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Highlights  Abstract  

▪ A method based on virtual augmentation 

augmentation fusion is proposed to expand the 

experimental data of small samples. 

▪ The prior distribution is obtained by improving 

the empirical distribution function and 

combining bootstrap and kernel density 

estimation method. 

▪ The posterior distribution was solved by Gibbs 

sampling combined with Bayes method and the 

reliability was evaluated. 

 Aiming at the problems of small sample size, few test failure data and 

low reliability evaluation efficiency in accelerated life test of high-

reliability and long-life products, an improved virtual augmentation 

Bootstrap-Bayes reliability evaluation method based on small sample 

accelerated life test data was proposed. Firstly, the test data under various 

stress conditions are augmented by virtual fusion. Secondly, the 

empirical distribution function and bootstrap sampling method are 

improved, and the kernel density estimation method is used to fit the 

density distribution of test data as prior information. Then, the parameter 

estimates of the test data are obtained by Gibbs sampling combined with 

Bayes formula. Finally, the reliability index under normal stress level is 

obtained by accelerating model extrapolation. The feasibility of the 

proposed method is verified by the accelerated life test data of a type of 

Ship communication equipment. 
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1. Introduction 

With the improvement of modern manufacturing process, many 

products show the characteristics of high reliability and long life, 

especially in aerospace and military equipment, there are many 

expensive, highly reliable and complex systems, affected by 

multiple factors such as test time and research cost, it is difficult 

to obtain enough life data within a short period of time, which 

makes the failure data show the significant characteristics of 

small samples, and it brings difficulties to the efficient and 

accurate reliability assessment of such products [1]-[3].  

At present, reliability assessment techniques under small 

sample conditions have become a hot research topic. vvvvvvFor 

the small sample problem, Bayes method [4], Bootstrap method 

[5], Bayes Bootstrap method [6], Monte Carlo method [7], and 

Grey Model method [8] are the commonly used methods in 

practical engineering [9]-[12]. Many experts and scholars have 

done some research on the reliability assessment problem under 

small sample conditions: Literature [13] established a small-

sample reliability assessment model for brake system anti-skid 

valve, heavy duty CNC milling machine, and spacecraft based 

on Bayes theory. Literature [14] solved the life distribution 

parameters of aerospace electric slip ring based on the idea of 

Bootstrap, and combined with the traditional reliability 
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prediction methods to obtain the reliability index. Literature [15] 

integrated the Bayes method into the idea of Bootstrap, which 

solved the problem that the small-sample reliability model may 

have bias in practical applications. Literature [16] applied the 

grey theory to the prediction of small sample fault data, and 

improved the grey model from the fuzzy theory, the whitening 

equation itself, and the Bootstrap method, respectively, to 

improve the reliability of fault prediction. Literature [17] 

proposed a small data sample prediction method based on Least 

Squares Support Vector Machines, which has better 

generalisation and accuracy of life prediction when dealing with 

exponentially distributed small data samples. 

At present, there is some research on the reliability 

assessment method under small sample conditions, and the 

accelerated life test is a common test data acquisition method in 

reliability assessment, the above paper does not involve the 

small sample test data in the accelerated life test. In the face of 

certain high-reliability, long-life and high-cost products, it is not 

practical to use a large number of test samples for testing. At 

present, fewer reliability assessment methods can be found for 

small-sample accelerated life test data. Literature [18] 

introduced the bayes theory into the small-sample reliability 

assessment of CNC systems, and investigated the reliability 

assessment technique under small-sample step accelerated life 

test; literature [19] investigated the method of constructing the 

exact confidence limit of acceleration factor under small sample; 

The literature [20] introduced the bayes neural network into the 

reliability assessment under small samples, and then evaluated 

the reliability life of the product after generating the virtual 

accelerated life test samples. However, the above studies have 

certain limitations, the scope of application is narrow and the 

methods are cumbersome; therefore, more research is needed on 

the reliability assessment of small-sample test data in the 

accelerated life test. 

For the reliability assessment problem under small sample 

conditions, the reliability assessment based on the Bayes 

method is one of the most widely used methods [21]-[22], and 

the Bayes method can use the a priori information to determine 

the a priori distribution of the parameters, and then synthesise 

the experimental data to obtain the a posteriori distribution of 

the parameters, which can be used for reliability assessment. 

However, the current reliability assessment based on the Bayes 

method has two main difficulties, one is that the a priori 

distribution is difficult to determine; the second is that the 

constructed a posteriori distribution is more difficult to solve 

[23]. 

Aiming at the above problems, this paper proposes  

a reliability assessment method applicable to small-sample 

accelerated life test data, which introduces the idea of virtual 

augmentation and generalisation on the basis of the traditional 

Bayes Bootstrap method, expands and integrates the small-

sample data of the accelerated life test, and converts the small-

sample problem of the accelerated life test into a large-sample 

problem; and then transforms the empirical distribution 

function to carry out the Bootstrap sampling, and introduce the 

kernel density estimation method to determine the a priori 

distribution of the parameters, and finally use the Gibbs 

sampling algorithm in the Markov chain Monte Carlo method 

to calculate the a posteriori estimation of the model parameters. 

The feasibility of the method proposed in this paper is verified 

using simulation examples, and the reliability of a certain type 

of datalink equipment is evaluated by the accelerated life test 

data of this equipment.  

2. Determination of prior distributions for small sample test 

data 

2.1. Fusion Virtual Augmentation Data Expansion Model 

Virtual Augmentation (VA) has a better application in the 

reliability assessment of products with very small sub-sample 

( n≤2 ), which can appropriately augment and expand the very 

small sample size and retain the statistical characteristics of the 

sample, which can then be better for the subsequent reliability 

assessment. The use of virtual augmentation needs to meet the 

following two theoretical bases: 

(1) The sample mean of the post-enlargement sample is 

equal to the sample mean of the pre-enlargement or similar 

product; 

(2) The standard deviation of the post-enlargement sample 

is equal to the standard deviation of the pre-enlargement or 

similar product sample.  

In order to make the fault time data samples obtained from 

virtual augmentation more reasonable[24], the virtual 

augmentation formula (1) was used to augment the 𝑛 fault data 

obtained from the test to 𝑚 data:  
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𝑇 = 𝑇0 ∓ (𝑎 × (𝑖 − 1)
𝑏 + 𝑐)𝜎, 𝑖 = 1,2, . . . ,

𝑚

2
  (1) 

Where 𝑇0  is the sample mean; a, b are control coefficients 

describing the dispersion characteristics of the virtual 

broadening point (values based on engineering experience, the 

values of the parameters a, b vary in different cases and need to 

be weighed against the actual test results). 𝑐 is the coefficient to 

be determined that satisfies the theoretical basis; 𝜎 is the sample 

standard deviation; and 𝑇 is the augmented sample value. 

According to the two bases of the virtual generalisation 

method, the equation can be formulated as follows. 
1

𝑚
∑ 𝑇𝑖
𝑚
𝑖=1 = 𝑇0   (2) 

1

𝑚−1
∑ (𝑇𝑖
𝑚
𝑖=1 − 𝑇0)

2 = 𝜎2  (3) 

The undetermined coefficient 𝑐 can be solved by the above 

two arguments. 

The applicability of the virtual augmentation method is 

better in the case of very small samples, and in order to apply it 

to the case of small samples, fusion processing is required. The 

specific approach is: the sample data 𝑇1
∗, 𝑇2

∗, . . . , 𝑇𝑚
∗ obtained 

after the virtual broadening and the original data 𝑇1, 𝑇2, . . . , 𝑇𝑛 

are compared and fused, the broadening data and the original 

data are sorted in order, the Euclidean distance between the 

original data and the broadening data is compared, and the 

original data is used to replace the broadening data with its 

closest distance, so as to realise the fusion of the broadening 

data and the original data and to preserve the original sample 

data at the same time as the broadening of the data and to ensure 

the credibility of reliability statistical assessment. The fusion of 

augmented data and original data is achieved. 

2.2. A priori distribution determination based on 

Bootstrap sampling with kernel density estimation 

2.2.1. Bootstrap Sampling 

 (1) Introduction to Bootstrap Sampling 

Bootstrap method is a data processing method that 

approximates complex statistics through computer 

simulation[25]. In fact, the method is to re-sample within the 

original data, using the results of multiple simulated sampling 

to approximate the actual value. 

Basic idea of Bootstrap method: a known random sample 

𝑋 = (𝑋1, . . . , 𝑋𝑛)  follows some unknown distribution 𝐹 , 𝑥 =

(𝑥1, . . . , 𝑥𝑛)  is its sample observation, 𝜃  is a parameter to be 

estimated for the population distribution 𝐹, Its theoretical truth 

value is 𝜃(𝐹).𝐹𝑛 is the empirical distribution function obtained 

from a given sample 𝑋, according to 𝐹𝑛, the estimated value of 

the parameter 𝜃 is 𝜃̑ = 𝜃̑(𝐹). The estimated error between the 

parameter estimate 𝜃̑ and the theoretical truth value is denoted 

as: 

𝑇𝑛 = 𝜃̑(𝐹) − 𝜃(𝐹)   (4) 

Continue to draw sample 𝑋∗ = (𝑋1
∗, . . . , 𝑋𝑚

∗ )  from the 

empirical distribution 𝐹𝑛 , Call it a Bootstrap sample.𝐹𝑛
∗  is the 

sample population of the regenerated sample 𝑋∗ , and the 

parameter estimate obtained from 𝐹𝑛
∗  is 𝜃̑∗ = 𝜃̑(𝐹𝑛

∗) , then the 

error between the parameter estimate obtained from the 

regenerated sample and the parameter estimate obtained from 

the sample 𝑋 is as follows: 

𝑅𝑛 = 𝜃̑(𝐹𝑛
∗) − 𝜃(𝐹𝑛)   (5) 

By using the distribution of 𝑅𝑛  to approximate the 

distribution of 𝑇𝑛 , that is 𝑅𝑛 ≈ 𝑇𝑛 , the parameters of the 

population distribution can be approximated by the parameter 

estimates of the regenerated samples, and group B of 

regenerated samples can be obtained by repeating the 

resampling process B times. The value B of 𝜃𝑖  population 

parameter 𝜃  can be obtained, and then the distribution model 

and statistical characteristic quantity of the population 

parameter can be obtained. 

 (2) Limitations of Bootstrap Sampling Methods 

Although Bootstrap sampling can expand the sample data 

through multiple re-sampling, Bootstrap sampling will cause a 

relatively large bias when the sample size is small; in addition, 

Bootstrap sampling itself has certain theoretical limitations: 

First, there is a function construction error between the 

empirical distribution function constructed by the original 

samples and the true distribution; second, re-sampling the 

empirical distribution function constructed by the original 

samples will lead to sampling error; third, there is also an 

estimation error in the parameter estimation of the Bootstrap 

regeneration samples. The process of Bootstrap sampling and 

error analysis are shown in Fig.1.
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Fig.1. Bootstrap sampling process and error analysis.

The limitations of Bootstrap sampling are particularly 

prominent in small sample situations, which can limit the 

accuracy of Bootstrap sampling method. By analysing the 

process of Bootstrap sampling and the error analysis diagram, 

according to the large number theorem, the sampling error can 

be minimised by increasing the number of resampling; while the 

parameter estimation error is unavoidable. Therefore, we can 

start from the aspect of reducing the construction error between 

the unknown distribution and the empirical distribution to 

reduce the construction error and improve the accuracy of 

Bootstrap sampling. 

2.2.2. Modification of the experience distribution function 

The traditional empirical function is mostly constructed by the 

empirical formula dominated by the median rank formula, and 

its distribution function is as follows: 

𝐹𝑛(𝑥) = {

0 𝑥 < 𝑥1
𝑖−0.3

𝑛+0.4
𝑥(𝑖) < 𝑥 < 𝑥(𝑖+1)

1 𝑥 ≥ 𝑥(𝑛)

  (6) 

Where 𝑥(𝑖) is sorted lifetime data, 𝑛 is sample size. 

This method constructs an empirical distribution function 

that is stepped, and the stepped empirical distribution function 

will deviate from the original theoretical distribution function in 

the case of small samples, and it will lead to a relatively more 

concentrated Bootstrap sample, resulting in a larger sampling 

error, which is not conducive to the subsequent statistical 

inference of reliability. In order to construct an empirical 

function suitable for small sample conditions, reduce the 

distribution construction error and sampling error, introduce an 

improved empirical distribution function construction method 

using the B-spline function, the specific empirical function 

distribution construction method is as follows:  

(1) Reorder the invalid data from small to large. Construct 

the polyline function on the real number R as follows: 

𝐹𝑛(𝑥) =

{

0, 𝑥 < 𝑥(1)
2

𝑛(𝑥(𝑘+2)−𝑥(𝑘))
𝑥 +

𝑘𝑥(𝑘+2)−𝑥(𝑘+1)−(𝑘+1)𝑥(𝑘)

𝑛(𝑥(𝑘+2)−𝑥(𝑘))
,

𝑥(𝑘)+𝑥(𝑘+1)

2
≤ 𝑥 ≤

𝑥(𝑘+1)+𝑥(𝑘+2)

2

1, 𝑥 > 𝑥(𝑛)

     (7) 

Where 𝑘 = 0,1, . . . , 𝑛 − 1,𝑥(0) = 𝑥(1), 𝑥(𝑛+1) = 𝑥(𝑛).  

(2) The interval 𝛥 is evenly divided by step size h: 

𝑥(1) = 𝑎0 < 𝑎1 <. . . < 𝑎𝑚 < 𝑥(𝑛)  (8) 

In uniformly divided intervals 𝛥, The maximum number of 

sample points in the interval is less than 𝑛𝐷𝑛,𝜃 − 1,𝐷𝑛,𝜃  is the 

critical value of the Kolmogorov test for the statistic 𝐷𝑛  at a 

given level. 

(3) Extend the interval 𝛥: 

Δ1: 𝑎0 < 𝑎1 <. . . < 𝑎𝑚 + ℎ = 𝑎𝑚+1  (9) 

Define a B-spline function 𝑆1(𝑥) in the real field as： 

𝑆1(𝑥) = {

0, 𝑥 < 𝑎0

∑ 𝐹𝑛(𝑎𝑖)𝑀2 (
𝑥−𝑎0

ℎ
− 𝑖) ,𝑚+1

𝑖=0 𝑎0 ≤ 𝑥 ≤ 𝑎𝑚+1

1, 𝑥 > 𝑎𝑚+1

(10) 

where， 

𝑀2(𝑥) = {
1 − 𝑥, 0 ≤ 𝑥 < 1
1 + 𝑥, −1 ≤ 𝑥 < 0
0, 𝑜𝑡ℎ𝑒𝑟

  (11) 

Similarly, the method of constructing the empirical 

distribution function with cubic B-spline function can be 

obtained [21]. Considering that a B-spline function constructs 

an empirical distribution function with good stability and  

a relatively simple formula; while using a cubic B-spline 

function to construct an empirical distribution function can be 

closer to the real distribution, but its construction formula is too 

complicated and less efficient, so a B-spline function is used to 

construct an empirical distribution function for subsequent 

Bootstrap sampling and reliability statistical assessment. 

2.2.3. Kernel density estimate 

Although multiple sets of estimates of parameter 𝜃 can be 
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obtained by Bootstrap sampling method, the distribution 

expression of parameter 𝜃  cannot be obtained from these 

estimates alone, so the kernel density estimation method is 

introduced to fit the distributions of the multiple sets of 

parameter estimates in order to determine the prior distribution 

of the parameter. 

Assuming 𝑥1, 𝑥2, . . . , 𝑥𝑛 are samples from population 𝑋, the 

kernel density of the population density function 𝑓(𝑥)  at any 

point 𝑥 is estimated to be: 

𝑓ℎ
∗(𝑥) =

1

𝑛ℎ
∑ 𝐾(

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1   (12) 

Where 𝐾(•)is the kernel function and ℎ is the window width. 

In order to ensure the rationality of 𝑓ℎ
∗(𝑥)  as a density 

function estimation, kernel function 𝐾(•)is required to satisfy: 

∫ 𝐾(𝑥)
+∞

−∞
𝑑𝑥 = 1, 𝐾(𝑥) ≥ 0  (13) 

The window width ℎ  of the kernel function in the kernel 

density estimation will directly affect the smoothness of the 

kernel density estimation, a smaller window width ℎ will cause 

the image of the kernel density estimation is not smooth; take  

a larger value will lose a certain amount of information on the 

data points, so it is necessary to make a reasonable choice of the 

window width ℎ  in order to obtain a good kernel density 

estimation.  

The Mean Integrated Squared Error (MISE) method is  

a method for estimating the best window width for continuous 

variables. The MISE is defined as follows: 

𝑀𝐼𝑆𝐸(𝑓ℎ
∗) = 𝐸[∫{𝑓ℎ

∗(𝑥) − 𝑓ℎ(𝑥)}
2 𝑑𝑥]  (14) 

The expression is a function of window width ℎ as variable, 

and ℎ is selected to minimize the integral mean square error of 

𝑓ℎ
∗(𝑥), that is： 

∂𝑀𝐼𝑆𝐸(𝑓ℎ
∗)

∂ℎ
= 0    (15) 

To calculate the best window width estimate: 

ℎ∗ = (
4

3
)

1

5
𝜎𝑛−

1

5   (16) 

Where, ℎ
∗
  is the optimum window width, 𝜎  is the sample 

standard deviation and 𝑛 is the sample number. 

When using kernel density estimation to determine the prior 

distribution, choosing the appropriate type of kernel function is 

a critical step. Common kernel function types include Gaussian 

kernel, uniform kernel, triangular kernel and bimodal kernel. 

Each type of kernel function has its unique characteristics and 

applicable scenarios. The Gaussian kernel function is the most 

widely used. Choosing Gaussian kernel function as the kernel 

function for kernel density estimation can provide smooth and 

stable density estimation results, adapt to different data 

distributions, and have good performance in both theory and 

practical applications. 

Fitting distributions to multiple sets of parameter estimates 

from Bootstrap sampling by kernel density estimation allows 

for more accurate determination of prior distributions from 

sampling results to improve the precision of subsequent 

posterior distributions. 

2.2.4. Determining the prior distribution 

So far, for the problem that the a priori distribution of products 

with less failure information is difficult to determine, this 

section proposes a method for determining the a priori 

distribution based on Bootstrap sampling with kernel density 

estimation, and the flowchart of the a priori distribution 

determination is shown in Fig. 2.
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Fig. 2. A priori distribution determination process. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

According to Fig. 2, a specific step for determining the prior 

distribution can be obtained: 

1） A small number of n trial data obtained from the original 

trials are fused with virtual augmentation expansion to 

expand the sample size. 

2） Construct an empirical distribution function with the 

expanded data using a one-time B-spline function to 

reduce the distribution function construction error. 

3） Bootstrap sampling is performed on the constructed 

empirical distribution function, and the sampling is 

repeated B times in order to reduce the sampling error, 

and group B parameter estimates are obtained. 

4） A kernel density estimation was performed to fit the 

distribution to the sampled group B parameter estimates 

to obtain the prior distribution of the parameters. 

3. Solving the posterior distribution for small sample 

experimental data 

Another difficulty in using Bayes method for reliability 

assessment is the calculation of the posterior distribution. The 

posterior distribution generally has no analytical solution, and it 

is usually necessary to use numerical integration to approximate 

the posterior expectation and posterior variance of the 

parameters to be estimated in the posterior distribution. 

However, the calculation of the posterior distribution of the 

model parameters often involves high-dimensional integration 

operations, and the error term will increase with the increase in 

the dimensionality, which causes practical difficulties in the 

application of Bayes method. Bayes method application caused 

difficulties in practical application. It was not until the 

emergence of Markov Chain Monte Carlo (MCMC) algorithm, 

which statisticians introduced into statistical analysis[26], that 

this difficulty was greatly improved, and the scope of 

application of the Bayes method was greatly broadened.  

The essence of the MCMC algorithm is a Monte Carlo 

method of sample extraction by constructing a Markov chain, 

which approximates the sample expectation in terms of the 

mean value of the samples drawn from the desired distribution, 

and is capable of describing and solving complex models that 

are intractable to traditional statistical methods. 

3.1. M-H algorithm and Gibbs algorithm 

3.1.1. M-H algorithm 

The M-H algorithm is based on a Markov chain and requires the 

aid of an auxiliary function 𝑞(𝜃1|𝜃2) , called the proposal 

distribution, which represents the probability of moving to the 

next value when the current value 𝜃1  is specified. Given the 

current state value 𝜃𝑡, a random number 𝜃∗ is generated from 

the proposal distribution function and an acceptance probability 

is computed to decide whether to take 𝜃∗ as the next value in 

the sequence. This is done as follows: 

(1) Generate a candidate value A from the proposed 

distribution 𝜃∗; 

(2) Calculate the probability of acceptance: 

𝛼(𝜃𝑡 , 𝜃∗) = 𝑚𝑖𝑛 {1,
𝑝(𝜃∗)𝑞(𝜃𝑡|𝜃∗)

𝑝(𝜃𝑡)𝑞(𝜃∗|𝜃𝑡)
}  (17) 

(3) Accept 𝜃𝑡+1 = 𝜃∗ with probability 𝛼(𝜃𝑡 , 𝜃∗), otherwise 

𝜃𝑡+1 = 𝜃𝑡, and return to (2); 

(4) Based on the above steps, a Markov chain 

{𝜃0, 𝜃1, . . . , 𝜃𝑛}  can be generated and then the mean can be 

obtained for the posterior sample. 

3.1.2. Gibbs algorithm 

Gibbs algorithm can continuously draw samples from the 

conditional distributions of the samples and utilize the samples 

from these conditional distributions to approximate the samples 

from the sampling distribution. Suppose the unknown 

parameter 𝜃contains 𝑞 elements 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑞). Construct 

the full conditional posterior distribution for each element as:  

𝑝1(𝜃1|𝜃2, 𝜃3, . . . , 𝜃𝑞) 

𝑝2(𝜃2|𝜃1, 𝜃3. . . , 𝜃𝑞)             ⋮ 𝑝𝑞(𝜃𝑞|𝜃1, 𝜃2. . . , 𝜃𝑞−1)   (18) 

Both the M-H algorithm and the Gibbs algorithm have their 

own characteristics in applications: the M-H algorithm is more 

advantageous in parameter estimation in low dimensions; 

compared with the M-H sampling method, the Gibbs sampling 

algorithm only needs to know the full conditional distributions 

of each parameter to be estimated in order to be sampled, so 

when dealing with complex integrals in high-dimensional 

spaces, the Gibbs method, which is more suitable for solving 

this kind of problems, is usually chosen. Since the problem of 

multiple integrals, which is difficult to compute, is encountered 

in the calculation of the posterior distributions in this paper, the 

Gibbs sampling method is chosen as the sampling method of the 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

MCMC method to construct a suitable Markov chain. 

Then the sampling process of Gibbs algorithm can be 

depicted in Fig. 3: 
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Fig. 3. Sampling process of Gibbs algorithm. 

3.2. Posterior distribution solution based on Gibbs 

algorithm 

Assume that the unknown parameter in the population 

distribution is 𝜃  and its prior distribution is 𝜋(𝜃) , and the 

posterior distribution of 𝜃 is obtained by Bayes formula: 

𝜋(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝜋(𝜃)

∫ 𝑓(𝑥|𝜃)𝜋(𝜃)𝑑𝜃𝜃

   (19) 

Where, 𝑓(𝑥|𝜃)  is the joint density function of the unknown 

parameter 𝜃 , that is, the maximum likelihood function of the 

sample. 

Sample 𝜃 = {𝜃1, 𝜃2, . . . , 𝜃𝑛}  is drawn from the posterior 

distribution 𝜋(𝜃|𝑥) using Gibbs' algorithm with the expectation 

of the parametric posterior distribution equal to the mean of the 

drawn sample: 

𝐸(𝜃) = ∫𝜃 𝜋(𝜃|𝑥)𝑑𝜃 =
1

𝑛
∑ 𝜃𝑖
𝑛
𝑖=1  (20) 

When the overall distribution of the sample is a Weibull 

distribution with unknown parameter 𝜃 = (𝛼, 𝛽) , the steps of 

using Gibbs algorithm are as follows: 

(1) 𝛼(𝑗)  is sampled from the full conditional distribution 

𝜋(𝛼|𝑋, 𝛽(𝑗−1)). 

(2) 𝛽(𝑗)  is sampled from the full conditional distribution 

𝜋(𝛽|𝑋, 𝛼(𝑗−1)). 

Given any initial value of the parameter 𝜃 = (𝛼, 𝛽)  for 

iteration, the above process is repeated and the samples when 

the Markov chain has converged and stabilised are used as the 

samples of the posterior distribution 𝜋(𝛼, 𝛽|𝑋) for calculating 

the results of the MCMC integrals. 

When the overall distribution of the sample is a Weibull 

distribution, the posterior distribution of the unknown 

parameter 𝜃 is updated as:  

𝜋(𝛼, 𝛽|𝑥) =
𝑓(𝑥|𝛼, 𝛽)𝜋(𝛼, 𝛽)

∫ 𝑓(𝑥|𝛼, 𝛽)𝜋(𝛼, 𝛽)𝑑𝛼𝑑𝛽
Θ

 

=
𝜋(𝛼,𝛽)∏

𝛽𝑥𝑖
𝛽−1

𝛼𝛽
𝑛
𝑖=1 𝑒𝑥𝑝[−(

𝑥𝑖
𝛼
)
𝛽
]

∫ 𝜋(𝛼,𝛽)∏
𝛽𝑥𝑖

𝛽−1

𝛼𝛽
𝑛
𝑖=1 𝑒𝑥𝑝[−(

𝑥𝑖
𝛼
)
𝛽
]𝑑𝛼𝑑𝛽Θ

                (21) 

The updated posterior distribution is more complex, and in 

this chapter, the parameter estimation of the unknown parameter 

𝜃 = (𝛼, 𝛽) is done using the OpenBUGS software [27], which 

has a built-in MCMC-Gibbs sampling method to facilitate the 

solution of the posterior parameter estimation. Using 

OpenBUGS language for model programming and checking, 

load the initial value of parameters and sample data information; 

set the number of iterations, the number of sophistication and 

other parameter settings after the execution of the procedure and 

the monitoring of the unknown parameter 𝜃 = (𝛼, 𝛽); at the end 

of the iteration to output the simulation value of the a posteriori 

distribution parameter, and can be generated to simulate the 

trajectory graph and autocorrelation coefficient change trend 

graph and other information to determine the convergence of 

MCMC algorithms, based on the parameter a posteriori 

estimation of the results of the subsequent reliability of the 

statistical inference.  

So far, this chapter proposes a method for determining the  

a priori distribution based on virtual augmented expansion 

fusion and kernel density estimation, and combines the MCMC-

Gibbs algorithm to achieve the a posteriori estimation of 
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unknown parameters. The method is applicable to small sample 

test data, can effectively overcome the problems of small 

sample size and difficult to determine the a priori distribution, 

and can improve the efficiency and accuracy of reliability 

assessment. The complete flow of this proposed Va-

BayesBootstrap method is shown in Fig. 4. 

Accelerated 
life test data

Virtual 
augmentation 

fusion

Transforming 
EDF

Bootstrap 

sampling

Kernel density 
estimate

Priori 
distribution

Likelihood 
function

Bayesian 
theory

MCMC-GibbsAcceleration model
Reliability 

assessment 
 

Fig. 4.Va-BayesBootstrap method reliability assessment flow.

4. Case Studies 

4.1. Monte Carlo example validation 

In order to verify the feasibility of the method proposed in this 

paper in the case of small samples, the Monte Carlo method is 

used for feasibility verification. Let 𝛼 =300, 𝛽 =3, using Matlab 

to randomly generate 10000 data conforming to the two-

parameter Weibull distribution as the simulation failure data, in 

order to simulate the case of small samples, from which n 

sample sizes of the data are taken as the original samples, and 

the parameter estimation is carried out by the traditional great 

likelihood estimation method and the method proposed in this 

paper, respectively. In order not to lose the generality and reduce 

the error, the experiments under each group of sample size were 

conducted 100 times each, and the parameter estimation results 

were averaged, and the obtained calculation results are shown 

in Table 1 below. 

Table 1.Comparison of parameter estimation results 

Sample 

size 
Parameters MLE Errors % 

Va-

BayesBootstrap 
Errors % 

n=4 
 294.5417 1.819% 295.1876 1.604% 

 
4.9025 63.41% 4.1052 36.84% 

n=8 
 296.9888 1.004% 298.5624 0.479% 

 
3.7245 24.15% 3.2335 7.783% 

The results of the calculations in Table 1 were transformed 

into a graphical visual representation, as in Fig. 5 and Fig. 6. 

 

Fig.5. Comparison of results for sample size n = 4. 

 

Fig.6. Comparison of results for sample size n = 8. 

As can be seen from Fig. 5 and Fig. 6, the accuracy of 

parameter estimation is lower in the case of lower sample size, 

but with the increase of the sample size, the accuracy of 

parameter estimation increases, and the error between the 

calculation result and the true value is smaller. In the case of the 

same sample size, the proposed method in this paper has  








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a higher computational accuracy than the traditional great 

likelihood method to find the parameters. Simulation examples 

show that the method in this paper can effectively improve the 

accuracy of small sample conditional reliability assessment. 

In order to compare the effect of reliability assessment more 

intuitively, a sample point is taken as a sample point at an 

interval of 1 in time [0, 600], and the root mean square 

error( RMSE), between the reliability estimates of the two 

methods and the set true value is calculated separately, which is 

given by the formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑅̂ − 𝑅)2𝑁
𝑖=1    (22) 

Where N is the number of sample points, R is the set reliability 

truth value and 𝑅̂ is the estimated reliability value. 

From equation (22), the smaller the RMSE is, the smaller 

the error between the estimated value and the true value is, 

indicating a better assessment.The results of RMSE are shown 

in Table 2. 

Table 2.Comparison of RMSE for different estimation methods. 

Sample size n MLE Va-BayesBootstrap 

4 0.069212 0.046405 

8 0.03271 0.011791 

As can be seen from Table 2, the RMSE of the proposed 

method in this paper is smaller with the same sample size, which 

again proves that the proposed method in this paper is feasible. 

4.2. Reliability assessment of Ship communication 

equipment 

4.2.1. Accelerated life test 

Ship communication equipment plays an important role in 

effective communication and information transfer between 

ships, and its reliability will directly affect the ability of safe 

navigation. However, for such products, the time and manpower 

costs required for traditional life tests are too high, so 

accelerated life tests can be used to improve the reliability 

assessment efficiency of ship communication equipment. 

The test takes into account the sensitive stresses during 

normal operation of the device, and takes temperature and 

humidity as the two accelerating stresses of the accelerated life 

test, which are noted as 𝑇  and 𝑆  respectively, and the rated 

temperature 𝑇0  and humidity 𝑆0  during normal operation are 

25°C and 40% RH respectively. For this type of ship 

communication equipment, comprehensive engineering 

experience and expert opinion, set the temperature accelerated 

stress range of 50℃~80℃, humidity accelerated stress range of 

60%RH~90%RH, that in this stress range of the test produced 

by the failure are all belong to the same failure mechanism. 

To synthesise the actual situation, 20 test samples were used 

for the test, and the number of test groups for the accelerated 

life test was divided into 4 groups, with 4 accelerated stress 

levels selected for each stress, and the stress division was 

carried out by using a uniform and equal spacing, and the test 

grouping was carried out in accordance with the idea of uniform 

orthogonal design. The specific stress combinations for the 

accelerated life test were: (50°C, 70%RH), (60°C, 90%RH), 

(70°C, 60%RH), and (80°C, 80%RH). 

An accelerated life test platform was built as shown in Fig.7, 

which mainly consists of a high and low temperature test 

chamber, a DC regulated power supply, a computer and several 

ship communication devices. The schematic diagram of the 

accelerated life test platform is shown in Fig.8. 

 

Fig.7. Accelerated life test platform. 
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Fig.8. Schematic diagram of accelerated life test platform. 

This section provides a reliability assessment of a Ship 

communication device based on accelerated life test data for  

a particular type of Ship communication device, which is shown 

in Table 3.

Table 3.Accelerated life test data for a type of Ship communication equipment. 

Class number Stress level（℃，RH%） Failure time（h） 

1 50,70 285.78,396.30,449.50,500.70,609.45,776.01 

2 60,90 102.74,150.60,179.57,210.83,350.30 

3 70,60 125.85,215.95,275.98,317.62,498.73 

4 80,80 63.43,118.50,153.98,176.81 

 

4.2.2. Reliability assessment 

Generally speaking, the life distribution of electronic devices 

obey the Weibull distribution, in order to judge the data obtained 

from the Weibull distribution of the goodness of fit, you can use 

the double logarithmic linear transformation method of 

judgement, the life distribution function on both sides of the 

logarithm of the two times transformed into the following 

formula of the simpler linear form: 

𝑙𝑛𝑙𝑛
1

1−𝐹𝑖(𝑡)
= 𝑚𝑖 𝑙𝑛 𝑡𝑖𝑗 −𝑚𝑖 𝑙𝑛 𝜂𝑖   (23) 

Let 𝑦 = 𝑙𝑛𝑙𝑛
1

1−𝐹𝑖(𝑡)
，𝑥 = 𝑙𝑛 𝑡𝑖𝑗，𝑏 = 𝑚𝑖 𝑙𝑛 𝜂𝑖 , then the 

equation becomes the general standard form shown in the 

following equation: 

𝑦 = 𝑚𝑖𝑥 + 𝑏    (24) 

For the failure times of the equipment for each set of test 

conditions, 𝐹𝑖(𝑡𝑖𝑗)  can be calculated from the empirical 

distribution equation： 

𝐹𝑖(𝑡𝑖𝑗) =
𝑗−0.3

𝑛+0.4
   (25) 

Taking the test data under the first set of stress conditions as 

an example, the 𝐹𝑖(𝑡𝑖𝑗)  for this set of samples as well as the 

general standard form of each parameter were obtained as 

shown in Table 4 below. 

Table 4.Test data and standard form parameter values for the 

first set of stress conditions. 

Failure 

sequence 
𝑡𝑖𝑗(ℎ) 𝐹𝑖(𝑡𝑖𝑗) 𝑦 = 𝑙𝑛𝑙𝑛

1

1 − 𝐹𝑖(𝑡)
 𝑥 = 𝑙𝑛 𝑡𝑖𝑗 

1 285.78 0.109 -2.15562 5.65522 

2 396.3 0.266 -1.17527 5.98217 

3 449.5 0.422 -0.60154 6.10814 

4 500.7 0.578 -0.14729 6.21601 

5 609.45 0.734 0.28192 6.41256 

6 776.01 0.891 0.79434 6.65417 

According to the data obtained in Table 4, equation (24) can 

be fitted by the least squares method to obtain 𝑚𝑖 = 3.0327，

𝑏 = −19.2162, and similarly the fitted values of the parameters 

and the correlation coefficients can be calculated to obtain the 

other sets of stress conditions as shown in Table 5. 

Table 5.Parameter fitting values and correlation coefficients 

under each group of test levels. 

Stress level Fitting of 𝑚𝑖 Fitting of 𝑏 
correlation 

coefficient 

1 3.0327 -19.2162 0.9906 

2 2.2389 -12.1547 0.9730 

3 2.0272 -11.7634 0.9910 

4 2.1708 -10.8635 0.9785 

Based on the test data under each set of stress conditions a 

fitted plot of the Weibull distribution for the four sets of test 

conditions can be obtained as shown in Fig. 9. 
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Fig. 9. Fitted plot of the Weibull distribution of the test data. 

As can be seen from Table 5, although the fitted values of 

the experimental data under each group of conditions are 

slightly different, the correlation coefficients are high; at the 

same time, according to the Fig. 9, it can be seen that the fitted 

straight lines obtained from each group of experimental data 

have a similar trend and are nearly parallel, so it can be regarded 

as conforming to the Weibull distribution. 

Since temperature and humidity are the main factors 

affecting the failure of datalink equipment, the relationship 

between the characteristic life of datalink equipment and 

temperature and humidity can be expressed by a generalised 

log-linear model [28]: 

𝑙𝑛 𝛼 = 𝜇(𝑥, 𝑦) = 𝛾0 + 𝛾1𝑥𝑖 + 𝛾2𝑦𝑗   (26) 

Where 𝑥𝑖-transformed thermal stress level; 𝑦𝑗-transformed non-

thermal stress level; 𝛾0, 𝛾1, 𝛾2-parameters to be estimated. 

According to the fusion virtual augmentation data expansion 

model mentioned in the previous section, comprehensive 

engineering practical experience to determine the parameters a, 

b, the virtual augmentation formula can be approximated by the 

following formula: 

𝑇 = 𝑇0 ∓ (0.09 × (𝑖 − 1)
2 + 𝑐)𝜎, 𝑖 = 1,2, . . . ,

𝑚

2
 (27) 

The sample data is expanded to 10 and solved for c = 0.25, 

which in turn yields the expanded data after fusion through this 

model as shown in Table 6.

Table 6.Experimental data after integration of the virtual augmentation expansion. 

Class number Stress level（℃，RH%） Failure time（h） 

1 50,70 213.74,285.78,396.30,449.50,500.70,545.01,560.46,609.45,684.04,776.01 

2 60,90 41.15,102.74,150.60,179.57,175.88,210.83,230.15,255.41,297.53,350.30 

3 70,60 53.18,125.85,215.95,240.38,275.98,317.62,333.28,370.72,433.11,498.73 

4 80,80 44.97,63.43,98.30,111.64,118.50,140.28,144.72,153.98,176.81,211.39 

Taking the first set of experimental data as an example, the 

classical empirical distribution function is improved with a one-

time B-spline function to obtain 𝐹10(𝑥)  through equation (7) 

above:  

 𝐹10(𝑥) =

{
  
 

  
 0， 𝑥 < 213.74

2

720.38
𝑥 −

427.48

720.38
， 𝑥 ∈ [213.74,

213.74+285.78

2
]

. . . ⬚
2

919.7
𝑥 −

632.32

919.72
, 𝑥 ∈ [

684.04+776.01

2
, 776.01]

1, 𝑥 > 776.01

           (28) 

For a given level 𝜃 = 0.05 , query the Kolmogorov test 

threshold table to get 𝐷10,𝜃 = 0.4093,10𝐷10,𝜃 − 1 = 3.093. It 

is required that in the uniformly divided interval 𝛥 , the 

maximum number of sample points in the interval is less than 

3.093, so the maximum number of sample points is 3. 

According to the above requirements, 𝛥 of step length ℎ =

28.11  is evenly divided on the interval [213.74,776.01] , and 

𝑎21 = 804.12  is supplemented. The corresponding partition 

point values and function values are shown in Table 7.

Table 7.Divides point values and function values. 

Number Numerical value Function value Number Numerical value Function value 

a0 213.7417 0.0000 a11 522.9893 0.5077 

a1 241.8551 0.0781 a12 551.1027 0.5945 

a2 269.9686 0.1221 a13 579.2161 0.6822 

a3 298.0820 0.1529 a14 607.3295 0.7362 

a4 326.1954 0.1837 a15 635.4429 0.7817 
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Number Numerical value Function value Number Numerical value Function value 

a5 354.3088 0.2162 a16 663.5563 0.8202 

a6 382.4222 0.2506 a17 691.6698 0.8539 

a7 410.5356 0.2763 a18 719.7832 0.8877 

a8 438.6490 0.3302 a19 747.8966 0.9389 

a9 466.7625 0.3840 a20 776.0100 1.0000 

a10 494.8759 0.4414 a21 804.1234 1.0000 

Then the constructed empirical distribution function is 

shown in Fig. 10, from which it can be clearly seen that the 

empirical distribution function constructed by one-time B-

spline function is more close to the theoretical real distribution 

than the traditional empirical distribution function, which can 

reduce the empirical distribution function construction error to 

a certain extent.  

 

Fig. 10. Comparison of empirical distribution functions. 

Bootstrap sampling was performed on the constructed 

empirical distribution function, and 10,000 groups of samples 

with a capacity of 10 were drawn in order to minimise the 

sampling error; each group of samples was subjected to 

parameter estimation and the distribution of the 10,000 groups 

of parameter estimates was fitted to the distribution using kernel 

density estimation as the prior distribution of the parameters. 

The fitted plots of the distributions of the Weibull 

distribution parameters A and B obtained by the proposed 

method for the first set of test data are shown in Fig. 11 and Fig. 

12. 

 

Fig. 11. Fitting of scale parameter distributions. 

 

Fig. 12. Fitting of shape parameter distributions. 

From Fig. 11 and Fig. 12, it can be clearly seen that the group 

of test data by Bootstrap sampling 10,000 times and parameter 

estimation, respectively, after the kernel density estimation 

fitted to obtain the distribution is more in line with its true 

distribution than directly fitted to obtain the normal distribution, 

lognormal distribution, etc., and then get the group of 

experimental data unknown parameter of the a priori 

distribution for: 
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𝜋(𝛼) = Φ(
𝑥−556.72

58.44
)   (29) 

𝜋(𝛽) = Φ (
𝑙𝑛 𝑥−1.22

0.219
)   (30) 

The posterior distribution of the distribution parameters of 

the first set of test data can be obtained from equation (21). 

Gibbs sampling is performed on the obtained posterior 

distribution to solve the posterior distribution of the 

parameters𝛼and 𝛽.The results are shown in Table 8.

Table 8. Posterior statistics of parameter 𝛼 and 𝛽. 

Mean Standard deviation Error of MCMC 
Start the sample Number of samples 

𝛼 𝛽 𝛼 𝛽 𝛼 𝛽 

566.7 2.67 0.1296 1.82 0.00622 0.177 2000 8001 

566.7 3.416 0.1288 1.787 0.00378 0.1332 2000 18001 

566.7 3.637 0.1293 1.765 0.00303 0.109 2000 28001 

566.7 3.774 0.1282 1.745 0.002429 0.09292 2000 38001 

566.7 3.884 0.1294 1.759 0.002009 0.08329 2000 48001 

As can be seen from Tables 8, as the number of iterations 

increases, the mean value of the parameters gradually tends to 

be constant, the MC sampling error keeps decreasing, and the 

Markov chain tends to be stable. Discarding the first 2000 

iterations of the annealing period of the algorithm, when the 

number of iterations is 50000, the posterior probability densities 

of the parameters are shown in Fig. 13 and Fig. 14. 

 

Fig. 13. Scale-parameter a posteriori probability density plot.

 

Fig. 14. Posterior probability density plot of shape parameters. 

The mean value of the posterior estimate statistics of the 

parameters of the Ship communication communication system 

under the first set of stress conditions was taken as the point 

estimate of the parameters, and the Weibull distribution 

parameters 𝛼、𝛽  of the Ship communication communication 

system under the first set of stress conditions were 566.7 and 

3.884 respectively when the number of iterations was 50000. 

The VA-Bayes Bootstrap method in this paper was used to 

solve the Weibull distribution parameters of the Ship 

communication communication system under the stress 

conditions of each group. The mean value of the posterior 

statistics of the Ship communication communication system 

parameters under each stress condition was used as the 

estimated value of the parameters to evaluate the reliability of 

the Ship communication communication system under the 

normal use environment. 

The parameter estimates of Ship communication equipment 

under each group of stress conditions are shown in Table 9. 

Table 9. Parameter estimates for Ship communication 

equipment. 

Class 

number 

Stress level  

(℃, RH) 

Scale parameter 

𝛼 

Shape parameter 

𝛽 

1 50,70% 566.7 3.884 

2 60,90% 229.0 2.378 

3 70,60% 322.3 2.256 

4 80,80% 148.3 3.427 

Firstly, the scaling parameter 𝛼 is used as the characteristic 

life of the Ship communication equipment, and the relationship 

between scaling parameter and accelerating stress is obtained 

according to the acceleration model, and the scaling parameter 

value under normal environment is obtained. Then, based on the 

principle of invariability of failure mechanism, the mean value 

of shape parameter 𝛽 under each stress level is used to represent 

the shape parameter value under normal environment. Finally, 

the reliability of the Ship communication communication 
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system under normal environment is obtained by substituting 

the distributed parameter values under normal temperature into 

the reliability function. 

The scale parameter 𝛼 of Weibull distribution is taken as the 

characteristic life of the Ship communication equipment, and 

the model parameter  𝛾0 = −7.4136, 𝛾1 = 4.2279, 𝛾3 =

−1.7585 are obtained by solving equation (26) with matlab. 

Therefore, the acceleration model equation between its 

characteristic life and acceleration stress is as follows: 

𝑙𝑛 𝛼 = −7.4136 + 4.2279𝑥𝑖 − 1.7585𝑦𝑗   (31) 

By substituting the ambient temperature and humidity of the 

Ship communication equipment in normal operation into 

equation (31), the point estimated value of the scale parameter 

under normal environmental conditions is 4348.38.  

The shape parameters of Weibull distribution can reflect the 

failure mechanism of the Ship communication communication 

system. Since the failure mechanism of the Ship communication 

equipment remains unchanged under the accelerated life test 

and normal use environment, the shape parameters obtained in 

Table 8 are averaged to obtain the shape parameter of the Ship 

communication communication system under normal use 

environment as 2.986.  

The reliability function of Ship communication equipment 

under normal use environment is: 

𝑅(𝑡) = 𝑒𝑥𝑝 (−
𝑡

4348.38
)
2.986

       (32) 

The change curve of its reliability is shown in the Fig. 15: 

 

Fig. 15. Reliability curve. 

For such high reliability and long life products, people pay 

more attention to the reliability information in the high 

reliability range, so this paper focuses on the reliability 

evaluation of a certain type of Ship communication equipment 

in the high reliability range. The reliability evaluation results are 

shown in Table 10:  

Table 10. Reliability evaluation results. 

Reliability Time/h 

0.99 931.2 

0.95 1612 

0.90 2083 

0.80 2640 

0.70 3084 

As can be seen from Figure 15 and Table 10, the reliability 

level of this type of Ship communication communication 

system began to decline rapidly after about 1500 hours. At 

around 2083 hours its reliability level is about 0.9. According to 

the reliability information of the Ship communication 

communication system, special inspection and maintenance 

personnel can be arranged to check and maintain the Ship 

communication communication system in time before the fault 

occurs to ensure the normal and stable operation of the Ship 

communication communication system equipment.  

5. Conclusion 

Aiming at the problems such as the small number of test 

samples in accelerated life test of high-cost and long-life 

products and the low efficiency of reliability assessment, and 

making better use of the small amount of existing test data,  

a reliability assessment method of the virtual augmentation and 

expansion fusion of BayesBootstrap method for accelerated life 

test of small samples is put forward; and a certain type of 

datalink equipment is taken as an example for the validation of 

the method, the main The main results of this paper are as 

follows: 

1. On the basis of small-sample test data, through the method 

of virtual expansion and fusion, make full use of the existing 

test data, expand the amount of sample information, and fully 

excavate the overall information of life and reliability carried in 

small-sample test data. 

2. On the basis of the traditional empirical distribution by 

constructing a 1-time B-spline function distribution, combined 

with Bootstrap theory, multiple sampling on the newly 

constructed distribution function, further expanding the amount 

of sample information, approximating the overall true 
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distribution of the unknown parameter, and using the kernel 

density estimation method to fit the parameters of the sample 

model of the Bootstrap sampling, to the many times Bootstrap 

sampling after the The sample parameter distribution 

information is used as the a priori distribution information, 

which improves the accuracy of the a priori distribution in the 

reliability assessment of small-sample test data. 

3. Using Gibbs sampling in MCMC combined with Bayes 

formula to get the a posteriori estimates of the model parameters 

avoids the cumbersome and complex high-dimensional integral 

operations in the posterior distribution, simplifies the solution 

process, and improves the efficiency of reliability assessment. 

4. According to the acceleration model to extrapolate the 

normal use conditions of a certain type of Ship communication 

equipment reliability assessment indicators of the point estimate, 

and then get its reliability function and its reliability assessment 

information, can effectively guide the staff to regular inspection 

and maintenance, to ensure that the equipment works normally.
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