
Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

Further Results on Relative Aging Orders and Comparison of Record Statistics 

 

Indexed by: 

  

Mohamed Kayida,* 

 

 

a Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia 

Highlights  Abstract  

▪ Improve the study and understanding of 

relative aging ordering properties to compare 

lifetime distributions. 

▪ Highlight the difference between relative aging 

orders and other well-known stochastic orders 

in literature. 

▪ Compare items that are close to each other 

during aging. 

▪ Investigate the preservation properties of two 

well-known faster aging orders under the upper 

and lower record values. 

 In reliability engineering, relative aging is an important notion useful for 

measuring how a system ages relative to another. In recent years, the 

reliability properties of record statistics used for statistical modeling, 

such as shock models, have been investigated. This study presents new 

findings regarding aging faster orders. Several implications of relative 

aging orders are presented, including further inequalities arising from 

these stochastic orders. We apply two faster aging orders by comparing 

distributions using their cumulative hazard rate functions and cumulative 

reversed hazard rate functions in the upper and lower record values, 

respectively. In addition, we compare the record statistics in the two-

sample problem. The extent to which the aging-induced faster orders are 

preserved in the record statistics resulting from sequences of 

independent and identically distributed random lifetimes is investigated. 

Finally, examples are provided to illustrate these concepts. 
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1. Introduction 

In reliability engineering, it is useful to know which of the two 

units ages (or deteriorates) faster than the other (i.e., which unit 

tends to age quickly in comparison to the other unit). This may 

depend on the aging rate of the underlying units (see, e.g., 

Barlow and Proschan [1]). This can be investigated using 

various concepts related to relative aging. There are a number 

of other stochastic orderings that are useful for comparing 

random variables (rvs) from the point of view of their 

magnitude, such as likelihood ratio ordering or common 

stochastic ordering. The term "magnitude" was used in Shaked 

and Shanthikumar [2] to quantify the concept that a rv is more 

likely to be "larger" than another rv. For example, the well-

known usual stochastic order between rvs 𝑋 and 𝑌 means that 

𝑌  is more likely to get values greater than 𝑥 , for all 𝑥 ∈ ℝ , 

compared to 𝑋 . It is clear that this criterion compares the 

magnitude of the two rvs, where the rv 𝑌 tends to take larger 

values than the rv 𝑋 from a probabilistic point of view. However, 

if one device ages faster than the other in terms of relative aging 

orders, this does not mean that the first device has  

a stochastically smaller random lifetime than the second device. 

Note that a random lifetime is a non-negative rv. This separates 

the role of stochastic orders of magnitude from that of the 

relative stochastic orders of aging. By setting up a suitable 

stochastic ordering between the random variables 𝑋  and 𝑌 , 

which may denote the lifetime of the two devices, respectively, 

one can study the relative aging of the first device compared to 
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the other device. Thus, two concepts of relative aging have been 

developed in the literature. For this reason, two notions of 

relative aging order (stochastic ordering) have been defined in 

the literature. Two classes of stochastic ordering have been 

proposed to compare the relative aging between lifetime units. 

The first class, known as transformation ordering, includes 

convex transformation ordering, star ordering and superadditive 

ordering. This class of stochastic ordering aims to capture the 

essence of one distribution being more skewed than the other, 

indicating that the latter distribution ages faster than the former. 

Since “skewness” is an aspect of the probability density curve, 

the above stochastic orders are useful to recognize the object 

that ages faster. The concept of aging, which describes the 

change in performance of a unit over time, is crucial for survival 

analysis and reliability theory. To this end, a variety of measures 

and measure-based stochastic orderings have been developed to 

analyze the aging characteristics of lifetime distributions.  

1.1. Literature Review  

The second strategy described earlier, was proposed by 

Kalashnikov and Rachev [3] and Sengupta and Deshpande [4], 

and it expresses relative aging by the increasing property of the 

hazard ratio. Such ordering of relative aging entails an ordering 

of variances if the distributions involved have the same mean 

(e.g., Lai and Xie [5]). Mantel and Stablein [6] applied the 

problem of crossing hazard functions into a clinical cancer data. 

Di Crescenzo [7] considered a model where the ratio of two 

reversed hazard rates is constant. However, Rezaei et al. [8] 

proposed a relative aging order on the basis of the increasing 

reversed hazard rate ratio. The second type of stochastic 

ordering has obvious advantages over the first because it can be 

used to simulate the occurrence of intersection measures and 

allows an intuitive interpretation of relative aging. Relative 

aging comparisons of units based on the cumulative hazard rate 

function and cumulative reversed hazard rate function have also 

been applied in the literature (see, for example, Misra and 

Francis [9]). The study of relative aging orders in the context of 

reliability analysis of coherent systems have been found to be 

useful (see, e.g., Hazra and Nanda [10], Hazra and Misra [11] 

and Misra et al. [12]). Relative aging orders have also been used 

to compare frailty models (see, Kayid et al. [13]). In statistics, a 

record value or record statistic is the largest or smallest value 

obtained from a sequence of random variables. The theory is 

closely related to that used in order statistics. The term was first 

introduced by Chandler [14]. For details on distribution theory 

and various applications of records, the reader is referred to 

Ahsanullah [15] and Arnold et al. [16]. Record values are also 

arisen in the context of non-homogenous poisson process as the 

epoch times of a nonhomogeneous Poisson process follow the 

same model of record values (see, e.g., Pellerey et al. [17]). In 

the context of reliability, record values have found many 

applications. For example, Belzunce et al. [18] used record 

values as a model for repair times of an item that is continuously 

minimally repaired. They also studied some stochastic 

comparisons of load-sharing systems via record values. 

Furthermore, they studied nonhomogeneous Poisson or pure 

birth processes from the perspective of some stochastic orders 

among record values. Wang et al. [19] proposed two mission 

reliability evaluation algorithms for k-out-of-n: G phased-

mission systems with imperfect fault coverage based on record 

values. Record values have also been applied to estimate the 

stress-strength reliability (see, e.g., Hassan et al. [20]). Consider 

a system of components which experiences some kind of shocks 

such as voltage peaks. Stochastic comparisons of record values 

have been conducted in the literature by researchers in the past 

decades. Ahmadi and Arghami [21] obtained some preservation 

properties of stochastic orders under record values. Belzunce et 

al. [22] derived several results on (multivariate and univariate) 

stochastic comparisons of generalized order statistics which 

include some implications concerning comparison of record 

values (see, also, Alimohammadi et al. [23], Esna-Ashari et al. 

[24] and Esna-Ashari et al. [25]). Khaledi and Shojaei [26] 

established some stochastic ordering results among residual 

record values in two sample problems. Zhao et al. [27] 

investigated stochastic comparison of spacings of record values. 

Khaledi et al. [28] established several stochastic orderings 

among residual record values as well as inactive record values 

in two-sample problems. Zhao and Balakrishnan [29] studied 

the inactive record values and carry out a stochastic comparison 

of these quantities from two independent samples. Recently, 

Balakrishnan et al. [30] obtained some sufficient conditions for 

increasing concave order and location independent more riskier 

order of lower record values based on stochastic comparisons of 

minimum order statistics. Kayid [31] derived some results for 
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comparisons of upper records and lower records using relative 

aging orders in the two-sample problem.  

1.2. Mathematical background and plan of the paper  

We assume that the sequence of independent and identically 

distributed (i.i.d.) rvs {𝑋𝑖 , 𝑖 = 1,2, … }  following a common 

cumulative distribution function (cdf) 𝐹𝑋 , probability density 

function (pdf) 𝑓𝑋 = 𝐹𝑋
′   and survival function (sf) �̅�𝑋 ≡ 1 − 𝐹𝑋 

with the amount of measurements (of voltage peaks) on shocks. 

The loads on the system at different points of time induce the 

shocks. The record statistics (values of the highest stresses 

reported) of this sequence are of interest to us. The rvs are the 

lifetime of devices in our context. Hence, we assume that the 

amounts of values of the sequence of rvs {𝑋𝑖 , 𝑖 = 1,2, … } which 

identifies the record values are non-negative. The record values 

are, therefore, non-negative. The 𝑖-th order statistic of the first 

𝑛 elements of {𝑋𝑖 , 𝑖 = 1,2, … }, is signified by 𝑋𝑖:𝑛.  

Below, we define the upper record values (denoted by 𝑋𝑈𝑛
) 

and upper record timings {𝑇𝑛, 𝑛 ≥ 1}, respectively, as follows:  

𝑋𝑈𝑛
= 𝑋𝑇𝑛:𝑇𝑛

, 𝑛 = 0,1, …, 

where  

𝑇0 = 1, 𝑇𝑛 = min{𝑗: 𝑗 > 𝑇𝑛−1, 𝑋𝑗 > 𝑋𝑈𝑛−1
}, 𝑛 ≥ 1. 

Let us denote by Λ𝐹  the cumulative hazard function of the 

cdf 𝐹, given by Λ𝐹(𝑥) = −ln(�̅�(𝑥)), for 𝑥 > 0. It is commonly 

known that the pdf of 𝑋𝑈𝑛
, represented by 𝑓𝑋𝑈𝑛

(𝑥) given by  

𝑓𝑋𝑈𝑛
(𝑥) =

[Λ𝐹(𝑥)]𝑛−1

(𝑛 − 1)!
𝑓𝑋(𝑥); 𝑥 ≥ 0. 

We denote by �̅�𝑋𝑈𝑛
(𝑥) the sf of 𝑋𝑈𝑛

, which is a function of 

the cumulative hazard function, and it is derived as  

�̅�𝑋𝑈𝑛
(𝑥) = ∫

+∞

Λ𝐹(𝑥)

𝑠𝑛−1

(𝑛 − 1)!
𝑒−𝑠𝑑𝑠 = �̅�𝑋(𝑥) ∑

𝑛−1

𝑘=0

[Λ𝐹(𝑥)]𝑘

𝑘!
;   𝑥 ≥ 0, 

where the last identity is derived by using the expansion of 

incomplete gamma function (see e.g. Arnold et al. [16]). In 

contrast to the upper record values are the lower record values. 

The 𝑛th lower record time 𝐿(𝑛), 𝑛 = 0,1,2, … with 𝐿(0) = 1 is 

stated as  

𝐿(0) = 1, 𝐿(𝑛) = min{𝑗: 𝑗 > 𝐿(𝑛 − 1), 𝑋1:𝐿(𝑛−1) > 𝑋1:𝑗},

𝑛 = 1,2, …. 

and the 𝑛 -th lower record is enumerated as 𝑋𝐿𝑛
=

𝑋1:𝐿(𝑛), 𝑛 = 1,2, ….  Let us denote the cumulative reversed 

hazard function by Λ̃𝐹(𝑥) = −ln(𝐹(𝑥)), for 𝑥 > 0. The pdf of 

𝑋𝐿𝑛
can be acquired as  

𝑓𝑋𝐿𝑛
(𝑥) =

[Λ̃𝐹(𝑥)]𝑛−1

(𝑛 − 1)!
𝑓𝑋(𝑥);   𝑥 ≥ 0. 

Further, the cdf of 𝑋𝐿𝑛
 is a function of cumulative reversed 

hazard function and is given by:  

𝐹𝑋𝐿𝑛
(𝑥) = ∫

𝑠𝑛−1

(𝑛 − 1)!
𝑒−𝑠

+∞

Λ̃𝐹(𝑥)

𝑑𝑠 = 𝐹𝑋(𝑥) ∑

𝑛−1

𝑘=0

[Λ̃𝐹(𝑥)]𝑘

𝑘!
;   𝑥 ≥ 0 

The aim of this paper is to provide some further insights into 

relative aging orders and their implications in the context of 

reliability and distribution theory. We then present some 

stochastic orderings of upper and lower data sets by relative 

aging according to the cumulative hazard rate function and the 

cumulative inverse hazard rate function. 

In Section 2 we present some preliminary concepts of 

stochastic orderings and aging terms. In Section 3, we introduce 

some implications of relative aging orders in the context of 

distribution theory. In Section 4, we present a result for the 

conservation of relative aging order according to the cumulative 

risk function under upper data sets. Section 5 investigates the 

preservation of the relative order of lower data sets according to 

the cumulative inverse hazard rate function. In Section 6, we 

close the paper with further conclusions and also provide key 

points for future research in this area.  

2. Preliminaries 

In this section, we bring some preliminaries that will be used 

throughout the paper. The definitions of the ageing faster orders 

utilized in our paper are provided below (see, e.g., Sengupta and 

Deshpande [4], Rezaei et al. [8] and Misra et al. [12]). 

Definition 1 Let 𝑋  and 𝑌  be two absolutely continuous 

random variables which represent the lifetimes of devices 𝐴 and 

𝐵   respectively  ee assume that 𝑋  and 𝑌  have cumulative 

distribution functions 𝐹𝑋 and 𝐹𝑌  survival functions �̅�𝑋 and �̅�𝑌, 

hazard rate functions ℎ𝑋 = 𝑓𝑋/�̅�𝑋  and ℎ𝑌 = 𝑓𝑌/�̅�𝑌   reversed 

hazard rate functions 𝑟𝑋 = 𝑓𝑋/𝐹𝑋 and 𝑟𝑌 = 𝑓𝑌/𝐹𝑌  respectively  

ee shall say that the device 𝐴 ages faster than the device 𝐵 in: 

• Hazard rate function, written as 𝑋 ⪯𝑐 𝑌, if  

ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛 𝑡 ≥ 0. 

• Reversed hazard rate function, written as 𝑋 ⪯𝑏 𝑌, if  

𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛 𝑡 > 0. 

• Cumulative hazard rate function, written as 𝑋 ⪯𝑐⋆ 𝑌, if  
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−ln(�̅�𝑋(𝑡))

−ln(�̅�𝑌(𝑡))
 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛 𝑡 ≥ 0. 

• Reversed hazard rate, denoted by 𝑋 ⪯𝑏⋆ 𝑌, if  

−ln(𝐹𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛 𝑡 ≥ 0. 

It is known in literature that 𝑋 ⪯𝑐 𝑌  implies 𝑋 ⪯𝑐⋆ 𝑌  and 

further 𝑋 ⪯𝑏 𝑌  implies 𝑋 ⪯𝑏⋆ 𝑌  (see, e.g., Misra and Francis 

[9]). 

We give the following useful definition of stochastic orders.  

Definition 2  Let us suppose that 𝑋  and 𝑌  represent the 

lifetime of two devices which follows cdfs 𝐹𝑋  and 𝐹𝑌   

respectively  Let 𝑋𝑡: = [𝑋 − 𝑡|𝑋 > 𝑡],  for all 𝑡 ≥ 0  for which 

𝐹𝑋(𝑡) < 1  and 𝑌𝑡: = [𝑌 − 𝑡|𝑌 > 𝑡]  for all 𝑡 ≥ 0  for which 

𝐹𝑌(𝑡) < 1 denote the residual lifetime of the devices after age 𝑡  

Suppose that 𝑋(𝑡): = [𝑡 − 𝑋|𝑋 ≤ 𝑡],  for all 𝑡 > 0  such that 

𝐹𝑋(𝑡) > 0  and 𝑌𝑡: = [𝑡 − 𝑌|𝑌 ≤ 𝑡]  for all 𝑡 > 0  such that 

𝐹𝑌(𝑡) > 0 denote the inactivity time of the devices after time 𝑡, 

respectively  It is said that 𝑋 is smaller than 𝑌 in the 

• Likelihood ratio order, denoted by 𝑋 ⪯𝑙𝑟 𝑌 , if 
𝑓𝑌(𝑡)

𝑓𝑋(𝑡)
  is 

increasing in 𝑡 ≥ 0. 

• Hazard rate order, denoted by 𝑋 ⪯ℎ𝑟 𝑌, if  

ℎ𝑋(𝑡) ≥ ℎ𝑌(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0. 

• Reversed hazard rate order, denoted by 𝑋 ⪯𝑟ℎ 𝑌, if  

𝑟𝑋(𝑡) ≤ 𝑟𝑌(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0. 

• Usual stochastic order, denoted by 𝑋 ⪯𝑠𝑡 𝑌, if  

�̅�𝑋(𝑡) ≤ �̅�𝑌(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0. 

• Probability order, denoted by 𝑋 ⪯𝑝𝑟 𝑌, if  

𝑃(𝑋 > 𝑌) ≤
1

2
. 

• Residual probability order, denoted by 𝑋 ⪯𝑟𝑝𝑟 𝑌, if  

𝑃(𝑋𝑡 > 𝑌𝑡) ≤
1

2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0, 

or equivalently if, 
∫

+∞
𝑡 𝑓𝑋(𝑥)𝐹𝑌(𝑥)𝑑𝑥

∫
+∞

𝑡 𝑓𝑌(𝑥)𝐹𝑋(𝑥)𝑑𝑥
≥ 1, for all 𝑡 ≥ 0. 

• Inactivity probability order, denoted by 𝑋 ⪯𝑖𝑝𝑟 𝑌, if  

𝑃(𝑋(𝑡) > 𝑌(𝑡)) ≥
1

2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0, 

or equivalently if, 
∫

𝑡
0 𝐹𝑋(𝑥)𝑓𝑌(𝑥)𝑑𝑥

∫
𝑡

0 𝑓𝑋(𝑥)𝐹𝑌(𝑥)𝑑𝑥
≥ 1, for all 𝑡 > 0.  

It is well-known in literature that 𝑋 ⪯ℎ𝑟 𝑌 implies 𝑋 ⪯𝑠𝑡 𝑌 

and it further implies 𝑋 ⪯𝑟𝑝𝑟 𝑌 . 𝑋 ⪯𝑟ℎ 𝑌  implies 𝑋 ⪯𝑠𝑡 𝑌  and 

further it provides that 𝑋 ⪯𝑖𝑝𝑟 𝑌. We also know that 𝑋 ⪯𝑟𝑝𝑟 𝑌 

implies 𝑋 ⪯𝑝𝑟 𝑌  and in parallel 𝑋 ⪯𝑖𝑝𝑟 𝑌  gives 𝑋 ⪯𝑝𝑟 𝑌 . In 

Definition 2, the stochastic orders which consider magnitude of 

random variables rather than their relative aging behaviours are 

⪯𝑙𝑟 , ⪯ℎ𝑟 , ⪯𝑟ℎ and ⪯𝑠𝑡 (cf. Shaked and Shanthikumar [2]). The 

stochastic orders which compare the random lifetimes relative 

to each other are ⪯𝑝𝑟 , ⪯𝑟𝑝𝑟  and ⪯𝑖𝑝𝑟  (see, e.g., Zardasht and 

Asadi [32]).  

The following definition is regarding the aging property of 

a life unit. 

Definition 3 Let 𝑋  be a lifetime random variable with 

hazard rate ℎ𝑋 and reversed hazard rate 𝑟𝑋  It is said that 𝑋 has 

• Increasing [decreasing] failure rate (denoted as 𝑋 ∈ 𝐼𝐹𝑅 

[𝑋 ∈ 𝐷𝐹𝑅]), if ℎ𝑋(𝑡) is increasing [decreasing] in 𝑡 ≥ 0. 

• Increasing [decreasing] failure rate in average (denoted as 

𝑋 ∈ 𝐼𝐹𝑅𝐴 [𝑋 ∈ 𝐷𝐹𝑅𝐴]), if 
∫

𝑡
0 ℎ𝑋(𝑥)𝑑𝑥

𝑡
 is increasing [decreasing] 

in 𝑡 > 0. 

• Decreasing reversed hazard rate (denoted as 𝑋 ∈ 𝐷𝑅𝐻𝑅) 

if 𝑟𝑋(𝑡) is decreasing in 𝑡 > 0.  

It is well-known in literature that 𝑋 ∈ 𝐼𝐹𝑅  [ 𝑋 ∈ 𝐷𝐹𝑅 ] 

implies 𝑋 ∈ 𝐼𝐹𝑅𝐴 [𝑋 ∈ 𝐷𝐹𝑅𝐴] (see, e.g, Lai and Xie [33]). The 

following definition is due to Karlin [34] which be used 

frequently in the sequel. 

Definition 4 Let 𝑓(𝑥, 𝑦)  be a non-negative function  It is 

said that 𝑓  is Totally positive of order 2 ( 𝑇𝑃2   in (𝑥, 𝑦) ∈

𝒳 × 𝒴  where 𝒳  and 𝒴  are two arbitrary subsets of ℝ =

(−∞, +∞) whenever 

|
𝑓(𝑥1, 𝑦1)     𝑓(𝑥1, 𝑦2)  

𝑓(𝑥2, 𝑦1)     𝑓(𝑥2, 𝑦2)   
| ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥1 ≤ 𝑥2 ∈

                        𝒳, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦1 ≤ 𝑦2 ∈ 𝒴.              (1) 

If the direction of the inequality given after determinant in 

(1) is reversed then it is said that 𝑓 is Reverse regular of order 2 

(𝑅𝑅2) in (𝑥, 𝑦) ∈ 𝒳 × 𝒴. It is notable that the function 𝑓(𝑥, 𝑦) 

is 𝑇𝑃2  ( 𝑅𝑅2 ) in (𝑥, 𝑦) ∈ 𝒳 × 𝒴  if, and only if, 
𝑓( 𝑥2,𝑦)

𝑓( 𝑥1,𝑦)
  is 

increasing (decreasing) in 𝑦 ∈ 𝒴,  for all  𝑥1 ≤ 𝑥2 ∈ 𝒳,  where 

we use the conventions 
0

0
= 0 and 

𝑎

0
= +∞, for every 𝑎 > 0.    

3. Further insights on aging faster orders 

In this section, we concentrate on the aging faster orders to 

explain their properties and the conclusions that can be obtained 

by using such orders. By knowing the implications of aging 
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faster orders, further descriptions of these orders can be realized. 

In this section, using aging faster orders between two random 

lifetimes under some conditions for the ratio of their hazard 

rates or the ratio of their reversed hazard rates, which have a 

finite limit, some bounds on the stress strength reliability are 

provided. As a result, some connections are found between the 

probability order, which is a well-known stochastic order in the 

literature, and aging faster orders. Inequalities concerning the 

cumulative residual entropy and the cumulative past entropy of 

two random lifetimes satisfying an aging faster order are 

derived. In this direction, we show that if the underlying random 

lifetime has some aging properties, some bounds on its 

cumulative residual entropy and cumulative past entropy are 

acquired. The parameter 𝑅: = 𝑃(𝑌 > 𝑋) is very well-known as 

the stress-strength parameter in reliability. Brown and 

Rutemiller [35] in evaluation of 𝑃(𝑌 > 𝑋), when both 𝑋 and 𝑌 

are distributed as Weibull, have pointed out that to design as 

long-lived a product as possible one can consider the quantity 

𝑃(𝑌 > 𝑋)  and then choose 𝑋  or 𝑌  when this probability is 

greater or less than 
1

2
 , respectively. The quantity 𝑃(𝑌 > 𝑋) 

gives the reliability of 𝑌 relative to 𝑋.  

In the following we show that 𝑋 ⪯𝑐 𝑌  provides an upper 

bound and a lower bound for 𝑃(𝑌 > 𝑋) under some condition. 

Proposition 5  Let 𝑟0 = 𝑙𝑖𝑚𝑡→0
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
  and also let 𝑟1 =

𝑙𝑖𝑚𝑡→+∞
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
. Then    

• If 𝑟0 > 0, then 𝑋 ⪯𝑐 𝑌 implies 𝑃(𝑌 ≥ 𝑋) ≥
𝑟0

𝑟0+1
.  

• If 𝑟1 < +∞, then 𝑋 ⪯𝑐 𝑌 implies 𝑃(𝑌 ≥ 𝑋) ≤
𝑟1

𝑟1+1
.  

Further, if 𝑟0 ≥ 1, then 𝑋 ⪯𝑐 𝑌 implies 𝑋 ⪯𝑝𝑟 𝑌, and also if 

𝑟1 ≤ 1, then 𝑋 ⪯𝑐 𝑌 gives 𝑋 ⪰𝑝𝑟 𝑌.  

Proof. Since 𝑋 ⪯𝑐 𝑌,  thus 
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≤ 𝑟1 < +∞ , for all 𝑡 ≥ 0 . 

Hence, 𝑓𝑋(𝑡)�̅�𝑌(𝑡) ≤ 𝑟1𝑓𝑌(𝑡)�̅�𝑋(𝑡), for all 𝑡 ≥ 0. Since 𝑋 ⪯𝑐 𝑌 

involves only the marginal distributions of 𝑋  and 𝑌 , thus, we 

can take without loss of generality 𝑋 and 𝑌 as two independent 

random variables. We have  

𝑃(𝑌 ≥ 𝑋) = ∫
+∞

0

𝑓𝑋(𝑡)�̅�𝑌(𝑡)𝑑𝑡 ≤ 𝑟1 ∫
+∞

0

𝑓𝑌(𝑡)�̅�𝑋(𝑡)𝑑𝑡 

= 𝑟1𝑃(𝑌 < 𝑋) = 𝑟1 − 𝑟1𝑃(𝑌 ≥ 𝑋), 

which further implies that 𝑃(𝑌 ≥ 𝑋) ≤
𝑟1

𝑟1+1
. On the other hand, 

since 𝑋 ⪯𝑐 𝑌,  thus 
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≥ 𝑟0 > 0 , for all 𝑡 ≥ 0 . Therefore, 

𝑓𝑋(𝑡)�̅�𝑌(𝑡) ≥ 𝑟0𝑓𝑌(𝑡)�̅�𝑋(𝑡), for all 𝑡 ≥ 0. We have  

𝑃(𝑌 ≥ 𝑋) = ∫
+∞

0

𝑓𝑋(𝑡)�̅�𝑌(𝑡)𝑑𝑡 ≥ 𝑟0 ∫
+∞

0

𝑓𝑌(𝑡)�̅�𝑋(𝑡)𝑑𝑡 

= 𝑟0𝑃(𝑌 < 𝑋) = 𝑟0 − 𝑟0𝑃(𝑌 ≥ 𝑋), 

from which one can get 𝑃(𝑌 ≥ 𝑋) ≥
𝑟0

𝑟0+1
 . It is now 

straightforward that if 𝑟0 ≥ 1, then 
𝑟0

𝑟0+1
≥

1

2
, i.e., 𝑋 ⪯𝑝𝑟 𝑌, and 

analogously if 𝑟1 ≤ 1, then 
𝑟1

𝑟1+1
≤

1

2
, i.e., 𝑋 ⪰𝑝𝑟 𝑌.    ||  

If a system has an age 𝑡, it is important to take into account 

this age, when we compare the remaining lifetimes of the 

system. In this case 𝑋𝑡  and 𝑌𝑡  denote the additional residual 

lifetime of 𝑋 and 𝑌 given that the systems, have survived up to 

𝑡. The residual probability (rpr) function is defined as 

𝑅(𝑡) = 𝑃(𝑋𝑡 > 𝑌𝑡), 𝑡 > 0. 

The study of the properties of rpr function might be 

important for engineers and system designers to compare the 

lifetime of the products and, hence to design better products (see 

for instances, Tan and Lü [36] for some biological background 

and Lü and Chen [37], Chen et al. [38], and Zhou et al. [39] for 

some real world applications). The rpr function uniquely 

determines the distribution function of 𝐹  (and hence the 

distribution function of 𝐺), under the condition that the ratio of 

the hazard rates of 𝑋 and 𝑌 is known. In addition, when the ratio 

of the hazard rates of 𝑋 and 𝑌 is a monotone function of time 

i.e., when 𝑋 ⪯𝑐 𝑌  or 𝑋 ⪰𝑐 𝑌 , then the rpr function is also a 

monotone function of time. Hence, it is revealed that the rpr 

function as a relative measure of aging is closely related to the 

concept of aging faster order in the sense of hazard rate function. 

The rpr function was studied by Zardasht and Asadi [32] to 

establish several properties of stochastic comparisons based on 

the rpr function under the reliability operations of mixture and 

random minima. Further investigation on the rpr concept in the 

context of stochastic orders and aging notions has been made by 

Kayid et al. [40]. 

The following proposition is readily proved. The proof being 

straightforward is omitted.  
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Proposition 6  Let 𝑟0 = 𝑙𝑖𝑚𝑡→0
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
> 0 and also assume 

that 𝑟1 = 𝑙𝑖𝑚𝑡→+∞
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
< +∞. Then    

• If 𝑟0 ≥ 1, then 𝑋 ⪯𝑐 𝑌 implies 𝑋 ⪯𝑟𝑝𝑟 𝑌.  

• If 𝑟1 ≤ 1, then 𝑋 ⪯𝑐 𝑌 implies 𝑋 ⪰𝑟𝑝𝑟 𝑌.  

In Proposition 5 and Proposition 6, one may ask whether two 

conditions r0 > 0 and r1 < +∞ are satisfied. These conditions 

have been applied in Kayid [31] to develop aging faster orders 

of upper records and lower records. In the next remark, we 

illustrate sufficient conditions for r0 > 0 and r1 < +∞. We also 

illustrate that the orders ⪯𝑐 and ⪯𝑐∗  provide some connections 

between the orders ⪯ℎ𝑟 , ⪯st and ⪯𝑙𝑟 . 

Remark 7  

(a) In general  if 
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
  is bounded such that there exist 

𝑘1 < 𝑘2  where 0 < 𝑘𝑖 < +∞, 𝑖 = 1,2 for which 𝑘1 ≤

ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≤ 𝑘2  for all 𝑡 ≥ 0, or equivalently if 𝑘1ℎ𝑌(𝑡) ≤

ℎ𝑋(𝑡) ≤ 𝑘2ℎ𝑌(𝑡)  then 𝑟0 > 0  and 𝑟1 < +∞.  More 

specifically  if 𝑘1ℎ𝑌(𝑡) ≤ ℎ𝑋(𝑡)   for all 𝑡 ≥ 0,  then 

𝑟0 > 0  and if ℎ𝑋(𝑡) ≤ 𝑘2ℎ𝑌(𝑡),  for all 𝑡 ≥ 0,  then 

𝑟1 < +∞  If 𝑘1 = 1, then the former inequality means 

that 𝑋 ⪯ℎ𝑟 𝑌 and if 𝑘2 = 1  then the latter inequality 

means that 𝑋 ⪰ℎ𝑟 𝑌   

(b) It is notable that 𝑋 ⪯ℎ𝑟 𝑌  implies 𝑋 ⪯𝑠𝑡 𝑌  (see  

Theorem 1 B 1 in Shaked and Shanthikumar [2]   

however  the converse is not true in general  It is 

remarkable here that if 𝑋 ⪯𝑐∗ 𝑌  then 𝑋 ⪯𝑠𝑡 𝑌 implies 

𝑋 ⪯ℎ𝑟 𝑌. This is because 𝑋 ⪯𝑐∗ 𝑌 holds if  and only if   

ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≥

− 𝑙𝑛(𝐹𝑋(𝑡))

− 𝑙𝑛(�̅�𝑌(𝑡))
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.  (2) 

 Thus  if 𝑋 ⪯𝑠𝑡 𝑌   then 
−𝑙𝑛(𝐹𝑋(𝑡))

−𝑙𝑛(𝐹𝑌(𝑡))
≥ 1,  for all 𝑡 ≥ 0   and 

consequently  
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≥ 1, for all 

       𝑡 ≥ 0  which means 𝑋 ⪯ℎ𝑟 𝑌   

(c) Since the order ⪯𝑐  implies the order ⪯𝑐∗ ,  thus if 

𝑋 ⪯𝑐 𝑌  and 𝑋 ⪯𝑠𝑡 𝑌   then 𝑋 ⪯ℎ𝑟 𝑌.  According to 

Theorem 1 C 4(a  of Shaked and Shanthikumar [2]  if 

𝑋 ⪯ℎ𝑟 𝑌  and 𝑋 ⪰𝑐 𝑌,  then 𝑋 ⪯𝑙𝑟 𝑌.  This 

acknowledges that the aging faster orders have an 

essential role in making connections between well-

known magnitude orders  

The following proposition strengthens the result of 

Proposition 5(i) as 𝑋 ⪯𝑐 𝑌 is a stronger condition than 𝑋 ⪯𝑐∗ 𝑌. 

Proposition 8  Let 𝑟0 = 𝑙𝑖𝑚𝑡→0
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
> 0   If 𝑟0 ≥ 1,  then 

𝑋 ⪯𝑐∗ 𝑌 implies 𝑋 ⪯𝑟𝑝𝑟 𝑌.  

Proof. Suppose that 𝑋 ⪯𝑐∗ 𝑌.  Now, for all 𝑡 ≥ 0 , one has 

the following  

𝑓𝑋(𝑡)�̅�𝑌(𝑡)

𝑓𝑌(𝑡)�̅�𝑋(𝑡)
=

ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≥

−ln(�̅�𝑋(𝑡))

−ln(�̅�𝑌(𝑡))
≥ lim

𝑡→0+

−ln(�̅�𝑋(𝑡))

−ln(�̅�𝑌(𝑡))
 

= lim
𝑡→0+

ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
= 𝑟0, 

where the first inequality is due to (2), the second inequality 

holds because 
−ln(𝐹𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
  is increasing in 𝑡 ≥ 0  and the last 

inequality follows by using the L’Hôpital’s rule. Now, since for 

all 𝑡 ≥ 0,  𝑓𝑋(𝑡)�̅�𝑌(𝑡) ≥ 𝑟0. 𝑓𝑌(𝑡)�̅�𝑋(𝑡),  thus 
∫

𝑥
0 𝑓𝑋(𝑡)𝐹𝑌(𝑡)𝑑𝑡

∫
𝑥

0 𝑓𝑌(𝑡)𝐹𝑋(𝑡)𝑑𝑡
≥ 𝑟0. 

Hence, if 𝑟0 ≥ 1, then from definition 𝑋 ⪯𝑟𝑝𝑟 𝑌.   || 

It is remarkable here that in the context of Proposition 5, we 

could find the lower bound 
𝑟0

𝑟0+1
  under a weaker condition. 

Specifically, if 𝑋 ⪯𝑐∗ 𝑌 and 𝑟0 > 0, then 𝑃(𝑌 > 𝑋) ≥
𝑟0

𝑟0+1
. It is 

notable here that in Proposition 5, Proposition 6 and Proposition 

8, if 𝑟0 = 0 and 𝑟1 = +∞ then all the derived inequalities and 

achieved bounds become obvious.  

The following proposition presents a lower bound and an 

upper bound for the sf of 𝑋 based on the sf of 𝑌. 

Proposition 9  The following assertions are satisfied:   

• Let 𝑟0 = lim𝑡→0
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
> 0. Then, 𝑋 ⪯𝑐∗ 𝑌 implies �̅�𝑋(𝑡) ≤

�̅�𝑌
𝑟0(𝑡), for all 𝑡 ≥ 0. 

• Let 𝑟1 = lim𝑡→+∞
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
< +∞ . Then, 𝑋 ⪯𝑐∗ 𝑌  implies 

�̅�𝑋(𝑡) ≥ �̅�𝑌
𝑟1(𝑡), for all 𝑡 ≥ 0.  

Proof. By definition, 𝑋 ⪯𝑐∗ 𝑌  provides that 
−ln(𝐹𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
  is 

increasing in 𝑡 ≥ 0, thus  

 
−ln(𝐹𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
≥ lim

𝑡→0

−ln(𝐹𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
= 𝑟0, 

from which one gets −ln(�̅�𝑋(𝑡)) ≥ 𝑟0. (−ln(�̅�𝑌(𝑡))), for all 

𝑡 ≥ 0,  or equivalently, �̅�𝑋(𝑡) ≤ �̅�𝑌
𝑟0(𝑡),  for all 𝑡 ≥ 0 . In a 

similar manner, since 𝑋 ⪯𝑐∗ 𝑌, thus  
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−ln(𝐹𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
≤ lim

𝑡→+∞

−ln(𝐹𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
= 𝑟1, 

leading to −ln(�̅�𝑋(𝑡)) ≤ 𝑟1. (−ln(�̅�𝑌(𝑡))),  for all 𝑡 ≥ 0,  or 

equivalently, �̅�𝑋(𝑡) ≥ �̅�𝑌
𝑟1(𝑡), for all 𝑡 ≥ 0.   || 

In the context of Proposition 9, let 𝑌∗ follow the sf �̅�𝑌
𝑟0(𝑡) 

and also let �̃� follow the sf �̅�𝑌
𝑟1(𝑡). Then, this proposition gives 

some limiting conditions on the ratio of the hazard rate 

functions of 𝑋 and 𝑌 under which 𝑋 ⪯𝑐∗ 𝑌 yields 𝑋 ⪯𝑠𝑡 𝑌∗ and 

�̃� ⪯𝑠𝑡 𝑋 . Note that the rvs 𝑌∗  and �̃�  follow the proportional 

hazard rates (PHR) model (see, e.g., Cox [41] and Kumar and 

Klefsjö [42]). Indeed, we established that if 𝑋 ⪯𝑐∗ 𝑌 and 𝑟0 >

0, then the random lifetime 𝑋 is dominated, in the sense of the 

usual stochastic order, by a member of distributions which have 

a hazard rate being proportional to the hazard rate of 𝑌.  Further, 

we demonstrated that if 𝑋 ⪯𝑐∗ 𝑌 and 𝑟1 < +∞, then the random 

lifetime 𝑋  dominates, in terms of the usual stochastic order,  

a member of distributions which have a hazard rate being 

proportional to the hazard rate of 𝑌.  It is notable here that if 

𝑋 ⪯𝑐∗ 𝑌, then 𝑟0 ≤ 𝑟1. Let us denote by 𝐸𝑥𝑝(𝜆), a non-negative 

random variable with exponential distribution having mean 1/𝜆. 

Note then that 𝑋  is 𝐼𝐹𝑅  if, and only if, 𝑋 ⪯𝑐 𝐸𝑥𝑝(𝜆) . 

Furthermore, 𝑋  is 𝐼𝐹𝑅𝐴  if, and only if, 𝑋 ⪯𝑐∗ 𝐸𝑥𝑝(𝜆) . The 

exponential distribution is a standard life distribution which 

confirms that there is no wear and tear, and as a result,  

a component with exponential lifetime never ages. Comparison 

between the exponential distribution and other life distributions 

may, therefore, develop a method to assess the degree of aging 

of component.  

The following corollary presents a lower bound and an upper 

bound for the probability 𝑃(𝑋 < 𝐸𝑥𝑝(𝜆)). The proof of part (i) 

of this corollary obtains from Proposition 8 and the proof of part 

(ii) of this corollary is obtained by applying Proposition 5 into 

the special case where 𝑌 is an exponential random variable with 

mean 1/𝜆. 

Corollary 10 Let 𝑋  and 𝐸𝑥𝑝(𝜆)  be two independent 

random variables  Then:   

• If ℎ𝑋(0) > 0,  and 𝑋  is 𝐼𝐹𝑅𝐴,  then 𝑃(𝑋 < 𝐸𝑥𝑝(𝜆)) ≥

ℎ𝑋(0)

ℎ𝑋(0)+𝜆
. 

• If ℎ𝑋(∞) < +∞  and 𝑋  is 𝐼𝐹𝑅,  then 𝑃(𝑋 < 𝐸𝑥𝑝(𝜆)) ≤

ℎ𝑋(∞)

ℎ𝑋(∞)+𝜆
.  

It is a well-known principle that between any two rational 

numbers, there is an irrational number. Thus, one can always 

find an irrational number such as 𝑟0 or 𝑟1 between two rational 

numbers. Therefore, it is commonly acceptable that for each 𝑟0, 

there exist 𝑛𝑖  and 𝑚𝑖 , for 𝑖 = 1,2,  such that 
𝑚1

𝑛1
≤ 𝑟𝑗 ≤

𝑚2

𝑛2
, 

where 𝑗 = 0,1 . In view of this point, the following corollary 

presents a conclusion of Proposition 9.  

Corollary 11  Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 𝐹𝑋 

and also let 𝑌1, 𝑌2, … , 𝑌𝑚  be another random sample from 𝐹𝑌   

Let 𝑋1:𝑛 = 𝑚𝑖𝑛{𝑋1, 𝑋2, … , 𝑋𝑛} and 𝑌1:𝑚 = 𝑚𝑖𝑛{𝑌1, 𝑌2, … , 𝑌𝑚}     

• Let 𝑋 ⪯𝑐⋆ 𝑌  such that 𝑟0 = lim𝑡→0
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≥ 1 . Then, there 

exist 𝑚 ≥ 𝑛 ∈ ℕ, such that 𝑋1:𝑛 ⪯𝑠𝑡 𝑌1:𝑚. 

• Let 𝑋 ⪯𝑐⋆ 𝑌  such that 1 ≤ 𝑟1 = lim𝑡→+∞
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
< +∞. 

Then, there exist 𝑚′ ≥ 𝑛′ ∈ ℕ, such that 𝑋1:𝑛′ ⪰𝑠𝑡 𝑌1:𝑚′.  

In the context of information theory, Rao et al. [43] proposed 

the cumulative residual entropy (CRE) as  

ℰ(𝑋) = − ∫
+∞

0
�̅�(𝑥)ln(�̅�(𝑥))𝑑𝑥.   

Properties of the CRE and its dynamic version and some 

other generalization of this measure together with their 

properties are discussed in detail in Asadi and Zohrevand [44], 

Navarro et al. [45], Psarrakos and Navarro [46], Psarrakos and 

Toomaj [47], Tahmasebi and Mohammadi [48], Mohamed et al. 

[49], among others. 

Next, we establish a result which provides a lower bound 

and an upper bound for the CRE of 𝑋.  

Proposition 12  The following assertions are satisfied:   

• Let 𝑟0 = lim𝑡→0
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
 . Let 𝑟0 > 0  and 𝑋 ⪰𝑠𝑡 𝑌 . Then, 

𝑋 ⪯𝑐∗ 𝑌 implies that ℰ(𝑋) ≥ 𝑟0ℰ(𝑌). 

• Let 𝑟1 = lim𝑡→+∞
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
 . Let 𝑟1 < +∞  and 𝑋 ⪯𝑠𝑡 𝑌 . Then, 

𝑋 ⪯𝑐∗ 𝑌 implies that ℰ(𝑋) ≤ 𝑟1ℰ(𝑌).  

Proof. Part (i): Since 𝑋 ⪰𝑠𝑡 𝑌, thus 
𝐹𝑋(𝑡)

𝐹𝑌(𝑡)
≥ 1, for all 𝑡 ≥ 0. 

Thus, for all 𝑡 ≥ 0, one has the following  

−�̅�𝑋(𝑡)ln(�̅�𝑋(𝑡))

−�̅�𝑌(𝑡)ln(�̅�𝑌(𝑡))
≥

−ln(�̅�𝑋(𝑡))

−ln(�̅�𝑌(𝑡))
≥ lim

𝑡→0

−ln(�̅�𝑋(𝑡))

−ln(�̅�𝑌(𝑡))
= 𝑟0, 

where the second inequality is due to the fact that 
−ln(�̅�𝑋(𝑡))

−ln(𝐹𝑌(𝑡))
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is increasing in 𝑡 ≥ 0 , since 𝑋 ⪯𝑐∗ 𝑌 . Therefore, 

−�̅�𝑋(𝑡)ln(�̅�𝑋(𝑡)) ≥ −𝑟0�̅�𝑌(𝑡)ln(�̅�𝑌(𝑡)), for all 𝑡 ≥ 0. Hence,  

ℰ(𝑋) = − ∫
+∞

0

�̅�𝑋(𝑡)ln(�̅�𝑋(𝑡))𝑑𝑡

≥ −𝑟0 ∫
+∞

0

�̅�𝑌(𝑡)ln(�̅�𝑌(𝑡))𝑑𝑡 = 𝑟0ℰ(𝑌). 

Thus the proof of Part (i) is completed. The proof of Part (ii) 

can be similarly obtained.           || 

The following corollary presents an application of 

Proposition 12. 

Corollary 13 Let 𝑐0 = 𝑙𝑖𝑚𝑡→0ℎ𝑋(𝑡)  and let 𝑐1 =

𝑙𝑖𝑚𝑡→+∞ℎ𝑋(𝑡). Then  

• If 𝑋 is 𝐼𝐹𝑅𝐴, if there exists a 𝜆 > 0 such that 𝑐1 ≤ 𝜆 and 

also if 𝑐0 > 0, then, ℰ(𝑋) ≥
𝑐0

𝜆2. 

• If 𝑋  is 𝐷𝐹𝑅𝐴 , and there exists a 𝜆 > 0  such that 𝑐0 ≤ 𝜆 

where 𝑐0 > 0, then, ℰ(𝑋) ≥
𝑐0

𝜆2. 

• If 𝑋 is 𝐼𝐹𝑅𝐴, and if there exists a 𝜆 > 0 such that 𝑐0 ≥ 𝜆 

and 𝑐1 < +∞, then, ℰ(𝑋) ≤
𝑐1

𝜆2. 

• If 𝑋  is 𝐷𝐹𝑅𝐴  and there exists a 𝜆 > 0  such that 𝑐1 ≥ 𝜆 

where 𝑐1 < +∞, then, ℰ(𝑋) ≤
𝑐1

𝜆2.  

Proof. We only prove Part (i). The other parts can be proved 

analogously. Suppose that 𝑌  has an exponential distribution 

with mean 1/𝜆 . We shall write 𝐸𝑥𝑝(𝜆)  in place of 𝑌 . Then, 

since 𝑋 is IFRA, thus 𝑋 ⪯𝑐∗ 𝐸𝑥𝑝(𝜆). On the other hand, since 

𝑋 is IFRA, thus −
1

𝑡
ln(�̅�(𝑡)) is increasing in 𝑡 > 0. Thus, since 

from assumption 𝑟1 ≤ 𝜆, thus  

−
1

𝑡
ln(�̅�(𝑡)) ≤ lim

𝑡→+∞
−

1

𝑡
ln(�̅�(𝑡)) = lim

𝑡→+∞
ℎ𝑋(𝑡) = 𝑐1

≤ 𝜆, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0, 

which holds if, and only if, �̅�𝑋(𝑡) ≥ exp(−𝜆𝑡),  for all 𝑡 ≥ 0 . 

This is equivalent to saying that 𝑋 ⪰𝑠𝑡 𝐸𝑥𝑝(𝜆) . Now, 𝑟0 =
𝑐0

𝜆
 

which is positive by assumption. Now, by using Proposition 12(i) 

we conclude that ℰ(𝑋) ≥
𝑐0

𝜆
ℰ(𝑌). By some routine calculation, 

we get ℰ(𝑌) = ℰ(𝐸𝑥𝑝(𝜆)) =
1

𝜆
 . Hence, ℰ(𝑋) ≥

𝑐0

𝜆2  and the 

required result of Part (i) is obtained.  

Now, we show that 𝑋 ⪯𝑏 𝑌  gives an upper bound and  

a lower bound for 𝑃(𝑌 > 𝑋)  under some limiting conditions. 

The proof is similar to the one of Proposition 5 and hence we 

omit it. 

Proposition 14  Set �̃�0 = 𝑙𝑖𝑚𝑡→0+
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
  and set �̃�1 =

𝑙𝑖𝑚𝑡→+∞
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
. Then    

• If �̃�0 < +∞, then 𝑋 ⪯𝑏 𝑌 yields 𝑃(𝑌 ≥ 𝑋) ≥
1

�̃�0+1
. 

• If �̃�1 > 0, then 𝑋 ⪯𝑏 𝑌 implies 𝑃(𝑌 ≥ 𝑋) ≤
1

�̃�1+1
.  

In addition, if �̃�0 ≤ 1, then 𝑋 ⪯𝑏 𝑌 implies 𝑋 ⪯𝑝𝑟 𝑌, and if 

�̃�1 ≥ 1, then 𝑋 ⪯𝑏 𝑌 gives 𝑋 ⪰𝑝𝑟 𝑌. 

In the context of Proposition 14, we give some illustrations 

of the conditions r̃0 < +∞ and r̃1 > 0 in the following remark. 

The orders ⪯𝑏  and ⪯𝑏∗   make some links between the orders 

⪯𝑟ℎ, ⪯st and ⪯𝑙𝑟  as we illustrate in this remark.  

Remark 15  

(a) If 
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
  is bounded such that there exist 𝑘′1 < 𝑘′2   

where 0 < 𝑘′𝑖 < +∞, 𝑖 = 1,2  for which 𝑘′1 ≤
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≤

𝑘′2   for all 𝑡 > 0,  or equivalently if 𝑘′1𝑟𝑌(𝑡) ≤

𝑟𝑋(𝑡) ≤ 𝑘′2𝑟𝑌(𝑡)  then �̃�0 < +∞  and �̃�1 > 0   To be 

more specific  if 𝑘′1𝑟𝑌(𝑡) ≤ 𝑟𝑋(𝑡)   for all 𝑡 > 0,  then 

�̃�1 > 0  and if 𝑟𝑋(𝑡) ≤ 𝑘′2𝑟𝑌(𝑡),  for all 𝑡 > 0,  then 

�̃�0 < +∞   If 𝑘′1 = 1  and 𝑘′2 = 1  then the foregoing 

inequalities reduce to 𝑋 ⪰𝑟ℎ 𝑌 and 𝑋 ⪯𝑟ℎ 𝑌   

(b) It is well-known that 𝑋 ⪯𝑟ℎ 𝑌  implies 𝑋 ⪯𝑠𝑡 𝑌  (see  

Theorem 1 B 42 of Shaked and Shanthikumar [2]   The 

reversed implication is not correct anyway  ee remark 

here that if 𝑋 ⪯𝑏∗ 𝑌   then 𝑋 ⪰𝑠𝑡 𝑌  implies 𝑋 ⪰𝑟ℎ 𝑌. 

Note that 𝑋 ⪯𝑏∗ 𝑌 if  and only if   

𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≥

− ln(𝐹𝑋(𝑡))

− ln(𝐹𝑌(𝑡))
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0.   

Hence  provided that 𝑋 ⪰𝑠𝑡 𝑌  holds true  then 
−𝑙𝑛(𝐹𝑋(𝑡))

−𝑙𝑛(𝐹𝑌(𝑡))
≥ 1, 

for all 𝑡 > 0  and as a result  

 
 𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≥ 1, for all 𝑡 > 0, i.e., 𝑋 ⪰𝑟ℎ 𝑌.   

(c)  It is to be mentioned that the order ⪯𝑏  implies the 

order ⪯𝑏∗, thus if 𝑋 ⪯𝑏 𝑌 and 𝑋 ⪰𝑠𝑡 𝑌  then 𝑋 ⪰𝑟ℎ 𝑌. 

According to Theorem 1 C 4(b  of Shaked and 
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Shanthikumar [2]  if 𝑋 ⪯𝑟ℎ 𝑌  and 𝑋 ⪯𝑏 𝑌,  then 

𝑋 ⪯𝑙𝑟 𝑌.  

If it has become apparent that a system has failed before the 

time 𝑡, it is important to take into account the accurate time of 

its failure. To achieve this goal, the inactivity time of the system 

at the time 𝑡 at which the failure of the system has been recorded 

after delay, is an important random variable. In such a situation 

𝑋(𝑡) and 𝑌(𝑡) are assumed to be the inactivity times of the system 

with lifetime 𝑋 and the system with life length 𝑌 provided that 

the systems, have failed prior to the time 𝑡.  The inactivity 

probability (ip) function is given by (cf. Abouelmagd et al. [50])  

𝑅∗(𝑡) = 𝑃(𝑋(𝑡) > 𝑌(𝑡)), 𝑡 > 0. 

Let 𝑋  and 𝑌  denote the lifetime of devices 𝐴  and 𝐵 , 

respectively. The ip function then measures the probability for 

device 𝐴  to be failed before the device 𝐵 , provided that both 

devices fail before time point 𝑡. The following proposition can 

be proved in a similar manner with Proposition 6 and 

Proposition 8. 

Proposition 16  The following assertions hold true:   

• Let �̃�0 = lim𝑡→0+
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≤ 1 and 𝑋 ⪯𝑏 𝑌. Then, 𝑋 ⪯𝑖𝑝𝑟 𝑌. 

• Let �̃�1 = lim𝑡→+∞
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≥ 1 and 𝑋 ⪯𝑏⋆ 𝑌. Then, 𝑋 ⪰𝑖𝑝𝑟 𝑌.  

The following result is similar to the result of Proposition 9 

presents a lower bound and an upper bound for the sf of 𝑋 based 

on the sf of 𝑌. 

Proposition 17  The following implications hold:   

• Let �̃�0 = lim𝑡→0+
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
< +∞ . Then, 𝑋 ⪯𝑏∗ 𝑌  provides 

that 𝐹𝑋(𝑡) ≥ 𝐹𝑌
�̃�0(𝑡), for all 𝑡 ≥ 0. 

• Let �̃�1 = lim𝑡→+∞
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
> 0 . Then, 𝑋 ⪯𝑏∗ 𝑌  provides that 

𝐹𝑋(𝑡) ≤ 𝐹𝑌
�̃�1(𝑡), for all 𝑡 ≥ 0.  

In Proposition 17, suppose that 𝑌∗∗ follows the cdf 𝐹𝑌
�̃�0(𝑡) 

and suppose that �̌�  follows the cdf 𝐹𝑌
�̃�1(𝑡).  Then, this 

proposition presents some limiting conditions on the ratio of the 

reversed hazard rate functions of 𝑋  and 𝑌  under which 

𝑋 ⪯𝑏∗ 𝑌  implies 𝑋 ⪯𝑠𝑡 𝑌∗∗ and �̌� ⪯𝑠𝑡 𝑋 . The rvs 𝑌∗∗  and �̌� 

have distributions with proportional reversed hazard rates 

(PRHR) model (see, for example, Di Crescenzo [7] and Gupta 

and Gupta [51]). In Proposition 17, it was shown that if 

𝑋 ⪯𝑏∗ 𝑌  and �̃�0 < +∞, then 𝑋 is dominated, in the sense of the 

usual stochastic order, by a member of distributions which have 

a reversed hazard rate being proportional to the reversed hazard 

rate of 𝑌 .  We also proved that if 𝑋 ⪯𝑏∗ 𝑌  and �̃�1 > 0  then 𝑋 

dominates, in the usual stochastic order, a member of 

distributions which have a reversed hazard rate being 

proportional to the reversed hazard rate of 𝑌.  Note that these 

conclusions together with conclusions given after Proposition 9 

could represent useful applications of these results in the context 

of the relevant PHR and PRHR models. 

In information theory, Di Crescenzo and Longobardi [52] 

proposed the cumulative past entropy (CPE) as  

ℰ⋆(𝑋) = − ∫
+∞

0
𝐹(𝑥)ln(𝐹(𝑥))𝑑𝑥.   

In the following, we find a lower bound and an upper bound 

for the CPE of 𝑋. Its proof is similar to the one of Proposition 

12 and hence we omit it.  

Proposition 18  ee have the following assertions: 

• Let �̃�0 = lim𝑡→0+
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
 . Let �̃�0 < +∞  and 𝑋 ⪰𝑠𝑡 𝑌 . Then, 

𝑋 ⪯𝑏∗ 𝑌 yields ℰ⋆(𝑋) ≤ �̃�0ℰ⋆(𝑌). 

• Let �̃�1 = lim𝑡→+∞
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
 . Let �̃�1 > 0  and 𝑋 ⪯𝑠𝑡 𝑌 . Then, 

𝑋 ⪯𝑏∗ 𝑌 yields ℰ⋆(𝑋) ≥ �̃�1ℰ⋆(𝑌).  

The next corollary presents a conclusion of Proposition 17.  

Corollary 19 Consider 𝑋1, 𝑋2, … , 𝑋𝑛  as a random sample 

from 𝐹𝑋 and 𝑌1, 𝑌2, … , 𝑌𝑚 as a random sample from 𝐹𝑌  Denote 

𝑋𝑛:𝑛 = 𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑛} and 𝑌𝑚:𝑚 = 𝑚𝑎𝑥{𝑌1, 𝑌2, … , 𝑌𝑚}     

• Let 𝑋 ⪯𝑏⋆ 𝑌  such that �̃�0 = lim𝑡→0
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≤ 1 . Then, there 

exist 𝑚 ≥ 𝑛 ∈ ℕ, for which 𝑋𝑛:𝑛 ⪯𝑠𝑡 𝑌𝑚:𝑚. 

• Let 𝑋 ⪯𝑏⋆ 𝑌 such that �̃�1 = lim𝑡→+∞
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≥ 1. Then, there 

exist 𝑚′ ≥ 𝑛′ ∈ ℕ, for which 𝑋𝑛′:𝑛′ ⪰𝑠𝑡 𝑌𝑚′:𝑚′.  

4. Aging faster orders of upper records 

There are two results regarding the preservation of the order 

“⪯𝑐” under upper records. In this section, we first restate those 

results from Kayid [31].  

Proposition 20  (Kayid [31]    

Let 𝑋 ⪰𝑠𝑡 𝑌 and also let 𝑚 ≥ 𝑛 ∈ ℕ. Then, 𝑋 ⪯𝑐 𝑌 implies 

𝑋𝑈𝑚
⪯𝑐 𝑌𝑈𝑛

.  

The result of Proposition 20 is applicable when the 

underlying distributions from which the upper records are 

adopted, are ordered according to the usual stochastic order in 
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the opposite direction of the relative aging ordering among the 

underlying distributions. It is shown by Proposition 20 that 

since “𝑚 ≥ 𝑛” thus the initial upper records are less frailer than 

the final upper records in terms of the relative hazard rate order. 

Let 𝜓𝑛(𝑢) =
𝑢𝜉′𝑛(𝑢)

𝜉𝑛(𝑢)
 where 

𝜉𝑛(𝑢) = (𝑛 − 1)! ∑𝑛−1
𝑖=0

(−ln(𝑢))𝑖−𝑛+1

𝑖!
, for 𝑢 ∈ (0,1)    (3) 

The following result, however, relaxes the two conditions of 

Proposition 20. Despite, the conditions “𝑟0 > 0” and “𝑟1 < +∞” 

are necessary through this development.  

Proposition 21  (Kayid [31]    

If sup0<𝑢<1
𝜓𝑛(𝑢)

𝜓𝑚(𝑢𝑟1)
≤ 𝑟0 then, 𝑋 ⪯𝑐 𝑌 implies 𝑋𝑈𝑚

⪯𝑐 𝑌𝑈𝑛
.  

From Sengupta and Deshpande [4], it is known that 𝑋 ⪯𝑐 𝑌 

is equivalent to −ln(�̅�𝑌(𝑋))  is 𝐼𝐹𝑅  and, further, 𝑋 ⪯𝑐⋆ 𝑌  is 

equivalent to −ln(�̅�𝑌(𝑋))  is 𝐼𝐹𝑅𝐴 . Since the 𝐼𝐹𝑅  property 

implies the 𝐼𝐹𝑅𝐴  property, and the converse is not true in 

general thus 𝑋 ⪯𝑐⋆ 𝑌 does not imply 𝑋 ⪯𝑐 𝑌. However, 𝑋 ⪯𝑐 𝑌 

implies 𝑋 ⪯𝑐⋆ 𝑌  as mentioned earlier. The following example 

illustrates a situation where 𝑋 ⪯𝑐⋆ 𝑌 but 𝑋 ⋠𝑐 𝑌  

Example 22  Suppose that 𝑋  and 𝑌  are two non-negative 

rvs with respective sfs  

�̅�𝑋(𝑥) = {
exp(−𝑥2),    if 0 ≤ 𝑥 ≤ 1

exp(−𝑥3),    if 𝑥 ≥ 1        
,

�̅�𝑌(𝑥) = {
exp(−𝑥(𝑥 + 1)), if 0 ≤ 𝑥 ≤ 1 

exp(−𝑥2(1 + 𝑥)), if 𝑥 ≥ 1.       
   

Now, one can see readily that 
−ln(𝐹𝑋(𝑥))

−ln(𝐹𝑌(𝑥))
=

𝑥

𝑥+1
  which is 

increasing in 𝑥 ≥ 0. This means 𝑋 ⪯𝑐∗ 𝑌. However, one can see 

that  

ℎ𝑋(𝑡) = {
2𝑡,    if 0 ≤ 𝑡 ≤ 1

3𝑡2,    if 𝑡 > 1      
,

ℎ𝑌(𝑡) = {
1 + 2𝑡, if 0 ≤ 𝑡 ≤ 1 

2𝑡 + 3𝑡2, if 𝑡 > 1.       
   

It is observed that 
ℎ𝑋(1)

ℎ𝑌(1)
=

2

3
  while lim𝑡→1+

ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
=

3

5
. 

Therefore, 
ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
 is not increasing in 𝑡 ≥ 0, and this clarifies that 

𝑋 ⋠𝑐 𝑌.  

We now present a result similar to Proposition 20 in which 

the order “⪯𝑐” is replaced with the weaker order “⪯𝑐∗”.  

Theorem 23  Let 𝑋 ⪰𝑠𝑡 𝑌  and also let 𝑚 ≥ 𝑛 ∈ ℕ   Then  

𝑋 ⪯𝑐⋆ 𝑌 implies 𝑋𝑈𝑚
⪯𝑐⋆ 𝑌𝑈𝑛

   

Proof. We only need to prove that 𝑋𝑈𝑛
⪯𝑐∗ 𝑌𝑈𝑛

  under 

assumptions of the theorem. From Kayid [31], the hazard rate 

functions of 𝑋𝑈𝑛
 and 𝑌𝑈𝑛

 are respectively given by  

ℎ𝑋𝑈𝑛
(𝑡) =

ℎ𝑋(𝑡)

𝜉𝑛(𝐹𝑋(𝑡))
𝑎𝑛𝑑 ℎ𝑌𝑈𝑛

(𝑡) =
ℎ𝑌(𝑡)

𝜉𝑛(𝐹𝑌(𝑡))
,   

where 𝜉𝑛 is given in (3). Furthermore, the sfs of 𝑋𝑈𝑛
 and 𝑌𝑈𝑛

 are 

respectively obtained as  

�̅�𝑋𝑈𝑛
(𝑡) = 𝑑𝑛(�̅�𝑋(𝑡)) 𝑎𝑛𝑑 �̅�𝑌𝑈𝑛

(𝑡) = 𝑑𝑛(�̅�𝑌(𝑡)), 

where 𝑑𝑛(𝑢) = 𝑢 ∑𝑛−1
𝑘=0

(−ln(𝑢))𝑘

𝑘!
. It is to be mentioned here that 

𝑋𝑈𝑛
 and 𝑌𝑈𝑛

 have distorted survival functions from the ones of 

𝑋 and 𝑌, respectively, through the distortion 𝑑𝑛 for all 𝑛 ∈ ℕ, 

see Section 2.4 in Navarro [53] for more details about distortion 

functions. From Equation (2), 𝑋 ⪯𝑐∗ 𝑌 if, and only if,  

ℎ𝑋(𝑡)

ℎ𝑌(𝑡)
≥

Λ𝐹𝑋
(𝑡)

Λ𝐹𝑌(𝑡)
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.   (4) 

Similarly, 𝑋𝑈𝑛
⪯𝑐∗ 𝑌𝑈𝑛

 if, and only if,  

 
ℎ𝑋𝑈𝑛

(𝑡)

ℎ𝑌𝑈𝑛
(𝑡)

≥
Λ𝐹𝑋𝑈𝑛

(𝑡)

Λ𝐹𝑌𝑈𝑛
(𝑡)

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0,    

or equivalently, if  

 
ℎ𝑋(𝑡).𝜉𝑛(𝐹𝑌(𝑡))

ℎ𝑌(𝑡).𝜉𝑛(𝐹𝑋(𝑡))
≥

− ln(𝑑𝑛(𝐹𝑋(𝑡)))

− ln(𝑑𝑛(𝐹𝑌(𝑡)))
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.  

 From the inequality (4), it suffices to prove that  

−ln(𝐹𝑋(𝑡))

−ln(𝑑𝑛(𝐹𝑋(𝑡)))𝜉𝑛(𝐹𝑋(𝑡))
≥

− ln(𝐹𝑌(𝑡))

− ln(𝑑𝑛(�̅�𝑌(𝑡)))𝜉𝑛(�̅�𝑌(𝑡))
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.     (5) 

Since from assumption 𝑋 ⪰𝑠𝑡 𝑌, thus �̅�𝑋(𝑡) ≥ �̅�𝑌(𝑡), for all 

𝑡 ≥ 0. Hence, (5) holds true when  

−ln(𝑢)

−ln(𝑑𝑛(𝑢))𝜉𝑛(𝑢)
is increasing in 𝑢 ∈ (0,1). 

We can equivalently prove that  

𝑦

𝜉𝑛(𝑒−𝑦). (−ln(𝑑𝑛(𝑒−𝑦)))
is decreasing in 𝑦 > 0. 

This is also equivalent to saying that  

1

𝑦
𝜉𝑛(𝑒−𝑦). (−ln(𝑑𝑛(𝑒−𝑦))) is increasing in 𝑦 > 0.    (6) 

 Note that since 𝜉𝑛(𝑢) =
𝑑𝑛(𝑢)

𝑢𝑑𝑛′(𝑢)
, thus for every 𝑦 > 0,  

−ln(𝑑𝑛(𝑒−𝑦)) = ∫
𝑦

0

𝑒−𝑥𝑑𝑛′(𝑒−𝑥)

𝑑𝑛(𝑒−𝑥)
𝑑𝑥 = ∫

𝑦

0

𝑑𝑥

𝜉𝑛(𝑒−𝑥)
. 

Now, one can see that (6) is satisfied if, and only if,  

1

𝑦
∫

𝑦

0

𝜉𝑛(𝑒−𝑦)

𝜉𝑛(𝑒−𝑥)
𝑑𝑥 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛 𝑦 > 0.            (7) 

By the change of variable 𝑥 = 𝑧𝑦  in the integral (7), we 
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obtain  

1

𝑦
∫

𝑦

0

𝜉𝑛(𝑒−𝑦)

𝜉𝑛(𝑒−𝑥)
𝑑𝑥 = ∫

1

0

𝜉𝑛(𝑒−𝑦)

𝜉𝑛(𝑒−𝑧𝑦)
𝑑𝑧 = ∫

1

0

∑𝑛−1
𝑖=0

𝑦𝑖−𝑛+1

𝑖!

∑𝑛−1
𝑖=0

(𝑧𝑦)𝑖−𝑛+1

𝑖!

𝑑𝑧 

= ∫
1

0

∑𝑛−1
𝑖=0

𝑦𝑖

𝑖!

∑𝑛−1
𝑖=0 𝑧𝑖−𝑛+1 𝑦𝑖

𝑖!

𝑑𝑧. 

Therefore, it is sufficient to prove that, for every 𝑧 ∈ (0,1),    

 𝜙(𝑦, 𝑧) =
∑𝑛−1

𝑖=0
𝑦𝑖

𝑖!

∑𝑛−1
𝑖=0 𝑧𝑖−𝑛+1𝑦𝑖

𝑖!

 is increasing in 𝑦 > 0.  

Let us define the function 𝐾 of 𝑦 > 0 and 𝑗 = 1,2, for fixed 

𝑧 ∈ (0,1) as follows:  

 𝐾(𝑗, 𝑦) = ∑𝑛−1
𝑖=0 𝜓1(𝑦, 𝑖)𝜓2(𝑖, 𝑗),   

where 𝜓1(𝑦, 𝑖) =
𝑦𝑖

𝑖!
  for 𝑖 = 0,1, … , 𝑛 − 1  and 𝑦 > 0 

𝜓2(𝑖, 1) = 𝑧𝑖−𝑛+1  and 𝜓2(𝑖, 2) =  1  for 𝑖 = 0,1, … , 𝑛 − 1 . 

Note that 𝜙(𝑦, 𝑧) =
𝐾(2,𝑦)

𝐾(1,𝑦)
 is increasing in 𝑦 > 0, if, and only if, 

𝐾(𝑗, 𝑦) is 𝑇𝑃2 in (𝑗, 𝑦) ∈ {1,2} × (0, +∞). It is readily seen that 

𝜓1(𝑦, 𝑖)  is 𝑇𝑃2  in (𝑦, 𝑖) ∈ (0, +∞) × {0,1, … , 𝑛 − 1} . Further, 

since 𝑧 ∈ (0,1), thus 𝜓2(𝑖, 𝑗) is also 𝑇𝑃2 in (𝑖, 𝑗) ∈ {0,1, … , 𝑛 −

1} × {1,2}. Thus, by using the general composition theorem of 

Karlin [34] we deduce that 𝐾(𝑗, 𝑦)  is 𝑇𝑃2  in (𝑗, 𝑦) ∈ {1,2} ×

(0, +∞). Thus, the required result is validated. || 

Note that in the proof Theorem 23, we used Proposition 20 

from which , for 𝑚 ≥ 𝑛,   one gets 𝑋𝑈𝑚
⪯𝑐 𝑋𝑈𝑛

  and thus 

𝑋𝑈𝑚
⪯𝑐∗ 𝑋𝑈𝑛

. The following example presents an application of 

Theorem 23. 

Example 24  ee suppose that 𝑋  and 𝑌  follow the 

distributions specified in Example 22  It can be checked 

conveniently that 𝑋 ⪰𝑠𝑡 𝑌  As clarified in Example 22  it is also 

known that 𝑋 ⪯𝑐∗ 𝑌   Therefore  according to Theorem 23  

𝑋𝑈𝑚
⪯𝑐∗ 𝑌𝑈𝑛

, for every 𝑚 ≥ 𝑛 ∈ ℕ  Let us choose 𝑚 = 𝑛 = 2  

Since 𝑑2(𝑢) = 𝑢(1 − 𝑙𝑛(𝑢))  and because �̅�𝑋𝑈2
(𝑡) =

𝑑2(�̅�𝑋(𝑡))  and �̅�𝑌𝑈2
(𝑡) = 𝑑2(�̅�𝑌(𝑡))   thus one gets: 

−ln(𝐹𝑋𝑈2
(𝑡))

−ln(𝐹𝑌𝑈2
(𝑡))

=
−ln{𝐹𝑋(𝑡).(1−ln(�̅�𝑋(𝑡)))}

−ln{𝐹𝑌(𝑡).(1−ln(�̅�𝑌(𝑡)))}
.  Figure 1 shows that this 

ratio is an increasing function of 𝑡 . Therefore, the result of 

Theorem 23 is acknowledged and 𝑋𝑈2
⪯𝑐∗ 𝑌𝑈2

. In Figure 2 and 

Figure 3, we also plotted the ratio of 
−ln(𝐹𝑋𝑈3

(𝑡))

−ln(�̅�𝑌𝑈2
(𝑡))

 and 
−ln(𝐹𝑋𝑈4

(𝑡))

−ln(𝐹𝑌𝑈2
(𝑡))

 

which exhibit that they are increasing in 𝑡,  and, thus, 

𝑋𝑈3
⪯𝑐∗ 𝑌𝑈2

 and 𝑋𝑈4
⪯𝑐∗ 𝑌𝑈2

, respectively. Note that the result 

of Proposition 20 is not applicable here because 𝑋 ⋠𝑐 𝑌.  

 

Figure 1. The plot of the function −ln (�̅�𝑋𝑈𝑚
(𝑡)) /−ln (�̅�𝑌𝑈𝑛

(𝑡)) 

in Example 24 for 𝑚 = 𝑛 = 2 for values of 0 < 𝑡 < 5.  

 

Figure 2. The plot of the function −ln (�̅�𝑋𝑈𝑚
(𝑡)) /−ln (�̅�𝑌𝑈𝑛

(𝑡)) 

in Example 24 for 𝑚 = 3, 𝑛 = 2 for values of 0 < 𝑡 < 5. 

 

Figure 3. The plot of the function −ln (�̅�𝑋𝑈𝑚
(𝑡)) /−ln (�̅�𝑌𝑈𝑛

(𝑡)) 

in Example 24 for 𝑚 = 4, 𝑛 = 2 for values of 0 < 𝑡 < 5. 

5. Aging faster orders of lower records 

Kayid [31] established two results concerning the preservation 

of the order “⪯𝑏” under lower records. We present those results 

below:  

Proposition 25  (Kayid [31]    
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Let 𝑋 ⪯𝑠𝑡 𝑌 and also let 𝑚 ≥ 𝑛 ∈ ℕ. Then, 𝑋 ⪯𝑏 𝑌 implies 

𝑋𝐿𝑚
⪯𝑏 𝑌𝐿𝑛

.  

In Proposition 25 the underlying distributions from which 

the lower records are taken, are assumed to be ordered 

according to the usual stochastic order in the same direction of 

the relative ordering between the underlying distributions. By 

using Proposition 25 it is realized that when “ 𝑚 ≥ 𝑛 ” then 

𝑋𝐿𝑚
⪯𝑏 𝑋𝐿𝑛

 which indicates the reversed hazard rate of initial 

lower records grows faster than the reversed hazard rate of the 

terminal lower records. The next result which relaxes the 

conditions presented in Proposition 25 is useful when the 

underlying distributions are closely related to each other so that 

�̃�0 = lim𝑡→0
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
< +∞ and also �̃�1 = lim𝑡→+∞

𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
> 0.  

Proposition 26  (Kayid [31]    

If sup0<𝑢<1

𝜓𝑛(𝑢

1
�̃�0)

𝜓𝑚(𝑢)
≤ �̃�1  then, 𝑋 ⪯𝑏 𝑌  implies 

𝑋𝐿𝑚
⪯𝑏 𝑌𝐿𝑛

.  

As mentioned before, 𝑋 ⪯𝑏 𝑌 implies 𝑋 ⪯𝑏⋆ 𝑌. Despite, the 

converse is not true in general as 𝑋 ⪯𝑏⋆ 𝑌  does not imply 

𝑋 ⪯𝑏 𝑌 . The example below presents a situation in which 

𝑋 ⪯𝑏⋆ 𝑌 but 𝑋 ⋠𝑏 𝑌  

Example 27  Let us assume that 𝑋  and 𝑌  are two non-

negative rvs with respective cdfs  

𝐹𝑋(𝑥) = {
exp (−

1

𝑥3
) ,    if 0 < 𝑥 ≤ 1

exp (−
1

𝑥2
) ,    if 𝑥 > 1        

,

𝐹𝑌(𝑥) = {
exp (−

𝑥 + 1

𝑥3
) , if 0 < 𝑥 ≤ 1 

exp (−
𝑥 + 1

𝑥2
) , if 𝑥 > 1.      

   

Routinely, one realizes that 
−ln(𝐹𝑋(𝑥))

−ln(𝐹𝑌(𝑥))
=

1

𝑥+1
  which is 

decreasing in 𝑥 > 0. This provides that 𝑋 ⪯𝑏∗ 𝑌. In spite of that, 

we observe that  

𝑟𝑋(𝑡) = {

3

𝑡4
,    if 0 < 𝑡 ≤ 1

2

𝑡3
,    if 𝑡 > 1        

,

𝑟𝑌(𝑡) = {

3

𝑡4
+

2

𝑡3
, if 0 < 𝑡 ≤ 1 

2

𝑡3
+

1

𝑡2
, if 𝑡 > 1.     

   

We then see that 
𝑟𝑋(1−)

𝑟𝑌(1−)
=

3

5
  while lim𝑡→1+

𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
=

2

3
. 

Obviously, the ratio 
𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
  is not decreasing in 𝑡 > 0  and this 

confirms that 𝑋 ⋠𝑏 𝑌.  

We now establish a result similar to Proposition 25 in the 

case when the order “⪯𝑏 ” is replaced with the weaker order 

“⪯𝑏∗”.  

Theorem 28  Let 𝑋 ⪯𝑠𝑡 𝑌  and also let 𝑚 ≥ 𝑛 ∈ ℕ   Then  

𝑋 ⪯𝑏⋆ 𝑌 implies 𝑋𝐿𝑚
⪯𝑏⋆ 𝑌𝐿𝑛

   

Proof. It is enough to show that 𝑋𝐿𝑛
⪯𝑏∗ 𝑌𝐿𝑛

 . Kayid [31] 

derived the reversed hazard rate functions of 𝑋𝐿𝑛
  and 𝑌𝐿𝑛

 , 

respectively, as  

𝑟𝑋𝐿𝑛
(𝑡) =

𝑟𝑋(𝑡)

𝜉𝑛(𝐹𝑋(𝑡))
 𝑎𝑛𝑑 𝑟𝑌𝐿𝑛

(𝑡) =
𝑟𝑌(𝑡)

𝜉𝑛(𝐹𝑌(𝑡))
, 

where 𝜉𝑛 is given in Equation (3). In addition, the cdfs of 𝑋𝐿𝑛
 

and 𝑌𝐿𝑛
 are respectively acquired as  

𝐹𝑋𝐿𝑛
(𝑡) = 𝑑𝑛(𝐹𝑋(𝑡)) 𝑎𝑛𝑑 𝐹𝑌𝐿𝑛

(𝑡) = 𝑑𝑛(𝐹𝑌(𝑡)), 

where 𝑑𝑛 is defined as in the proof of Theorem 23. It is noteable 

that 𝑋𝐿𝑛
 and 𝑌𝐿𝑛

 have distorted distribution functions from the 

ones of 𝑋  and 𝑌 , respectively, where 𝑑𝑛  for all 𝑛 ∈ ℕ  is the 

distortion function (see Section 2.4 in Navarro [53] ). In the 

spirit of the Equation 8, 𝑋 ⪯𝑏∗ 𝑌 if, and only if,  

𝑟𝑋(𝑡)

𝑟𝑌(𝑡)
≥

Λ̃𝐹𝑋
(𝑡)

Λ̃𝐹𝑌(𝑡)
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.   (8) 

 In the same manner, 𝑋𝐿𝑛
⪯𝑏∗ 𝑌𝐿𝑛

 if, and only if,  

𝑟𝑋𝐿𝑛
(𝑡)

𝑟𝑌𝐿𝑛
(𝑡)

≥
Λ̃𝐹𝑋𝐿𝑛

(𝑡)

Λ̃𝐹𝑌𝐿𝑛
(𝑡)

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0, 

 or equivalently, if  

𝑟𝑋(𝑡).𝜉𝑛(𝐹𝑌(𝑡))

𝑟𝑌(𝑡).𝜉𝑛(𝐹𝑋(𝑡))
≥

− ln(𝑑𝑛(𝐹𝑋(𝑡)))

− ln(𝑑𝑛(𝐹𝑌(𝑡)))
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.  

 From (8) it is enough to demonstrate that   

−ln(𝐹𝑋(𝑡))

−ln(𝑑𝑛(𝐹𝑋(𝑡)))𝜉𝑛(𝐹𝑋(𝑡))
≥

− ln(𝐹𝑌(𝑡))

− ln(𝑑𝑛(𝐹𝑌(𝑡)))𝜉𝑛(𝐹𝑌(𝑡))
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.        (9) 

From assumption, 𝑋 ⪯𝑠𝑡 𝑌,  which means 𝐹𝑋(𝑡) ≥ 𝐹𝑌(𝑡), 

for all 𝑡 ≥ 0. Hence, (9) is satisfied if  

−ln(𝑢)

−ln(𝑑𝑛(𝑢))𝜉𝑛(𝑢)
is  increasing in 𝑢 ∈ (0,1). 

This is what we already proved in the proof of Theorem 23. 

Hence, the proof is completed.||  

In the proof of Theorem 28, we used Proposition 25 by 

which for 𝑚 ≥ 𝑛, it follows that 𝑋𝐿𝑚
⪯𝑏 𝑋𝐿𝑛

 and, consequently, 
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𝑋𝐿𝑚
⪯𝑏∗ 𝑋𝐿𝑛

. 

The following example illustrates an application of Theorem 28. 

Example 29  Consider 𝑋 and 𝑌 as two random lifetime with 

distributions 𝐹𝑋  and 𝐹𝑌  as given in Example 27  ee see that 

𝑋 ⪯𝑠𝑡 𝑌   rrom Example 27  𝑋 ⪯𝑏∗ 𝑌   nn that account  

Theorem 28 concludes that 𝑋𝐿𝑚
⪯𝑏∗ 𝑌𝐿𝑛

, for all 𝑚 ≥ 𝑛 ∈ ℕ  ee 

take 𝑚 = 3  and 𝑛 = 2   Since 𝑑2(𝑢) = 𝑢(1 − 𝑙𝑛(𝑢))  and 

𝑑3(𝑢) = 𝑢 (1 − 𝑙𝑛(𝑢) +
(𝑙𝑛(𝑢))2

2
)   thus: 𝐹𝑋𝐿3

(𝑡) = 𝑑3(𝐹𝑋(𝑡)) 

and 𝐹𝑌𝐿2
(𝑡) = 𝑑2(𝐹𝑌(𝑡))  nne has  

 
−ln(𝐹𝑋𝐿3

(𝑡))

−ln(𝐹𝑌𝐿2
(𝑡))

=
−ln{𝐹𝑋(𝑡).(1−ln(𝐹𝑋(𝑡))−

(−ln(𝐹𝑋(𝑡)))2

2
)}

−ln{𝐹𝑌(𝑡).(1−ln(𝐹𝑌(𝑡)))}
.  

The Figure 4 exhibits that the above ratio is decreasing in 𝑡. 

Hence, the result of Theorem 28 is validated and 𝑋𝐿3
⪯𝑏∗ 𝑌𝐿2

. 

In Figure 5 and Figure 6, we further plotted the ratio of 

−ln(𝐹𝑋𝐿4
(𝑡))

−ln(𝐹𝑌𝐿2
(𝑡))

 and 
−ln(𝐹𝑋𝐿5

(𝑡))

−ln(𝐹𝑌𝐿2
(𝑡))

 which show that they are decreasing 

in 𝑡,  and, thus, 𝑋𝐿4
⪯𝑏∗ 𝑌𝐿2

  and 𝑋𝐿5
⪯𝑏∗ 𝑌𝐿2

 , respectively. We 

remark here that the result of Proposition 25 cannot be applied 

in this example as 𝑋 ⋠𝑏 𝑌.  

 

Figure 4. The plot of the function −ln (𝐹𝑋𝐿𝑚
(𝑡)) /−ln (𝐹𝑌𝐿𝑛

(𝑡)) 

in Example 29 for 𝑚 = 3, 𝑛 = 2 for values of 0 < 𝑡 < 5.  

 

Figure 5. The plot of the function −ln (𝐹𝑋𝐿𝑚
(𝑡)) /−ln (𝐹𝑌𝐿𝑛

(𝑡)) 

in Example 29 for 𝑚 = 4, 𝑛 = 2 for values of 0 < 𝑡 < 5.  

 

Figure 6. The plot of the function −ln (𝐹𝑋𝐿𝑚
(𝑡)) /−ln (𝐹𝑌𝐿𝑛

(𝑡)) 

in Example 29 for 𝑚 = 5, 𝑛 = 2 for values of 0 < 𝑡 < 5. 

Before concluding the paper, we make a few points about 

the possibility of extending our results to the case of k-record 

values. It has been shown that the proofs of the main results of 

this paper do not remain valid when changing the distributions 

of the record values as necessary. Therefore, the problem of 

preserving faster aging orders for k-record values is still an open 

problem. 

6. Conclusion 

In this study, we achieved two goals. The first is to improve the 

study and understanding of the relative aging ordering 

properties to compare lifetime distributions. In fact, in the 

framework of relative aging orders, it does not matter how well 

an item begins to work but how fast it will age with time. This 

highlights the difference between relative aging orders and 

other well-known stochastic orders in the literature, which only 

consider the magnitude of the random variables. Several results 

show that faster aging orders are closely related to the 

commonly used notion of the probability order. It was also 

shown that relative aging orders can be used to obtain further 

inequalities in cumulative entropies. Further bounds for the 

survival function and the cumulative distribution function of the 

random variables involved are derived. In deriving the bounds 

or inequalities, it was assumed that the ratio of (reversed) hazard 

rates at time t approaches finite values as 𝑡 approaches 0 and ∞.  

The second goal of this study was to investigate the 

preservation properties of two aging faster orders, namely the 

relative cumulative hazard rate order and the relative 

cumulative reversed hazard rate order under the upper and lower 

record values, respectively. The problem of preserving 

stochastic orderings under record statistics is a useful subject in 
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reliability. Consider a situation where original data from two 

heterogeneous populations are available. The data may 

represent the lifetimes of the two types of electrical devices. The 

position of each population with respect to the other population 

may be known because one type of device ages faster than the 

other. However, if the record data are available in the context of 

upper and/or lower records, the question can be asked whether 

the same relative aging sequence determines the position of one 

population relative to the other population in terms of record 

values. Another advantage of the preservation properties of the 

relative aging order in record statistics is that so much data may 

be needed to test the relative aging order between records in 

situations where the same relative aging order has already been 

established in the original distributions. However, datasets, 

especially the last (extreme) datasets, are very rarely repeated. 

Therefore, in practice, it is not easy to perform a statistical test 

to determine the intended relative aging trend between datasets 

arising from recorded values. It was demonstrated that the usual 

stochastic ordering of the underlying distributions is a sufficient 

condition for the aforementioned preservation properties.  

In future, we will investigate the preservation properties of 

relative aging orderings under the structure of 𝑘record values, 

generalized order statistics, and sequential order statistics. The 

preservation properties of the relative aging orders during the 

formation of complex systems were also investigated.
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