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Highlights  Abstract  
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features. 

 Due to the aviation accident is rarely predictable and often irreversible, 

how to ensure aviation safety is of uttermost importance. Textual 

aviation accident reports contain the cause and process of the accident 

which could help people understand incidents. However, the cause of the 

accident always is summarized by the expert and the accident report 

would be incomplete, the identification of aviation safety accident risk 

is not timely and accurate. In this paper, a safety risk identification model 

is proposed, aiming to identify the correlation between aviation safety 

accident risk factors by textual data mining from textual aviation 

accident reports. In detail, the feature of aviation accidents is extracted 

and classified by text mining technology, on this basis, the correlation 

coefficient matrix between different features is established. Finally, the 

correlation network of aviation safety risk is proposed, and the risk 

propagation process of accidents is developed based on the network to 

identify aviation safety accident risk. 
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1. Introduction 

Due to the seriousness of the consequences of aviation accidents, 

the demand for safety requirements in aviation systems is 

increasing, continuous airworthiness risk management is the 

research focus [1]. Continuous airworthiness risk management 

is a risk management technology for civil aircraft to ensure that 

the safety level of aircraft operation always meets the basic 

safety standards or airworthiness level [2]. In general, the way 

to ensure the safety of aviation system has two aspects. One of 

these aspects is a reactive, incident-based approach to ensure the 

safety of aviation system. The other is a proactive, systems-

based approach which means the operator has taken appropriate 

measures to prevent aviation accidents when an unsafe event 

occurs[3].  

The study on the first aspect is to summarize the cause of the 

accident that could find the risk factors. At first, most of the 

research focused on the evolution of the number of accidents 

based on flight data [4]. Next, some researchers focused on 

classic aviation accidents to find critical risk features[5]. Aim at 

runway incursion accidents, Stroeve et al. presented  

a framework for the evaluation of runway incursions, which 
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could provide feedback to managers about structure causes and 

risk implications[6]. Aiming at aircraft loss-of-control (LOC) 

accidents, Ancel et. al. proposed a generic framework of LOC 

accident risk identification that contains risk factors from the 

domain of human factors, aircraft system malfunction factors, 

and environmental conditions[7]. Based on the object-oriented 

Bayesian network, Ancel et. al. presented an in-flight loss-of-

control accident framework model for the large and complex 

aviation accident model that could identify the most sensitive 

causal factors for the accident[8]. Aim at controlled flight into 

terrain (CFIT) accidents, Kelly et. al. analyzed 50 CFIT 

accidents from 24 counties over 10 years and found human 

factors, such as distraction, complacency, and fatigue, represent 

the main cause of the accident[9]. Due to the key role of human 

factors in risk identification, Gautam et al. analyzed the 

relationship between aviation safety attitude, flight experience, 

perceived stress, and hazardous event involvement among 

aviators based on the data from 360 aviators by using the 

aviation safety attitude scale, hazardous event scale, and 

perceived stress scale[10]. For aircraft system malfunction 

factors, Lee et al. used agent-based modeling, stochastically and 

dynamically colored Petri net to assess the safety and efficiency 

of aircraft maintenance strategy which could identify the risks 

in aircraft maintenance[11]. Zhou et al. proposed a novel data-

driven hybrid-learning algorithm that could identify the riskiest 

sub-systems of the civil aircraft engine to improve the efficient 

execution of the maintenance strategy and reduce the risk of 

aviation systems[12]. 

However, the aviation system is a complex system, which 

contains risk factors such as human, mechanical engineering, 

environment, and policy [13]. Identifying the linkages among 

the risk factors may be an effective way to interrupt risk 

propagation, which is beneficial for the avoidance of aviation 

accidents[14]. To better understand the coupling mechanism of 

various risk factors and present the risk propagation process, 

aviation accidents must be investigated in more detail to address 

the question “how did this accident happen?” Therefore, 

considering this, developing the second way which could detect 

and predict the relations between risk factors to prevent 

accidents or predict the process of the accident is necessary. 

With the development of data technology, natural language 

processing (NLP) techniques could automatically recognize the 

cause of aviation accidents, and have become a research hotspot 

to identify the risk.[15]. The Aviation Safety Reporting System 

(ASRS) was created in 1976 by the Federal Aviation 

Administration and the National Aeronautics and Space 

Administration to receive, process, and analyze voluntarily 

submitted aviation safety reports [16]. These reports cover  

a broad scope of safety-related topics, ranging from flight 

operations, airport ground, and ramp operations, avionics, air 

traffic control flight, crew communication, general aviation, 

flight training, meteorology, and weather, to human factors [17]. 

However, the data are unstructured and high-dimensional, how 

to identify and classify risk factors from ASRS is a challenge 

[18]. Zhang et. al. formulated a four-step procedure to construct 

a Bayesian network, which could realize visualization of the 

escalation of initiating events into aviation accidents and 

capture the causal and dependent relationships between the 

contributory factors and the aviation accident[19]. Zhou et. al. 

proposed a risk identification and prediction model based on a 

support vector machine optimized by particle swarm 

optimization and long short-term memory neural networks, and 

the model could effectively identify risk factors and accurately 

predict the trend of parameters to improve the safety of 

aircraft[20]. Zhang et. al. developed classification models by 

Word Embedding and the Long Short-term Memory neural 

network that could predict adverse events like accidents, aircraft 

damage, or fatalities based on the sequences of events[21]. 

Miyamoto et al. used natural language processing tools, K 

Means clustering, and dimensionality reduction by t-distributed 

Stochastic Neighbor Embedding to categorize and visualize 

narratives, and found maintenance is the main cause of 

delays[22]. Zhou et al. proposed a model fusion strategy for 

aircraft risk identification based on a convolutional neural 

network and a bidirectional long short-term memory neural 

network with an attention mechanism[2]. The proposed model 

with a fusion strategy could realize the stable identification of 

imbalanced data, which can effectively improve the reliability 

of aircraft risk identification in the field of civil aviation. 

As mentioned above, the risk identification model is  

a reactive, incident-based approach or a proactive, predictive 

and systems-based approach, the data is the foundation of these 

models. ASRS data is composed of heterogeneous data, and the 

cause of the accident always is summarized by the expert. The 
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accident report would be incomplete, and the identification of 

aviation safety accident risk is not timely and accurate. 

Although machine learning tools were used to detect potential 

links between different reports or risk features[23, 24], the 

above research ignores the characteristics of influence and 

propagation among risk features. In this paper, a safety risk 

identification model is proposed, aiming to identify the 

correlation between aviation safety accident risk factors by 

textual data mining from textual aviation accident reports. 

Firstly, based on textual data mining the dictionary is obtained 

from ASRS data, and a risk feature vector space model is 

proposed to get risk features. Secondly, based on the risk 

propagation model, a risk network model is developed, and  

a risk propagation process based on the SIS model is proposed 

to capture the coupling mechanism of risk features. Finally, the 

risk rate of each risk feature which considers the propagation 

dynamics of each risk feature is derived for risk identification. 

The model in the paper could identify the risks in the aviation 

system and could guide managers, such as air traffic controllers 

should enhance situational awareness of the airport and aircraft 

by surveillance equipment such as scene surveillance radar 

when the visibility is poor. 

2. Methodology 

The overview of the proposed aviation safety risk identification 

model includes three phases: data collection, risk features 

classification and risk identification. 

2.1. Data collection 

The data in this paper is from the Aviation Safety Reporting 

System (ASRS), which contains the report submitted by pilots, 

crew, maintenance personnel, and other relevant staff after the 

end of each flight mission, according to the problems 

encountered in the course of flight. We choose assessments and 

narratives in the report to analyze features of aviation accidents. 

The assessments represent evaluation results by the expert, and 

the narrative is the process of the detailed account of the entire 

airline incident. 

2.2. Risk features classification 

In this section, we briefly describe the data cleaning process and 

then delve into how we do the risk feature vector space model. 

Then we describe risk features that are used to identify the risk. 

2.2.1. Date Analysis 

Before identifying the aviation safety risk, we need to analyze 

the textual data and format them as inputs to our models in the 

form of document feature matrices as shown in Figure 1. The 

analysis process of the textual data is as follows:  

Step 1: For a given sentence, we tokenize the text such that 

each word is separated. Step 2: We set the stop word such as 

‘the’, ‘in’, and ‘by’, and remove them from the sentence. 

Step 3: The step of Stemming and Lemmatization is that 

words such as ‘maintained’ and ‘maintenance’ would be all 

standardized to ‘maintain’. 

Step 4: Counting the processed words and their frequency, 

creating the document feature matrix. 

Step 5: Repeating Step 1 to Step 4 based on ASRS text data, 

taking 1000 words with the highest frequency as the dictionary. 

Using the cleaned text, we create a 𝑚 × 𝑛  document, with m 

number of frequencies and n number of words (or terms), to 

record the frequency of words in ASRS.

 

Figure 1. Illustration of the process of cleaning the textual data, demonstrating the process of a sentence from the narrative of an 

accident report in ASRS. 
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Figure 1: Illustration of the process of cleaning the textual 

data, demonstrating the process of a sentence from the narrative 

of an accident report in ASRS. 

Due to the dimensions of the dictionary being high and 

containing a lot of useless information, we need to reduce the 

dimension of the dictionary to get the risk feature. Here we use 

the Chi-square statistical method, which shows obvious 

advantages on recall rate and precision rate, to reduce the 

dimension. Through this step, we could get the risk feature. The 

risk feature represents the occurrence of an aviation accident in 

relation to it. This relationship refers to the accident caused by 

the risk feature or the accident that happened in the risk feature. 

2.2.2. Risk feature vector space model 

To get the importance of each risk feature, which represents the 

ability of the risk feature to cause the occurrence of aviation 

abnormal events. Term frequency-inverse document frequency 

(TF-IDF) is a statistical method used to assess the importance 

of a word to a document in the data set[25]. The importance of 

a word increases with the number of times it appears in  

a document but decreases with the frequency of its appearance 

in the data set. TF-IDF consists of two parts: term frequency 

(TF) and inverse document frequency (IDF) which represents 

the rarity of the word. TF represents the local importance of the 

term, and IDF represents the global importance of the term. 

Here we use TF-IDF to calculate the weight of each risk feature, 

the equation is 

𝑡𝑓 − 𝑖𝑑𝑓 = 𝑡𝑓𝑖,𝑗 × 𝑖𝑑𝑓𝑖   (1) 

where 𝑡𝑓𝑖,𝑗  can be calculated from the ratios between the 

appearance frequency of risk features in report j and the total 

frequency of all risk features in all reports, 𝑖𝑑𝑓𝑖  can be 

calculated through logarithm the ratios between the number of 

reports and the number of the report containing risk feature i. 

To avoid the occurrence of rare words and the situation of 

some words such as ‘I’ and ‘when’ appearing high frequently 

that may lead the IDF of the risk feature to be 0, we improve the 

inverse document frequency (IDF) in Eq.(1) as 

𝑖𝑑𝑓𝑖 = 𝑙𝑜𝑔
𝑁+1

|{𝑗:𝑡𝑖∈𝑑𝑗}|+1
+ 1  (2) 

where 𝑁  is the total number of reports, |{𝑗: 𝑡𝑖 ∈ 𝑑𝑗}|  is the 

number of reports which include word ti. 

2.3. Risk identification 

In this section, we establish the relation between risk features to 

get the risk network, and then describe the risk propagation 

process and derive the risk index to identify the aviation safety 

risk. 

2.3.1. Risk network model 

To get the risk network, the key is to determine the nodes and 

links between nodes. Here, these risk features are represented as 

nodes in the risk network. If risk feature i and risk feature j 

appear in a report at the same time, we consider there is a link 

between risk feature i and risk feature j. The correlation between 

these features would be different. For example, there is  

a noticeable correlation between the collision accident and the 

vision factor. It is necessary to consider the weight between risk 

features, we use the frequency of simultaneous occurrence to be 

the weight of links. The parameters in the risk network G are 

defined as follows: 

⚫ i represents the risk feature in Sec. 2.2 and it also is the 

node in the risk network. 

⚫ 𝑤𝑖𝑗 the weight between risk feature i and risk feature j. 

⚫ 𝐴𝑖𝑗  is the network adjacency matrix. If 𝐴𝑖𝑗 > 0 

represents risk feature i and risk feature j have 

connections, otherwise, 𝐴𝑖𝑗 = 0. 

Obviously, the risk network is a directed weighted network. 

Some topological properties are needed to analyze risk features. 

The out-degree and in-degree are classical indexes in directed 

weighted networks. The number of edges from i to other nodes 

is used to determine the out-degree of node i, it can be calculated 

through  𝑘𝑜𝑢𝑡 = ∑ 𝐴𝑗𝑖𝑗=𝐺  . The number of edges from other 

nodes to i is used to determine the in-degree of node i, it can be 

calculated through 𝑘𝑖𝑛 = ∑ 𝐴𝑖𝑗𝑗=𝐺  . The sum of the in-degree 

and out-degree of node i is defined as the total degree of node i. 

These indicators which consider static properties of the risk 

network can be used to evaluate risk. 

2.3.2. Risk identification model 

Risk is sometimes described as an extensive assessment of the 

likelihood of mishaps or failures and the seriousness of the 

results [14]. According to the risk network, risks can spread 

between risk features through correlation, which can be 

efficiently represented by infectious illness models [26]. There 
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are other infectious disease models, including SI, SIR, SIS, and 

SEIRS, according to Gani [27]. The SI model is quick and 

efficient in simulating the overall risk propagation process. 

However, when using the SI model, particularly when 

considering the risk associated with the aviation system, the 

positive features of human-related activities are not given 

adequate consideration. In reality, when Flight 3U8633 was 

cruising in 2018, the front windshield of the right seat of the 

cockpit broke and fell off, and the crew took emergency 

measures to make a safe diversion in time, successfully 

transforming situation from dangerous to normal, that is, the 

process in which the infected node did not infect other nodes in 

the system. In 2010, due to pilot fatigue, the pilot ignored the 

warning when the system issued a warning, and did not fully 

estimate the situation, which eventually led to the accident of 

plane crash. In other words, infected nodes infected other nodes 

and finally triggered the occurrence of aviation accidents. In 

other words, there are two states of risk features in the aviation 

system, one is the susceptible state and the other is the infected 

state. The susceptible risk features would be infected with the 

susceptible risk features if there is a link between these risk 

features. The state of infected risk features would turn into a 

susceptible state through some positive measures. As a result, 

risk propagation is subsequently prevented spontaneously, 

analogous to the healing process in the infectious disease model. 

Therefore, it is more appropriate to replicate the risk 

propagation associated with aviation accidents using the 

infectious disease model of SIS[28]. The SIS model also has the 

advantage of being able to dynamically analyze the impact of 

risk feature severity on node criticality. As opposed to the 

analysis methodology suggested in Section 2.3.1, which is static 

and assumes that the hazardous event’s severity is constant. 

Here we consider the dynamical models with the SIS model 

that can be written as 

𝑑𝑥𝑖

𝑑𝑡
= −𝐵𝑥𝑖 + ∑ 𝐴𝑖𝑗𝑅(1 − 𝑥𝑖)𝑥𝑗

𝑁
𝑗=1   (3) 

Within the framework of SIS, all nodes in the network are 

labeled with one of two states: S-susceptible, and I-infected. 

The dynamics includes a susceptible model in which a node is 

infected by one of its nearest neighbors at rate R, and an infected 

node is recovered at rate B.𝑥𝑖(𝑡) represents the infection rate of 

node i at time t. In this paper, the infection rate of node i is used 

to assess risk, indicating the ability of risk feature i to cause 

adjacent events to become hazardous events, whereas the 

recovery rate is used to characterize the node’s capacity to 

defend against risk, indicating the ability of risk feature to 

recover from an abnormal state to a normal state. According to 

Eq.(3), the infection rate of each node is valued within [0, 1].  

To get the infection rate of each node, we consider the steady 

state of Eq.(3), the equation can be written as 

−𝐵𝑥𝑖
∗ + ∑ 𝐴𝑖𝑗𝑅(1 − 𝑥𝑖

∗)𝑥𝑗
∗𝑁

𝑗=1 = 0,  (4) 

where 𝑥𝑖
∗ represents the infection rate of each node in the steady 

state. 

According to the method in [29], Eq.(4) can be derived as 

−𝐵𝑥𝑒𝑓𝑓 + 𝑅𝛽𝑒𝑓𝑓(1 − 𝑥𝑒𝑓𝑓)𝑥𝑒𝑓𝑓 = 0,  (5) 

where 𝛽𝑒𝑓𝑓 =
⟨𝑘𝑖𝑛⋅𝑘𝑜𝑢𝑡⟩

⟨𝑘⟩
， ⟨𝑘⟩  is the average degree of the 

network, ⟨𝑘𝑖𝑛 ⋅ 𝑘𝑜𝑢𝑡⟩  is the vector product between in-degree 

and out-degree, 𝑥𝑒𝑓𝑓  is the weighted nearest neighbor infection 

rate in the steady state. 

To get the infection rate of each node in the steady state, we 

just use 𝑥𝑒𝑓𝑓  to replace𝑥𝑗
∗ in Eq. (4), Eq. (5) becomes 

−𝐵𝑥𝑖
∗ + 𝑅𝑘𝑖(1 − 𝑥𝑖

∗)𝑥𝑒𝑓𝑓 = 0,   (6) 

it allows us to capture the steady-state infection rate of each 

node if the in-degree of node i is known and 𝑥𝑒𝑓𝑓  which can be 

got from Eq. (5). The steady-state infection rate of node i is 

𝑥𝑖
∗ =

𝑅𝑘𝑖𝑥𝑒𝑓𝑓

𝐵+𝑅𝑘𝑖𝑥𝑒𝑓𝑓
,   (7) 

Through Eq.(7), we could get the steady-state infection rate 

of each node to assess the risk level of each node. By ranking 

the risk level of each node, we could identify the critical risk 

feature. Meanwhile, when some incidents happen during a flight, 

the manager could take different contingency plans based on the 

risk network which can prevent further propagation. 

3. Experimental results 

The data in this paper is from the ASRS database. The aviation 

accidents from 2021 to 2022 that contain 22064 reports are used 

to analyze. The full report can be found on the website 

https://akama.arc.nasa.gov. 

3.1. Risk features classification 

Through the method from Sec. 2.2, the dictionary of aviation 

safety reports from the Aviation Safety Reporting System 

(ASRS) can be extracted. The dictionary includes 1000 words, 

https://akama/


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

but it contains a lot of useless information that could affect the 

computational efficiency. Here we use the chi-square statistics 

method to reduce dimension to capture risk features. Fig.2 

shows the risk features of the aviation system. The horizontal 

axis represents the frequency of each risk feature, and the 

vertical axis represents risk features. The word cloud is also 

shown in Fig.2. The results show that the frequency of risk 

features, such as aircraft weather, environment, procedure, 

engine, airport, and wind, is high and their frequency is over 

100.

 

Figure 2: The risk features of aviation safety system 

To transform the aviation safety incident report into vector 

form, we use Eq. (1) to get the weight of each risk feature in 

different reports. Fig.3 shows the value of TF-IDF for each risk 

feature. The horizontal axis represents risk features, and the 

vertical axis represents the frequency of each risk feature. 

Through comparison of Fig.2 and Fig.3, we find the frequency 

of aircraft is highest in Fig.2, but it is low in Fig.3. The reason 

is that the results in Fig.3 are calculated by Eq. (1), the 

importance of the risk feature is determined by its frequency and 

rarity. Only considering the frequency, the result could show the 

topic content of the document, but can not accurately show the 

ability of the risk feature to cause the occurrence of an aviation 

abnormal event. Therefore, risk features, such as ‘visibility’, 

‘’weather’, ‘environment’, ‘procedure’, ‘engine’, ‘airport’, 

‘wind’, ‘ambiguous’, ‘communication’, ‘maintain’, ‘instruct’, 

‘airspace’, ‘safety’, ‘train’, ‘misunderstand’, ‘equipment’, are 

major risk features.

 

Figure 3. The risk features of aviation safety systems based on TF-IDF. 
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3.2. Risk network 

Based on the method in Sec. 2.3.1, we construct the risk network 

which includes 26 nodes and 137 links. The network is weighted 

and directed. Fig. 4a shows the topological structure of the risk 

network, and Fig. 4b shows the relation between risk features. 

The results show that the risk feature communication has a high 

correlation with airspace, aircraft, and maintenance. The risk 

feature collision has a high correlation with aircraft and visual. 

The high correlation means the occurrence of the risk feature 

would cause the occurrence of the associated risk feature. The 

topological structure feature is also analyzed in Table 1. The 

out-degree represents the ability of the risk spillover for the risk 

feature. The in-degree represents the ability of risk tolerance for 

the risk feature. The total degree could represent the 

comprehensive ability of the risk tolerance for the risk feature. 

By calculating the degree of each risk feature in Table 1, we find 

‘aircraft’, ‘airport’, ‘engine’, and ‘weather’ take more risks, and 

‘maintain’, ‘staff’, and ‘fatigue’ have great ability of the risk 

spillover.

 

Figure 4. The risk network. (a) The topological structure of the risk network, and (b)the correlation between risk features.  

Table 1. The degree of the risk network. 

Number Risk features In-degree Out-degree Total degree 

1 aircraft 7.18 0.46 7.64 

2 engine 2.17 0.39 2.56 

3 procedure 0.76 0.25 1.01 

4 airport 2.30 1 3.3 

5 weather 1.83 0.76 2.59 

6 environment 1.07 1 2.07 

7 visual 1.54 0.95 2.49 

8 instruct 0.41 1.3 1.71 

9 airspace 1.32 0.73 2.05 

10 safe 1.14 0.68 1.82 

11 wind 0.46 0.49 0.95 

12 maintain 1.22 2.4 3.62 

13 communication 0.79 1.4 2.19 

14 equip 1.0 0.4 1.4 

15 train 0.22 1 1.22 

16 manual 0.01 0.44 0.45 

17 stall 0.1 1.4 1.5 

Number Risk features In-degree Out-degree Total degree 

18 
company 

policy 
0.04 0.4 0.44 

19 collision 0.15 2 2.15 

20 command 0.02 0.75 0.77 

21 ambiguous 0.01 0.27 0.28 

22 fatigue 0.16 1.7 1.86 

23 build 0.24 1 1.24 

24 tool 0.01 0.83 0.84 

25 misunderstand 0.03 0.25 0.28 

26 staff 0.16 2.2 2.36 

3.3. Risk identification 

Before identifying the risk, the dimension method needs to be 

verified. Here we use a fourth-order Runge-Kutta to get the 

numerical solution of Eq.(3). The initial value of each risk 

feature is set to 1. The risk feature would reach the steady state 

by the fourth order Runge-Kutta. Fig.5a shows the process of 

each risk feature from the initial state to the steady state. Fig.5b 

shows the comparison between our proposed method and 

simulation results. Our method has high precision and predicts 
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the risk rate of each risk feature. Compared to the degree of each 

risk feature which just considers static 

property, ’procedure’, ’maintain’, and ’communication’ would 

also attract the attention of the manager. 

 

Figure 5. The risk level of each risk feature. (a) The process of the risk level from the initial state to the steady state, (b)The 

comparison between analytical solution and simulation results. 

To analyze the ranking of risks under different indicators, 

we list the top 10 risk features in Table 2. It shows that risk 

features such as procedure, wind, weather, communication, and 

maintenance are critical risk factors. 

Table 2. The top 10 risk features under three indicators 

TF-IDF Total degree Risk rate 

engine aircraft aircraft 

visibility procedure procedure 

procedure airspace weather 

airport staffing communication 

weather weather engine 

wind communication wind 

environment engine maintain 

safety wind airspace 

communication safety airport 

ambiguous maintain train 

4. Conclusions and Discussion 

To reduce the consequence severity of unsafe events, managers 

should identify risks and take appropriate actions for unsafe 

events. Benefiting from the massive safety incident data and 

textual data mining techniques, we first analyzed the textual 

data from ASRS to get the dictionary and get 26 risk features 

through the risk feature vector space model. The result shows 

that procedure, visibility, wind, communication, and ambiguity 

are important risk features. Then we develop a weighted 

directed risk network that considers the frequency of 

simultaneous occurrence as the weight of links. The network 

shows the relation between different risk features and the static 

characteristics of each risk feature. In reality, accidents always 

are due to some risk feature accumulation. Therefore, 

considering the characteristics of influence and propagation 

among risk features, we propose a risk propagation process 

based on the SIS model. The risk rate of each risk feature is 

derived which considers the propagation dynamics of each risk 

feature. Through the risk rate of each node, we could identify 

the critical risk feature. Meanwhile, when some incidents 

happen during a flight, the manager could take different 

contingency plans based on the risk network which can prevent 

further propagation. At last, we list the top 10 risk features under 

different indicators and find procedure, wind, weather, 

communication, and maintenance are critical risk factors. 

Furthermore, understanding the textual data from ASRS is 

beneficial to understand the many effects of aviation accidents. 

The proposed in this paper can help the manager determine 

where a particular aviation accident is in the risk network, and 

then the appropriate measure is taken. However, the results are 

limited by the database and would be incomplete. In the future, 

the method in the paper could be optimized from different data 

sources and applied in real aviation management which is 

meaningful.
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