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Highlights  Abstract  

▪ Propose a novel method based on knowledge 

graph to handle fragmented fault text data 

capturing multi-level associations, conducting 

knowledge inference based on graph structure. 

▪ RGCN-GAT adjusts node weights dynamically 

to uncover potential correlations, supporting 

preventive maintenance. 

▪ BERT-BILSTM-CRF enables global semantic 

sharing, offering interpretable fault analysis by 

integrating knowledge graphs and Bayesian 

probability. 

 Fault text records provide detailed information on faults and handling 

steps, which are valuable for fault analysis. However, the different 

individuals’ recording styles can lead to ambiguities, and it is 

challenging to uncover potential fault associations in complex systems. 

To address these issues, this paper proposes a novel method for fault 

information extraction and analysis. Firstly, to tackle the problem of 

ambiguous boundaries between entities in fault texts, an integration 

algorithm is employed to accurately recognize fault entities considering 

contextual semantic features to establish fault knowledge graph (FKG). 

Then, a Relational Graph Convolutional Networks (RGCN) is improved 

with Graph Attention Networks (GAT) for sparse nodes caused by 

specific types of faults, to dynamically adjust the weight distribution of 

node learning, inferring potential links within the graph. The proposed 

method was validated using actual fault records from the traction system 

of rail transit vehicles, and contributes a reference for the mining and 

analysis of fault records in complex systems. 
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1. Introduction 

Urban rail transit vehicle operation modes have become 

increasingly complex, and traditional scheduling decision 

mechanisms based on human experience are no longer 

sufficient to meet the needs for rapid fault analysis and response 

in complex transportation networks1. As the power core of rail 

transit vehicles, faults in the traction system can affect train 

operation safety and reliability, causing significant losses to 

urban transportation systems and operating companies2. 

Scholars both domestic and international have summarized 

fault analysis methods in the field into three categories: 

analytical model-based3, expert experience-based, and data-

driven techniques4. The analytical model-based fault handling 

method was first proposed by BEARD at Massachusetts 

Institute of Technology (MIT) 5. Although this method can 

accurately obtain fault-derived states, it is challenging to 

establish precise models due to the influence of uncertainties in 

complex systems. Expert experience-based methods include 

expert systems6, Question&Answer (Q&A) systems7, Failure 
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Modes and Effects Analysis (FMEA)8, and Case-Based 

Reasoning (CBR)9. These methods rely on the organization and 

input of a large number of fault samples, reducing the 

practicality of the models. The development of equipment 

condition detection system and sensor technology has laid the 

foundation for data-based fault diagnosis method. Among them, 

data-driven technology commonly uses statistics-based 

methods such as time series analysis10, control chart 11 and 

regression analysis12, and signal processing-based methods 

such as Fourier Transform (FFT)13, wavelet transform 14 and 

Hilbert-Yellow transform (HHT) 15. However, these methods 

face two main issues: they do not effectively utilize expert prior 

knowledge, with fault analysis and rich information stored in 

paper fault texts, causing inconvenience and data resource 

wastage; and fault analysis lacks interpretability, greatly 

reducing the credibility of the results. 

Currently, fault reporting and reading methods used on-site 

for urban rail transit vehicle fault handling are manually 

summarized, with fault event analysis mainly relying on 

industry experts to extract information from reports16. This 

process is time-consuming, labor-intensive, and prone to errors 

due to human factors. With the advent of digitalization, text 

analysis in a big data environment has become an inevitable 

trend17. Furthermore, Knowledge Graph (KG), as an emerging 

network relationship visualization technology, have been 

widely applied to large-scale data organization, enhancing the 

utilization of engineering knowledge18. Compared to traditional 

tabular databases, KG offers several promising features, 

including: (1) graphical visualization interface functions, (2) 

integration of intrinsic and related information for more 

advanced representation and enhanced data understanding and 

utilization, (3) inference of potential relationships and 

discovery of implicit links through significant semantic 

relationships, and (4) effective propagation from initial results 

to related results based on the graph structure, increasing 

information dissemination and influence. Therefore, collecting 

increasingly accumulated domain fault event reports and 

employing machine learning methods to extract fault-related 

elements from large-scale, complex, unstructured texts to 

establish a corresponding KG database, utilizing KG queries19 

and reasoning20 to identify fault causes21, can enhance fault 

handling efficiency and interpretability, maximizing the value 

of historical data. 

In the process of constructing KG, Named Entity 

Recognition (NER) is considered an advanced NER is 

considered an advanced technique in Natural Language 

Processing (NLP). It accurately extracts textual knowledge 

entities of unlimited length, identifies patterns of proper names 

in the text, and classifies them into appropriate categories22. 

Zhen et al. 23proposed an integrated method of common words 

and syntactic contexts for discontinuous biomedical NER, 

designing a distance-independent co-occurrence feature mining 

method to enrich contextual semantic features with fine-

grained syntax and long-distance co-occurrence information, 

solving long-distance dependency problems. Pathak et al. 

24introduced Assamese named entity recognition (AsNER), an 

annotated NER dataset for low-resource Assamese, with a 

baseline Assamese NER model. S. Silalahi et al. 25proposed 

using deep learning-based NLP technology to extract 

information related to Unmanned aerial vehicle (UAV) 

accidents from UAV log messages. Liu et al. 26completed NER 

for hazard-related entities in UK railway accident reports, 

forming a risk KG in railway safety and achieving a 

quantitative mapping between multi-level hazards and risks. 

However, due to limitations in the standardization of text 

records, terminology professionalism, and the scale of 

annotated corpora, research on fault text mining for rail transit 

vehicles has yet to be conducted. Additionally, considering the 

concentration of professional terms and blurred boundaries 

between entities in Chinese texts, adaptive modeling and 

optimization of Chinese features are effective and necessary for 

improving NER performance. 

In terms of KG knowledge reasoning, current research 

mainly focuses on distance-based27 and semantic-based28 link 

prediction. The former has limited expressive power due to the 

lack of semantic information, while the latter, although 

considering node semantic information, ignores inter-node 

associations. FKG nodes contain valuable fault semantic 

knowledge, and their graph structure is constructed from 

historical fault handling experience. Therefore, both semantic 

and structural information should be preserved. Embedding-

based link prediction can achieve this goal, creating more 

effective graph learning methods. Shi et al. 29designed the 

project embeddings model (ProjE) to rank candidate entity sets 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

and select the most matching target entity. Dettmer et al. 

30proposed the Convolutional 2D Knowledge Graph 

Embeddings model (ConvE), which applies convolution 

operations to KG knowledge reasoning, capturing interactions 

between entities and relationships through convolution 

operations. The Graph Convolutional Networks (GCN) 

model31 integrates relational information by merging 

neighborhood information of nodes. However, there is 

currently no research utilizing embedding-based knowledge 

reasoning in FKGs. 

To address the research gap outlined above, this paper 

proposes a method for analyzing fault events in rail transit 

vehicle traction systems based on knowledge reasoning. The 

scientific novelty can be summarized as follows: 

(1) In the context of fault analysis scenarios where 

confusion in fault record information hampers the reuse of 

expert prior knowledge and hinders exploration of potential 

inter-fault correlations, we establish a comprehensive, efficient, 

and accurate fault handling and analysis system through entity 

recognition, construction of fault knowledge graphs, graph 

neural network inference, and Bayesian probability quantitative 

analysis. Significant model improvements are made in 

knowledge graph construction and reasoning tailored to fault 

analysis domains. 

(2) In response to the characteristics of Chinese fault text, 

we integrate Bidirectional Encoder Representations from 

Transformers (BERT), Bidirectional Long Short-Term Memory 

(BiLSTM), and Conditional Random Field (CRF) models. 

BERT is employed to extract contextual text representations, 

while the combination of BiLSTM and CRF optimizes global 

information processing, facilitating the extraction of structured 

knowledge and the elimination of textual ambiguities resulting 

from diverse descriptions of the same fault by different 

maintenance personnel. 

(3) We propose a knowledge reasoning model, RGCN-GAT, 

based on graph embedding. This model dynamically adjusts 

node learning weight allocation by introducing attention 

networks, custom-tailored to address the sparsity and 

imbalanced node types characteristic of fault knowledge graphs. 

The rest of the paper is organized as follows. Section 2 

introduces the FKG architecture. Section 3 presents the method 

framework, highlighting improvements to NER and knowledge 

reasoning algorithms for fault analysis domain. Section 4 

conducts experimental validation using actual fault data from 

the traction system of urban rail transit vehicles, providing 

application examples of the proposed method for traction 

system fault analysis. Section 5 concludes the paper and 

emphasizes future development directions. 

2. Fault Knowledge Graph 

Fault handling data from the operation and maintenance 

process can be coordinated in the form of a KG for the purpose 

of fault analysis. The FKG is intended to depict the fault 

analysis process. Therefore, it should include the nodes and 

edges outlined in Table 1. 

Table 1.Nodes in FKG. 

Node Description Edge Description 

Unit System top-level unit Contain 
Hierarchical relation between 

component 

Component The mechanical part within the unit Occur Component’s failure mode 

Mode Fault behavior Caused by The reasons of failure mode 

Cause 
Rationale or justification behind an 

occurrence 
Lead to The effect of failure mode 

Effect Consequences of an event Take Solution for failure mode 

Action 
An approach to resolving an issue or 

managing a challenging circumstance 
Located in 

The train code experiencing the failure 

mode 

Car model Train code - - 

As depicted in Figure 1, the constructed FKG in this paper 

consists of three main levels: component level, fault level, and 

action level. The component level comprises potential fault 

components, connections between components, and vehicle 

type information. The fault level encompasses all fault modes 

and their impacts, with logical connections between fault modes 

and impacts mapped to system state assessment criteria, 

facilitating the exploration of co-occurrence relationships. The 
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action level identifies fault causes and response strategies. 

To supplement the fault attribute nodes in the KG, this paper 

adopts a combined top-down and bottom-up approach to 

construct the FKG. The specific steps are as follows: Firstly, 

through an analysis of the system structure, mechanical 

connections of components, fault types, and maintenance modes 

are determined to establish the primary model layer of the KG. 

Subsequently, building upon this model layer, a bottom-up 

approach is employed to identify and analyze entities from fault 

handling data, extracting structured knowledge to form high-

quality knowledge representations. Finally, the extracted fault-

related entities are incorporated as attribute nodes, completing 

the update and enrichment of the KG.

 

Figure 1. Architecture of the FKG.

3. Method 

3.1. Framework 

In the field of industrial automation and intelligent operation 

and maintenance, the use of historical valuable experience can 

excavate the deep fault connection and reduce the manual 

dependence of fault handling. Entity recognition technology is 

widely used to automatically extract key information from fault 

processing text to provide basic data for subsequent fault 

analysis and processing. On the basis of entity recognition, the 

fault knowledge map is further constructed to form a semantic 

network integrating fault entities, attributes and relationships. 

In order to realize in-depth mining and reasoning of fault 

knowledge Graph, this paper adopts Graph Neural Network 

(GNN) technology to capture complex dependence and 

interaction between nodes and edges in the graph, so as to 

reveal the potential pattern and law of fault occurrence. 

Quantitative analysis combined with Bayesian probability 

helps operation and maintenance personnel to quickly locate 

the root cause of the fault and the cause of the fault, and 

formulate an effective solution. The above method framework 

is shown in Figure 2. 

A. Data Layer: This layer includes relationships and fault 

data of traction system components, derived from traction 

system records, fault analysis reports, and maintenance 

manuals. 

B. Building Layer: Fault data is first annotated using the 

BMEO approach26, followed by entity recognition using  

a BERT-BiLSTM-CRF model. Relationships between entities 

are established based on fault analysis logic rules, and the 

Neo4j graph database is used to visualize the resulting 
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knowledge graph. 

C. Inference Layer: KG embedding techniques are 

employed to reveal fault correlations.  The RGCN model is 

applied for deep feature learning within the knowledge graph, 

and GAT is integrated to flexibly learn dependencies between 

nodes. To infer new triplets, KG reasoning methods are used 

within the KG embedding space, identifying potential 

relationships that are then validated and added to the 

knowledge graph. 

D. Calculating Layer: Bayesian inference is used to 

calculate fault-related probabilities.  Smart search capabilities 

are implemented using Cypher queries within the Neo4j 

database, and the FKG, combined with the RGCN-GAT model, 

is used to enhance the accuracy and efficiency of fault analysis.

 

Figure 2. Methodological Framework. 
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3.2. Construction of the KG 

3.2.1. Knowledge Extraction 

The construction of the data layer depends on the type of data 

source. For structured data, methods such as graph mapping or 

Database to RDF (D2R) conversion can be directly applied. For 

semi-structured data, processors such as Python are needed, 

while specialized knowledge extraction methods are required 

for handling unstructured text data. 

The vehicle type field in the table is structured data, so it 

can be directly converted into RDF graph data format. This 

paper utilizes the commonly used RDB to RDF Mapping 

Language Schema (R2RML) to complete the mapping and 

applies named entity recognition tasks to handle the job content 

field in the Excel spreadsheet. 

3.2.2. Entity Recognition Algorithm Based on BERT-

BiLSTM-CRF 

Due to the problems in the Chinese fault text, such as 

concentration of professional terms, blurred boundary between 

entities, short text content, and large amount of content, and the 

text ambiguity caused by different maintenance personnel's 

different description of the same fault, manual rule template is 

not suitable for entity recognition. To address these issues, this 

paper adopts the BiLSTM and introduces the BERT, which 

includes pre-trained models, to complete the modeling and 

improvement of the entity recognition algorithm based on CRF, 

as illustrated in Figure 3. The specific steps are as follows: 

Step 1: Represent each word in the sentence x as a vector 

containing word and character embeddings. (taking the word 

“switch” ("开""关") and “tripped” ("跳") as an 

example).Character embeddings are randomly initialized, 

while word embeddings are typically imported from pre-trained 

word embedding files. All embedding files will be fine-tuned 

during training. 

Step 2: The input of the BiLSTM-CRF model is these 

embeddings, and the output is the predicted labels for words in 

sentence x. In this paper, the BMEO tagging method is used to 

label the data, where B-Label represents the beginning part of 

a tagged entity, M-Label represents the middle part of a tagged 

entity, E-Label represents the ending part of a tagged entity, and 

O represents irrelevant information. 

Step 3: All scores predicted by the BiLSTM layer are input 

into the CRF layer. In the CRF layer, the legal label sequence 

with the highest predicted score is selected as the best answer. 

 

Figure 3. BERT-BiLSTM-CRF model. 
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BERT, based on transformer, is a bidirectional encoding 

representation pre-training model (Figure 4), designed to 

address the problem of long-distance dependencies in 

traditional Recurrent Neural Network (RNN) models. Each 

module of the encoder contains a multi-head self-attention 

mechanism, which can reduce the distance between two distant 

words to 1, directly calculating the relevance of words. The 

formula for self-attention is: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾

) 𝑉 (1) 

𝐴𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) calculates attention scores using query 

(𝑄), key (𝐾), and value (𝑉) vectors, determining the importance 

of each word in the sequence relative to others. These vectors, 

derived from word embeddings, are obtained by multiplying 

them with three weight matrices (𝑤𝑞, 𝑤𝑘,and 𝑤𝑣) respectively. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is applied to the scaled dot-product of the 𝑄 and 𝐾 

vectors, normalizing the scores to be between 0 and 1. 𝑑 is the 

dimensionality of the input embeddings. The scaling factor, 

represented by √𝑑𝐾  stabilizes gradients during training by 

adjusting for the dimensionality of the 𝐾 vectors.  

 

 

Figure 4. BERT Pre-trained Model. 

The BILSTM model comprises two separate LSTM 

networks. The input sequence is fed into these two LSTM 

networks, one in a forward order and the other in a reverse order, 

enabling them to extract features from both directions. The final 

word feature expression is constructed by concatenating the 

output vectors from these two LSTMs. Following the BI-LSTM 

modeling approach, the feature values at time ' 𝑡  ' not only 

retain information from both the past and future but also 

enhance recognition accuracy by making predictions related to 

the nearby sequence context. 

CRF is a probabilistic model that deals with conditional 

probability distributions for one set of input sequences and 

another set of output sequences. In the context of linear chain 

conditional random fields, the characteristic functions can be 

primarily categorized into two main groups. The first type is a 

state characteristic function defined on node 𝑥, which is only 

relevant to the current node; The other is a transitive feature 

function created in the context of node 𝑦, which is only relevant 

to the current node and the previous node. For a given input 

sequence 𝑋 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , can get the output tag sequence 

𝑌 = 𝑦1, 𝑦2 , ⋯ , 𝑦𝑛. The scoring function of the tag sequence can 

be expressed as: 

𝑠𝑐𝑜𝑟𝑒(𝑋, 𝑦) = ∑ 𝜆𝑘𝑡𝑘(𝑦𝑖−1, 𝑦𝑖 , 𝑥, 𝑖)

𝑖,𝑘

+ ∑ 𝜇𝑙𝑠𝑙(𝑦𝑖 , 𝑥, 𝑖)      (2)
 

𝑖,𝑙

 

Where, 𝑡𝑘 represents local feature function; 𝑠𝑙 represents node 

characteristic function; 𝜆𝑘 and 𝜇𝑙 are the weight coefficients of 

𝑡𝑘  and 𝑠𝑙  respectively. 𝑘  represents the number of transition 

eigenfunctions; 𝑙 stands for state characteristic function. 

3.3. Fault Analysis Based on KG Reasoning 

3.3.1. KG Reasoning 

KG reasoning aims to uncover potential connections between 

entities. Traditional methods rely on rule matching or statistical 
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learning, which struggle to capture complex relationships. 

Therefore, this paper proposes a new knowledge reasoning 

method based on graph embedding. The steps are as follows: 

Step 1: Utilize random initialization or pre-training methods 

to generate embeddings for the entities and relationships in the 

knowledge graph. Apply RGCN to perform convolution 

operations on the nodes in the knowledge graph, extracting 

local features of the nodes.  

Step 2: Based on the local features extracted by RGCN, 

GAT is used to model the dependencies between nodes. GAT 

adaptively assigns attention weights according to the 

importance of nodes, thereby capturing complex global 

dependencies. 

Step 3: Apply the DistMult model to the final node 

embeddings to compute the scores of all possible triple 

combinations in the knowledge graph. Set a score threshold and 

screen out all triples that exceed this threshold. Finally, add the 

new triples verified by experts to the knowledge graph. 

(1) RGCN 

GCN is a layer that operates from graph to graph, with its 

input comprising node representation vectors and the structure 

of the graph. For undirected graph 𝐺 = (𝑉, 𝜀) , 𝑉  represents 

finite nodes and 𝜀 is a set of edges. When there exists a directed 

edge from node 𝑉𝑖  to node 𝑉𝑗 , denoted as ⟨𝑉𝑖, 𝑉𝑗⟩ ∈ 𝜀 , the 

adjacency matrix 𝐴𝑖𝑗  is 1; otherwise, it is 0. The message 

passing rule for a single layer of GCN is as follows: 

𝐻(𝑙+1) = 𝜎(𝐴𝐻𝑙𝑊𝑙) (3) 

Where 𝑙 is the layer of the graph. 𝐻𝑙 represents the nodes at the 

𝑙 layer, 𝑊 represents the weight parameters, and 𝜎 is the non-

linear activation function. 

To address the drawback of ignoring self-features, a self-

looping mechanism is added to each node. An identity matrix 

𝐼𝑁 is added to the original adjacency matrix 𝐴 (𝑁 is the number 

of nodes in the graph), so that each node of the modified 

adjacency matrix 𝐴
~

 has its own loop connected to it(as shown 

in formula 4). 

𝐴
~

= 𝐴 + 𝐼𝑁 (4) 

During the information aggregation process, the 

enhancement of features for high-degree nodes and the 

reduction of features for low-degree nodes may lead to gradient 

vanishing or explosion. Therefore, a common approach is to 

consider the degree of neighboring nodes and perform 

symmetric normalization on the adjacency matrix: 

𝐻(𝑙+1) = 𝜎 (𝐷
~

−
1
2𝐴

~

𝐷
~

−
1
2𝐻𝑙𝑊𝑙) (5) 

The FKG is a heterogeneous graph with multiple types of 

nodes and relationships, surpassing the capacity of traditional 

GCN. Therefore, it is necessary to consider message passing 

for different relationships. By separately considering the 

direction of edges and handling message passing for different 

relationships, the graph convolution is extended to RGCN32. Its 

computational method is as follows: 

𝐻(𝑙+1) = 𝜎(∑ 𝐷
~

𝑟

−
1

2𝐴
~

𝑟𝐷
~

𝑟

−
1

2𝐻(𝑙)𝑊𝑟
(𝑙)

)

𝑅

𝑟=1

                      (6) 

Where 𝑅 represents the number of relationship types. 𝐴𝑟, 𝐷𝑟, 

and 𝑊𝑟
(𝑙)

  denote the adjacency matrix, degree matrix, and 

weight matrix corresponding to specific relationship types, 

respectively. In RGCN, different types of edges connected to 

nodes generate different edge aggregations, integrating the 

nodes themselves and optimizing node embeddings through 

fully connected layers. For bidirectional information 

propagation from the head entity 𝑠 to the tail entity 𝑜, a new 

edge (𝑜, 𝑟′, 𝑠)  is added to each edge (𝑠, 𝑟, 𝑜) , where 𝑟′ 

represents the inverse relationship of 𝑟. Additionally, a self-

loop edge (𝑠,  𝑟𝑠𝑒𝑙𝑓 , 𝑠)  is added to each node, where  𝑟𝑠𝑒𝑙𝑓 

denotes a new relationship representing self-information. 

Figure 5 illustrates the structure of the directed graph. 

 

Figure 5. Message Passing Process in RGCN. 
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(2) GAT 

In this paper, we integrate the traditional GAT 33into the 

middle of the RGCN mechanism (Figure 6) to address the 

limitation of traditional heterogeneous graphs. Specifically, the 

data undergoes processing through the GAT layer post-encoder 

and pre-decoder. This integration allows for the modulation of 

learning weights for different nodes, enabling enhanced 

representation learning, with the equation as follows: 

𝐻𝑎
(𝑙)

= 𝜎(∑ 𝛼𝑖𝑗𝑊𝑎𝑣𝑗) 
𝑗∈𝑁𝑖

  (7) 

Where 𝑁𝑖 represents the neighbors of the node 𝑖, 𝑊𝑎 represents 

the weight matrix in the attention mechanism, and 𝑣𝑗 denotes 

the node 𝑗. Additionally, the representation of 𝛼 is as follows: 

𝑎𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝜆𝑇[𝑊𝑎𝑣𝑖||𝑊𝑎𝑣𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝜆𝑇[𝑊𝑎𝑣𝑖||𝑊𝑎𝑣𝑘]))
𝑘∈𝑁𝑒𝑖𝑔ℎ(𝑖)

(8) 

Where 𝜆 represents the weight indicator in the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 

function, and ||   denotes the concatenation process. This 

attention mechanism allocates different weights to nodes, 

refining the final representation. Additionally, the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 

function is defined as follows: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(λ, 𝑥) = {
λ, 𝑖𝑓  𝑥 ≥ 0

λ × 𝑥  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9) 

 

Figure 6. RGCN-GAT Model. 

(3) DistMult 

The output of the last module in the decoder has been well-

trained and can be used to predict potential links in the KG. The 

likelihood of possible edges is computed using the scoring 

function34. Given a triple (𝑠, 𝑟, 𝑜), where 𝑠, 𝑟, and 𝑜 represent 

the head node, relation, and tail node respectively, well-trained 

node representations 𝑦𝑛𝑖
 can be obtained through the following 

method: 

𝑦𝑒𝑖
= 𝑓(𝑊𝑒𝑋𝑒𝑖

) (10) 

Where 𝑋𝑒𝑖
 represents the input vector of node 𝑒𝑖, 𝑓 denotes a 

non-linear function, and 𝑊𝑒  represents the corresponding 

matrix. 

Based on embedded nodes, the combination of triplets 

(𝑒𝑖 , 𝑟, 𝑒𝑗) can be achieved as follows: 

𝑔𝑟 (𝑦𝑒𝑖
, 𝑦𝑒𝑗

) = 𝐴𝑟
𝑇 (

𝑦𝑒𝑖

𝑦𝑒𝑗

) (11) 

Where 𝐴𝑟
𝑇 is a relation parameter. Based on the above output, 

the loss function is as follows: 

𝐿(Ω) = ∑ ∑ 𝑚𝑎𝑥 {𝑆
(𝑒𝑖

′,𝑟,𝑒𝑗
′)

− 𝑆(𝑒𝑖,𝑟,𝑒𝑗) + 1,0}

(e𝑖
′,𝑟,e𝑗

′)∈𝑇′(𝑒𝑖,𝑟,𝑒𝑗)∈𝑇

(12)
 

Where 𝑇 denotes the positive sample triplet, 𝑇′ denotes the 

negative sample triplet. Additionally, 𝑆 represents the scoring 

function, with the model utilizing matrix multiplication as the 

scoring function. 

3.3.2. Fault Analysis 

Using the fault phenomenon phrase matching knowledge graph, 

the same fault phenomenon nodes are found. Use this node to 

search for the occurrence times of faulty data nodes, fault 

causes, and faulty device nodes. The above operations can be 

implemented using Neo4j graph database query language 

Cypher. 

This paper, based on the idea of Markov process, considers 

that the current fault occurrence is only related to primary fault 

causes. This paper calculates the probability 𝑃(𝐵𝑖|𝐴) using the 

Bayesian formula: 
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𝑃(𝐵𝑖|𝐴) =
𝑃(𝐴|𝐵𝑖)𝑃(𝐵𝑖)

𝑃(𝐴)
(13) 

In the equation, 𝑃(𝐴|𝐵𝑖) represents the probability of fault 

phenomenon 𝐴  occurring given the fault cause 𝐵𝑖 . 𝑃(𝐵𝑖) 

represents the probability of the fault cause 𝑖 occurring. 𝑃(𝐴) 

represents the probability of fault phenomenon 𝐴 

occurring.Using the relationship network of fault causes in the 

FKG, it is possible to infer the root causes leading to the 

occurrence of a certain fault phenomenon.  

Similarly, the formula for calculating the probability 

𝑃(𝐶𝑖|𝐴)  of each device component 𝐶𝑖  experiencing a fault 

given the fault phenomenon 𝐴 is as follows: 

𝑃(𝐶𝑖|𝐴) =
𝑛𝐴𝐶𝑖

𝑛𝐴

(14) 

In the formula, 𝑛𝐴 represents the number of occurrences of 

fault phenomenon 𝐴 , and 𝑛𝐴𝐶𝑖
 represents the number of 

occurrences of fault phenomenon 𝐴 after device component 𝐶𝑖 

experiences a fault. 

4. Application case: Traction System of Rail Transit 

Vehicles 

4.1. Fault Data 

According to the functional classification standards of rail 

vehicle equipment, the traction system is mainly composed of 

several key components, including the current receiving device, 

input circuit, inverter and chopper module, traction motor, 

traction control unit, and braking resistor. The structure of the 

traction system is shown in Figure 7. The pantograph supplies 

direct current to the traction inverter chopper module, which is 

then converted into three-phase alternating current output to 

drive the vehicle by the traction control unit, and the vehicle 

motion is achieved through the traction motor. 

 

Figure 7. Structure of the Traction System. 

This paper conducts an analysis of the key components of 

the traction system based on the statistical analysis of fault data 

and an understanding of its operational principles. By analyzing 

the fault disposal data of the traction system from 2019 to 2021, 

the overall fault distribution is calculated. During the statistical 

process, significant faults in the main operating systems of the 

vehicles can lead to service interruptions, instrument 

replacement, passenger evacuation, and other serious 

disruptions. Therefore, analyzing the key components is crucial. 

The distribution of faults within the traction system is as 

follows: receiver devices (33%), traction control units (22%), 

traction equipment boxes (15%), traction motors (13%), input 

circuits (7%), inverters and chopper modules (4%), braking 

resistors (3%), and heat dissipation devices (3%). Based on 

these statistical results, combined with the operational 

principles of the traction system and expert input, eight types 

of components including receiver devices, traction control units, 

traction equipment boxes, traction motors, input circuits, 

inverters and chopper modules, braking resistors, and heat 

dissipation devices are selected for in-depth analysis. 
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4.2. FKG Construction 

4.2.1. KG construction model ablation experiment 

First, preprocess the text data, including tokenization, 

removing meaningless words, and semantic annotation. BRAT 

is an open-source text annotation tool used for labeling named 

entities. Subsequently, the annotated dataset is divided into 

training and testing sets for training and evaluating the NER 

model. For preprocessed documents, NER algorithms based on 

different models are proposed. Table 2 shows the corresponding 

settings of optimized training parameters. 

Table 2. Main hyperparameter of NER model. 

NER model hyperparameter 

BERT - 

BiLSTM 

learning rate 1e-4 

epochs 700 

batch size 50 

BiLSTM-CRF 

BERT- BiLSTM-CRF 

epochs 700 

epochs 700 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝑓1𝑠𝑐𝑜𝑟𝑒  . They are defined by 

equations (15)-(17) respectively. Here, 𝑇𝑃  represents the 

number of true positives, 𝐹𝑃  represents the number of false 

positives, and 𝐹𝑁 represents the number of false negatives. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (16) 

𝑓1𝑠𝑐𝑜𝑟𝑒 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (17) 

Figure 8 displays the corresponding loss curves. It can be 

concluded that the convergence curve of the BERT-BiLSTM-

CRF model is the smoothest, indicating a faster convergence 

speed. According to the results in Table 3, the BERT-BiLSTM-

CRF model outperforms other models in terms of entity 

recognition and average performance. Since most entities in 

production reports are short words, the BERT model with 

multi-head self-attention mechanism demonstrates better 

performance. 

Table 3. NER model performance evaluation(%) 

NER model 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝑓1_𝑠𝑐𝑜𝑟𝑒 

BERT 94.43 94.43 94.42 

BiLSTM 84.37 85.32 84.84 

BiLSTM-CRF 89.69 90.65 90.17 

BERT-BiLSTM-CRF 98.51 97.89 98.21 

 

Figure 8. Comparison of Loss Curves. 

In the model introduced in this paper, a confusion matrix is 

used to visually represent the performance of the algorithm, as 

shown in Figure 9. Clearly, most of the predicted results are 

consistent with the actual labels, confirming the effectiveness 

and accuracy of the NER algorithm. However, entities labeled 

as "B-mode", "E-mode", and "M-effect" exhibit a certain 

prediction error rate. These errors can be attributed to the 

unbalanced distribution of annotated data, which affects the 

prediction accuracy of these specific entity categories. 
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Figure 9. Comparison of Loss Curves. 

Additionally, applying the NER model to the test set for 

classification prediction yielded results as depicted in Figure 10. 

It can be concluded that BERT-BiLSTM-CRF 

effectivelyhandles the fault disposal data of the traction system.

 

Figure 10. Classification Prediction Results. 

4.2.2. KG Construction Results 

Entities for KG Construction are extracted from the dataset 

using the aforementioned NER steps. A partial list of the 

extracted results is shown in the table 4. 

Table 4. Partial NER results 

Node attribute Node name 
The node name corresponds to Chinese 

characters 

Component 

Bow spring assembly 升弓弹簧组件 

Draw-arch machine 降弓电机 

Drop indicator 落弓指示器 

Electrical control box 电气控制箱 

Air valve box 气阀箱 

Mode 

Excessive torque 扭力超标 

Pantograph lifting fault 受电弓升起故障 

Contact network tripping 触网跳闸 

Electrical connector deformation 电气连接器变形 

Air leakage in the pantograph air valve box 受电弓气阀箱漏气 

Cause 

Deformation of lifting spring 升举弹簧变形 

Motor rod twisted 电机光杆扭曲 

Damaged bow indicator 落弓指示器损坏 

Bow lowering delay relay malfunction 降弓延时继电器故障 

Pressure regulating valve damaged 管路漏气 
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Node attribute Node name 
The node name corresponds to Chinese 

characters 

Effect 

Bow bolt deviation 受电弓螺栓偏斜 

Loss of lifting function 丧失升降功能 

Vehicle disconnected 车辆掉线 

Vehicle High Voltage Alert 车辆高压警惕 

Pantograph failure 受电弓故障 

Action 

Disassembly 拆卸 

Clean and replace 清洁更换 

Clean, lubricate 清洁、润滑 

The FKG is constructed using the Neo4j platform (Figure 

11). In the graph, brown nodes represent "Unit", pink nodes 

represent "Component", orange nodes represent "Mode", blue 

nodes represent "Causes", red nodes represent "Effect", green 

nodes represent "Action" and purple nodes represent "Car 

Model". For better understanding, specific examples of some 

nodes are shown in Table 4. 

 

Figure 11. Traction system FKG (local). 

4.3. Fault Analysis Based on Knowledge Reasoning 

4.3.1. Performance analysis of knowledge reasoning 

model 

This paper employs GNN to infer potential links in the Traction 

System FKG. To validate the link prediction performance, the 

evaluation metrics are as follows: 

𝐻𝑖𝑡@𝑛 =
1

𝑁
∑ 𝑁(𝑟𝑎𝑛𝑘𝑖 ≤ 𝑛)

𝑖=1

(18) 

Where 𝑟𝑎𝑛𝑘  refers to the ranking of a specific triple, 

(. ) indicates whether the expected triple is present in the 

selected list. This paper selects 𝐻𝑖𝑡@1, 𝐻𝑖𝑡@3, and 𝐻𝑖𝑡@10 

for evaluation. Additionally, Mean Reciprocal Rank (𝑀𝑅𝑅 ) 

represents the overall performance, emphasizing the ranking 

order: 

𝑀𝑅𝑅 =
1

𝑁
∑ 𝑁 (

1

𝑟𝑎𝑛𝑘𝑖

)

𝑖=1

(19) 

The main model parameters are set as shown in Table 5. The 

ratio of training dataset to testing dataset is 5:2. Existing edges 

serve as positive samples, while non-existent edges serve as 

negative samples. To demonstrate its superiority, the proposed 

RGCN-GAT model needs to be compared with other state-of-

the-art models, namely: RGCN, GCN, TransE, GAT. Figure 12 

comprehensively illustrates the comparison results of 𝑀𝑅𝑅 , 

𝐻𝑖𝑡@1, 𝐻𝑖𝑡@3, and 𝐻𝑖𝑡@10. Overall, the model achieves an 

𝑀𝑅𝑅  score of 0.258, demonstrating a more balanced 

performance across the entire ranking and better identification 

of higher-ranked correct links. In terms of 𝐻𝑖𝑡@𝑘  metrics, 

RGCN-GAT achieves more than half accuracy in the top 10 

predictions. When considering stricter metrics such as 𝐻𝑖𝑡@3 

and 𝐻𝑖𝑡@1 , RGCN-GAT outperforms other models. These 

metrics collectively reflect the capability of RGCN-GAT in 

capturing and leveraging graph structural information, as well 

as its efficiency and accuracy in handling knowledge inference 

tasks. 

Table 5. Main hyperparameter of RGCN-GAT. 

Hyperparameter Value Hyperparameter Value 

Learning rate 0.01 Batch size 64 

Drop rate 0.1 Epoch 1000 

Optimize function Adam 
Attention 

head number 
4 
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Figure 12. Comparison of Knowledge Inference Models. 

Additionally, the node embeddings in the model were 

visualized to intuitively demonstrate the effectiveness of the 

proposed model. As shown in Figure 13, the visualization 

indicates that the proposed RGCN-GAT can cluster nodes of 

the same type in the same region. This axis represents the 

coordinates of high-dimensional data mapped to a two-

dimensional space using dimensionality reduction techniques, 

where their relative positions reflect the similarity of data 

points in the high-dimensional space. While other models are 

capable of clustering nodes of the same type, they exhibit more 

dispersion and larger overlaps, demonstrating that the proposed 

model can successfully generate representative node 

embeddings. 

 

 

Figure 13. Visualization of Node Embeddings. 

4.3.2 Fault Analysis 

Neo4j graph database is flexible, interpretable and 

extensible, and uses the declarative graph query language 

Cypher. For the traction system fault analysis business scenario, 

the fault analysis sample frame is shown in the figure 14, which 

is roughly divided into four steps: fault consistency judgment, 

knowledge query, knowledge reasoning, and probability 

calculation.
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Figure 14. Fault Analysis Sample frame.

Retrieval Fault handling relies on the knowledge and 

experience of engineers, and similar fault cases can be 

identified through text retrieval. However, literal similarity may 

not fully reflect consistency, and it is necessary to understand 

the relationships in the text information more deeply. The 

method of determining whether a new fault is consistent with 

an existing fault through path analysis is more interpretable and 

simpler. Table 6 fault phenomena are selected for illustration. 

Table 6. A set of fault phenomena 

Identification 

Number 
Fault Phenomenon 

Scenario 1 

Work Order Number: On June 17th, 2020, 

during the fault diagnosis download process, a 

communication fault was discovered in the 

traction control unit of MP1 vehicle (080022). 

The traction AGATE fault cannot be 

downloaded due to a fault in the AGATE EXT 

flexible connector board. 

Scenario 2 

Work Order Number: On January 19th, 2020, 

the M1 vehicle's AGATE control system 

experienced loosening of the handle fixing 

screws, along with a fault in the AGATE EXT 

flexible connector board, resulting in the 

inability to connect to the auxiliary inverter 

computer. 

In the table, Scenario 1 and Scenario 2 represent the same 

fault phenomenon, but describe the fault objects differently. 

Situation 2 lacks the description of the top-level unit "traction 

control unit" and does not specify whether the "AGATE control 

system" controls the traction unit. Merely utilizing NER to 

structure the fault phenomenon description text cannot 

determine consistency. However, if the node connection paths 

are the same, it can be inferred that the two fault phenomena 

are consistent. As shown in the yellow example section of 

figure 14, yellow nodes are symptom markers. 

The querying process involves problem analysis and 

interaction with the graph database. The logical form of 

problem analysis is translated into Cypher query statements, 

which are then used to retrieve information from the graph 

database according to the specified query language(as shown in 

the pink part of figure 14). The table 7 provides examples of 

query statements. By integrating Bayesian probability, fault 

causes or faulty components can be accurately identified(as 

shown in the green part of figure 14). 
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Table 7. Examples of Query Statements 

Question statement Semantic Analysis Cypher statement 

What causes the unbalanced phase current (不

平衡相电流) of the traction inverter drive 

board(牵引逆变器驱动板)？ 

<牵引逆变器驱动板，

occur，不平衡相电流> 

<不平衡相电流，caused 

by，?> 

match(n:Component(name："牵引逆变器驱动板")-

[:occur]->(m:failure mode:"不平衡相电流
")where(m:failure mode)-[:caused by]->(e:failure cause) 

return n,m,e 

Which components may experience board 

failures(板卡故障)？ 
<？，occur，板卡故障> 

Match (n:component)-[m:occur]- >(e:failure 

mode{name: '板卡故障'}) return n,m,e 

When the required knowledge cannot be queried directly, 

inference of entity links can be made by analyzing the nodes 

and their interrelationships in the graph, such as the potential 

connection between nodes like 'main contact damaged' and 

'overcurrent' (as shown in the blue sample section of figure 14). 

This inference is not only based on existing data but also on the 

model's learning and understanding of complex relationships 

among fault modes. When engineers and operators apply these 

inference results, they need to combine them with professional 

experience and on-site practical situations. 

4.3.3. Assessment of Fault Analysis Results 

This paper randomly selects 50 pieces of data from the fault 

text as Test Set 1, and another 50 pieces of new data as Test Set 

2. A total of 100 pieces of data are tested to determine whether 

the fault causes and faulty equipment parts appear correctly in 

the fault analysis results. Define 𝑛𝑡𝑜𝑝 and 𝑛𝑡𝑜𝑝−𝑡ℎ𝑟𝑒𝑒 as the 

number of data records where the fault causes appear in the 

analysis results in the test set and the number of data records 

where the fault causes rank in the top three in the analysis 

results in the test set, respectively. Similarly, define the fault 

equipment analysis parameters 𝑛𝑒𝑞𝑝 and 𝑛𝑒𝑞𝑝−𝑡ℎ𝑟𝑒𝑒 . The table 

below shows the test results. 

Table 8. Fault Analysis Result 

Test Set 1 
𝑛𝑡𝑜𝑝 𝑛𝑡𝑜𝑝−𝑡ℎ𝑟𝑒𝑒  𝑛𝑒𝑞𝑝 𝑛𝑒𝑞𝑝−𝑡ℎ𝑟𝑒𝑒  

50 38 50 42 

Test Set 2 
𝑛𝑡𝑜𝑝 𝑛𝑡𝑜𝑝−𝑡ℎ𝑟𝑒𝑒  𝑛𝑒𝑞𝑝 𝑛𝑒𝑞𝑝−𝑡ℎ𝑟𝑒𝑒  

35 27 40 30 

Test Set 1 
accuracy 

100％ 76％ 100％ 84％ 

Test Set 2 
accuracy 

70％ 54％ 80％ 60％ 

As the data in Test Set 1 is stored in the KG, the accuracy 

of fault cause analysis reaches 100%. For Test Set 2, which 

consists of new fault data, the accuracy of diagnosing the top-

level fault causes is 70%, indicating that the fault knowledge 

stored in the KG is incomplete and requires further exploration 

of potential associations through knowledge inference. The 

analysis of faulty equipment parts is relatively effective, 

suggesting that although there are numerous types of fault 

causes, the faulty equipment parts are mostly the same, with 

some being rare occurrences. These rare fault components can 

be added to the FKG to enhance the knowledge repository. 

5. Conclusion 

Given the challenges posed by differences in recording styles 

and potential fault correlations in complex systems, this paper 

proposes a fault event analysis method for rail transit vehicle 

traction system based on knowledge graph inference. The 

research results show that: 

(1) In view of the domain specificity and semantic 

complexity of Chinese fault text, BERT model, as a pre-trained 

language model, extracts the context representation of the text, 

which can eliminate the text ambiguity caused by different 

descriptions of the same fault by different maintenance 

personnel. Through BiLSTM modeling of context information 

and global optimization of CRF, domain specific terms and 

abbreviations can be well handled. The BERT-BiLSTM-CRF 

model has better applicability to the long word recognition of 

the traction system fault data set, with an accuracy of 98.51%, 

which indicates that the model has good performance and 

robustness in the entity recognition task of Chinese fault text. 

(2) To solve the problem of inaccurate knowledge inference 

caused by some rare nodes in the graph (such as specific types 

of faults, etc.), GAT is introduced into RGCN, so that the model 

can focus on the neighbor nodes or relations that are most 

relevant to rare nodes. For HIT@k, the accuracy rate of the first 

10 inference results of the proposed model reaches 76.7%. This 

model fully explores the hidden fault correlation in the 

knowledge graph to reduce the failure rate and improve the 

availability. 

Through the organic integration of multiple stages including 
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entity recognition, construction of fault knowledge graphs, 

inference using graph neural networks, and Bayesian 

probability quantitative analysis, this paper establishes an 

effective and accurate method for fault handling and analysis. 

Advanced entity recognition algorithms provide foundational 

data for constructing fault knowledge graphs. These fault 

knowledge graphs integrate scattered fault information into 

structured knowledge, forming a knowledge network that 

intuitively reflects the overall picture of faults. Graph neural 

networks achieve deep understanding and exploration of fault 

knowledge through knowledge inference based on graph 

embedding. Bayesian probability is combined to precisely 

estimate fault probabilities. This approach enhances system 

reliability and maintainability, providing strong support for 

fault prediction and prevention. 

While the proposed method allows for intelligent fault 

analysis, it does not focus on the issue of subsequent 

maintenance planning, which needs to be further explored. At 

the same time, further research can be carried out in the 

following aspects: (1) multimodal heterogeneous KG (2) Node 

classification methods can be developed on FKG. 
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