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Highlights  Abstract  

▪ The proposed method aims to realize fault 

diagnosis on limited labeled samples. 

▪ A multi-scale depth-separable convolutional 

neural network is proposed. 

▪ An improved feature soft threshold denoising 

module is introduced. 

▪ The framework is simpler and clearer, with 

high robustness and generalization ability.  

▪ The proposed method is more suitable for 

complex practical engineering scenarios. 

 Convolutional neural networks(CNNs) show significant potential for 

bearing fault diagnosis. However, traditional CNNs face challenges such 

as poor noise resistance, high computational complexity, reliance on 

extensive samples, and limited generalizability. As a result, this paper 

proposes WDSC-Net, a lightweight, multiscale feature fusion method, 

focusing on limited labeled fault samples. Initially, a wide kernel 

convolutional is employed, aiming to reduce parameters and 

computational complexity. Next, features are fed into a 1×1 

convolutional layer reduces feature dimensionality. Subsequently, 

leveraging the benefits of depth-separable convolution (DSC) allows the 

separation of spatial and channel features, constructing four 

convolutional layers of varying scales to amplify the nonlinear fault 

representation. Finally, an improved feature soft-threshold denoising 

module is introduced for global feature denoising. Validation on CWRU 

and MCDS datasets shows that the WDSC-Net method exhibits superior 

generalizability and noise resistance compared to typical deep-learning 

fault methods. 
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1. Introduction 

Rotating machinery plays a crucial role in industrial production, 

necessitating timely and accurate fault diagnosis to ensure 

equipment safety and seamless production. The working 

environment of rotating equipment inevitably leads to 

degradation. With the continual increase in the rotational speed, 

scale, and complexity of equipment, there is a growing demand 

for higher accuracy and efficiency in fault diagnosis [1]. 

Following the failure of a rotating component, its vibration 

amplitude undergoes changes, which are subsequently 

transmitted to the equipment shell through multiple paths. 

Consequently, monitoring the vibration signal provides accurate 

state information about the equipment. However, in real 

engineering scenarios, the vibration characteristics of rotating 

machinery are susceptible to various factors, such as high 

background noise and changes in working conditions. Moreover, 

equipment in these scenarios often works solely under normal 
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conditions, resulting in an abundance of data on the normal 

health state but insufficient data on faults. This scarcity of 

labeled, high-quality data presents a significant challenge in 

training deep learning models for reliable fault diagnosis. 

Despite extensive research efforts by domestic and international 

scholars in recent years, there is an ongoing need to develop and 

enhance the existing fault diagnosis techniques for rotating 

machinery. 

With the increasing development of fault diagnosis 

technology, scholars have introduced various traditional 

intelligent fault diagnosis methods involving manual extraction 

of original signal features [2-5]. Although these methods 

effectively diagnose faults, manual extraction of fault features 

is challenging, particularly when phase information is lost. 

Additionally, the scarcity of fault samples, coupled with strong 

background noise and complex working conditions, hinders the 

rapid extraction of fault features and accurate identification of 

health states [6]. Hence, there is a compelling need to develop 

an intelligent algorithm to achieve rapid and accurate fault type 

identification. In recent years, deep learning has emerged as the 

primary approach for intelligent fault diagnosis owing to its 

robust automatic feature extraction capabilities, which are 

currently popular. Among these approaches, CNNs are 

representative algorithms in deep learning. In contrast to 

methods relying on a priori knowledge and signal processing, 

CNNs can directly handle time signals and adaptively extract 

the vibration characteristics of rotating equipment layer by layer. 

This process simplifies fault diagnosis and reveals the intrinsic 

relationship between the original data and the nonlinear 

information of each network [7]. Xu et al. [8] proposed  

a bearing fault diagnosis method based on deep CNNs and 

random forests. Fan et al. [9] introduced an adaptive deep CNNs 

fault diagnosis method for rolling bearings. Gong et al. [10] 

conducted an in-depth analysis of hyperparameter selection and 

training techniques for CNNs to improve the generality and 

operability of the model structure. Ye et al. [11] proposed a deep 

convolutional neural network that fuses features from 

convolutional layers across different channels and scales 

through kurtosis and residual-based learning. 

The aforementioned research has demonstrated improved 

diagnostic results in the field of fault recognition. However, 

structural deficiencies have persisted. CNN-based diagnostic 

models are evolving toward increased depth, with models such 

as VGGNet [12], AlexNet [13], and ResNet [14] being designed 

to enhance performance by adding network layers. An increased 

number of layers impedes gradient flow, heightens the difficulty 

of parameter optimization, and increases the susceptibility of 

the model to overfitting and vanishing gradients. Therefore, it is 

necessary to develop a lightweight diagnostic network that 

ensures diagnostic effectiveness while minimizing the number 

of model parameters. In fault diagnosis, researchers have 

proposed various lightweight models to tackle diverse 

challenges. Fang et al. [15] proposed LEFE-Net, employing 

dynamic and separable convolutions with 2D time-frequency 

feature mapping for rapid and accurate fault diagnosis. Deng et 

al. [16] introduced HS-KDNet, addressing fault diagnosis with 

imbalanced data. Lu et al. [17] proposed a lightweight transfer 

learning framework for rolling bearing diagnosis based on 

knowledge extraction. This framework transfers features from  

a large teacher model to a smaller student model, reducing 

computational and parameter overhead. Xiong et al. [18] 

designed a multi-branch deep residual network to enhance the 

nonlinear characteristics and parameter count of bearing fault 

diagnosis models. Liu et al. [19] proposed an LSTM cell 

structure with forgetting gates for low-latency, lightweight 

recurrent neural networks in machinery fault diagnosis. Cui et 

al. [20] proposed a lightweight rolling bearing fault diagnosis 

method using Gramian Angular Field (GAF) and Coordinated 

Attention (CA), significantly reducing the computational 

complexity of the model. Beyond fault diagnosis models, Qin et 

al. [21] explored two-stage detectors for real-time generalized 

detection and proposed ThunderNet, a lightweight solution for 

mobile devices. Iandola et al. [22] introduced the SqueezeNet 

architecture to reduce server communication and bandwidth 

needs in autonomous driving systems.  

Although the aforementioned lightweight models have 

shown significant results in fault diagnosis, their design process 

typically requires extensive experimentation and trial error. 

Optimizing model design for specific diagnostic tasks requires 

a blend of unique expertise and experience. Furthermore, the 

portability of these models is generally poor. To better address 

the challenges of limited resources and real-world application 

requirements, in-depth research and appropriate model design 

strategies are essential. Crucially, the research results are 
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usually validated using datasets with ample samples. In real 

engineering scenarios, the equipment works under normal 

conditions for extended periods, making it time-consuming and 

expensive to collect a large number of high-quality fault data 

samples. Additionally, existing studies have struggled to 

effectively mitigate the impact of noise and variable operating 

conditions on models. Particularly in environments with high 

noise levels, the identification and classification effectiveness 

of the model must be improved. Li et al. [23] proposed a signal 

preprocessing method that transforms 1D vibration signals into 

2D grayscale maps. They combined this with an adaptive anti-

noise convolutional neural network (AA-CNN) for high-

performance fault diagnosis in noisy environments. Dong et 

al.[24] transformed 1D time series into 2D images using short-

time Fourier transform. They employed a parallel large kernel 

attention mechanism to achieve high accuracy in fault feature 

extraction across different dimensions on noisy datasets. Li et 

al. [25] proposed a periodic convolutional neural network that 

captures noisy vibration signal features under various 

conditions. They inserted a periodic convolutional module, 

based on a generalized short-time anti-noise correlation method, 

before the backbone network. Fan et al. [26] proposed an 

enhanced anti-noise correlation method for bearing condition 

monitoring. They validated it by simulating the degradation 

process and using two rolling bearing accelerated degradation 

datasets. Overall, despite the strong potential of deep learning 

methods in fault diagnosis, future research should focus on 

developing more efficient and robust lightweight models with 

limited fault samples to better meet real industrial needs. 

The problem of fault diagnosis with limited labeled samples 

can be grouped into three solutions. The first involves training 

a powerful feature extractor to maintain recognition accuracy 

regardless of the sample quantity. The second is a data 

enhancement method that transforms and expands existing 

training samples. The third method utilizes the parameters of  

a trained model on a large-scale dataset, adapting to the 

challenge of limited labeled samples by fine-tuning or adjusting 

certain parameters in the migration learning method. Chen et al. 

[27] applied transfer learning to rolling-bearing fault 

classification, effectively addressing complex data distribution 

differences under various working conditions. Yang et al. [28] 

utilized an adaptive auxiliary classifier generative adversarial 

network (GAN) to expand the sample capacity by generating 

fault data, demonstrating the effectiveness of the method across 

multiple datasets. Zhang et al. [29] proposed Meta-GAN,  

a generalized model for a limited number of labeled samples. 

Although these methods exhibit improved performance when 

limited labeled samples are used, they still have some 

shortcomings. Adversarial generative networks are challenging 

to train, making them prone to vanishing or exploding gradients. 

Transfer learning struggles to measure the differences in data 

distributions between the source and target domains, leading to 

negative transfer phenomena. 

This study effectively solves the problem of fault 

discrimination for rotating machinery with the limited labeled 

samples by introducing a lightweight multiscale feature fusion 

WDSC-Net method. The method consists of three core modules: 

a wide kernel convolution module, a multiscale feature fusion 

module based on depth-separated convolution, and a semisoft 

thresholding feature denoising module.  

First, we collected the raw acceleration signals of the 

bearing by utilizing acceleration sensors and input the raw 

vibration signals under mixed working conditions into the 

network. The raw data are passed through the wide-kernel 

convolution module, which assists the model in better 

understanding the features of the input data and capturing the 

bearing fault characteristics more effectively. Compared to 

using multiple small convolutional kernels, the wide-kernel 

convolution module can process more input information in  

a single convolutional layer, thus reducing the number of 

parameters and depth of the model. Next, the extracted features 

are downscaled by 1×1 convolutional layers to further reduce 

the computational complexity while performing deeper feature 

extraction. Subsequently, taking advantage of the depth-

separable convolution, four convolutional layers with different 

scales (LMSFMs) are constructed to enhance the nonlinear 

representation of limited fault samples and to facilitate more 

efficient convergence. In addition, a soft-thresholding module 

is embedded at the end of the LMSFM for hierarchical feature 

denoising, avoiding the complexity of manually setting 

thresholds. Finally, the bearing faults are diagnosed using  

a softmax classifier through the global maximum pooling layer. 

Through experimental validation in simulating a real 

engineering noise environment and various types of bearing 
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faults under different working conditions, the proposed method 

has a significant advantage over classic deep learning methods 

in diagnosing bearing faults with limited labeled samples. 

The main contributions of the paper are summarized as 

follows: 

(1) This study aims to address the problem of realizing high-

precision fault diagnosis in scenarios with limited labeled 

samples. Unlike CNN fault diagnosis methods, which focus on 

a large number of high-quality fault samples, our work is closer 

to real industrial scenarios. 

(2) To reduce model parameters and deployment costs in real 

industrial scenarios, an efficient, lightweight, and multiscale 

fault diagnosis framework was proposed. The framework has  

a simple and clear hierarchical structure, strong robustness, and 

excellent generalization ability. 

(3) To evaluate the effectiveness of the proposed method,  

a series of tasks was devised on two bearing datasets, CWRU 

and MCDS. The experimental results show that the proposed 

method outperforms the current popular fault diagnosis methods. 

The subsequent sections of the paper are organized as 

follows: Section 2 presents the research objectives and scope of 

limited labeled sample learning. Section 3: describes the 

proposed WDSC-Net in detail. Section 4 provides  

a comprehensive overview of the experimental dataset. Section 

5: demonstrates the superiority of the method through 

comparisons with typical deep learning methods on both public 

and self-built datasets. Finally, conclusions and future research 

directions are presented in Section 6. 

2. Study purpose and scope of limited labeled samples 

Intelligent diagnosis of deep neural networks relies on ample 

fault monitoring data [30]. Increased training data adequacy and 

a diverse range of fault types in the training set are directly 

correlated with higher accuracy in the intelligent diagnosis 

model. Nevertheless, practical engineering scenarios pose 

challenges in establishing an ideal dataset for training 

diagnostic models for the following four reasons. 

(1) Limited fault data in real-world engineering. In real-

world engineering scenarios, the equipment typically works 

under normal conditions, resulting in a scarcity of fault data. 

Although a condition monitoring system with multiple sensors 

can collect equipment status data, the majority of these data are 

normal health data. This scarcity of fault data hinders the 

effective training and testing of intelligent diagnostic models. 

(2) Challenges in replicating real-world faults in laboratory 

settings. Replicating fault data in a laboratory setup identical to 

real engineering scenarios is challenging and expensive. 

Typically, obtaining fault data in a laboratory involves 

purchasing a simulation laboratory bench and inducing various 

faults in-house. However, some faults, such as those caused by 

gear gluing, are difficult to simulate manually. 

(3) Disconnection between computer simulations and real 

working conditions. Data from computer simulation software 

are detached from the actual working conditions, making it 

challenging to simulate the impact of failure data on the 

working environment and conditions. 

(4) Challenges in equipment intelligence and data collection 

in real engineering. Actual engineering scenarios face 

challenges owing to the low level of equipment intelligence, the 

absence of state data collection equipment, and the lack of 

awareness among field operators regarding monitoring data 

collection. 

In brief, fault diagnosis in real engineering scenarios 

inherently involves limited labeled samples, as indicated in the 

literature [31-32], for which sample numbers range from tens to 

hundreds. This paper explores the feature extraction of the 

WDSC-Net method, emphasizing rotating machinery fault 

diagnosis. The dataset includes 20, 40, 60, 80, 100, 200, and 400 

samples for each class of signals. 

3. Theory of the WDSC-Net method 

In recent years, integrating the advantages of diverse networks, 

exploring potential feature learning mechanisms in diagnostic 

models, and enhancing the learning ability of fault features have 

posed significant challenges. With the increasing size, speed, 

integration, and automation of mechanical equipment, the 

pursuit of high-precision diagnosis has led to increasingly 

complex network structures and growing model parameters, 

directly impacting the scalability of the model and diagnostic 

costs. Therefore, the authors developed a lightweight fault 

diagnosis framework that aims to meet the requirements of 

computational efficiency and practical application. Additionally, 

in real-world engineering scenarios, there is often a need for 

efficient diagnostic models, and lightweight fault diagnosis 
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models can maintain high performance while reducing 

computational resources and memory consumption. More 

importantly, lightweight networks are more suitable for 

practical deployment. In industrial scenarios, deployment costs 

and real-time considerations are crucial factors, and the 

simplification and efficiency of lightweight networks make 

them more suitable for embedded systems, edge devices, or 

real-time applications. The lightweight fault diagnosis network 

we constructed based on limited samples exhibits strong 

robustness and generalizability compared to traditional CNN 

structures. 

The network structure proposed in this study accommodates 

one-dimensional raw vibration signals as inputs without 

requiring operations, such as a time-frequency domain 

transformation. For one-dimensional vibration signals, the 

width of the first convolutional kernel layer significantly 

influences fault diagnosis performance [33]. WDSC-Net 

consists of a wide convolutional layer, a 1×1 convolutional 

layer, two LMSFM modules based on a depthwise separable 

convolutional network (DSC), and a soft-threshold feature 

denoising module.  

 

Fig. 1. Fault diagnosis framework of the WDSC-Net method. 

The wide convolutional layer has a relatively large kernel 

size, enabling it to capture a broader range of fault features in 

the input signal. This helps model the deep information of 

vibration signals, enhances the perception of global information, 

and reduces the interference of noise on fault features. The 1×

1 convolutional layer is used for feature dimensionality 

reduction, reducing the computational complexity and number 

of parameters of the network[34]. It helps retain important 

features and eliminate redundant information, making the 

model is more lightweight while maintaining sensitivity to key 
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information and improving network efficiency. The LMSFM 

module consists of a DSC with four kernels of different sizes. 

The DSC network decomposes the filters of standard 

convolutional layers into channel convolution and point 

convolution layers [35]. Pruning smaller weight parameters 

during the point convolution process reduces the number of 

parameters, enhancing the computational efficiency and 

parameter utilization of the model. The LMSFM is a multiscale 

feature fusion network designed to enable the simultaneous 

processing of feature information at different scales. By 

combining fault information at different scales, the nonlinear 

expression capability and comprehensive capture of input data 

features are enhanced, thereby improving the diagnostic 

performance of the model. Importantly, rotating mechanical 

systems may contain various fault modes that manifest at 

different scales. Multiscale feature fusion allows the network to 

better adapt to and capture diverse fault modes, increasing the 

applicability and generalizability of the model. The soft-

threshold feature denoising module is used to remove noise 

from the signal. This module helps improve the robustness of 

limited labeled samples, ensuring that the network focuses more 

on real fault features, thereby enhancing diagnostic accuracy. 

The fault diagnosis framework of WDSC-Net is illustrated in 

Fig. 1. 

The convolutional layer extracts features from the original 

data through convolutional operations. This operation involves 

multiplying the input data by a convolution kernel, adding bias 

constants, and using a sliding window with a specific step size. 

The set of learnable kernel functions is a crucial parameter in 

the feature extraction stage, directly influencing the quality of 

the output features [36]. In this study, rather than decreasing the 

model parameters by employing a small convolutional kernel, 

we constructed a multiscale feature fusion network based on 

deeply separable convolutions, which have fewer model 

parameters, for faulty bearing identification and classification. 

The raw vibration signals contain time-dependent 

information. Because faults are localized, the impact response 

to vibration may not occur at every time point, leading to 

varying response times for different faults. Hence, a relatively 

small convolution kernel may not capture the complete range of 

information associated with the fault impact. In this study, we 

initially employ a wide kernel to broaden the sensory field of 

view and extract short-term features. This approach aims to 

uncover more global information across different states and to 

identify segments affected by faults. The representation is as 

follows. 

𝑍𝑙+1(𝑖, 𝑗) = Conv[𝑍𝑙 ⊗ 𝐖𝑙+1](𝑖, 𝑗) + 𝑏 =

∑

𝐾=1
𝐾𝑙

∑

𝑥=1
𝑓

∑

𝑦=1
𝑓

[𝑍𝐾
𝑙 (𝑠0𝑖 + 𝑥, 𝑠0𝑗 + 𝑦)𝐖𝑘

𝑙+1(𝑥, 𝑦)] + 𝑏       (1) 

where 𝑍𝑙and𝑍𝑙+1 represent the input and output feature maps of 

the 𝑙 + 1  layer, respectively. 𝑾  is the weight matrix of the 

convolution kernel, 𝑖, 𝑗 are the coordinate points of the feature 

maps, 𝑏  is a bias constant, 𝐾  is the number of channels in  

a convolution layer, 𝑓  is the width of the convolution kernel, 

and 𝑠0 is the size of the step. 

Each convolutional layer in the network uses the ReLU as 

an activation function, offering several advantages: (1) 

Nonlinear strength. When the input 𝑥 is greater than zero, the 

activation function outputs 𝑥   otherwise, it is zero. Stacking 

multiple hidden layers with a strongly nonlinear activation 

function enables the model to achieve more complex nonlinear 

mappings. This helps the model adapt to a wider range of data 

distributions and complex relationships, ultimately improving 

the feature extraction capability of the model. (2) Mitigation of 

the vanishing gradient problem. Compared to activation 

functions such as sigmoid and tanh, ReLU helps alleviate the 

vanishing gradient problem. During backpropagation in the 

model, gradients pass through each layer, and sigmoid and tanh 

tend to have gradients close to zero for large or small inputs, 

leading to ineffective gradient propagation. ReLU, with  

a constant gradient for positive inputs, avoids the vanishing 

gradient problem, facilitating more effective gradient updates 

and learning. (3) Sparse activation nature. The ReLU has  

a sparse activation property, outputting zero when the input is 

negative. This property helps the network focus more on 

learning fault features, enhancing the ability to extract 

important information from limited labeled samples. (4) High 

computational efficiency. Its mathematical expression is 

𝑓(𝑥) = 𝑚𝑎𝑥( 0, 𝑥) . Compared to the sigmoid and tanh 

activation functions, the ReLU activation function has simpler 

calculations, and its straightforward computational structure 

results in a lower computational burden during both forward and 

backward propagation, contributing to faster training. The 

ReLU function is represented by the following equation: 
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𝜎𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥( 0, 𝑥)   (2) 

The output values are then normalized by batch 

normalization. 

𝑦 = 𝐵𝑁(𝜎𝑟𝑒𝑙𝑢 {𝐶𝑜𝑛𝑣(𝐖, 𝑥)})   (3) 

where 𝑦 is the output feature map after normalization. Whereas 

traditional convolutional operations involve differentiation 

computations, DSC conducts a convolution operation for each 

channel independently [37]. In other words, each channel was 

convolved individually using a single convolutional kernel. 

Subsequently, all the channels are stacked, and the number of 

output feature maps is adjusted to match the number of channels 

in the input layer. This deep convolution process enhances the 

differential computation of feature information across spatial 

locations. 

𝑍𝑙+1(𝑖, 𝑗) = DWConv[𝑦 ⊗ 𝐖𝑙+1](𝑖, 𝑗) + 𝑏 = ∑

𝑓
𝐹

𝐖𝑓 ∗ 𝑦(𝑖,𝑗) + 𝑓    (4) 

𝑧 = 𝐵𝑁(𝜎𝑟𝑒𝑙𝑢 {𝑍𝑙+1(𝑖, 𝑗)})   (5) 

where 𝑧 is the output feature map of the deep convolution. 

Simultaneously, to effectively utilize information from 

different feature maps at the same spatial location, this study 

employed point-by-point convolution (with a convolution 

kernel size of 1×1) to weigh and combine the feature maps in 

the depth direction. This approach facilitates the exchange and 

integration of cross-channel information. 

𝑍𝑙+1
∧

(𝑖, 𝑗) = PWConv[𝑧 ⊗ 𝐖𝑙+1](𝑖, 𝑗) + 𝑏 = ∑

𝑓
𝐹

𝐖𝑓 ∗ 𝑧(𝑖,𝑗)(6) 

𝑧 = 𝐵𝑁 (𝜎𝑟𝑒𝑙𝑢 {𝑍𝑙+1
∧

(𝑖, 𝑗)})   (7) 

Assuming that the size of the input feature map is 𝐻 , the 

number of input channels is 𝑆, the size of the convolution kernel 

is 𝐷𝑓 , and the number of convolution kernels is 𝐾 , Then, the 

following parameters are computed for conventional 

convolution and depth-separable convolution: 

𝐻 × 𝑆 × 𝐾 × 𝐷𝑓   (8) 

𝐻 × 𝑆 × 𝐷𝑓 + 𝐻 × 𝑆 × 𝐾   (9) 

Thus, the parameter ratio of the depth separable convolution 

to the conventional convolution can be expressed as: 

𝐻×𝑆×𝐷𝑓+𝐻×𝑆×𝐾

𝐻×𝑆×𝐾×𝐷𝑓
=

1

𝐾
+

1

𝐷𝑓
< 1   (10) 

According to Eq. (10), the 1D depth-separable convolution 

significantly decreases the number of computations and 

improves the convergence efficiency of the model. The depth 

separable convolution has a significant advantage over the 

traditional 1D convolution in terms of the number of 

computational parameters. 

The structure of the DSC layer is shown in Fig. 2.

 

Fig. 2. The structure of the DSC layer. 

Multiscale feature fusion has been widely adopted in recent 

years [38-39]. Given the outstanding recognition performance 

of the DSC, this study explored feature fusion across different 

scales. This approach aims to enrich fused features with more 

comprehensive fault information, facilitating fault recognition 

and classification tasks under the constraint of limited labeled 

samples. Moreover, the bearing vibration signals studied here 

exhibit nonlinearity and nonsmoothness. In addition, owing to 

the impact of the acquisition environment and working 

conditions, even bearings in the same healthy state may exhibit 

a certain data distribution offset. Therefore, employing  

a multiscale feature fusion method allows analysis of the 

multiscale features of the original signal. 

The key to building a multiscale feature fusion model based 

on DSC lies in designing the convolutional kernel size. 

Convolutional kernels of different sizes can be crafted to learn 

effective features at various scales. A small convolutional kernel 

is suitable for learning features with closer intervals, whereas  

a large kernel is effective for learning features with more distant 

correlation intervals. In this study, convolutional kernels of 

sizes (1×3), (1×5), (1×7), and (1×9) were designed. However, 

the use of larger convolutional kernels increases the 

computational effort of the overall network structure. Therefore, 

in this study, we initially conducted a 1×1 convolution with the 

following advantages. (1) Feature dimensionality reduction. 

This operation reduces the feature dimension and decreases the 
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number of computational parameters. (2) Enhanced feature 

fusion information. Utilizing convolution kernels of different 

sizes enriches feature fusion information. (3) Improved model 

expression. Deepening the network enhances the capacity of the 

model for expression. Considering these factors, the design of 

the multiscale feature extraction module based on DSC is 

depicted in Fig. 3.

 

Fig. 3. Multiscale feature fusion module based on the DSC.

In practical engineering scenarios, the acquisition of 

vibration signals often results in contamination by varying 

degrees of noise, leading to interference from fault information 

in the signals and consequently affecting the accuracy of the 

diagnostic results. Therefore, denoising the original signal is  

a focal point in fault diagnosis research. Over the past 20 years, 

soft thresholding has typically been employed as a key step in 

signal denoising [40]. This technique generally transforms the 

useful information of the original signal to positive or negative 

features while converting noise information close to zero. 

However, determining useful and noisy information often 

requires significant signal-processing expertise and setting  

a reasonable threshold can be challenging. Moreover, the 

optimal threshold depends on the working conditions. 

To address the aforementioned problem, this study 

integrates the soft threshold method with a deep learning 

approach and incorporates the soft threshold as a nonlinear 

transformation layer into the unit [41]. The design principle of 

the semisoft threshold module is based on the demand for 

enhancing and denoising fault signals. This module performs 

soft threshold processing on specific global features to reduce 

noise components in the signal and emphasize the significant 

features of the fault signal. Additionally, this module exhibits 

better smoothness than other threshold processing methods, 

aiding in retaining subtle yet crucial information in the signal. 

The semisoft threshold module includes key parameters such as 

global feature input, global average pooling, scale factor 

calculation, and soft threshold processing. This approach 

introduces a new perspective for problem solving and 

circumvents the laborious and arbitrary task of manually setting 

a threshold value. The soft threshold function can be expressed 

as 

𝑦 = {
𝑠𝑔𝑛( 𝑥) ⋅ (|𝑥| − 𝜏), |𝑥| ⩾ 𝜏
 0,                                 |𝑥| < 𝜏

  (11) 

where 𝑥  denotes the input. 𝑦  represents the output. 𝜏  is the 

threshold. As evident from Eq. (11), after soft threshold function 

processing, the data maintain good continuity and denoising in 

the signal while preserving the effective signal. The learning 

process of the soft-threshold module is illustrated in Fig. 4.  
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Fig. 4. The learning process of the soft threshold module. 

First, global average pooling (GAP) was applied to the 

absolute values of the features to obtain a one-dimensional 

vector. Next, a one-dimensional vector is passed through a two-

layer fully connected (FC) network to obtain the scale parameter 

𝜎𝑐. In the second FC layer, the number of neurons was equal to 

the number of channels. Finally, a sigmoid function was applied 

at the end of the second FC layer to scale the parameter to (0,1). 

The scale parameter 𝜎𝑠 can be expressed as 

𝜎𝑠 =
1

1+𝑒−𝑧𝑐
    (12) 

where 𝑧𝑐  and 𝜎𝑠  represent the features of the neuron and the 

scale parameter of the 𝑐 layer, respectively. 

Assuming that the width and height of the feature map are 

denoted as 𝑖 and 𝑗, respectively, and the number of channels is 

𝑐, the soft threshold can be defined as 

𝜏𝑐 = 𝜎𝑠 ⋅ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑖,𝑗,𝑐

|𝑋𝑖,𝑗,𝑐|   (13) 

The pooling layer processes the regional features obtained 

from the soft-threshold module as statistical features. The aim 

of this operation is to reduce the number of parameters. The 

average pooling layer is expressed as 

𝑝𝑗(𝑖) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(𝑖−1)𝑊+1≤𝑡≤𝑖𝑊

𝑦𝑗(𝑡)   (14) 

Here, 𝑦𝑗(𝑡) represents the value of the 𝑡 -th neuron in the 𝑗 -th 

frame, 𝑡 ∈ [(𝑖 − 1)𝑊 + 1, 𝑖𝑊] . 𝑊  is the width of the current 

region, and 𝑝𝑗(𝑖)  represents the value of the neuron in the 

pooling layer. 

Our analysis of multiple experiments revealed that the 

softmax classification function in full connectivity 

outperformed the other functions. This is expressed as follows. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) = 𝑒𝑥𝑝(𝑝𝑗(𝑖)) / ∑

𝑖=1
𝑀

𝑒𝑥𝑝(𝑝𝑗(𝑖))    (15) 

where 𝑀  represents the number of categories. In accordance 

with the WDSC-Net model, cross entropy is employed as the 

loss function, which is defined as follows. 

𝑍 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑝𝑗(𝑖))   (16) 

𝐿 = −
1

𝑇
∑

𝑖=1
𝑇

𝑦𝑖 𝑙𝑛 𝑍𝑖   (17) 

where 𝑇 is the number of samples in the training set, 𝑍𝑖 denotes 

the classification result of the 𝑖th sample, and 𝑦𝑖  is the actual 

label of the 𝑖th sample. 

4. Construction of the experimental dataset and 

parameter sensitivity analysis 

4.1 Construction of the experimental data
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Fig. 5. Experimental setup. (a) depicts the CWRU bearing test rig, while (b) illustrates the MCDS bearing test rig.

This paper validates the validity and generalizability of 

WDSC-Net using the Case Western Reserve University (CWRU) 

bearing dataset [42] and bearing data obtained from the MCDS 

integrated failure simulation testbed. Fig. 5 illustrates the test 

setup for both datasets.

Table 1. Description of the CWRU subdataset. 

 

Fig. 6. Time domain diagram of the CWRU signal.

The CWRU experimental setup comprises four components: a motor, a torque encoder, a dynamometer, and control 

Datasets 
Fault types Fault diameter (mm) Labels 

F1 F2 F3 F4 

0 hp 1 hp 2 hp 3 hp Normal 0 0 

0 hp 1 hp 2 hp 3 hp 

Ball 

0.18 1 

0 hp 1 hp 2 hp 3 hp 0.36 2 

0 hp 1 hp 2 hp 3 hp 0.54 3 

0 hp 1 hp 2 hp 3 hp 

Inner Race 

0.18 4 

0 hp 1 hp 2 hp 3 hp 0.36 5 

0 hp 1 hp 2 hp 3 hp 0.54 6 

0 hp 1 hp 2 hp 3 hp 

Outer Race 

0.18 7 

0 hp 1 hp 2 hp 3 hp 0.36 8 

0 hp 1 hp 2 hp 3 hp 0.54 9 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

electronics. These components facilitate the collection of 

vibration signals from drive and fan-side bearings. The focus of 

this study was a drive-side bearing (SKF-6205) with a sampling 

frequency of 12 kHz. The experimental setup induced single-

point faults in the bearings using EDM, where the fault locations 

included the inner ring, outer ring, and rolling faults, each with 

fault bores of 0.18, 0.36, and 0.54 mm, respectively. The dataset 

was generated by collecting data at four different loads (0-3 hp), 

resulting in nine fault states and a normal state for each load. 

The corresponding labels are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The 

performance of the model was evaluated under various working 

conditions by creating four subdatasets, as detailed in Table 1. 

Specifically, datasets F1, F2, F3, and F4 correspond to 0 hp, 1 

hp, 2 hp, and 3 hp, respectively. Time-domain diagrams of the 

raw vibration signals are depicted in Fig. 6. 

The MCDS comprehensive fault diagnosis simulation test 

bench is composed of seven parts: a controller, motor, bearing 

seat, turntable, rigid rotor shaft, gearbox, and eddy current brake. 

The bearing type is ER-12K, with a sampling frequency of 

10240 Hz, a sampling time of 30 s, and fault positions, including 

the inner ring, outer ring, and rolling faults. Vibration signals 

were collected under four different working conditions at 

speeds of 900, 1200, 1500, and 1800 r/min. This process results 

in three types of fault states and a normal state for each speed  

the corresponding labels are 0, 1, 2 and 3, as presented in Table 

2. Datasets F5, F6, F7, and F8 corresponded to the data at 900, 

1200, 1500, and 1800 r/min, respectively. Time-domain 

diagrams of the original vibration signals are shown in Fig. 7.

Table 2. Description of the MCDS subdataset. 

Datasets 
Fault types Fault diameter (mm) Labels 

F5 F6 F7 F8 

900 r/min 1200 r/min 1500 r/min 1800 r/min Normal 0 0 

900 r/min 1200 r/min 1500 r/min 1800 r/min Ball 0.15 1 

900 r/min 1200 r/min 1500 r/min 1800 r/min Outer Race 0.30 2 

900 r/min 1200 r/min 1500 r/min 1800 r/min Inner Race 0.20 3 

 

Fig. 7. Time domain diagram of the MCDS signal.

To ensure completeness of the fault information in each data 

sample, we set the length of each sample to 2048 points. 

Continuous data points are selected from the original data not 

involved in training  80% of the data points are randomly 

assigned to the training set, while 20% are assigned to the test 

set. In addition, all the datasets were normalized. The Adam 

optimizer was used to adjust the learning rate based on the 

historical gradients. This optimization technique helps the 

model minimize the loss function rapidly and accurately, 

enhancing both training effectiveness and model 

generalizability. 

4.2 Parameter sensitivity analysis. 

We selected key parameters, including the learning rate, batch 

size, wide kernel convolution size, number of multiscale feature 

modules, and number of epochs, for the model sensitivity 

analysis. The detailed analysis is as follows: 
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Table 3. Network parameter selection of WDSC-Net. 

 Learning rate Batch size 
Wide kernel 

convolution size 

Multiscale feature 

modules 
Epochs 

Average accuracy 

(%) 
Time (s) 

Choice 0.001 32 200 2 100 100 62 

 0.01     99.70 62 

 0.1     51.04 62 

 0.001 16 200 2 100 97.30 123 

  8    95.40 239 

  4    95.10 495 

 0.001 32 100 2 100 98.10 62 

   50   97.30 62 

   25   93.30 62 

 0.001 32 200 1 100 92.60 34 

    3  99.38 91 

    4  90.63 116 

 0.001 32 200 2 50 84.30 32 

     30 82.02 26 

     20 81.95 14 

Learning rate sensitivity analysis: We selected learning rates 

of 0.001, 0.01, and 0.1 for our experiments. The results show 

that the convergence time is similar across these learning rates. 

However, model performance decreases significantly with 

higher learning rates, particularly from 0.01 to 0.1. Batch size 

sensitivity analysis: We selected batch sizes of 32, 16, 8, and 4 

for our experiments. The results indicate that larger batch sizes 

achieve higher accuracy in a shorter time, while smaller batch 

sizes increase training time and slightly decrease accuracy. This 

suggests that larger batch sizes are more effective in practical 

applications. Convolutional kernel size sensitivity analysis: We 

selected kernel sizes of 200, 100, 50, and 25 for our experiments. 

The results show that larger kernel sizes significantly improve 

model accuracy. Notably, larger kernel sizes enhance the feature 

extraction capability. Sensitivity analysis of the number of 

multiscale feature modules: We selected 1, 2, 3, and 4 multiscale 

feature modules for the experiments. The results show that the 

model performs best with 2 modules. More than 2 modules lead 

to overfitting, indicating that increasing the number of modules 

requires caution to avoid performance degradation due to 

excessive complexity. Epoch sensitivity analysis: Increasing the 

number of epochs improves the model accuracy but also 

significantly increases the training time. Thus, balancing 

accuracy and training time is necessary in practical applications. 

Based on the sensitivity analysis of key parameters such as 

learning rate, batch size, kernel size, number of multiscale 

feature modules, and epochs, we selected a learning rate of 

0.001, a batch size of 32, a kernel size of 200, 2 multiscale 

feature modules, and 100 epochs. This combination optimizes 

model performance and ensures effective training. 

5. Analysis and discussion of the results 

Various experiments were conducted to validate the diagnostic 

performance of the proposed models. First, experiments are 

performed on the CWRU and MCDS datasets to compare the 

accuracy with limited labeled samples. Second, in real 

engineering scenarios, vibration signals are often contaminated 

by varying degrees of noise, leading to obscuring of the fault 

information in the signal. To enhance the anti-interference 

ability of the model and prevent data overfitting, we introduced 

Gaussian noise with a signal-to-noise ratio of -6~6 dB to the 

limited labeled samples in the CWRU and MCDS datasets. 

Third, considering the complex and variable working conditions 

of mechanical equipment, significant differences in signal 

characteristics arise. Therefore, 12 scenarios were designed in 

the CWRU and MCDS datasets to assess the generalization 

performance of the proposed method in identifying bearing 

damage levels under variable working conditions with a limited 

labeled sample background. The software environment for all 

the experiments was the PyTorch framework in Pycharm 

2020.2.1, and the hardware environment consisted of an Intel(R) 
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Core(TM) i7-10700 CPU @ 2.90 GHz processor and an 

NVIDIA GeForce GTX1660 Ti graphics card. 

where the signal-to-noise ratio (SNR) is defined as: 

SNRdB = 10 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)   (18) 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  and 𝑃𝑛𝑜𝑖𝑠𝑒  are the signal and noise powers, 

respectively. 

5.1 Impact analysis of model recognition performance 

with limited labeled samples 

5.1.1 Diagnostic performance in CWRU and MCDS-

bearing datasets 

In practical engineering scenarios, engineering equipment is 

typically allowed to work only under normal conditions, 

resulting in abundant normal and limited fault data. Therefore, 

this study focused on the CWRU and MCDS datasets to 

investigate the influence of the number of training samples with 

fault information on the fault recognition effectiveness of the 

proposed method. For each class (normal and fault samples), 20, 

40, 60, 80, 100, 200, and 400 samples are selected from the four 

subdatasets. The ratio of the training set to the test set was 8:2. 

In this paper, the purpose of recording the standard deviation is 

to measure the variability of the model across 8 datasets.  

A larger standard deviation indicates poorer stability of the 

model, while a smaller standard deviation suggests greater 

stability. The experimental results are shown in Fig. 8. 

 

 (a) 

 

 (b) 

Fig. 8. Effect of limited labeled samples on the recognition accuracy (a) and standard deviation (b) for the CWRU subdataset .

On the CWRU subdataset, the highest accuracy for dataset F2 was 94% when the sample size was 20. However, the 
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standard deviation is the highest among the four datasets, 

indicating a degree of fluctuation in the recognition accuracy. 

Dataset F4 has the lowest recognition accuracy of 78%. As the 

sample size increases, the recognition accuracy gradually 

improves and stabilizes. When the sample size is 40, the 

recognition accuracy has reaches more than 98% on the four 

subdatasets, and the standard deviation further decreases. When 

the sample size is greater than 60, the recognition accuracy has 

reaches 100% on all four subdatasets. Morever, with increasing 

in sample size, the standard deviation gradually decreases and 

eventually stabilizes near approximately 0.05.

 

 (a) 

 

 (b) 

Fig. 9. Effect of limited labeled samples on the recognition accuracy (a) and standard deviation (b) for the MCDS subdataset .

Overall, the overall diagnostic performance on the MCDS 

subdataset is lower than that on the CWRU subdataset. The 

recognition accuracy on sub-dataset F7 is 50% when the number 

of samples is 20. As the number of samples increases, the 

recognition accuracy improves. When the number of samples 

was increased to 40, the recognition accuracy on all four 

subdatasets improved by approximately 10%. When the number 

of samples increased to 60, the recognition accuracy improved 

by approximately 20% on F5 and F6, and 5% on F7 and F8. 

When the number of samples is increased to 80, the recognition 

performance on the F5 and F6 is better and has reaches 

approximately 90%, but the diagnostic performance on F7 and 

F8 is still unsatisfactory. When the number of samples is 

increased to 200, the recognition accuracy on all four 

subdatasets has attaines more than 80%. The standard 

deviations of the four datasets generally increase and then 

decrease, which indicates that the number of high-quality 

labeled samples is crucial to the stability of the model. 

The above experimental results show that the proposed 

method has certain applicability and limitations when dealing 

with limited sample data. When each class is larger than 100 

samples, the method can effectively perform fault 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

discrimination. However, when facing smaller sample data, 

especially in MCDS when the number of samples per class is 

between 20 and 60, the method may be affected by data sparsity, 

which may have led to overfitting of the model to the noisy 

samples in the training data, leading to the possible challenges 

of the proposed method in limited sample scenarios. In this case, 

the proposed method may require more samples for training to 

adequately capture the feature differences between each class. 

We plan to integrate multiple classifiers or employ techniques 

such as transfer learning to reduce the data distribution 

differences between various domains, improve the performance 

and generalization ability of the model to better cope with the 

challenge of minimum small-sample data, and provide more 

reliable fault diagnosis solutions for practical engineering 

applications. 

To further enhance the interpretability of the model, we 

randomly selected datasets F2 and F5 and performed t-SNE 

visualization of the wide kernel convolutional layer, the 

LMSFM1 and LMSFM2 modules based on depth-separable 

convolution, and the fully connected layer (FC). The results are 

as follows: 

As observed in Fig.10 (a) and (e), the fault data are more 

dispersed after passing through the wide-kernel convolutional 

feature extraction layer, showing no obvious clustering or clear 

demarcation between classes. This indicates that the wide-

kernel convolutional layer has limited feature extraction 

capability. Fig.10 (b) and (f) show that when the fault data pass 

through the LMSFM1 module, the data distribution improves. 

Some classes start to form more obvious clusters, and the 

dividing line between labels becomes clearer. This indicates that 

the LMSFM1 module enhances feature extraction. Fig.10 (c) 

and (g) reveal that after the LMSFM2 module, data point 

clustering becomes more apparent. Different classes form 

clearer clusters, with more concentrated data points and more 

distinct demarcation lines. This indicates that the LMSFM2 

module performs better in feature extraction and can better 

separate data points of different classes. Fig.10 (d) and (h) 

demonstrate that after the fully connected layer, data point 

clustering is very obvious. Different types of faults form clear 

clusters, with distinct demarcation lines between various labels. 

This indicates that the fully connected layer performs well in 

feature extraction.

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

Fig.10. Visualization of the intermediate feature layer t-SNE for the WDSC-Net method.

5.1.2 The underlying reasons for performance gaps in 

CWRU and MCDS-bearing datasets 

The experiment results on the CWRU and MCDS datasets 

revealed significant differences in diagnostic performance. To 

determine the underlying reasons, we performed a comparative 

analysis of the features of these two datasets. We believe that 

the difference in dataset features may be one of the reasons for 

the difference in diagnostic performance.

 

Fig. 11. Box diagrams of the dataset MCDS (F1)and dataset CWRU(F5).

First, the relative cleanliness and the lower noise level of the 

CWRU dataset are acknowledged in the literature [43]. To 

illustrate the relative simplicity of the task in the CWRU dataset 

in greater depth, we chose to compare the characteristics of the 

data distributions in dataset F1 and dataset F5, and plotted the 

boxplots for 10,000 adjacent data points. In each health state, 
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the top and bottom of the boxplots represent the upper and lower 

quartiles of the data, respectively, i.e., containing 50% of the 

data. As shown in Fig. 11, the absolute values of the data 

amplitudes in the MCDS-bearing dataset are all less than 1 m/s², 

and the fluctuations in the data between different classes are 

small. On the other hand, in the CWRU dataset, the absolute 

value of the data amplitude fluctuates greatly with the change in 

classes, and the highest value is more than 5 m/s². In addition, 

the absolute value of the data amplitude varies greatly within 

the same fault class. This suggests that in the CWRU dataset, it 

is easier to discriminate between different classes of samples, 

and a smaller number of limited labeled samples may be 

necessary to attain better diagnostic performance, whereas, in 

the MCDS dataset, the challenge is greater. 

 

5.2 Validation of the effectiveness of the proposed method 

against typical deep learning methods 

5.2.1 Fault identification accuracy of different models 

To verify the performance of the proposed method under limited 

labeled samples, the samples for the CWRU and MCDS 

subdatasets were set to 60 and 400 in each class, respectively. 

This involves training the model with 480 and 1280 samples in 

each subdataset and using 120 and 320 samples, respectively, to 

validate the performance of the proposed method. The proposed 

model was compared and analyzed with nine classical deep-

learning fault diagnosis models. Model A represents the 

proposed WDSC-Net. Model B is the ACNN method [44], an 

interference-resistant model that introduces the attention 

mechanism into the feature extraction layer and exhibits 

excellent generalizability. Model C is the WDCNN [45], which 

is a wide convolutional kernel deep convolutional neural 

network that demonstrates good variable load adaptation in 

strongly noisy environments. Model D is a deep convolutional 

neural network consisting of two sets of ResNet modules in 

tandem, aiming to address the issues of gradient vanishing and 

model degradation through the introduction of a residual 

module. Model E is the CNN-LSTM, which is a network 

comprising a convolutional layer and a long short-term memory 

network designed to capture long-term dependencies in fault 

data. Model F is the CNN, which is a lightweight neural network 

consisting of a convolutional layer and a pooling layer. Model 

G is an improved Let-5 [46] that reduces the distributional 

variance of inputs and mitigates overfitting by adding a BN 

layer after each convolutional layer. Model H is a GAN-CNN 

[47] designed to leverage adversarial mechanisms, allowing the 

generator to continuously improve the realism of the generated 

data. Simultaneously, the discriminator continually enhances its 

ability to discern between real and generated data, aiming to 

achieve the generation of high-quality auxiliary data. Model I is 

a GAMCAE [48], a novel method that combines multiscale 

autoencoders (AEs) and generative adversarial networks to 

extract depth-sensitive features from signals. These features are 

then integrated with a classifier for fault diagnosis. Model J 

adopts the hybrid convolutional autoencoder (HCAE) [49],  

a semi-supervised fault diagnosis method. HCAE, characterized 

as a hybrid autoencoder, utilizes a softmax classifier to perform 

direct health condition diagnosis by leveraging encoded features 

generated through the autoencoder. Model K is a supervised 

learning algorithm known as the support vector machine (SVM). 

Its core principle involves segregating different classes of data 

by identifying an optimal hyperplane that maximizes the margin 

between data points of different classes. Model L is an enhanced 

algorithm called the kernel extreme learning machine (KELM), 

which builds upon the extreme learning machine framework 

and incorporates kernel functions. It comprises an input layer,  

a hidden layer, and an output layer. Model M is a decision tree 

model (DT) that represents decision rules and classification 

outcomes in a tree-like data structure. Model N is an ensemble 

learning algorithm known as random forest (RF), which 

generates final predictions by simultaneously training the 

dataset with multiple decision trees. It leverages voting 

mechanisms or averaging to make predictions. The 

hyperparameter settings are the same for all the above models, 

and the test results are presented in Table 4. 

For both the CWRU and MCDS subdatasets, the proposed 

method in this study accurately identifies the fault types of 

rolling bearings, achieving an accuracy improvement of 21% to 

30% compared to the average performance of 13 typical fault 

diagnosis methods. 

 

Table 4. Fault identification accuracy of different models. 
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Methods 
CWRU subdatasets acuracy (%) & std 

F1 F2 F3 F4 

Proposed 100.00% 0.12 100.00% 0.10 100.00% 0.10 100.00% 0.09 

Model B [44] 93.22% 0.29 78.13% 0.28 96.88% 0.20 93.75% 0.18 

Model C [45] 96.87% 0.21 90.63% 0.20 98.45% 0.20 96.85% 0.18 

Model D 81.20% 0.16 84.38% 0.15 85.41% 0.11 85.42% 0.12 

Model E 93.75% 0.27 90.63% 0.28 72.92% 0.17 79.17% 0.22 

Model F 89.58% 0.13 87.50% 0.13 87.50% 0.11 93.75% 0.13 

Model G [46] 96.35% 0.15 83.85% 0.15 75.00% 0.09 81.25% 0.13 

Model H [47] 56.48% 0.13 61.64% 0.16 58.19% 0.11 49.57% 0.14 

Model I [48] 92.48% 0.19 96.31% 0.17 94.56% 0.23 90.13% 0.16 

Model J [49] 90.45% 0.13 87.10% 0.16 92.89% 0.16 96.12% 0.11 

Model K 39.17% 0.10 42.86% 0.07 47.32% 0.10 40.18% 0.07 

Model L 18.33% 0.02 16.67% 0.01 16.67% 0.02 12.50% 0.01 

Model M 23.32% 0.01 27.50% 0.02 31.77% 0.01 20.00% 0.01 

Model N 44.17% 0.05 51.77% 0.03 65.00% 0.06 50.00% 0.05 

Ave acc/std 72.53% 0.14 71.36% 0.14 73.04% 0.12 70.62% 0.11 

Methods 
MCDS subdatasets acuracy (%) & std 

F5 F6 F7 F8 

Proposed 100.00% 0.07 100.00% 0.11 100.00% 0.06 100.00% 0.05 

Model B [44] 98.40% 0.14 89.10% 0.16 98.44% 0.17 98.13% 0.14 

Model C [45] 98.44% 0.23 100% 0.23 98.44% 0.24 96.88% 0.24 

Model D 98.75% 0.07 96.88% 0.12 98.13% 0.02 93.13% 0.11 

Model E 96.25% 0.32 89.34% 0.28 74.38% 0.20 80.63% 0.26 

Model F 95.00% 0.08 95.63% 0.14 98.75% 0.09 91.25% 0.07 

Model G [46] 95.63% 0.12 93.75% 0.12 91.88% 0.12 86.88% 0.09 

Model H [47] 65.63% 0.13 71.88% 0.15 75.00% 0.11 70.31% 0.16 

Model I [48] 94.20% 0.10 95.73% 0.15 93.62% 0.17 89.50% 0.13 

Model J [49] 88.70% 0.13 92.37% 0.13 95.14% 0.09 90.27% 0.10 

Model K 31.88% 0.02 34.38% 0.03 30.94% 0.01 31.56% 0.03 

Model L 31.88% 0.04 30.31% 0.02 28.44% 0.02 30.63% 0.01 

Model M 39.38% 0.01 38.75% 0.01 33.69% 0.01 28.13% 0.01 

Model N 81.88% 0.06 58.43% 0.02 67.38% 0.02 71.56% 0.04 

Ave acc/std 79.72% 0.11 77.61% 0.12 77.45% 0.10 75.63% 0.10 

Specifically, in the CWRU subdataset, the test accuracy of 

the proposed method surpasses the average accuracy of all the 

methods by 27%~30%. In addition to the proposed method, in 

dataset F1, Model C achieved the highest accuracy of 96.87%, 

contributing to the highest average accuracy of 72.53% among 

all the methods. For dataset F2, Model I achieved the highest 

test accuracy of 96.31%. For datasets F3 and F4, Model C 

attained the highest accuracies of 98.45% and 96.85%, 

respectively. Concerning the MCDS subdataset, the accuracy of 

the proposed method was 21%~25% greater than the average 

accuracy of all the other methods. Among the four datasets, 

excluding the proposed method, Models D and C attained the 

highest test accuracy on datasets F5 and F6, respectively. 

Models F and B achieved the highest accuracy for datasets F7 

and F8, respectively. Model C achieved 100% accuracy in 

dataset F6. Although the results show a better effect of the 

proposed method on limited samples, mdoel (K-N) still has 

unique advantages and applicability, such as stronger stability, 

and we will endeavor to integrate our method in future studies, 

to better promote the development of the field of limited-sample 

fault diagnosis. 
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5.2.2 The reasons for the low diagnostic performance of 

the comparison method  

The accuracy of fault diagnosis methods using CWRU datasets 

has generally approached 100% in recent years, but the 

diagnostic performance of the comparison methods employed 

in this paper is slightly lower, including the following reasons:  

1) A high-quality and sufficient dataset helps the model to 

learn the data features better, improving the diagnostic 

performance. The comparison method applied in this paper may 

differ from that used in previous studies. This study focuses 

more on the generalization ability of the model on a dataset with 

limited labeled fault samples and the diagnostic performance in 

a strong noise background rather than overfitting the training set, 

which may have been overlooked in previous studies. 2) The 

adjustment of training strategies may also lead to differences in 

performance. In this paper, although we refer to the relevant 

literature for key parameters such as data preprocessing, 

learning rate, and batch size, the experimental settings in the 

paper, including feature extraction and model training, are not 

detailed in the literature. All these factors have some impact on 

the final diagnosis, especially on the limited sample dataset. In 

addition, to reduce randomness and obtain a more stable 

performance evaluation, we conducted several repeated 

experiments for each method and obtained the mean value as 

the final result. 3) More importantly, the design of the model 

architecture is crucial for task adaptability. The architecture 

adopted in this paper has been carefully designed to be more 

suitable for dealing with tasks with strong noise and variable 

working conditions for diagnosis under a limited fault dataset, 

which is one of the reasons why we obtained better performance 

on this dataset. Combining all these factors, the method 

proposed in this paper outperforms the comparative methods on 

the limited fault sample dataset, whereas the diagnostic 

performance of the comparative methods may be lower than that 

of previous studies. 

5.2.3 Detailed discussion on the limitations of existing 

methods and the specific advantages of WDSC-Net 

We have provided a more detailed discussion of related work, 

focusing on the limitations of existing methods and the specific 

advantages of WDSC-Net. In this paper, we compare the 

limitations of various machine learning methods, including 

SVM, DT, RF, and KELM, and deep learning methods, such as 

Let-5, CNN, CNN-LSTM, ACNN, WDCNN, GAN-CNN, 

HCAE, and GAMCAE. We highlight the performance 

advantages of WDSC-Net, especially in scenarios with limited 

labeled samples. The detailed analysis is as follows. 

(1) Discussion of the limitations of machine learning 

methods 

SVM: Requires tuning of key parameters, such as penalty 

and kernel parameters, often using cross-validation. It is 

sensitive to noise and struggles with nonlinear problems. 

Additionally, it has higher time complexity and memory 

consumption as the data volume and feature number increase. 

DT: This algorithm is prone to overfitting with multicategory 

features, and its greedy algorithm may lead to local rather than 

global optimization. Additionally, deep trees can overfit training 

data, reducing their generalizability. RF: While RF integrates 

multiple DTs to enhance accuracy, it incurs high computational 

costs during training and testing, sacrificing the interpretability 

of individual decision trees. KELM: KELM is highly sensitive 

to kernel and regularization parameter selection and requires 

fine-tuning for optimal performance. Additionally, KELM, 

which is based on the kernel method, has a complex internal 

mechanism and lacks intuitive interpretability. 

(2) Discussion on the limitations of deep learning methods 

LeNet-5: As one of the earliest CNNs, it has a simple 

structure, leading to poor diagnostic performance under variable 

conditions and limited applicability in practical engineering 

scenarios. CNN: This method requires a large number of labeled 

datasets, with significant performance degradation when 

labeled data are limited. 

CNN-LSTM, ACNN, WDCNN, GAN-CNN, HCAE, and 

GAMCAE are derivatives of CNNs, each with its shortcomings. 

In addition to the common requirement for  

a large number of high-quality labeled samples, specific issues 

include the following: 

CNN-LSTM: Training the CNN and LSTM simultaneously. 

ACNN: Increased computational complexity and reduced 

model fitting efficiency due to the attention mechanism. 

WDCNN: The use of wide kernel convolution increases the 

number of model parameters, resulting in a more complex 

model that is more prone to overfitting on limited labeled 

datasets. GAN-CNN: Introducing the dynamic game process of 
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a GAN (generator and discriminator) makes the model prone to 

gradient vanishing and exploding, leading to training 

difficulties. Additionally, the generator may produce similar 

samples repeatedly, lacking data diversity and causing model 

collapse. It is also challenging to balance the generator and 

discriminator, often resulting in one overpowering the other and 

hindering effective learning. HCAE: This neural network 

combines data reconstruction and fault classification using 

multilayer convolution and transposed convolution, resulting in 

a high number of model parameters and increased time 

complexity. Additionally, the simultaneous optimization of 

reconstruction and classification objectives complicates model 

evaluation and training, increasing the likelihood of gradient 

vanishing and exploding. GAMCAE: This model combines  

a multiscale autoencoder with a GAN and faces similar 

challenges as other CNN and GAN-related models, such as  

a large number of parameters, training difficulties, gradient 

vanishing and exploding, and complexities in model evaluation. 

(3) Advantages of WDSC-Net 

WDSC-Net effectively uses limited labeled samples and is 

adaptable. By optimizing the wide kernel convolutional layer, 

1×1 convolution, multiscale feature module based on DSC, and 

soft threshold denoising module, a simple, clear framework 

with low computational complexity is achieved. It has strong 

generalizability and adaptability in scenarios with limited 

labeled samples, variable conditions, and strong background 

noise. 

Improved noise immunity. The enhanced soft thresholding 

method combined with deep learning reduces noise components 

in the signal, highlights important fault signal features, 

minimizes the complexity of manual threshold setting, and 

improves the noise immunity of the model. Optimization of 

computational resources. WDSC-Net significantly reduces the 

number of model parameters through multiscale channel 

convolution and point-by-point convolution of DSCs. 

Additionally, using 1×1 convolution and regularization methods, 

it designs a more efficient architecture that handles complex 

data of multiple fault types and avoids overfitting. Importantly, 

compared with other fault diagnostic methods, WDSC-Net 

reduces computational resource consumption and improves 

convergence speed, making it easier to deploy in real-world 

engineering scenarios. 

5.2.4 Analysis of the computational complexity and 

resource requirements 

WDSC-Net consists of five main modules: a wide kernel 

convolution module with a kernel size of 1 × 200, followed by 

a 1×1 convolution module for feature compression and 

extraction. The next module is the LMSFM, which uses 

multiscale depth-separable convolutions with kernel sizes of 

1×3, 1×5, 1×7, and 1×9. Two LMSFM modules are designed in 

this paper, with channel numbers of 64 and 128. Finally, an 

improved soft-thresholding noise reduction module enhances 

feature extraction and noise reduction capabilities.

Table 5. Experimental results for comparative models. 

Models Accuracy/% Test time/s FLOPs/M Params/K 

Proposed 100 0.23 6.4 189 

Model B[44] 98.40 0.4 39.7 334.4 

Model C[45] 98.44 0.16 33.4 8499.2 

Model D 98.75 0.43 80.1 198.5 

Model E 96.25 0.27 121 7680 

Model F 95.00 0.29 40.2 293.6 

Model G[46] 95.63 0.28 49.5 20172.8 

Model K 31.88 0.18 13.9 7168 

Model M 39.38 42 4.2 2150 

Model N 81.88 0.77 5.6 2867.2 

As shown in Table 5, the method proposed in this paper 

excels in accuracy, test time, computational complexity, and 

parameters, making it ideal for deployment in resource-limited 

engineering scenarios. Specifically, the accuracy of the 

proposed method reaches 100%, the highest among all models. 

The computational complexity (FLOPs) is only 6.4 M, 
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indicating minimal computation. The model has 189 K 

parameters, indicating a low memory footprint. The inference 

time is 0.23 s, demonstrating fast inference. While other models 

may excel in certain aspects, none outperform the proposed 

method overall. For example, Model C is slightly less accurate 

but excels in test time and FLOPs, making it suitable for 

scenarios requiring high inference efficiency. In contrast, Model 

G is slightly more accurate but is suitable for scenarios with 

ample computational resources and high accuracy requirements 

due to its high parameter count and FLOPs. Low-performance 

models (e.g., Model K and Model M) perform poorly in terms 

of accuracy, computational complexity, and parameters, making 

them unsuitable for practical applications. In summary, our 

approach is efficient and well-suited for deployment in 

resource-constrained engineering scenarios.

 

Fig. 12. Confusion matrix of test results of different models on dataset F1 (a) WDSC-Net, (b) ACNN, (c) WDCNN, (d) ResNet, (d) 

CNN-LSTM, (f) CNN, and (g) Let-5.

To further verify the superiority of the WDSC-Net method 

in identifying fault types, a confusion matrix was introduced to 

quantitatively analyze the identification results of Dataset F1. 

As shown in Fig. 12, only the method proposed in this study can 

distinguish fault types completely, whereas the other models 

exhibit varying degrees of misclassification. In particular, the 

ResNet, CNN-LSTM, and Let-5 models showed significant 

misclassification for bearing inner and outer ring faults, 

hindering their ability to perform the fault classification task 

effectively. 

In summary, the method proposed in this study demonstrates 

a robust ability to recognize and classify various types of faults 

in rolling bearings, even when faced with limited labeled 

samples. 

5.3 Comparison of the generalization performances of the 

proposed method and typical deep learning methods 

In real-world industrial scenarios, the diagnostic capability of 

the model diminishes significantly owing to variations in 

workloads. Moreover, the likelihood of failure in normally 

operating machines is relatively low, and the available fault 

samples may be insufficient for the model to adapt effectively 

to changes. Hence, when faced with limited fault samples, it is 

imperative to assess diagnostic capability across different loads 

or speeds. To evaluate the adaptive capacity of the proposed 

method under varying loads and rotational speeds,  

a generalization performance experiment was conducted. 

Simultaneously, this study compares and analyses fault 

recognition models using six typical deep learning methods. 

Experimental validation was performed on the CWRU and 
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MCDS subdatasets, and the results are presented in Table 6.

Table 6. Recognition accuracies of different models under cross loading (CWRU subdataset). 

Task Proposed (A) B [44] C [45] D E F G [46] 

F1→F2 96.61% 77.60% 81.25% 68.06% 53.30% 77.60% 68.93% 

F1→F3 86.46% 79.17% 86.20% 66.67% 57.12% 79.17% 69.27% 

F1→F4 86.28% 77.78% 80.47% 63.72% 51.04% 77.78% 59.72% 

F2→F1 86.98% 82.99% 79.43% 75.69% 60.94% 78.30% 61.63% 

F2→F3 97.57% 95.49% 94.53% 87.15% 76.56% 85.94% 82.99% 

F2→F4 95.14% 94.62% 84.38% 73.10% 66.84% 78.30% 75.86% 

F3→F1 94.79% 95.83% 86.20% 71.35% 47.92% 83.16% 64.58% 

F3→F2 92.36% 86.46% 86.72% 85.24% 76.91% 87.15% 83.85% 

F3→F4 98.70% 98.44% 95.57% 74.65% 73.44% 85.60% 89.24% 

F4→F1 94.79% 94.79% 72.40% 78.30% 49.65% 81.42% 64.41% 

F4→F2 97.92% 90.63% 76.04% 72.74% 72.22% 67.89% 76.56% 

F4→F3 92.97% 92.36% 84.90% 77.08% 68.58% 80.56% 73.26% 

Ave acc 93.38% 88.84% 84.00% 74.48% 62.88% 80.24% 72.53% 

In cross-load validation experiments on the CWRU subdataset, 

the WDSC-Net model proposed in this study achieved the 

highest average recognition accuracy of 93.38% across 12 

working conditions, outperforming the other six typical fault 

recognition models. Model B, the best performer among the 6 

common models, achieves an average recognition accuracy of 

88.84%, which is still 4.54% lower than that of the proposed 

model  notably, for working condition F3→F1, the recognition 

accuracy of Model B exceeds that of the proposed method by 

1.04%. However, under all the other working conditions, the 

recognition accuracy of Model B falls short of that of the 

proposed method, and Model B shows greater potential in fault 

identification. Model E exhibits the poorest fault recognition 

performance among all the models, with values that are only 

62.88%, 30.5% lower than those of Model A.

Table 7. Recognition accuracy of different models cross-load and variable-speed conditions. 

Task Proposed (A) B [44] C [45] D E F G [46] 

F5→F6 97.50% 81.25% 54.95% 60.94% 49.48% 59.38% 62.50% 

F5→F7 75.00% 51.25% 42.75% 50.00% 26.04% 37.50% 26.00% 

F5→F8 67.50% 43.75% 25.00% 45.50% 25.00% 35.94% 21.88% 

F6→F5 72.92% 61.25% 67.00% 40.00% 61.88% 37.50% 32.81% 

F6→F7 90.00% 77.50% 46.88% 75.25% 40.63% 84.38% 21.88% 

F6→F8 93.75% 68.75% 30.63% 66.75% 27.08% 40.63% 21.88% 

F7→F5 72.50% 48.30% 47.50% 27.08% 42.97% 31.25% 32.81% 

F7→F6 76.25% 57.91% 68.49% 41.40% 48.25% 48.44% 42.19% 

F7→F8 100.00% 90.00% 78.65% 75.52% 35.00% 84.38% 62.50% 

F8→F5 44.25% 36.88% 25.00% 26.04% 25.00% 31.25% 25.00% 

F8→F6 49.58% 36.25% 31.25% 37.50% 31.25% 33.75% 31.25% 

F8→F7 71.25% 70.73% 40.37% 54.75% 54.68% 72.50% 40.63% 

Ave Acc 75.88% 60.32% 46.54% 50.06% 38.94% 49.74% 35.11% 

According to the results of cross-speed validation experiments on the MCDS subdataset, the recognition accuracy 
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of the proposed WDSC-Net model was the highest among the 

six fault recognition models across the 12 cross-speed 

conditions. Model B continued to exhibit the best classification 

performance among the six typical recognition models, but it 

was lower than that of the WDSC-Net model. Comparing the 

fault classification abilities of models A and B under 12 working 

conditions, model A outperformed model B under all conditions. 

Moreover, the average accuracy of Model G under 12 working 

conditions was only 35.11%, indicating that it performed the 

worst among all the models. 

To further validate the generalization performance of the 

model in noisy scenarios, we conducted two tasks: F2-F3 and 

F5-F6. F2-F3 refers to training the model with clean samples in 

F2 while injecting noise with different signal-to-noise ratios 

(SNR) into the test samples in F3. Similarly, F5-F6 involves 

training the model in F5 and testing it in F6. 

As shown in Table 8, the proposed method performs 

optimally at all SNR levels in both the F2-F3 and F5-F6 tasks, 

particularly at higher SNR levels. This indicates that the 

proposed method has significant advantages and strong 

generalizability for handling noise and variable conditions. 

Specifically, Model B and Model F perform better at high SNR 

levels but worse at low SNR levels, indicating weaker 

generalization abilities. Model C performs stably at all SNR 

levels, but its overall generalization performance is slightly 

lower than that of the proposed method. In contrast, Model E 

and Model G show poor diagnostic performance in both tasks 

and have the weakest generalization abilities. In summary, the 

proposed method performs well under variable conditions and 

noisy scenarios, maintaining stable diagnostic performance 

across all SNR levels, reflecting its strong generalizability.

Table 8. Generalization performance analysis of different models in noisy environments. 

Methods Tasks 
  SNR(dB)    Ave acc 

-4 -2 0 2 4 6 (%) 

Proposed (A) F2- F3 75.90 77.10 77.20 77.40 78.40 87.80 78.97 

Model B [44] F2- F3 61.70 66.30 69.10 80.20 83.60 84.10 74.16 

Model C [45] F2- F3 66.30 70.00 71.00 75.00 76.40 81.80 73.41 

Model D F2- F3 54.80 58.70 65.90 66.50 68.70 73.90 64.75 

Model E F2- F3 57.90 58.50 59.90 60.00 61.90 64.60 60.46 

Model F F2- F3 68.40 71.20 72.60 74.50 76.70 77.40 73.46 

Model G [46] F2- F3 62.20 63.90 65.40 66.60 68.20 71.70 66.33 

Ave acc (%) / 63.89 66.53 68.73 71.46 73.41 77.33 / 

Proposed (A) F5-F6 76.00 76.25 78.75 84.50 86.25 90.75 82.08 

Model B [44] F5-F6 55.88 67.25 67.63 68.63 72.75 74.13 67.71 

Model C [45] F5-F6 57.88 60.38 69.00 69.50 72.13 74.50 67.23 

Model D F5-F6 71.75 72.13 75.38 79.13 82.50 83.63 77.42 

Model E F5-F6 35.63 41.25 41.50 45.88 47.25 47.38 43.14 

Model F F5-F6 61.63 62.50 64.00 68.38 71.00 81.63 68.19 

Model G [46] F5-F6 32.50 34.50 36.63 39.25 51.00 58.50 42.06 

Ave acc (%) / 55.90 59.34 61.84 65.04 68.98 72.93 / 

In summary, under limited labeled samples, the proposed 

WDSC-Net model demonstrated excellent adaptability to 

variable conditions and performed exceptionally well under 

both cross-load and variable-speed conditions. 

5.4 The analysis of anti-noise performance 

Owing to the complexity of the industrial environment, 

vibration signal acquisition is often subject to varying degrees 

of noise pollution, leading to the obscuring of fault information 

in the signal. To simulate a real industrial noise environment, 

synthetic noise was introduced to the original signal, enhancing 

the robustness of the model to noise. In this study, Gaussian 

noise with a signal-to-noise ratio of -6-6 dB was applied to the 

limited labeled samples in datasets F1 and F5 to emulate 

different intensities of noise in a real industrial setting.  

A comparative analysis was then conducted with six types of 

deep learning fault models to validate the antinoise performance 

of the proposed method. 
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Table 9. Recognition effects of different models in noisy environments. 

Methods Datasets 
   SNR (dB)    

-6 -4 -2 0 2 4 6 

Proposed (A) F1 73.13% 75.00% 77.38% 78.00% 84.50% 85.00% 87.50% 

A without STM F1 72.07% 74.15% 75.00 77.73% 82.55% 83.46% 84.11 

Model B [44] F1 70.20% 71.13% 73.13% 73.25% 76.38% 77.73% 79.69% 

Model C [45] F1 63.13% 73.13% 71.75% 74.63% 75.13% 76.82% 78.00% 

Model D F1 57.88% 72.25% 73.63% 73.87% 74.37% 75.75% 74.5% 

Model E F1 69.88% 71.63% 72.38% 73.17% 73.57% 74.09% 76.82% 

Model F F1 56.88% 59.63% 61.50% 63.25% 66.80% 71.61% 72.20% 

Model G [46] F1 64.63% 71.50% 74.63% 77.38% 79.75% 81.5% 82.29% 

Ave acc F1 67.74% 70.95% 71.72% 73.36% 75.79% 77.50% 78.71% 

Proposed (A) F5 79.94% 84.06% 85.00% 87.18% 88.75% 90.23% 91.15% 

A without STM F5 76.88% 83.43% 82.81% 86.56% 84.69% 85.00% 87.50% 

Model B [44] F5 60.93% 62.10% 62.28% 72.43% 76.56% 78.00% 83.46% 

Model C [45] F5 72.69% 80.42% 81.04% 83.33% 85.15% 87.50% 88.28% 

Model D F5 71.87% 75.63% 76.88% 79.38% 80.31% 81.88% 83.20% 

Model E F5 53.13% 75.94% 77.19% 77.50% 77.81% 80.63% 88.13% 

Model F F5 50.31% 61.25% 60.63% 63.75% 70.31% 75.00% 78.15% 

Model G [46] F5 72.50% 77.91% 80.42% 84.58% 87.08% 87.94% 88.84% 

Ave acc F5 63.78% 73.90% 74.78% 78.31% 80.85% 83.03% 85.88% 

 

(a) Dataset F1

 

(b) Dataset F5

Fig. 13 Accuracy of various methods on datasets F1 and F5 under strong noise 

As shown in Table 9 and Fig. 13(a), with the introduction of 

the soft threshold (STM) feature denoising module, the 

proposed method has the best fault identification performance 

in noisy environments with signal-to-noise ratios ranging from 

-6 to 6 dB, which is superior to the average accuracies of all 

methods by 4%-8%. Specifically, the diagnostic accuracies of 

the WDSC-Net model in strong noise environments are 73.13% 

and 87.5%, respectively. When STM is not introduced, the 

diagnostic performance of the proposed model in a strong noise 

environment decreases, but it is still superior to other typical 

comparison methods, and it also illustrates the superior feature 

extraction capability of the proposed method in this paper. The 

fault identification capability of each model improves as the 

signal-to-noise ratio increases. At a signal-to-noise ratio of 6 dB, 

the recognition accuracy of model G is the highest among the 

six diagnostic models except for the method proposed in this 

paper, but it is still 5.21% lower than the accuracy of the 

proposed model. 

According to Table 9 and Fig. 13(b), the proposed method 

exhibits the best recognition performance when the STM is 
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introduced. In a strong noise environment with a signal-to-noise 

ratio of -6 dB, Model F has the lowest recognition accuracy of 

50.31%. The recognition accuracies of Model C, Model D, and 

Model G are close to that of the proposed method, but still 

approximately 8% lower than that of the proposed method 

WDSC-Net, which illustrates that the method in this paper can 

effectively remove the noise from the signal while retaining the 

effective components and continuity of the signal in the lower 

signal-to-noise ratio scenario. When the signal-to-noise ratio is 

increased to 4 dB and 6 dB, the proposed method can achieve 

90% recognition performance. When STM is not introduced, the 

recognition performance is the best among all methods when 

the signal-to-noise ratios are -6, -4, -2, and 0, which illustrates 

the powerful feature extraction capability of our method. 

In conclusion, the proposed WDSC-Net recognition model 

demonstrates outstanding defect recognition capability even in 

diverse noisy environments with a limited number of labeled 

samples.

 

Fig. 14. T-SNE of WDSC-Net with different numbers of layers when the SNR=6 dB.

 

(a) Dataset F1

 

(b) Dataset F5

Fig. 15. Recognition performance of various models in an environment with an SNR of -6 dB. 
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To gain a comprehensive understanding of the network layer 

training process, t-stochastic neighbor embedding (t-SNE) was 

utilized with an SNR of 6 dB in the test sets of datasets F1 and 

F5. Fig.14 shows the classification results for the wide-kernel 

convolutional, multiscale feature fusion, and FC layers. Fig.14 

also displays the distribution of fault class in different noise-

intensity environments. After a wide kernel convolution, the 

state data begin to separate with clear boundaries. Subsequently, 

the multiscale feature fusion layer further reduced feature 

overlap. With the FC layer, the bearing health states can be 

accurately differentiated, resulting in a narrowing of the space 

between different classes and a widening of the space between 

categories. Clear boundaries emerge between samples of 

different categories, confirming the robustness of the proposed 

model in terms of fault classification ability in strong noise 

environments. The proposed model consistently exhibited 

stable performance in fault classification under strong noise 

conditions. 

To further visualize the recognition performance of the 

WDSC-Net model under strong noise interference, box-and-line 

plots were generated to illustrate the stability of the recognition 

results among the different models. The experiments were 

performed in a noisy environment with an SNR of -6 dB for the 

F1 and F5 datasets. As depicted in Fig. 15, the WDSC-Net 

model proposed in this study yields superior recognition results 

with a smaller variance in the strong-noise environment of 

dataset F1. Except for models B and E, which show smaller 

variances in recognition accuracy in datasets F1 and F5, 

respectively, the recognition results of the other models are not 

sufficiently stable in strong noise environments, and there are a 

significant number of outliers. 

In summary, under the constraint of limited labeled samples, 

the WDSC-Net model proposed in this study significantly 

enhances the robustness of fault recognition ability in noisy 

environments. Additionally, the model demonstrated better 

adaptability to different bearings and fault types. 

5.5 Ablation experiment 

To intuitively analyze the impact of the main modules on the 

diagnostic performance of the proposed model, we constructed 

WDSC-Net using the wide kernel convolution module (WKC), 

LMSFM, and soft threshold denoising module (STM). We 

conducted ablation experiments on a self-constructed bearing 

dataset. Two hundred samples were taken from each class, and 

to ensure the reliability of the results, each experiment was 

repeated three times. The mean values were taken as the final 

results. The experiments were evaluated based on model 

diagnostic accuracy, the number of model parameters, and 

computational complexity (FLOPs). The specific experimental 

results are shown in Table 10.

Table 10. Ablation experiments on a self-built bearing dataset. 

WKC LMSFM1 LMSFM2 STM Accuracy（%） Params/K FLOPs/M 

√   √ 25.83 3.3 6.0 

 √  √ 96.50 38.4 10.9 

  √ √ 96.40 142.3 37.6 

√ √  √ 96.70 38.6 5.3 

√  √ √ 97.20 142.5 17.6 

√ √ √ √ 99.93 189 6.4 

As shown in Table 10, different module combinations affect 

the classification accuracy and computational resources as 

follows: 

Using only the WKC and STM modules results in an 

accuracy of only 25.83%. This suggests that their feature 

extraction capability is insufficient, likely because the features 

captured by WKC are too coarse and the denoising effect is 

limited. In this scenario, the model has few parameters and low 

computational requirements, indicating low complexity but 

poor classification performance. Combining the LMSFM1 and 

STM modules significantly increases the accuracy to 96.50%. 

This indicates that this combination can effectively extract 

multiscale features and substantially improve classification 

performance. In this scenario, the number of parameters and 

computational effort are moderate, suggesting that the 

complexity and computational requirements are within 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

acceptable limits. The accuracy is slightly lower with the 

combination of the LMSFM2 and STM modules than with the 

LMSFM1 and STM modules, and the improvement is not 

significant. This may be due to the greater complexity of the 

LMSFM2, which did not significantly enhance the performance 

in this experiment despite its ability to extract effective features. 

Combining the WKC, LMSFM1, and STM modules yields an 

accuracy of 96.70%, which is slightly higher than that of 

previous combinations. This indicates that the WKC, LMSFM1, 

and STM algorithms can better extract features with a moderate 

number of parameters and fewer computations, striking  

a balance between performance and computational efficiency. 

Combining the WKC, LMSFM2, and STM modules improves 

the accuracy to 97.20%. This suggests that WKC, LMSFM1, 

and LMSFM2 can fully utilize multiscale and wide kernel 

features for effective classification, further enhancing accuracy. 

However, this combination also increases the number of 

parameters and computations. 

Combining the WKC, LMSFM1, LMSFM2, and STM 

modules results in an accuracy of 99.93%, the highest value 

observed. This demonstrates that this combination can extract 

the most effective features and significantly improve 

classification performance. Despite a significant increase in the 

number of parameters, the computational load remains low, 

indicating high computational efficiency while maintaining 

high performance. In summary, the method proposed in this 

paper achieves an optimal balance between diagnostic accuracy, 

model parameters, and computational complexity. 

6. Conclusion and future work 

We introduce WDSC-Net, a novel, lightweight, and efficient 

deep learning model for end-to-end rotating machinery fault 

diagnosis. This model outperforms several state-of-the-art 

methods by utilizing standard convolutions while significantly 

reducing the number of model parameters, making it suitable 

for environments with a limited number of labeled samples. The 

main contributions and conclusions of this study are 

summarized as follows: 

(1) In the context of fault localization in rotating machinery 

and the variability of response times for different faults, 

relatively small convolution kernels may not adequately 

represent the full range of information regarding the fault 

impact. Therefore, in this study, a wide kernel convolution was 

employed to expand the perceptual field of view, extract more 

global information about different states, and localize the fault-

affected segment.  

(2) WDSC-Net is a lightweight model in terms of storage 

and computational efficiency. It incorporates a multiscale 

feature fusion network constructed based on DSC. This 

construction enabled the model to generate differentiated 

features with mixed spatial location information. Cross-channel 

correlations were mapped using point-by-point convolutional 

mapping of the DSC. This design allowed the model to 

concentrate on more differentiated features at various locations 

in the network. Convolutional kernels of different sizes were 

intentionally designed to identify the most relevant feature 

mapping in faults. This approach helps the model learn the 

underlying relationships between the inputs and outputs of the 

network, resulting in highly discriminative features.  

(3) To alleviate the impact of noise on diagnostic accuracy 

in real-world engineering scenarios, this study introduces a new 

approach that combines the soft thresholding method with deep 

learning. By integrating these techniques, this study achieved 

recognition accuracies of 73.13% and 79.94% on the CWRU 

and MCDS datasets, respectively, under a signal-to-noise ratio 

of -6 dB. This innovative approach not only provides a new 

perspective for solving this problem but also eliminates the 

tedious and subjective task of manually setting thresholds. 

(4) We evaluate the generalization performance of the 

WDSC-Net model with limited labeled samples. Twelve types 

of scenarios are designed on the CWRU and MCDS limited-

labeled fault sample datasets respectively, and the results show 

that the proposed model has excellent diagnostic performance 

in various scenarios under variable working conditions, with 

average accuracies of 93.38% and 75.88%, respectively, which 

are better than those of other typical deep learning fault 

diagnosis methods. 

(5) In future work, we will aim to enhance the generalization 

ability and robustness of the WDSC-Net model. Simultaneously, 

given the varied probability distributions of the collected data 

and the limited availability of test samples, we plan to undertake 

transfer learning under the constraint of limited labeled samples. 

This approach was intended to broaden the applicability of the 

proposed approach in the field of engineering.
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