR007@3 (Fig. 1(g)), and rolling element fault number B007 

(Fig. 1(j))), while time-varying speed condition data are sourced 

from the bearing dataset at the University of Ottawa in Canada 

(healthy state data numbered H-A-1 (increasing speed, Fig. 

1(b)), H-B-1 (decreasing speed, Fig. 1(c)), inner race fault 

number I-A-1 (increasing speed, Fig. 1(e)), I-C-1 (increasing 

then decreasing speed, Fig. 1(f)), outer race fault number O-A-

3 (increasing speed, Fig. 1(h)), O-B-2 (decreasing speed, Fig. 

1(i)), rolling element fault number B-A-1 (increasing speed, Fig. 

1(k)), and B-C-1 (decreasing speed, Fig. 1(l))) [35]. As shown 

in Fig.1, significant fluctuations in the amplitude of vibration 

signals are observed under different operating conditions for the 

same health status. This variation may reflect changes in the 

load, speed, and other operational conditions experienced by the 

bearing under different operating conditions. The differences in 

these amplitude fluctuations may be related to the varying 

vibration characteristics of the bearing under different operating 

conditions. For instance, during acceleration and deceleration 

processes, changes in inertial forces and load distribution may 

occur, leading to fluctuations in the vibration signal amplitude. 

To identify different health status, these fluctuations in 

amplitude may influence the training of models and the 

classification of health status. Under the same health status, the 

diagnostic model may be disrupted by the amplitude 

fluctuations of vibration signals under different operating 

conditions, resulting in reduced accuracy in fault diagnosis. 

Particularly in online diagnosis of bearing health status under 

varying operating conditions, these fluctuations may make it 

challenging for the model to accurately identify the health status, 

as it may be affected by changes in operating conditions and 

lead to misjudgments. 
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Fig. 1. Vibration signals collected under different operating 

conditions. 

Therefore, appropriate methods need to be employed to 

address the influence of amplitude fluctuations in vibration 

signals under different operating conditions to enhance the 

accuracy and reliability of health state diagnosis. This may 

involve feature extraction and selection tailored to different 

operating conditions, as well as the design of health state 

classification models adaptable to varying operating conditions 

[36], [37].  

2.2. Data imbalance  

In engineering practice, there exists a significant imbalance in 

the online dataset, with the number of samples in the normal 

state far exceeding those in the failure state. Because there are 

more samples in the normal state, the model may tend to learn 

the features of normal states excessively.  

For a binary classification problem [1], 𝑦  represented the 

class label, health status is represented by 0, fault status is 

represented by 1, and the data imbalance occurs at the time 𝑡 if   

𝑝𝑡(𝑦 = 0) ≫ 𝑝𝑡(𝑦 = 1)   (1) 

Data drifting is represented by the joint probability of 

equipment, the relationship between the features 𝑥  and the 

labels 𝑦 has changed over time, and the data drifting occurs at 

time𝑡0and time 𝑡1 is represented by: 

∃𝑥  𝑝𝑡0(𝑥, 𝑦) ≠ 𝑝𝑡1(𝑥, 𝑦)   (2) 

Specifically, data imbalance may cause the following issues:  

(1) Bias Towards Normal State: The model is more likely to 

predict new samples as normal states, neglecting potential 

failure states. 

(2) Performance Degradation: As the model fails to fully 

learn the features of failure states, its performance in practical 

applications may be affected, leading to an increase in the false-

negative rate. 

The degree of data imbalance can be expressed by the 

following formula: 

𝐷𝑎𝑡𝑎 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜   
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑖𝑛 𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
            (3) 

This imbalance ratio quantifies the extent of the imbalance, 

the higher this ratio, the greater the degree of imbalance in the 

dataset. 

2.3. Determination of the degree of data drifting 

Some data in the online dataset exhibit varying degrees of drift 

compared to the offline dataset. The Mahalanobis distance can 

measure the dissimilarity between a data point and an entire 

dataset, independent of data dimensions [38]. In the context of 

data drift, where the distribution of data may change, rendering 

the existing data model inadequate, the Mahalanobis distance is 

employed to effectively assess the anomaly level of a data point 

relative to the dataset. This evaluation helps determine whether 

data drift has occurred. The strength of the Mahalanobis 

distance lies in its consideration of data correlation. By 

transforming the distance into a chi-square distribution, it 
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mitigates the impact of data correlation, making it more 

applicable to datasets with correlated features. Therefore, when 

data drift involves changes in data distribution and variations in 

correlation, the Mahalanobis distance can be used to evaluate 

the extent of data drift. 

There is another advantage to determining the degree of data 

drifting: based on the degree of data drifting, a similar degree of 

data be transferred to the training diagnosis model when certain 

statuses lack sufficient training data. In other words, another 

advantage of assessing the degree of data drift is that it provides 

a solid basis for data transfer when facing limited samples in the 

dataset. 

To determine the degree of data drifting, this paper first 

utilizes the DBN-ELM offline learning model to identify the 

data's status. The healthy data space consists of normal data, 

while distinct fault data spaces encompass corresponding fault 

data. Subsequently, the Mahalanobis distance between the data 

points and the healthy data space needs to be calculated. This 

data originates from various fault data spaces, allowing an 

assessment of the degree of data drifting. The steps to calculate 

the Mahalanobis distance are as follows: 

Step 1: Calculate the average value �̅�𝑖 of each data𝑥𝑖𝑗 , 𝑛 is 

the total number of samples, according to the following formula: 

𝑥
−

𝑖 =
∑ 𝑥𝑖𝑗

𝑛
𝑗=1

𝑛
    (4) 

Step 2: Calculate the standard deviation 𝑠𝑖 of each data, 

according to the following formula: 

𝑠𝑖 = √
∑ (𝑥𝑖𝑗−𝑥𝑖

−
)2𝑛

𝑗=1

𝑛−1
   (5) 

Step 3: Orthogonality the feature vector acquires the𝑧𝑖𝑗 , and 

calculate its transpose matrix𝑍𝑇  , according to the following 

formula: 

𝑧𝑖𝑗 =
(𝑥𝑖𝑗−𝑥

−
𝑖)

𝑠𝑖
    (6) 

Step 4: Let the correlation matrix of the orthogonal matrix 

be 𝐴, each of these elements𝑎𝑖𝑗was calculated according to the 

following formula: 

𝑎𝑖𝑗 =
∑ 𝑍𝑖𝑚𝑍𝑚𝑗

𝑛
𝑚=1

𝑛−1
   (7) 

Step5: According to the following formula, calculate the 

Mahalanobis distance 𝑑𝑀𝐷,𝑗:  

𝑑𝑀𝐷,𝑗 = 𝑍𝑇𝐴−1𝑍   (8) 

2.4. Online learning 

Online learning is also known as adaptive learning. It involves 

integrating training data into the model as a continuous data 

stream and dynamically updating the model in response.  

The universal mathematical description of online learning 

can be expressed through the lens of a sequence prediction 

problem. 

Problem Formulation: Consider a data sequence (𝑥1, 𝑦1)   

(𝑥2, 𝑦2),…,(𝑥𝑡 , 𝑦𝑡), …, where each𝑥𝑡corresponds to input data 

at time 𝑡 and 𝑦𝑡is the associated label. 

Model Assumption: A parameterized model, denoted by𝜃𝑡, 

is assumed to make predictions based on the current observed 

data. The model parameters change over time 𝑡 .  

Learning Rule: At each time step 𝑡  , the model uses the 

current parameters 𝜃𝑡 to predict the label �̂�𝑡. The observed label 

𝑦𝑡  is then used to update the model parameters. This update rule 

is denoted as 𝜃𝑡+1 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒(𝜃𝑡 , 𝑥𝑡 , 𝑦𝑡) , 

where 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒  is the specific update rule for the given 

problem and model.  

Objective: The goal of online learning is to incrementally 

improve the model by processing new data points (𝑥𝑡 , 𝑦𝑡) , 

allowing it to adapt to dynamic changes in the data and maintain 

high performance in a continuously evolving environment. 

This is just a simple mathematical description, specific 

online learning algorithms and update rules may vary based on 

the particular problem and application scenario. 

2.5. Model transfer 

Model-based transfer learning is a method that leverages 

previously acquired knowledge to enhance learning 

performance on a new task. This approach involves transferring 

a model trained on a source domain to a target domain, 

accelerating the learning process, and improving model 

performance.  

In model-based transfer learning, we consider two domains: 

the source domain and the target domain [11]. Suppose we have 

trained a model (referred to as the source model) on the source 

domain. The source model has learned valuable features and 

knowledge from the source domain. Now, the goal is to transfer 

these useful features and knowledge to the target domain to 

improve learning tasks in the target domain. 

The primary idea of transfer learning is to adjust the 
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parameters of the source model to adapt to the data distribution 

in the target domain. This way, the source model can provide  

a good starting point for the target task, followed by slight 

adjustments or fine-tuning on the target domain to meet specific 

task requirements. 

The general steps of model-based transfer learning are as 

follows: 

Step 1: Source Model Training: Train a robust model on the 

source domain using a large amount of labeled data. 

Step 2: Model Transfer: Transfer the model learned on the 

source domain to the target domain. 

Step 3: Target Domain Fine-Tuning: Use limited labeled 

data from the target domain to fine-tune the source model, 

adapting it to the requirements of the target task. 

Step 4: Performance Evaluation: Evaluate the performance 

of the transferred model on the target domain. 

In this way, model-based transfer learning effectively 

utilizes knowledge learned from the source domain to enhance 

learning performance in the target domain. 

3. The proposed method 

Considering the presence of data drifting and imbalance, when 

diagnosing the real-time data status, the offline fault diagnosis 

model might not be adaptable to data drifting. To leverage the 

strengths of both offline learning and online learning methods, 

this paper proposes a fault diagnosis approach based on online 

model transfer.  

The steps of the proposed method are outlined as follows: 

Step 1: The offline learning stage: Train the offline multi-

scale attention mechanism fault diagnosis model using the 

DBN-ELM algorithm, extracting valid features from historical 

data during the training process. 

Step 2: Evaluating the degree of data drifting: After the 

establishment of the offline fault diagnosis model, labeled data 

is employed to determine the extent of drifting. 

Step 3: Model transfer stage: Utilizing the model transfer 

method, migrate the parameters of the offline fault diagnosis 

model to the online diagnosis model before training it with 

online data.  

Step 4: Model update stage: Based on the degree of data 

drifting, decide whether to update the online fault diagnosis 

model. If updating is necessary, incorporate new online data into 

the training set and retrain the fault diagnosis model. 

 

Fig. 2. The flow chart of the proposed method. 

Using vibration data from various bearing faults as examples, 

the flow chart of the proposed method is shown in Fig. 2. 

3.1. The offline learning stage 

The offline fault dataset includes data from various operational 

states. The dataset is divided into training and testing datasets: 

the training dataset is employed to train the offline model, while 

the testing dataset is used to evaluate the model's performance. 

After training the offline model, the training parameters are 

retained. These model parameters can be directly transferred 

when the model needs to be transferred. The DBN is one of the 

classical deep learning algorithms. It is combined with the Back 

Propagation (BP) neural network to extract and classify features. 

The process of model training requires iteration.  
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Fig. 3. The structure of DBN-ELM. 

However, the DBN-ELM algorithm integrates the DBN and 

Extreme Learning Machine (ELM) algorithms without the need 

for iteration. The ELM algorithm can learn quickly and exhibits 

good generalization performance. As a result, the DBN-ELM 

algorithm is well-suited for training an offline diagnosis model 

to extract valid features. The structure of the DBN-ELM is 

illustrated in Fig. 3.  

The DBN algorithm is employed to extract features, while 

the ELM algorithm is used for data classification. As shown in 

Fig. 4 (a), distinct colored blocks represent different fault types, 

and the color depth of the blocks represents the degree of data 

drifting. The normal status is represented by the purple blocks, 

while the other colored blocks represent fault status data. The 

task of offline learning is to identify different fault statuses. As 

Fig. 4 (b) shows, the process is represented by identifying the 

different colored blocks. 

In this paper, the multi-scale approach involves partitioning 

the data into several datasets based on differences in data 

distribution. Subsequently, small-scale fault diagnosis models 

are trained separately for each dataset. In the training phase of 

the offline diagnosis model, the overall training dataset is 

divided into multiple training subsets based on data distribution.

 

(a)                                                                              (b)  

Fig. 4. The stage of offline learning.

As shown in Fig. 5, the original dataset and each subset are 

trained separately using DBN-ELM, obtaining diagnosis 

models at multiple different scale distributions. The model for 

the𝑖 − 𝑡ℎscale is denoted as𝑀𝑖. Based on the proximity of the 

diagnostic data to each training set and using the attention 

mechanism, different weights are assigned to each scale model. 

The closer the distance, the greater the weight. The model 

trained on the overall data is denoted as𝑀, and the outputs of 

the multi-scale subsets are fused with the output of the model 

trained on the overall dataset to make a final diagnostic decision. 

If the distance of the data does not exceed the existing 

dataset, only the subset model at the scale of the data is used. 

The results obtained from the subset model are then combined 

with those from the entire training set model for decision-

making. If the distance of the data exceeds the original dataset, 

then based on the distance of the data to each scale dataset, 

reference is made to an attention mechanism to allocate 

corresponding weights to the models of each scale. The smaller 

the distance, the greater the weight assigned. The total weight 

of all scales equals 1. Combine the results obtained from each 

scale with the entire training set for decision fusion. 

The weight allocation strategy are as follows:  
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Fig. 5. Training of the multi-scale fault diagnosis model. 

Scenario 1: Data belongs to a subset 

If the data 𝑥 belongs to the 𝑖-th subset 𝐷𝑖 , it also belongs to 

the entire dataset 𝐷. The final diagnostic result 𝑦𝑓is  

a combination of the output of the subset model 𝑀𝑖 and the 

output of the overall model 𝑀, with equal weights. 

𝑦𝑓 = 0.5𝑦𝑖 + 0.5𝑦    (9) 

where 𝑦𝑖  is the output of model 𝑀𝑖 and y is the output of model 

𝑀. 

Scenario 2: Data does not belong to any subset 

If the data 𝑥 does not belong to any subset 𝐷𝑖 , it is not part 

of the entire dataset 𝐷 . There is a total of 𝑛  scales. The final 

diagnostic result 𝑦𝑓 is a weighted combination of the outputs of 

all subset models and the output of the overall model 𝑀, with 

equal total weights for the subsets and the overall model. 

The final diagnostic result 𝑦𝑓 is then: 

𝑦𝑓 = 0.5(∑ 𝑤𝑖
𝑛
𝑖=1 𝑦𝑖) + 0.5𝑦   (10) 

Combining the two scenarios, the comprehensive decision 

formula for the final diagnostic result 𝑦𝑓 can be summarized as: 

𝑦𝑓 = {
0.5𝑦𝑖 + 0.5𝑦,             𝑖𝑓 𝑥 ∈ 𝐷𝑖

0.5(∑ 𝑤𝑖
𝑛
𝑖=1 𝑦𝑖) + 0.5𝑦,      𝑖𝑓 𝑥 ∉ 𝐷𝑖

 (11) 

where 𝑖 ranges from 1 to 𝑛. 

3.2. Evaluating the degree of data drifting 

The trained offline fault diagnosis model is capable of 

identifying the fault status of historical data. Normal status data 

is categorized into the health data space, and the degree of data 

drifting is determined by calculating the Mahalanobis distance 

between fault data and the health data space. A larger value of 

the Mahalanobis distance indicates a greater degree of data 

drifting. The data can be divided based on this distance, 

allowing for categorization into different degrees of drifting. 

 

Fig. 6. Judging the degree of data drifting. 
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Fig. 6 (a) depicts the data status after training the offline 

fault diagnosis model, with blocks of the same color belonging 

to the same class. However, the degree of data drifting has not 

yet been determined for the same-class data. Fig. 6 (b) illustrates 

the result of evaluating the degree of data drifting, where the 

color depth of blocks represents the extent of data drifting. 

3.3. Model transfer 

In this paper, model transfer refers to the use of the DBN-ELM 

algorithm to train balanced historical offline data, obtain a high-

performance offline fault diagnosis model, and determine the 

relevant parameter settings of this diagnostic model. Because 

this model is trained using offline data, it can effectively extract 

fault knowledge, which represents valid knowledge left after 

training on historical data. Based on this model, online data is 

utilized to update the new knowledge. The model transfer 

enables the retention of effective knowledge from historical 

data and facilitates the transfer of offline diagnosis models. For 

new data, model transfer occurs during each dataset update, 

requiring distance-based multi-scale attention mechanism for 

diagnostic decision-making. 

3.4. The stage of online learning 

Based on the model transfer method, the offline fault diagnosis 

model is transferred to online learning, using the online data to 

train the online fault diagnosis model. This preserves the valid 

knowledge while allowing the model to be updated with new 

information. Online learning converts the online data into 

training data within the model and performs model updates. 

Whether to update the online fault diagnosis model is 

determined by the extent of data drift and the imbalance ratio. 

Online learning is efficient and flexible, making it suitable for 

scenarios with a large amount of data and data drifting. 

It should be noted that before online model updating, it is 

necessary to balance the training data quantity. If the drift 

degree of new data falls within the range of the old data, the 

dataset is not updated. However, when the drift degree of new 

data exceeds a certain threshold, model updating is required. 

By training the model, a drift threshold 𝜃 is obtained. When 

the drift level 𝜃𝑡 at time t does not exceed this threshold, the 

model is not updated. However, when the new data's drift level 

𝜃𝑡  surpasses the threshold, the model is updated. This model 

update rule is denoted as： 

𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒 = {
0, 𝜃𝑡 ≤ 𝜃
1, 𝜃𝑡 > 𝜃

  (12) 

Where 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒  is the specific update rule for the fault 

diagnosis mode, 0 is defined as not updating the model, and 1 is 

defined as updating the model. 

In this case, to maintain data balance, it is necessary to 

update the ratio of various classes in the dataset. This involves 

performing random undersampling on the larger class to balance 

the dataset. The ratio of undersampling is usually adjusted based 

on the imbalance level of the data and the specific problem. The 

goal of undersampling is to reduce the number of majority class 

samples to balance the quantity of samples between the majority 

and minority classes, thereby improving the model's 

performance.  

By reducing the number of majority class (normal state) 

samples, the balance among sample quantities is improved, 

enhancing the model's sensitivity to fault states. By reducing 

sample numbers, computational and time costs during model 

training is lowered. Undersampling can reduce redundant 

information in training data, allowing the model to focus more 

on learning critical features. Random undersampling does pose 

a risk of information loss, especially when the boundary 

between normal and fault states is ambiguous. The introduction 

of a multi-scale attention mechanism further enhances the 

model's ability to capture fault information by assigning 

different weights to highlight important features, thereby 

mitigating the impact of information loss. 

There is no fixed standard for the specific undersampling 

ratio, and it needs to be adjusted according to the actual situation. 

In experiments, it is common to use the current data with 

various undersampling ratios and evaluate the model's 

performance through methods like cross-validation to identify 

the optimal undersampling strategy that suits the problem.  

Before this, the corresponding Mahalanobis distance for 

each data point had been calculated. Each class dataset was 

divided equally based on the number of samples in the training 

set. The target of undersampling was set to the number of 

samples in each class of the original dataset. Since only one 

class of data may exceed the balance range, even if there are 

new data points in other classes, they may not exceed the range. 

For a particular class, let 𝐿𝑚𝑖𝑛 be the minimum distance and 

𝐿𝑚𝑎𝑥 be the maximum distance. Then the distance difference 
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is 𝐿 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛. Taking normal data as an example, after 

dividing the normal data equally, the distance difference of each 

portion of data is calculated. The distance difference of the 𝑖-th 

portion of normal data is defined as 𝐿𝑖 . Then, weights are 

assigned based on the distance difference of each equally 

divided portion of data. The weight obtained for the 𝑖-th portion 

of normal data is 𝐿𝑖/𝐿, where a larger weight for a portion of 

data implies a smaller likelihood of being deleted in the 

weighted random undersampling process. This is because  

a larger weight indicates a higher probability of retaining the 

sample. 

 

Fig. 7. The adaptive online updating process of the model. 

Through variable-weight data balancing, it is possible to 

maintain balance between inter-class data while also achieving 

a more uniform distribution of intra-class data, thereby aiding 

in the establishment of stable and reliable diagnostic models.  

In the case of the diagnostic process for online data D, 

assuming a predefined imbalance ratio R that ensures model 

performance, the adaptive online updating process for the fault 

diagnosis model is as follows: 

Step 1: Utilize the existing model to diagnose the health 

status of D. 

Step 2: Determine if the drift degree of online data D 

exceeds a predefined threshold. 

Step 3: If the drift degree of D exceeds the threshold, retrain 

the diagnostic model. 

Step 4: If the drift degree of D does not exceed the threshold, 

store the data. 

Step 5: Calculate the proportions of each data class. If the 

ratio between normal data and fault data exceeds R, implement 

a data balancing strategy to balance the data, restoring it to a 1:1 

ratio. 

Step 6: Retrain the diagnostic model with the restored 

balanced dataset to obtain the updated diagnostic model.  

The adaptive online updating process of the model is shown 

in Fig. 7. 

4. Experimental verification 

4.1. Experiment setups and Datasets descriptions 

4.1.1. The bearing test table setups 

In industrial production equipment, rotating machinery 

typically accounts for a significant proportion, as they are 

indispensable components in many industrial processes. 

Bearings, in particular, are critical components of rotating 

machinery. Approximately 40% to 50% of failures in rotating 

equipment occur in bearings. This makes timely diagnosis of 

bearing faults extremely important. And in practical scenarios, 

bearings operate in nonstationary environments, and the status 

of bearings changes over time or with varying equipment 

operating conditions. This makes the operational data of 

bearings highly suitable for validating the effectiveness of the 

method proposed in this paper. 
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Fig. 8. The bearing test table. 

This paper validates the proposed method using a bearing 

fault dataset collected under varying working conditions. The 

data used in the experimental section were collected from our 

laboratory test table. The bearing test table can reproduce the 

common bearings faults under variable working conditions. The 

bearing test table is shown in Fig. 8. The bearing test table is 

composed of a three-phase asynchronous motor, frequency 

converter, coupling, friction support kit, parallel gearbox, 

electromagnetic powder brake, and other components. This test 

bench can simulate most real machine bearing faults. It includes 

a speed measurement module, laser signal transmitter, and 

speed display module. The speed and load can be adjusted in 

real time. Real-time vibration signals can be collected through 

a vibration sensor (accelerometer) and directly transmitted to 

the computer-end software. The speed and load vary 

continuously over a period, simulating the changing operating 

conditions of bearings in both healthy and faulty states. The 

purpose of this experiment is to collect data under different 

variable speed and load conditions for bearing health and fault 

states. The dataset includes normal status, outer raceway fault, 

inner raceway fault, roller fault, blade deformation fault, gear 

missing teeth fault. It includes variable speed status, such as 

speed increasing (abbreviated as SI), speed increasing and then 

decreasing (abbreviated as SID), speed decreasing (abbreviated 

as SD), speed decreasing and then increasing (abbreviated as 

SDI), variable load status, such as load increasing (abbreviated 

as LI), load increasing and then decreasing (abbreviated as LID), 

load decreasing (abbreviated as LD), load decreasing and then 

increasing (abbreviated as LDI). Three sets of data are taken for 

each status.  

A total of two datasets were used in this paper to simulate 

historical data and online data. The first dataset is an offline 

fault dataset, which includes a portion of data with different 

statuses and provides sufficient data for training the diagnosis 

model. The second dataset is the online dataset. Both the offline 

and online datasets include data not only under the same 

working conditions but also under different working conditions. 

As shown in Fig. 9. Offline dataset and online dataset not only 

include some data under the same working conditions but also 

include some data under different working conditions. 
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Fig. 9. Offline dataset and online dataset.

 

Fig. 10. The offline dataset and online dataset. 

Fig. 10 displays the offline dataset and online dataset. To 

simulate the imbalance in online data, the amount of normal 

status data is greater than that of fault data. Additionally, the 

amount of data with different degrees of drifting varies.  

4.1.2. Determination of update threshold 

To confirm the effect of different degrees of data drift on fault 

diagnosis, the preliminary dataset was used as the training 

dataset, and datasets with varying degrees of drift were used as 

the testing dataset. A total of 7 data drift datasets were used, 

numbered from small to large according to the degree of drift. 

Table 1 displays the detailed information of these datasets. Fig. 

11 shows the average accuracy of the 20 test iterations for each 

dataset. The results indicate that as the data difference increases, 

the test accuracy decreases. The diagnostic accuracy has notably 

decreased from Dataset 4 to Dataset 5. Therefore, determining 

whether to update the model is based on the degree of drift in 

Dataset 4. Thus, it is necessary to determine a suitable update 

threshold for model updating based on the actual conditions of 
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different datasets. 

Table 1. Introduction of the bearing dataset. 

Dataset 
Bearing Health 

status 
Label 

Number of 

data 

prelimi

nary data 

normal 1 5 000 

outer raceway 

fault 
2 5 000 

inner raceway 

fault 
3 5 000 

roller fault 4 5 000 

blade 

deformation fault 
5 5 000 

gear missing 

teeth fault 
6 5 000 

data 

drifting 

dataset [2]- 

data 

drifting 

dataset [8] 

normal 1 1 000 

outer raceway 

fault 
2 1 000 

inner raceway 

fault 
3 1 000 

roller fault 4 1 000 

blade 

deformation fault 
5 1 000 

gear missing 

teeth fault 
6 1 000 

 

Fig. 11. The average accuracy of the 20 times test for each 

dataset. 

4.1.3. The setting of the experiment and dataset 

description 

A total of five experiments were conducted in this study. 

Because experiments were conducted in advance to assess the 

impact of data imbalance on the fault diagnosis model, it was 

observed that the accuracy of fault diagnosis started to 

significantly decrease when the imbalance ratio among different 

classes exceeded 1:3. Therefore, the initiation condition for the 

data balancing strategy is when the data imbalance ratio exceeds 

1:3. Taking into account the imbalance in the online data, the 

experiment set a data imbalance ratio of 1:10 between normal 

data and various types of fault data. The first experiment 

involves training the multi-scale offline fault diagnosis model. 

The second experiment aimed to verify the proposed method. 

The third and fourth experiments aimed to verify the advantage 

of updating the model according to the degree of data drifting. 

Firstly, the offline fault dataset was used to train the offline fault 

diagnosis model without considering the degree of data drifting. 

Subsequently, the online dataset was divided into two datasets, 

with half of the data having a smaller degree of data drifting and 

the other half having a larger degree of data drifting. Finally, the 

model was utilized to diagnose the online dataset. The fifth 

experiment aimed to verify the advantages of offline learning 

and involved training the diagnosis model using the online 

dataset. Table 2 shows the composition of the dataset. 

Table 2. the composition of the dataset. 

Bearing health 

status 
Speed status 

Load 

status 
Label 

N 

SI - 

1 

SD - 

SID - 

SDI - 

- LI 

- LD 

- LID 

- LDI 

OFR 

SI - 

2 

SD - 

SID - 

SDI - 

- LI 

- LD 

- LID 

- LDI 

IF 

SI - 

3 

SD - 

SID - 

SDI - 

- LI 

- LD 

- LID 
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RF 

SI - 

4 
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Bearing health 

status 
Speed status 

Load 

status 
Label 

BDF 

SI - 

5 

SD - 

SID - 

SDI - 

- LI 

- LD 

- LID 

- LDI 

GMTF 

SI - 

6 

SD - 

SID - 

SDI - 

- LI 

- LD 

- LID 

- LDI 

4.2. Experimental results 

4.2.1. Results of the proposed method 

The results of the five experiments are presented in Table 3. The 

training outcome of the offline fault diagnosis model (the first 

experiment) is also shown in Table 3 and Fig. 12. The second 

experiment aimed to verify the proposed method. Firstly, the 

offline fault dataset was used to train the offline fault diagnosis 

model. Because the offline dataset is balanced and possesses an 

adequate number of training data, the offline fault diagnosis 

model performs well. The decision to update the model relies 

on the extent of data drifting and the imbalance ratio. Due to the 

continuous updating of the online learning model, diagnostic 

performance remains satisfactory. The results of the first 

experiment are presented in Table 3 and Fig. 13. The third and 

fourth experiments aimed to verify the advantage of updating 

the model according to the degree of data drifting. Firstly, the 

offline fault dataset was used to train the offline fault diagnosis 

model without considering the degree of data drifting. 

Subsequently, the online dataset was divided into two datasets, 

with half of the data exhibiting a smaller degree of data drifting, 

and the other half displaying a larger degree of data drifting. The 

offline fault diagnosis model was employed to diagnose the 

online dataset. In Table 3, Fig. 14, and Fig. 15, the outcomes of 

both experiments are not highly satisfactory. This is attributed 

to the differing data drifting degrees in the two datasets, leading 

to varying diagnostic results. The diagnostic effectiveness of the 

dataset with a significant data drifting degree is inferior to that 

of datasets with a minor data drifting degree. The absence of 

model updates can impact accuracy and stability. The fifth 

experiment aimed to verify the advantages of offline learning 

and involved training the diagnosis model using the online 

dataset. The results of the fourth experiment are presented in 

Table 3 and Fig. 16. The outcomes are less than satisfactory, 

pointing out that neglecting to combine the offline diagnosis 

model affects the fault diagnosis results. Fig. 18 displays box 

plots depicting the results of 20 experiments conducted for each 

different experiment setting. From Fig. 17, it can be observed 

that the proposed method exhibits higher stability and fewer 

outliers. The box plot for the proposed method is relatively 

narrow, indicating lower performance fluctuations. Therefore, it 

can be concluded that this method demonstrates superior 

accuracy and stability compared to other test experiments. 

  

Fig. 12. Fault diagnosis confusion matrix of experiment 1.

 

Table 3. Results of fault diagnosis. 

experiment 

Offline dataset 

experiment 

Online dataset 

Average 

accuracy (%) 

Standard 

deviation 
Time(s) 

Average 

accuracy (%) 

Standard 

deviation 
Time(s) 

1 99.55 0.45 237.65 

2 98.93 0.29 132.92 

3 93.17 0.73 45.95 

4 90.41 1.72 45.87 

 - - - 5 88.59 3.67 77.66 
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Fig. 13. Fault diagnosis confusion matrix of experiment 2. 

 

Fig. 14. Fault diagnosis confusion matrix of experiment 3. 

 

Fig. 15. Fault diagnosis confusion matrix of experiment 4. 

 

Fig. 16. Fault diagnosis Confusion matrix of experiment 5. 

 

Fig. 17. Results of 20 times for each of the 5 experiments. 

 

(a) 

 

(b) 

Fig. 18. Comparison before and after data rebalancing. 
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This section uses the t-SNE visualization method to display 

the data before and after rebalancing. To present the results 

clearly, only three categories of data are visualized. A new data 

point is marked in the healthy data, and its changes before and 

after rebalancing are recorded. Fig. 18 visually shows the 

changes in the data distribution of the three bearing health states 

before and after rebalancing. Here, 1 represents normal state, 2 

represents inner ring fault, and 3 represents outer ring fault. The 

data changes can be seen intuitively from the Fig. 18. 

4.2.2. The advantage of evaluating data drift for fault 

diagnosis under limited sample conditions 

To demonstrate the advantages of evaluating data drift for fault 

diagnosis under limited sample conditions, a transfer learning 

experiment was conducted in this section. The target diagnostic 

dataset comprised a few-sample data with consistent drift levels. 

A portion of this data was allocated for the target domain dataset, 

while the remaining portion was reserved for the testing dataset. 

Other fault data that did not undergo the evaluation of the degree 

of data drift was employed as the source domain, labeled as 

Source Domain Dataset 1. In this section, the classical Transfer 

Component Analysis (TCA) method was employed to perform 

transfer learning between Source Domain Dataset 1 and the 

target domain dataset. The transferred data was then used to 

train a fault diagnosis model, followed by testing its 

performance on the testing dataset. This experiment was 

denoted as Experiment 1.  

Subsequently, a dataset with the same number as Source 

Domain Dataset 1 but with minor differences in the degree of 

data drift from the data with few samples was employed as 

Source Domain Dataset 2. Similarly, the TCA method was 

applied for data transfer, resulting in a fault diagnosis model 

trained on the transferred data. The model's performance was 

assessed using the testing dataset, marking this experiment as 

Experiment 2. The confusion matrices of these two experiments 

are shown in Figs. 19 (a) and (b). The results of the fault 

diagnosis experiments indicated that training the model with 

data closely resembling the few-sample data resulted in higher 

accuracy. This underscores the importance of evaluating data 

drift, as it assists in identifying more similar data under few-

sample conditions, thus enabling the utilization of methods like 

transfer learning for enhanced diagnostic outcomes. 

 

(a) 

 

(b) 

Fig. 19. Fault diagnosis confusion matrix of experiments A and B. 

5. Conclusion 

In this study, a multi-scale attention mechanism diagnosis 

method with adaptive online updating based on deep learning 

theory is proposed to effectively address the impact of data drift 

and online data imbalance on the performance of online fault 

diagnosis models in industrial systems. 

The proposed method demonstrates significant advantages 

in experiments, particularly in: 

(1) Multi-scale attention mechanism for comprehensive 

feature extraction: The paper proposed a diagnostic method that 

leveraged a multi-scale attention mechanism based on deep 

learning. This mechanism enhanced the model's ability to 

capture important features across varying working conditions. 

(2) Adaptive online updating: The method incorporated 

adaptive online updating, allowing the diagnostic model to 

flexibly update according to the status of online data. This 

ensured the model remained effective even under data 

imbalance and varying working conditions. 
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(3) Effective data balancing strategy: The paper introduced 

an adaptive weight random undersampling strategy that 

effectively balanced both inter-class and intra-class data. This 

resulted in a more uniform intra-class data distribution, 

enhancing the model's diagnostic performance. 

(4) Comprehensive experimental validation: The 

effectiveness of the proposed method was validated through  

a series of five experiments, demonstrating its robustness 

and applicability across different scenarios, including datasets 

with small and large degrees of data drift.  

Experimental results clearly indicate that the proposed 

method accurately and reliably identifies bearing faults despite 

data drift and online data imbalance, offering a flexible and 

effective solution for fault diagnosis in industrial systems. 

Future research directions may include algorithm optimization, 

domain expansion, and further extensive practical validation to 

further demonstrate its robustness and reliability under different 

operating conditions.
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