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Highlights  Abstract  

▪ A better understanding of the intermittency of 

fault symptoms from the perspective of 

temporal and state coupling between variables. 

▪ A novel causal model, TC-DUCG, designed for 

analyzing intermittent faults caused by 

temporal and state coupling during fault 

propagation. 

▪ A fault diagnosis inference method that takes 

into account the dynamic evolution of faults 

and the random uncertainty of the propagation 

process. 

 The diagnosis of intermittent faults is crucial in the field of maintenance 

support. Unfortunately, most existing studies focus on the analysis of 

intermittent faults in single components, ignoring the more complex 

intermittent failures of equipment functions caused by the coupling of 

multivariate anomalous states in the fault propagation process. Existing 

diagnostic methods based on fault propagation models, which mainly 

focus on one-dimensional temporal or logical relationships, fall short in 

representing and reasoning about intermittent faults caused by temporal 

and state coupling. In this paper, a Temporal Constrained Dynamic 

Uncertain Causality Graph (TC-DUCG) model is developed to fill this 

gap and effectively model intermittent faults. Our model not only 

considers the probability of fault propagation among variables but also 

integrates temporal constraints. It also presents a diagnostic reasoning 

process to investigate potential causes of intermittent faults. An 

illustrative example is proposed to demonstrate the effectiveness of the 

proposed method in diagnosing intermittent faults. 
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1. Introduction 

Intermittent faults, also known as sporadic faults, exhibit a 

transient nature, lasting for a limited period before vanishing 

unpredictably [1]. Their intricate patterns pose challenges in 

conducting fault analysis, tracing the root causes, and promptly 

identifying fault locations. These faults can lead to resource 

wastage, reduced equipment availability, increased maintenance 

costs, and potential safety hazards in certain cases [2]. Owing to 

the characteristics of intermittent faults, they have attracted 

considerable attention in the field of maintenance support. Some 

effective intermittent fault diagnosis methods have been 

presented, as seen in references [3-9]. 

While numerous methods have been proposed for 

diagnosing intermittent faults [10], it is worth noting that most 

existing research primarily focuses on analyzing intermittent 

faults in individual components. Nevertheless, the actual 

intermittent fault process is often more complex. In practice, 

 

Eksploatacja i Niezawodnosc – Maintenance and Reliability 
Volume 27 (2025), Issue 1 

journal homepage: http://www.ein.org.pl 
 

 

Article citation info: 
Ma Q, Long J, Shi X, Liu Z, Guo Y, Temporal Constrained Dynamic Uncertain Causality Graph for Root Cause Analysis of 
Intermittent Faults, Eksploatacja i Niezawodnosc – Maintenance and Reliability 2025: 27(1) http://doi.org/10.17531/ein/192169 

(*) Corresponding author. 

E-mail addresses: 

 

Q. Ma (ORCID: 0009-0000-3177-9051) mqq@mail.nwpu.edu.cn, J. Long (ORCID: 0000-0002-5805-6811) jlong@nwpu.edu.cn,  

X. Shi  shixiangnan@mail.nwpu.edu.cn, Z. Liu (ORCID: 0000-0002-0617-7902 ) liuzun@nwpu.edu.cn, Y. Guo (ORCID: 0009-0001-
5095-5206) yangming_g@nwpu.edu.cn, 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

intermittent faults in devices can be caused by the coupling of 

abnormalities in multiple variables. 

Faults exhibit propagation characteristics and can impact 

multiple variables [11]. The manner in which faults propagate 

can be represented by the dependencies among these variables 

in a diagnostic model. These dependencies can take the form of 

either temporal or logical relationships [12]. Different 

combinations of variable states can lead to different fault 

symptoms. Owing to the dynamic evolution of faults and the 

random uncertainty in the fault propagation process, the 

symptoms of faults can be intermittent, occurring only when 

specific combined conditions of variables (both temporal and 

state coupling) are met. Therefore, it is crucial to accurately 

model the fault propagation process according to these 

characteristics and to comprehensively analyze the temporal 

and logical coupling mechanisms among variables during 

propagation. These steps are useful for gaining a deeper 

understanding of how faults propagate and manifest as 

intermittent symptoms. 

A fault propagation model typically involves three essential 

steps: constructing a propagation model framework based on 

the qualitative dependencies between fault events; assigning 

numerical parameters to represent the characteristics of these 

fault events; and performing quantitative reasoning to diagnose 

the root cause responsible for the observed symptoms [13]. 

Fault Tree Analysis (FTA) is a widely used qualitative method 

for fault propagation modeling and diagnosis [14]. A fault tree 

describes the logical relationships between different fault events 

within a system. As discussed in [15], dynamic fault tree (DFT) 

analysis has been enhanced to account for dynamic behaviors, 

including sequence-dependent, functional-dependent, and 

priority relationships among failures. The authors proposed a 

stochastic computational approach for efficiently analyzing the 

failure probability of the top event in a DFT that includes 

priority AND (PAND) gates. Furthermore, stochastic models 

have been developed for the efficient analysis of spare gates and 

probabilistic common cause failures (PCCFs) in DFTs [16]. 

While methods based on fault tree analysis are primarily used 

in binary state systems with clear logical relationships. 

Difficulties in representing the uncertainty of fault relationships 

and multi-states limit the further application of such methods. 

Bayesian Network (BN) [17-18] is another commonly used 

technique in fault propagation modeling. It is a directed 

graphical model that can represent a set of random variables and 

their causal relationships. In reference [19], a BN-K2-EM 

approach is proposed to quantify the intensity of coupling 

influences among operational failures and to identify the failure 

propagation chains in accidents. 

Nevertheless, reference [20] has indicated that the compact 

representation and inference capabilities of the BN model may 

not be well-suited for multivalued cases. To address this issue, 

Zhang et al. [21] proposed the Dynamic Uncertain Causality 

Graph (DUCG) for diagnosing faults in large and complex 

systems. The DUCG can compactly represent complex 

conditional probability distributions and incorporates logic 

gates to express intricate logical dependencies (state coupling) 

between variables. The DUCG model has been successfully 

applied to root cause diagnosis in various fields, including 

aluminum electrolysis systems [22], nuclear systems [23], and 

clinical diagnosis [24]. However, the DUCG model does not 

account for the temporal aspects of fault propagation, such as 

the duration of states and bounded fault propagation delays. 

Consequently, it is unable to model temporal dependencies 

between variables during fault propagation. To address this 

limitation, the Cubic DUCG was proposed, effectively 

modeling causal-temporal dependency relationships [23]. It 

should be noted that the Cubic DUCG does not consider time 

constraints in fault propagation. Furthermore, the model 

inference process does not account for the dynamic changes in 

fault source states or the presence of multiple fault sources. 

It is important to note that several diagnostic models 

specifically address temporal information and can effectively 

model temporal dependencies between variables. One such 

model is the widely-used Timed Failure Propagation Graph 

(TFPG) model [25], which captures the temporal aspects of 

fault propagation in systems. However, the TFPG model 

assumes that the state remains unchanged after a fault effect 

reaches a node, which means it does not account for intermittent 

faults. Additionally, the causal relationships between variables 

in the TFPG model are deterministic, limiting its ability to 

effectively express the uncertainty in fault propagation. 

It is evident that the DUCG model emphasizes the 

representation of uncertain causality, allowing it to express 

complex logical dependencies. On the other hand, the TFPG 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

model focuses on processing temporal information, enabling it 

to represent general forms of temporal dependency. In summary, 

both DUCG and TFPG have advantages in expressing 

dependencies during fault propagation. However, neither 

diagnostic model is capable of modeling intermittent faults 

caused by the coupling of temporal and state factors. To address 

the limitations of both the DUCG and TFPG models, this paper 

proposes a Temporal Constrained Dynamic Uncertain Causality 

Graph (TC-DUCG) model, which can flexibly represent the 

complex mechanisms underlying intermittent faults. A 

comparison of the modeling and reasoning properties of DUCG, 

TFPG, and TC-DUCG is presented in Table 1. 

In this paper, we aim to gain a deeper understanding of the 

intermittency of fault symptoms from the perspective of 

temporal and state coupling among variables. The 

corresponding diagnostic reasoning process is also provided. 

This study considers that the states of system variables change 

dynamically during the occurrence, propagation, and evolution 

of faults. The causal relationships between variables are 

complex and uncertain. To express these dynamic and uncertain 

causal relationships between variables more intuitively and 

flexibly, the observation interval division criteria are applied to 

segment the evidence. 

The main contributions of this paper are summarized as 

follows. 

1) To analyze intermittent faults caused by temporal and state 

coupling during fault propagation, this paper proposes a 

novel causal model, TC-DUCG. The proposed model can 

flexibly represent the temporal and logical dependencies 

between multi-state variables with complex forms, 

accommodating scenarios where the state of a variable 

changes dynamically. 

2) By considering the dynamic evolution of faults and the 

inherent uncertainty in the propagation process, a fault 

diagnosis inference method is proposed, aiming to 

accurately identify the root cause of intermittent faults. In 

this inference process, observation interval division 

criteria are applied to segment the evidence, and time 

range and logical match analysis of the evidence within 

the same time slice are performed to eliminate false alarms, 

thereby improving diagnostic accuracy. 

This paper is organized as follows. After the introduction in 

Section 1, the preliminaries are presented in Section 2. Section 

3 introduces the proposed TC-DUCG model. In Section 4, an 

illustrative example is provided to demonstrate the effectiveness 

of the TC-DUCG model in diagnosing intermittent faults. 

Finally, Section 5 concludes the paper. 

2. Preliminaries 

A. Fault Description 

According to the IEEE Standards [26], an intermittent fault is 

defined as a fault that recurs frequently due to the same cause, 

persists for a limited period of time, and then disappears without 

any external corrective action, allowing the system to recover 

its ability to perform the required function. Generally, the 

occurrence and disappearance of intermittent faults are 

stochastic. A general representation of an intermittent fault is 

shown in Fig. 1. 
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Fig. 1. A general representation of an intermittent fault. 

Existing research on the mechanisms of intermittent faults 

primarily focuses on internal damage to individual device 

components, such as corrosion, wear, loose connections, and 

solder joint cracks [1]. Nevertheless, this approach may not 

accurately represent real-world intermittent fault scenarios. In 

practice, intermittent fault symptoms may be caused by the 

coupling of anomalies across multiple variables. 

In this paper, intermittent faults are defined as instances 

where complex equipment fails to perform its specified function 

due to the coupling of system variables in both temporal and 

state domains. In practical applications, there may be intricate 

causal relationships among events (variables), and the coupling 

relationships across temporal and state dimensions can be 

diverse. Temporal information includes the timing of variable 

state changes, the duration of these states, and the sequence and 

intervals between multiple state changes. Multi-state 

information encompasses various fault levels, multiple 

degraded states of components, and a range of abnormal  
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Table 1. A comparison of the modeling and reasoning properties of DUCG, TFPG, and TC-DUCG. 

Model DUCG TFPG TC-DUCG 

Propagation probability Yes No Yes 

Temporal constraints No Yes Yes 

Reasoning approach Logical-based Consistency-based Based on logic and timing consistency 

State can change Yes No Yes 

State of variable Multi-state Two-state Multi-state 

Logical relation Combinational OR/AND Combinational 

observation states (e.g., exceeding or falling below normal 

threshold ranges). Fault symptoms manifest only when 

variables meet certain combination conditions, involving both 

temporal and state coupling. For example, consider a scenario 

where the state condition requires that variable 𝑋1 is in state 𝛼, 

and variable 𝑋2 is in state 𝛽. The temporal condition specifies 

that state 𝛼  must occur first and persist for at least 𝑡1  before 

variable 𝑋2 transitions to state 𝛽. The fault 𝑌, with severity 𝛾, 

will only occur when both the state and temporal conditions are 

simultaneously satisfied. Any deviation in the variables will 

result in the conditions not being met, causing the fault 

symptoms to disappear. Due to the dynamic evolution of faults 

and the inherent uncertainty in fault propagation processes, 

these combination conditions are not always fulfilled, leading 

to the intermittency of fault symptoms. 

An intermittent fault in a filter circuit, caused by an 

intermittent open-circuit coupling of two components, serves as 

an example to illustrate the types of faults discussed in this paper. 

The schematic diagram of the four opamp biquad high-pass 

filter circuit is shown in Fig. 2 [27]. 

 

Fig. 2. The four opamp biquad high-pass filter simulation 

circuit. 

The corresponding output voltage signal at the 𝑉𝑜𝑢𝑡 point in 

Fig. 2 is shown in Fig. 3.  

 

Output voltage under normal conditions
 

Fig. 3. The normal voltage signal of 𝑉𝑜𝑢𝑡. 

To inject intermittent open-circuit faults into the circuit,  

a combination of a voltage-controlled switch and a voltage pulse 

signal source is used, as illustrated by the red rectangular box in 

Fig. 4.  

 

Fig. 4. Simulation circuit under intermittent fault. 
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The timing of fault injection can be controlled by adjusting 

the parameters. The output voltage signal, 𝑉𝑜𝑢𝑡, is recorded over 

the same duration under various fault injection scenarios, as 

shown in Fig. 5. Fig. 5(a), 5(b), and 5(c) represent the voltage 

data collected at the output point for three scenarios: when only 

R3 injects a fault, when only R2 injects a fault, and when both 

R3 and R2 inject faults, respectively. Fig. 5(d) compares the 

waveforms of Fig. 3 and Fig. 5(c), highlighting the noticeable 

differences between them. As shown in Fig. 5, it is evident that 

when only one resistor is open, the circuit’s output voltage 

deviates slightly from the normal value within a narrow range. 

On the other hand, when both resistors are open, the circuit's 

output voltage deviates significantly from the normal range, 

resulting in a pronounced intermittent fault. 

The interpretation of intermittent faults in this paper aligns 

with the IEEE standard definition of such faults.

  
(a) (b) 

  

(c) 
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(a) R3 fault (b) R2 fault

(c) R3 and R2 fault (d) Fig. 3 vs. Fig. 5 (c)
 

Fig. 5. The abnormal voltage signal of 𝑉𝑜𝑢𝑡.

B. The DUCG Model 

The DUCG was originally proposed by Zhang [20] to intuitively 

represent uncertain causalities among variables and to perform 

probabilistic reasoning. In this section, the basic theories of 

DUCG are briefly described. 

As shown in Fig. 6, DUCG consists of a set of variables or 

events classified into B-type, X-type, G-type, and D-type 

categories [21]. Different types of variables are represented in 

the graphical model by nodes of various shapes. The 

explanations of the symbols used in the graphical model are 

provided in Table 2. 

1B

2B

3B

4X

5X

6G 7X
8D

4;1F

4;2F

5;3F

7;6F 7;8F

 

Fig. 6. The DUCG model. 

Table 2. The explanations of symbols 

Symbols Explanations 

𝐵𝑖  
root variable and drawn as rectangle, which 

can only be a cause or parent variable. 

𝑋𝑖 
consequence variable and drawn as circle. It 

can also be a cause or parent variable. 

𝐺𝑖 

logic gate variable and drawn as the shape of 

an AND-gate, which represents the 

combinational logical relationships between its 

inputs and outputs. 

𝐷𝑖  
default variable and drawn as pentagon, 

which is the unknown or inexplicit cause of 𝑋𝑛. 

𝑉𝑖  
Suppose 𝑉𝑖 , 𝑉 ∈ {𝐵, 𝑋, 𝐺, 𝐷} , are the parent 

variables of 𝑋𝑛. 

𝑉𝑖,𝑗  

The subscript 𝑖  before “,” is used to 

distinguish among different variables. The 

subscript 𝑗 after “,” denotes the state of 𝑉𝑖. 𝑗 = 0 

indicates the normal state of the variable, and  

𝑗 ≠ 0 indicates the abnormal state. 

→ 

weighted functional variable denoted as 𝐹𝑛;𝑖. 

It is used to express the direct causal relationship 

between the parent variable 𝑉𝑖  and the child 

variable 𝑋𝑛 . When the states of the parent and 

child variables are determined, it is written as 

𝐹𝑛,𝑘;𝑖,𝑗. The subscript before “;” is for the child 

variable and the subscript after “;” is for the 

parent variable. 
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Symbols Explanations 

 

A conditional connection variable, which 

means that if the condition 𝑍𝑛;𝑖  is met, the 

variable becomes a weighted functional variable. 

Otherwise, it is deleted. 

The logic gate specification (LGS) table is used to explain 

combinational logic relationships (e.g., 𝐺6  in Fig. 6, with the 

state specifications listed in Table 3). Different combinations of 

state among parent variables correspond to different values of 

the logic gate, which, in turn, have varying effects on the 

consequence variables. 

Table 3. Logic gate specification. 

Logic gate State State expression 

𝐺6 

1 (𝑋4,2 + 𝑋4,3)𝑋5,2 

2 𝑋4,3𝑋5,3 

3 Remnant state 

𝑋𝑛,𝑘 denotes the event that 𝑋𝑛 is in state 𝑘. As shown in Fig. 

7, 𝑋𝑛,𝑘 can be influenced by multiple variables, such as 𝑉1,𝑗, 𝑉2,𝑗, 

and 𝑉𝑖,𝑗. The event that 𝑋𝑛,𝑘 is caused solely by 𝑉𝑖,𝑗 is denoted 

as 𝑋𝑛,𝑘;𝑖,𝑗. The causal relationship between the parent variable 

𝑉𝑖,𝑗  and the child variable 𝑋𝑛,𝑘  can be represented by a 

functional variable 𝐹𝑛,𝑘;𝑖,𝑗 = (𝑟𝑛;𝑖/𝑟𝑛)𝐴𝑛,𝑘;𝑖,𝑗  [28], which 

consists of two parts: the weighting factor (𝑟𝑛;𝑖/𝑟𝑛) and 𝐴𝑛,𝑘;𝑖,𝑗. 

𝑟𝑛;𝑖  represents the causality strength between 𝑉𝑖  and 𝑋𝑛 , and 

𝑟𝑛 = ∑ 𝑟𝑛;𝑖𝑖  . The term (𝑟𝑛;𝑖/𝑟𝑛)  is used to standardize the 

influence that the parent variables exert on the child variables. 

𝐴𝑛,𝑘;𝑖,𝑗  is defined as the random event that 𝑉𝑖,𝑗  does indeed 

cause 𝑋𝑛,𝑘 given that 𝑉𝑖,𝑗 is true, regardless of the other parent 

variables. In other words, 𝐴𝑛,𝑘;𝑖,𝑗  quantifies the causal 

mechanism by which 𝑉𝑖,𝑗  independently causes 𝑋𝑛,𝑘 . The 

purpose of this equation is to determine the probability of each 

parent event's role in triggering the child event. 

1, jV 2, jV
,i jVParent variables

Weighted 

functional variables

+: XOR operator , , ;1, , ;2, , ; ,n k n k j n k j n k i j
X X X X+ + +=

;1 , ;1,
( )

n n n k j
r r A

;2 , ;2,
( )

n n n k j
r r A

; , ; ,
( )

n i n n k i j
r r A

 

Fig. 7. Illustration for the DUCG model. 

The DUCG model uses the chaining inference rule to expand 

detected variables along the logical causal chain to identify root 

cause variables. The core of the inference rule is the ``weighted 

logical expansion'', which can be described as: 

𝑋𝑛,𝑘 = ∑ 𝐹𝑛,𝑘;𝑖𝑖 𝑉𝑖 = ∑ (𝑟𝑛;𝑖/𝑟𝑛)𝑖 ∑ 𝐴𝑛,𝑘;𝑖,𝑗𝑗 𝑉𝑖,𝑗     (1) 

In DUCG, variables are typically expressed in capital letters, 

with the corresponding lowercase letters representing their 

probabilities. The diagnostic inference algorithm of DUCG 

analyzes the causal logical relationships among variables to 

determine whether an alternative fault hypothesis can fully 

explain the existing abnormal conditions. A possible cause 

hypothesis based on the observed evidence 𝐸 = ∏ 𝑋𝑛,𝑘𝑛  can be 

represented as 𝐻𝑘,𝑗. The probability of 𝐻𝑘,𝑗 can be calculated as 

follows: 

ℎ𝑘,𝑗
𝑠 = 𝑃𝑟{ 𝐻𝑘,𝑗|𝐸} =

𝑃𝑟{𝐻𝑘,𝑗𝐸}

𝑃𝑟{𝐸}
   (2) 

C. Timed Failure Propagation Graphs 

The TFPGs [25] capture the effect of temporal constraints and 

switching dynamics on the propagation of failures using the 

causality graph shown in Fig. 8. In this graph, the rectangular 

nodes (𝐹𝑀𝑖) denote failure modes, which are fault causes. The 

circle and square nodes (𝐷𝑖) represent OR-type and AND-type 

discrepancies, respectively. Discrepancy nodes typically 

represent the effects of failure modes. The state of each node in 

the TFPG model is either 𝑂𝑁  or 𝑂𝐹𝐹 . An 𝑂𝑁  state indicates 

that the node is activated, which is represented by a shaded node 

in the model, while an 𝑂𝐹𝐹 state indicates that the effects of any 

faults have not propagated to the node. The edge between two 

nodes in the graph captures the effect of failure propagation over 

time within the dynamic system and is parameterized with a 

time interval [𝑒. 𝑡𝑚𝑖𝑛, 𝑒. 𝑡𝑚𝑎𝑥] . Specifically, given that a 

propagation edge is active, it will take at most 𝑒. 𝑡𝑚𝑎𝑥  

and at least 𝑒. 𝑡𝑚𝑖𝑛  for the fault to propagation  

from the source node to the destination node. The capital letters 

on the edges (𝐴/𝐵)  represent a set of system modes. These 

edges may be activated only if the system is in corresponding 

mode. 

1FM

2FM

3FM

1D 2D

3D

4D 5D

6D 7D
[1, 4]B

[2,5]

[2,3]
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[3, 4]A
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Fig. 8. The TFPG model. 
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D. Problem Formulation 

The main problem addressed in this paper is the diagnosis of 

intermittent faults caused by the coupling of multivariate 

anomalous states during the fault propagation process. 

To address this issue, a new fault propagation model, called 

TC-DUCG, is proposed to flexibly model the complex temporal 

and logical dependencies inherent in fault propagation. 

Additionally a diagnostic inference method is introduced to 

explore potential causes of intermittent faults based on 

observational evidence. 

The model not only considers the probability of fault 

propagation among variables, but also integrates temporal 

constraints. Moreover, the model introduces a type of logical 

temporal gate node to represent complex logical and temporal 

coupling relationships between node variables. During the 

inference process, observation interval division criteria are 

applied to segment the evidence. This allows for time range and 

logical matching analysis of evidence within the same time slice, 

helping to eliminate false alarms and thereby improving the 

accuracy of the diagnosis. 

3. The TC-DUCG model 

As mentioned in Section 1, a fault propagation diagnostic model 

consists of three main parts: the model framework, model 

parameters, and inference methods. The model framework and 

model parameters together constitute the fault propagation 

model. In this paper, a model called the Temporal Constrained 

Dynamic Uncertain Causality Graph (TC-DUCG) is proposed 

to capture the temporal and logical dependencies in the fault 

propagation process. The overall scheme of the proposed TC-

DUCG and the diagnostic reasoning based on this model are 

illustrated in Fig. 9. 

Diagnostic reasoning processTC-DUCG model construction

               Evidences division

(the observation interval division criterion)
( )mE t

       Intra-slice causality graph

(backtrack along the propagation edges)

( )mICG t

Simplify the causality graph

(time range and logical match analysis)

Probabilistic reasoning and calculations

(weighted logic expansion)

Diagnostic conclusions

Selecting nodes

Obtaining the causal 

relationship between nodes

Extracting the model 

parameter information

A fault propagation model is 

constructed

Expert 

experience 

knowledge

Historical fault 

data

Observational evidence

Device structure 

and function 

information

 

Fig. 9. The overall scheme of TC-DUCG model construction 

and diagnostic reasoning process. 

A. TC-DUCG Modeling 

Fig. 10 presents a graphical representation of the TC-DUCG 

model. A TC-DUCG is represented as a tuple (𝑽, 𝑬, 𝑾) . The 

symbols used in this model are explained in Table 4. 

1F
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3F

[2,3]

[1,3]

[1,2]

[2, 4]

[3,6]

[1,2]
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1,3P

5S
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2,3P
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Fig. 10. A typical TC-DUCG model. 

Table 4. The explanations of symbols 

Symbols Explanations 

𝑽 A set of model nodes. 𝑽 = {𝑭, 𝑺, 𝑮}. 

𝑬 
Edge sets, which represent dependencies 

between nodes. 

𝑾 A set of model parameters. 

𝑭 A set of failure modes nodes. 

𝐹𝑖 A failure modes node, where 𝐹𝑖 ∈ 𝑭. 

𝐹𝑖
𝑘 The node state of 𝐹𝑖. 

𝑺 

A set of discrepancy nodes representing the 

effects of failure modes. Nodes in the set 

represent system entities with monitoring 

signals or observable events. 

𝑆𝑖 A discrepancy node, where 𝑆𝑖 ∈ 𝑺. 

𝑆𝑖
𝑘 The node state of 𝑆𝑖. 

𝑮 

A set of logical temporal gate nodes, which 

express complex logical and temporal coupling 

relationships between node variables. 

𝑷(𝐹𝑖) 
The prior probability matrix of failure mode 

node 𝐹𝑖. 

𝑚𝑖 The state number of the node 𝐹𝑖. 

𝑃(𝐹𝑖
𝑚) 

The probability that the failure node 𝐹𝑖 is in 

state 𝑚. 

𝑤𝑖𝑗  

Causal correlation parameter that indicates 

the intensity of the causal relationship between 

𝑉𝑖 and 𝑆𝑗. 

𝑷𝑖𝑗  

The conditional probability matrix, which 

represents the independent effect of a parent 

variable 𝑉𝑖 on a child variable 𝑆𝑗, without 

considering the influence of other parent 

variables. 

𝐸 Observational evidence. 

𝑡𝑉𝑖
 The time at which the node 𝑉𝑖 is activated. 

𝑡
𝑉𝑖

𝑘 
The time when the state of the variable 

changes to 𝑉𝑖
𝑘. 

[𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥] 

The fault propagation time interval, where 

𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 denote the minimum and 

maximum time for the fault impact to propagate 

from the parent node to the child node, 

respectively. 
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Symbols Explanations 

T 

An observation interval that can be 

divided into a set of time slices

1 2{ , , }T t t= . 

𝐸(𝑡𝑚) 
The evidence received within the time slice 

𝑡𝑚. 

𝐼𝐶𝐺(𝑡𝑚) 
An intra-slice causality graph within the 

time slice 𝑡𝑚. 

𝑆𝐻(𝑡𝑚) 
A possible fault hypothesis space within the 

time slice 𝑡𝑚. 

The TC-DUCG model consists of two types of events: 

failure modes and the effects of failure modes. A failure mode 

node 𝐹𝑖 ∈ 𝑭 represents a defect or abnormal condition that may 

be the root cause of a system failure, such as resistor parameter 

drift. The node state 𝐹𝑖
𝑘 indicates different manifestations of the 

failure mode, such as parameter drift exceeding the upper 

threshold of 10% or falling below the lower threshold of 20%. 

The discrepancy node 𝑆𝑖 ∈ 𝑺 represents off-nominal conditions 

that result from failure modes. A discrepancy can be monitored 

and is typically associated with alarms. The state 𝑆𝑖
𝑘 represents 

the degree to which the failure mode has caused deviation from 

the nominal value. The sets of nodes 𝑭 and 𝑺 are selected for 

model construction based on the device’s structure and function 

information, as well as expert experience. The various state 

attributes of each node are defined according to the actual 

meanings represented by the nodes. 

The edges in the model are structured to express the 

dependency relationship among nodes. Two nodes with a direct 

causal relationship are connected by a directed edge, with the 

cause node pointing to the consequence node. In addition, the 

model introduces a type of logical temporal gate node 𝑮 

(referred to as gate node) to express complex logical and 

temporal coupling relationships between node variables during 

the fault propagation process. Specifically, the cause node is 

connected to the gate node by a directed arc with a black dot at 

the tail end, and the gate node is connected to the consequence 

node by a directed edge. 

The logical temporal gate involves a mechanism that 

controls the flow of fault propagation based on the temporal 

order and state logic of variables, which can be defined as  

a function or rule. It selectively allows or blocks the propagation 

of faults depending on the specific temporal and state 

combination conditions. The combination conditions can be 

explained using a gate specification table that consists of four 

parts: gate variables, gate states, state expressions, and temporal 

expressions. The state expressions can flexibly represent the 

combinational logic relationships between different states of 

variables. The temporal expressions can effectively express the 

constraint relationships between activation times of parent 

variables. Table 5 presents an example (i.e., the state and 

temporal specification of 𝐺1 in Fig. 10). The logical temporal 

gate 𝐺1  has four mutually exclusive states, corresponding to 

different state and temporal combinations of variable 𝑆3  and 

variable 𝑆4 . For instance, the state of variable 𝐺1  is 𝐺1
1  if and 

only if 𝑆4
1 occurs first and lasts more than 5 time units before 

either 𝑆3
1 or 𝑆3

2 is activated. If 𝑆3
3 is activated first, followed by 

the activation of 𝑆4
2, then the state of variable 𝐺1 is 𝐺1

3. 

Table 5. The improved gate specification table. 

Logical 

temporal gate 
State State expression Temporal expression 

𝐺1 

0 Remnant state Else 

1 (𝑆3
1 + 𝑆3

2)𝑆4
1 𝑡𝑆3

− 𝑡𝑆4
> 5 

2 𝑆3
2𝑆4

2 𝑡𝑆3
− 𝑡𝑆4

> 1 

3 𝑆3
3𝑆4

2 𝑡𝑆4
> 𝑡𝑆3

 

The three types of nodes in the model can collectively 

represent as node 𝑉 . The causal relationships between nodes 

and associated parameters are specified directly based on expert 

experience or learned from historical fault data and physical 

simulation of failures. 

The model parameters include the prior probability of fault 

mode nodes, the causal relationship intensity, the conditional 

probability matrix between model nodes, and the fault 

propagation time interval. The prior probability 𝑷(𝐹𝑖) of failure 

mode node is an 𝑚𝑖 ∗ 1  dimensional matrix, where 𝑚𝑖  is the 

state number of the node 𝐹𝑖. The element 𝑃(𝐹𝑖
𝑚) in the 𝑚 + 1 

row of the matrix represents the probability of the failure node 

being in state 𝑚 . In certain cases, the domain expert may be 

uncertain about the existence of a causal link between 𝑉𝑖 and 𝑆𝑗. 

To represent the uncertainty of causal relationships, the model 

introduces causal correlation parameters 𝑤𝑖𝑗  , which indicates 

the causal relationship intensity between 𝑉𝑖 (𝑉 can be an 𝐹/𝑆/𝐺 

type node) and 𝑆𝑗. 𝑤𝑖𝑗 = 1 indicates that the causal relationship 

between two nodes is determined. 𝑤𝑖𝑗 = 0 represents a definite 

absence of a causal relationship between two nodes. For 

situations where the causal relationship is uncertain, 0 < 𝑤𝑖𝑗 <

1 . (𝑤𝑖𝑗/ ∑ 𝑤𝑖𝑗𝑖 )  is employed to standardize the influence that 

parent variables exert on child variables. The conditional 
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probability matrix 𝑷𝑖𝑗   represents the independent effect of  

a parent variable 𝑉𝑖 on a child variable 𝑆𝑗, without considering 

the influence of other parent variables. The 𝑚 + 1 row and 𝑛 +

1 column element of the matrix 𝑷𝑖𝑗  represents the probability 

that 𝑉𝑖
𝑚 causes 𝑆𝑗

𝑛, given that 𝑉𝑖
𝑚 is true. The matrix dimension 

is 𝑚𝑖 ∗ 𝑚𝑗. The element 𝑃(𝑉𝑖
𝑚) in the 𝑚 + 1 row of the matrix 

𝑷(𝑉𝑖) represents the probability of the node being in state 𝑚. 

The formula for calculating the probability matrix of  

a discrepancy node is as follows: 

𝐏(𝑆𝑗) = ∑ (𝑤𝑖𝑗/ ∑ 𝑤𝑖𝑗𝑖 )𝑖 𝐏𝑖𝑗
⊤𝐏(𝑉𝑖)  (3) 

The condition probability of a fault hypothesis 𝐹𝑖
𝑚  on the 

condition of the state of evidence 𝐸 can be expressed as: 

𝑃(𝐹𝑖
𝑚|𝐸) =

𝑃(𝐹𝑖
𝑚)𝑃(𝐸|𝐹𝑖

𝑚)

𝑃(𝐸)
   (4) 

The time point 𝑡𝑉𝑖
  indicates the time when node 𝑉𝑖  is 

activated (a failure mode occurs or the impact of a failure 

propagates to a discrepancy node). 𝑡
𝑉𝑖

𝑘 is the time when the state 

of the variable changes to 𝑉𝑖
𝑘 . The fault propagation time 

interval is [𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥] , where 𝑡𝑚𝑖𝑛  and 𝑡𝑚𝑎𝑥  denote the 

minimum and maximum time for the fault impact to propagate 

from the parent node to the child node, respectively. As 

indicated in the literature [25], the time interval [𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥] can 

be determined either analytically or by simulating an accurate 

physical model. 

It's important to recognize that not all relationships can be 

captured perfectly. Nevertheless, the effectiveness of the TC-

DUCG model can be significantly enhanced by combining 

expert knowledge, historical data, continuous updates, and  

a robust methodology for dealing with uncertainty and 

incomplete information. The DUCG model can be incomplete 

due to the chaining inference of DUCG is self-relied [20]. The 

TC-DUCG model introduces temporal constraints based on the 

DUCG model, which can also be incomplete. 

B. Fault Diagnosis Reasoning Method 

During the occurrence, propagation, and evolution of faults, the 

states of system variables change dynamically. The causal 

relationships among variables are complex and uncertain, as 

shown in Fig. 11. In the figure, 𝑆𝑖(𝛼) and 𝑆𝑗(𝛽) represent the 

state change process of variable 𝑆𝑖  and variable 𝑆𝑗  within  

a certain observation interval 𝑇 , respectively. 𝛼 = 1,2, . . . , 𝑎 , 

𝛽 = 1,2, . . . , 𝑏 indicate the order in which the variables appear. 

𝑡𝑆𝑖(𝛼) represents the time when the corresponding state of the 

variable occurs. The dashed lines with arrows indicate the 

uncertain causal relationships between variable 𝑆𝑖  and 𝑆𝑗  in 

their corresponding states. In order to express the dynamic 

uncertain causal relationships between variables more 

intuitively and flexibly, the observation interval 𝑇  is divided 

into a set of time slices 𝑇 = {𝑡1, 𝑡2, ⋯ }. The criteria for dividing 

the observation interval are summarized as follows. 

iS

jS

ijPmin max[ , ]t t

( )iSt  ( 1)iSt  +

( )jSt  ( 1)jSt  +

t

t

 

Fig. 11. The state change process of observed variables. 

● All variables within the time slice 𝑡1  are in the first 

state change phase. If any variable changes state for the 

second time, it switches to time slice 𝑡2. According to 

this criterion, the observed evidence is preliminarily 

divided. 

● It takes time for a fault to propagate from the causal 

variable to the consequence variable. The consequence 

variable continues to propagate backward in its state 

until the effect of a change in the state of the causal 

variable in the subsequent time slices propagates to 

that variable. Nodes that are affected by the current 

state of the consequence variable are represented in the 

current time slice. 

● The consequence variables that are in an abnormal 

state in the previous time slice and have not changed 

in the current time slice will be represented in both 

time slices. 

The evidence received within the time slice 𝑡𝑚  is 𝐸(𝑡𝑚) . 

The purpose of the diagnostic reasoning process is to determine 

the most likely fault location based on the alarm records. The 

dynamic causality graph modeling and reasoning process is 

listed as follows. 

1) An intra-slice causality graph 𝐼𝐶𝐺(𝑡𝑚) can be obtained by 

backtracking, along propagation edges, starting from the 

nodes within 𝐸(𝑡𝑚) that indicate abnormal states. In this 

step, irrelevant variables and causalities in the original 
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TC-DUCG graph are removed, and the possible fault 

hypothesis space 𝑆𝐻(𝑡𝑚) is determined. 

2) Perform rigorous time range and logical match analysis on 

the variables in 𝐼𝐶𝐺(𝑡𝑚)  to eliminate incorrect and 

meaningless causal relationships in the graph. This step 

helps eliminate invalid fault hypotheses and improve the 

accuracy of the diagnostic results. The specific analysis 

process is detailed in Section C. 

3) The probabilities of the remaining fault hypothesis are 

calculated according to equations (3) and (4), and the most 

likely root cause of the fault within the time slice is 

obtained. 

4) Comprehensive analysis of the diagnostic conclusions of 

different time slices in the observation interval can derive 

the possible root causes and evolution process of faults. 

C. Time Range and Logical Matching Analysis 

According to the observation interval division criterion, it can 

be seen that the states of the variables in 𝐼𝐶𝐺(𝑡𝑚) change only 

once. This simplifies the matching analysis process. 

In this paper, the causal relationships between observed 

variables are divided into two types: one is direct causality and 

the other is combinational logical causality. The time range and 

logical match analysis steps in both cases are listed separately. 

For two nodes 𝑆𝑖 and 𝑆𝑗 with a direct causality connected by 

a directed edge, the matching analysis process is listed as 

Algorithm 1. 

Algorithm 1 Time Range and Logical Matching Analysis 

of Direct Causal Relationships. 

Inputs: the node states 𝑆𝑖
𝑚(0 ≤ 𝑚 ≤ 𝑚𝑖), 𝑆𝑗

𝑛(0 ≤ 𝑛 ≤

𝑚𝑗); the activation times for the states 𝑡𝑆𝑖
𝑚, 𝑡𝑆𝑗

𝑛; the time 

interval for the propagation of faults between the two nodes 

[𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥]; and the conditional probability matrix 𝑷𝑖𝑗 . 

Outputs: Whether to remove the propagation edge 

between nodes 𝑆𝑖 and 𝑆𝑗. (0: preserve; 1: remove) 

1. Read the value 𝑝1 of the element in the 𝑚th row and 𝑛th 

column of the matrix 𝑷𝑖𝑗 . 

2. If 𝑝1 ≠ 0 then 

3.   If 𝑡𝑆𝑗
𝑛 − 𝑡𝑆𝑖

𝑚 ∈ [𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥] then 

4.     Return 0 

5. Else 

6.   Return 1 

7. End 

If the algorithm returns 0, the observed evidence matches 

the model constraints, then preserve the propagation edge. If it 

returns 1, the time range or logical relationship does not match. 

It is considered that 𝑆𝑗
𝑛  is not caused by 𝑆𝑖

𝑚 . Remove the 

propagation edge between 𝑆𝑖
𝑚 and 𝑆𝑗

𝑛. 

For parent nodes 𝑆𝑖 , 𝑆𝑗  and child node 𝑆𝑘  with 

combinational logical causalities connected by a gate variable 

𝐺𝑖, the matching analysis process is listed as Algorithm 2. 

Algorithm 2 Time Range and Logical Matching Analysis 

of Combinational Logical Causalities. 

Inputs: the node states 𝑆𝑖
𝑚(0 ≤ 𝑚 ≤ 𝑚𝑖), 𝑆𝑗

𝑛(0 ≤ 𝑛 ≤

𝑚𝑗), 𝑆𝑘
𝑝

(0 ≤ 𝑝 ≤ 𝑚𝑘); the activation times for the states 𝑡𝑆𝑖
𝑚, 

𝑡𝑆𝑗
𝑛, 𝑡𝑆𝑘

𝑝; the time interval for the propagation of faults 

between the parent nodes and child node [𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥]; the 

conditional probability matrix 𝑷𝑖𝑘; the gate specification table 

of 𝐺𝑖. 

Outputs: Whether to remove the edges between these 

nodes. (0: preserve; 1: remove) 

1. Based on the information of 𝑆𝑖
𝑚, 𝑆𝑗

𝑛, 𝑡𝑆𝑖
𝑚, and 𝑡𝑆𝑗

𝑛, check 

the gate specification table to determine the state of gate 

variable 𝐺𝑖 as 𝐺𝑖
𝑞
. 

2. Read the value 𝑝2 of the element in the 𝑞th row and 𝑝th 

column of the matrix 𝑷𝑖𝑘. 

3. If 𝑝2 ≠ 0 then 

4.   Calculate 𝑡𝐺𝑖
𝑞 ∈ [𝑡𝑆𝑘

− 𝑡𝑚𝑎𝑥 , 𝑡𝑆𝑘
− 𝑡𝑚𝑖𝑛]. 

5.   Check 𝑡𝐺𝑖
𝑞, 𝑡𝑆𝑖

𝑚, 𝑡𝑆𝑗
𝑛, and the temporal expressions of the 

gate specification table. 

6.   If the temporal information satisfies the model 

constraints then 

7.     Return 0 

8. Else 

9.   Return 1 

10. End 

If the algorithm returns 0, preserve the edges between these 

nodes. If it returns 1, remove the edges between these nodes. 

4. CASE STUDY AND DISCUSSION 

In this section, a real case of intermittent fault diagnosis in  

a millimeter-wave radar is investigated. A detailed description 

of the entire application process of the TC-DUCG model is 

provided, which demonstrates the effectiveness of the proposed 

TC-DUCG model in the modeling and reasoning of intermittent 

faults caused by temporal and state coupling. 

A. Device Introduction 

In recent years, millimeter-wave radar has found extensive 

applications in intelligent security, unmanned technology, and 

drones. The case object of this paper is a single transmitter 

channel, dual receiver channel FMCW millimeter-wave radar 

[29]. The radar system utilizes an external DC power supply 

ranging from 5V to 12V, which is initially regulated to 4V DC 
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using the 4V DC regulator module. Subsequently, the 4V DC is 

further converted to 3.3V DC and 1.8V/3.3V DC. The converted 

3.3V DC is then directed to the crystal oscillator circuit, 

responsible for generating the fundamental frequency REF. The 

fundamental frequency REF is subsequently fed into the 

frequency synthesizer, which generates the charge pump 

voltage COV. The COV is input to the voltage-controlled 

oscillator of the RF transceiver, generating the RF signal within 

the RF transceiver.  After power amplification in the RF 

transceiver, the RF signal is transmitted from the transmitting 

antenna. Simultaneously, the RF signal received by the 

receiving antenna is mixed with the transmitted RF signal to 

obtain the intermediate frequency (IF) signal. It is divided by  

a frequency divider and then input to the frequency synthesizer. 

The IF signal is split into two channels and fed into the amplifier 

circuit. The signal is then sent to the digital signal processor for 

further processing. The processed signal undergoes back-end 

processing and is then connected to host computer software, 

which displays the millimeter-wave radar results. The 

functional and structural block diagrams of the millimeter-wave 

radar system are depicted in Fig. 12, with a more detailed 

functional structure block diagram shown in Fig. 13. 
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Fig. 12. Structure-function simplified block diagram of a 

millimeter-wave radar.
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Fig. 13. Structure-function detailed block diagram of a millimeter-wave radar.

B. Fault Description 

Multiple failure modes, propagated through a series of fault 

propagation paths, can lead to intermittent fault in the 

functionality of the radar. For example, a soldering defect on pin 

3 of the chip in the crystal oscillator can cause intermittent short 

circuiting of the AC signal generated by the oscillator. This 

results in intermittent oscillation failure in the oscillator circuit, 

leading to intermittent failure in the generation of the 

fundamental frequency in the frequency generation circuit. 

Consequently, the frequency synthesizer experiences 

intermittent loss of the fundamental frequency input, resulting 

in intermittent failure in RF signal generation and transmission. 

The intermittent failure in RF transmission leads to intermittent 

absence of the intermediate frequency (IF) signal output. The IF 

amplification circuit then intermittently fails to produce a valid 

output signal. Furthermore, the intermittent failure propagates 

to the digital signal control and processing module, causing 

intermittent absence of valid signal outputs. Ultimately, this 
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sequence of failures results in intermittent fault of functionality 

in radar operations. In addition, intermittent failures in the back-

end processing module and intermittent non-operation of the 

digital signal control and processing module can also lead to 

intermittent fault of radar. 

C. Node Selection and Model Construction 

The millimeter-wave radar consists of numerous components 

and modules, and the fault propagation paths are complex. To 

simplify the analysis, certain components are abstracted as 

nodes in the TC-DUCG model, as shown in the Fig. 14. The 

model parameters are generated randomly, and in practice the 

parameters can be obtained by learning from historical data or 

specified directly by domain experts based on their empirical 

knowledge. The fault propagation temporal constraints among 

variables are marked on the propagation edges. 
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Fig. 14. An illustrative example of TC-DUCG. 

The occurrence probabilities of each failure mode nodes are: 

𝑷(𝐹1) = (

−
0.02

0.001
)     𝑷(𝐹2) = (

−
0.01

0.005
) 

The conditional probability matrix 𝑷𝑖𝑗   of the model are 

listed as follows. The unlisted parameter represented by the 

symbol − indicates that the parameter is not available or about 

which we do not care. 

𝑷11 = (

− − −
− 0.3 0
− 0.5 0.1

) 𝑷12 = (

− − −
− 0.4 0.1
− 0.7 0.2

) 

𝑷22 = (

− − −
− 0 0.2
− 0 0.5

) 

𝑷23 = (

− − −
− 0 0.4
− 0.6 0

) 𝑷14 = (

− − −
− 0.9 0
− 0 0.8

) 

𝑷74 = (

− − −
− 0 0.6
− 0 0.4

) 

𝑷25 = (

− − −
− 0 0.6
− 0.8 0

) 𝑷26 = (

− − −
− 0.5 0
− 0.4 0

) 𝑷17

= (

− − −
− 0 0
− 0.3 0.2

) 

The logic temporal gate specification table of 𝐺1 and 𝐺2 in 

Fig. 14 are shown in Table 6. 

Table 6. Logic gate specification, 

Logical 

temporal gate 
State State expression 

Temporal 

expression 

𝐺1 

0 Remnant state Else 

1 (𝑆1
1 + 𝑆1

2)𝑆3
1 𝑡𝑆1

− 𝑡𝑆3
> 2 

2 𝑆1
1𝑆3

2 𝑡𝑆3
− 𝑡𝑆1

> 1 

𝐺2 

0 Remnant state Else 

1 𝑆4
1𝑆5

1 𝑡𝑆4
> 𝑡𝑆5

 

2 𝑆4
2 𝑡𝑆4

< 𝑡𝑆5
 

D. Evidence 

Observational evidence can be classified into abnormal 

evidence and normal evidence. Assuming the following alarm 

records were observed within a certain observation interval: 

𝑆2
1(𝑡𝑆2

1 = 2) , 𝑆1
1(𝑡𝑆1

1 = 3) , 𝑆3
2(𝑡𝑆3

2 = 5) , 𝑆4
2(𝑡𝑆4

2 = 6) , 𝑆6
1(𝑡𝑆6

1 =

8), 𝑆1
2(𝑡𝑆1

2 = 9), 𝑆4
0(𝑡𝑆4

0 = 9), 𝑆6
0(𝑡𝑆6

0 = 10), 𝑆7
1(𝑡𝑆7

1 = 11). 

According to the criteria for dividing the observation 

interval, the observation interval is divided into a set of time 

slices 𝑇 = {𝑡1, 𝑡2}. The observed variables are represented in the 

corresponding time slices. 

The observed evidence within time slice 𝑡1 includes: 

● Abnormal Evidence: 𝑆2
1(𝑡𝑆2

1 = 2) , 𝑆1
1(𝑡𝑆1

1 = 3) , 

𝑆3
2(𝑡𝑆3

2 = 5), 𝑆4
2(𝑡𝑆4

2 = 6), 𝑆6
1(𝑡𝑆6

1 = 8). 

● Normal Evidence: 𝑆5
0, 𝑆7

0. 

The observed evidence within time slice 𝑡2 includes: 

● Abnormal Evidence: 𝑆1
2(𝑡𝑆1

2 = 9), 𝑆7
1(𝑡𝑆7

1 = 11), 𝑆2
1, 𝑆3

2. 

● Normal Evidence: 𝑆4
0(𝑡𝑆4

0 = 9), 𝑆5
0, 𝑆6

0(𝑡𝑆6
0 = 10). 

E. Diagnostic Reasoning Process 

The detailed diagnostic reasoning process for this example is 

presented here. 

1) Obtaining the Intra-slice Causality Graph 𝑰𝑪𝑮(𝒕𝒎) 

Performing backtrack reasoning based on the observed 

evidence, the intra-slice causal graph 𝑰𝑪𝑮(𝒕𝒎)  is obtained as 

shown in Fig. 15. This step starts from the nodes representing 

abnormal states and traces back along the propagation edges. 

During the backtracking process, irrelevant variables and causal 

relationships are eliminated from the original TC-DUCG graph. 
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Fig. 15. The intra-slice causality graph. 

2) Time Range and Logical Matching Analysis 

This step involves a rigorous analysis of time range and 

logical matching to validate whether the observed evidence 

meets the model constraints and to eliminate incorrect and 

meaningless causal relationships in the graph 𝑰𝑪𝑮(𝒕𝒎). 

The matching analysis results within time slice 𝑡1 indicate 

that the possible fault hypothesis space is 𝑆𝐻(𝑡1) = {𝐹1
1, 𝐹1

2} , 

with a fault triggering time of 𝑡𝐹1
∈ [0,1] . The matching 

analysis results within time slice 𝑡2  indicate that the possible 

fault hypothesis space is 𝑆𝐻(𝑡2) = {𝐹1
2}, with a fault triggering 

time of 𝑡𝐹1
∈ [6,7]. 

3) Probabilistic Reasoning and Calculations 

After completing the aforementioned steps of time range and 

logical matching analysis, a simplified intra-slice causality 

graph can be obtained, as shown in Fig. 16. The temporal 

relationships between variables in the simplified graph satisfy 

the model constraints. This step calculates the probabilities of 

candidate fault hypothesis in the fault hypothesis space, 

independent of temporal information. The propagation time 

constraints between nodes and the timing of variable state 

changes are not shown in the simplified graph. The process of 

probabilistic reasoning and calculation is as follows. 

For simplicity, all weight factors 𝑤𝑖𝑗   are set to 1. The 

evidence in time slice 𝑡1 is: 

𝐸(𝑡1) = 𝑆1
1𝑆2

1𝑆3
2𝑆4

2𝑆6
1   (5) 
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Fig. 16. The simplified intra-slice causality graph. 

According to equations (3) and (4), the probability of the 

fault hypothesis 𝐹1
1 within time slice 𝑡1 is calculated as: 

𝑃{𝐹1
1|𝐸(𝑡1)} =

𝑃(𝐹1
1)𝑃(𝐸(𝑡1)|𝐹1

1)

𝑃(𝐸(𝑡1))
= 0.87273 (6) 

The probability of the fault hypothesis 𝐹1
2 within time slice 

𝑡1 is calculated as: 

𝑃{𝐹1
2|𝐸(𝑡1)} =

𝑃(𝐹1
2)𝑃(𝐸(𝑡1)|𝐹1

2)

𝑃(𝐸(𝑡1))
= 0.12727 (7) 

It is easy to determine the most likely fault to occur as 𝐹1
1 by 

comparing the posterior probabilities of the two fault 

hypotheses. According to Section 2), the fault hypothesis space 

within time slice 𝑡2  is 𝑆𝐻(𝑡2) = {𝐹1
2} . As there is only one 

hypothesis event in 𝑆𝐻(𝑡2), it is evident that the most likely fault 

to occur in time slice 𝑡2 is 𝐹1
2. 

4) Diagnostic Conclusion 

Based on the aforementioned diagnostic reasoning process, 

it can be concluded that the failure mode node 𝐹1 undergoes a 

state change to 𝐹1
1 in the time interval [0,1] and a state change 

to 𝐹1
2 in the time interval [6,7]. 

F. Experimental Validation 

On a PC machine with an Intel(R) Core (TM) i7-9750H CPU 

(2.60GHz) and 16.0GB of memory, the TC-DUCG model 

construction and fault diagnosis inference process was 

implemented using PyCharm 2022.1.3. The parameters and 

evidence from the case in Section 4 C and D have been entered 

into the inference program. The experimental results are shown 

in Fig. 17 - 19. Fig. 17 presents the simplified intra-slice 

causality graph. 
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Fig. 17. (a) t1 time slice; (b) t2 time slice. 

The results of the fault diagnosis inference on each time slice 

are shown in Fig. 18. 

 

Fig. 18. The results of the fault diagnosis inference program. 

The results show the possible root cause nodes on the 

corresponding time slice, the possible anomalous states, the 

possible triggering time range, and the probability of being in 

each anomalous state. The probabilities of the fault nodes being 

in different abnormal states, obtained from running the 

inference program, are shown in Fig. 19.  

 

Fig. 19. Probability of abnormal state of the failure mode 

node. 

From the reasoning process, it can be observed that the TC-

DUCG takes into account the uncertainty of causal relationships 

between variables, temporal constraints, and the dynamic 

process of variable state changes. It can effectively model the 

complex temporal and logical dependencies between node 

variables in the fault propagation process. This method is 

suitable for diagnosing intermittent faults caused by temporal 

and state coupling. Furthermore, the model also exhibits good 

interpretability. It should be noted that the DUCG and Cubic 

DUCG models do not consider the time constraint of fault 

propagation. Furthermore, the model's inference process does 

not consider the dynamic change of the fault source state and 

the case of multiple fault sources. The TFPG model assumes 

that the state remains unchanged after a fault effect reaches the 

node and thus does not account for intermittent faults. In 

addition, the causal relationships between variables in the TFPG 

model are deterministic, which prevents effective expression of 

uncertainty in fault propagation. 

5. Conclusion 

This paper considers the intermittent nature of fault symptoms 

caused by the temporal and state coupling among variables. The 

fault symptoms only occur when certain combinations of 

variables are satisfied. Any changes to the variables would 

result in the conditions not being met, leading to the 

disappearance of the fault symptoms. In order to model 

intermittent faults caused by temporal and state coupling, a new 

causal model is proposed to represent the complex logical and 

temporal dependencies among multi-state variables. The TC-

DUCG model flexibly expresses the temporal and state 

coupling among variables through special combinatorial gates. 

Additionally, a fault diagnostic reasoning method is proposed 

that makes full use of the temporal information and the 

propagation probability information of observed variables. In 

the inference process, the observed evidence is partitioned 

based on the time of variable state changes. Furthermore, time 

range and logical matching analysis are conducted on the 

evidence within the same time slice to improve the accuracy of 

the inference results. Finally, the effectiveness of the proposed 

method is validated through an illustrative example. 

For future research, we plan to optimize the proposed TC-

DUCG model to improve its efficiency and accuracy in dealing 

with intermittent faults in large-scale and complex systems. 

Furthermore, the specific methodology employed for the 

acquisition of model parameters is beyond the scope of this 

paper. This represents one of the points for future research.
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