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Highlights  Abstract  

▪ Wide convolution kernel is used for feature 

extraction. 

▪ The MSPFE module combined with UPA is 

proposed. 

▪ Gated convolution and a new activation 

function IReLU are put forward. On the basis 

of the ReLU function, the IReLU activation 

function introduces a new continuous function 

in the negative half axis to overcome the 

shortcomings of the existing activation 

function. 

 To address the issues of unstable performance and poor generalization 

ability of bearing fault diagnosis model caused by strong noise and 

variable operating conditions, a novel method based on multi-scale 

pooling residual convolutional neural network (MSPRCNN) is proposed 

in this paper. Firstly, by converting vibration signals to frequency 

domain with Fourier Transform (FT) and utilizing wide convolution 

kernels for feature extraction, the approach enhances fault detection. 

Then, a multi-scale pooling feature extraction (MSPFE) module is 

presented, which captures information at different scales to simplify 

complexity, while an up-sampling position attention (UPA) module is 

designed to establish correlations between frequency domain positions. 

Finally, the MSPRCNN model is built, which employs gated 

convolution (GC) instead of standard convolution to reduce the impact 

of noise and solve the problem of vanishing gradient, and the IReLU 

activation function is put forward to improve model feature 

representation. Experimental results on two datasets show that the fault 

recognition accuracy is 98.71% under variable loads and 98.2% under 

variable speeds. The MSPRCNN model outperforms other methods in 

fault recognition accuracy and generalization in noisy environments. 
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1. Introduction 

In industrial production, bearings, as key components to support 

the operation of rotating machinery, play a vital role in the fields 

of aviation, aerospace and intelligent manufacturing. Their 

stability and reliability directly affect the efficiency and safety 

of equipment. Once the bearing fails, it will cause mechanical 

equipment damage and other consequences. Therefore, it is of 

great significance to develop an accurate and reliable bearing 

fault diagnosis method for timely detection, ensuring the normal 

operation of mechanical equipment and reducing safety risks  

[1-2]. 

Traditional rolling bearing fault diagnosis methods usually 

rely on vibration signal analysis. However, these methods show 
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limitations in the face of complex working conditions. For 

example, in the case of variable operating conditions and strong 

noise, the traditional method can’t accurately identify the 

characteristics of bearing faults, resulting in missed diagnosis 

or misdiagnosis [3-4]. Therefore, it is a research hotspot to seek 

new bearing fault diagnosis methods to cope with the challenges 

under complex working conditions. In recent years, deep 

learning (DL), as a powerful data-driven method, has shown 

excellent performance in many fields. With the development of 

DL, classical networks such as LeNet-5, AlexNet, VGGNet, 

Inception, and ResNet have emerged [5-6], and are applied in 

the field of intelligent fault diagnosis, which provides strong 

technical support for fault diagnosis. Many scholars have also 

proposed some new methods, which have achieved remarkable 

results in improving the accuracy and reliability of fault 

diagnosis. Zhao et al [7] used signal-to-image mapping (STIM) 

to convert one-dimensional vibration signals into two-

dimensional grayscale images, and then input them into the 

established convolutional neural network(CNN) model to 

achieve fault classification. Wu et al [8] adopted continuous 

wavelet transform (CWT) to convert the original signal into the 

two-dimensional image, and then input the images into the deep 

learning model for feature extraction and diagnosis. Zhang et al 

[9] utilized Gram angle field (GAF) for image coding, and then 

combined extreme learning machine (ELM) with CNN to 

realize bearing fault diagnosis. Since the original signal is a 1D 

time series, converting it into a 2D image will lose some 

information, and increase the computational complexity and 

time. Therefore, some scholars have successively proposed one-

dimensional CNN models. Xie et al [10] proposed a new one-

dimensional convolutional neural network (ODCNN) for 

rolling bearing fault diagnosis. Hakim et al [11] introduced  

a one-dimensional convolutional neural network (1D-CNN) for 

processing frequency-domain signals. 

However, for complex multi-dimensional features, a single 

convolution kernel cannot extract multi-dimensional 

information from complex vibration signals. Therefore, some 

scholars have proposed multi-scale CNN for bearing fault 

diagnosis [12-14]. Lee et al [15] introduced multi-scale residual 

attention mechanism and multi-channel network (MSCNet) to 

effectively extract meaningful features from signals of different 

scales. Kang et al [16] used the multi-scale convolutional neural 

network (MSCNN)model to effectively extract fault sensitive 

features. Zhang et al [17] proposed a rolling bearing fault 

diagnosis method based on adaptive multivariate variational 

mode decomposition (AMVMD) and multi-scale convolutional 

neural network (multi-scale CNN) to solve the problem of 

limited ability of single signal analysis method to identify 

multivariate data features. Many new CNN methods have 

addressed some issues in fault diagnosis, however, due to the 

presence of environmental noise, the diagnosis of bearing faults 

has become more complex and challenging. Therefore, bearing 

fault diagnosis in noisy environment has become a new study 

focus in the current engineering field. In order to solve the 

problem of noise interference in vibration signals, Peng et al [18] 

used a multi-branch anti-noise CNN to automatically learn and 

fuse a large amount of fault information from multiple signal 

components and time, and then completed the identification of 

bearing faults. Huang et al [19] proposed an improved label 

noise robust auxiliary classifier generative adversarial network 

(rAC-GAN) for fault diagnosis of wind turbine gearbox 

bearings. Liang et al [20] combined Wavelet Transform (WT) 

with Improved Residual Neural Network (IResNet) to solve the 

problem of low accuracy of traditional methods affected by 

noise interference. Hu et al [21] used EfficientNet to establish  

a fault diagnosis model, and introduced the attention mechanism 

to improve the diagnosis accuracy of bearing in complex noise 

environment. 

The activation function is a very important part of the neural 

network, which makes the neural network model better learn 

and represent complex data patterns by introducing nonlinear 

properties. Traditional activation functions such as Sigmoid, 

ReLU and Tanh can meet the needs of neural networks to  

a certain extent, but there are also some problems, such as 

gradient disappearance, gradient explosion and neuron death 

[22]. In order to solve these problems, researchers have 

proposed some new activation functions in recent years. Zheng 

et al [23] proposed a Fast Exponentially Linear Unit (FELU) 

activation function to speed up the network running time. Lin et 

al [24] presented an improved unsaturated nonlinear segment 

activation function SignReLu, which alleviated the problem of 

gradient disappearance.  

Although the above researches have obtained some 

achievements under specific conditions, they are carried out in 
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the case of weak noise. However, in actual production, the 

collected data often face strong noise interference, so it is very 

important to develop a model that can effectively solve the 

complexity caused by strong noise interference. In this paper, to 

solve problems of low accuracy and poor generalization 

performance of traditional models under strong noise conditions, 

a rolling bearing fault diagnosis method based on multi-scale 

pooling residual convolutional neural network (MSPRCNN) is 

proposed. The MSPRCNN model first realizes the extraction of 

feature information at different levels by combining the multi-

scale pooling feature extraction module with the position 

upsampling module. Then, the gated convolution is used to 

further learn the extracted features with noise, and finally the 

Softmax classifier is adopted to complete the classification task 

of bearing faults. In addition, a new activation function IReLU 

is presented and applied to the MSPRCNN model to improve 

the fault recognition performance. The main contributions of 

this paper are summarized as follows: 

1) Wide convolution kernel is used for feature extraction. 

The wide convolution kernel has a larger receptive field and can 

cover a wider range of input data, which can better capture the 

overall pattern and global correlation of the input data, avoid 

information loss, and improve the fault diagnosis performance 

of the overall model. By introducing a wide convolution 

operation, the MSPRCNN model has improvement in accuracy 

under the condition of SNR of −10dB∼6dB.  

2) A MSPFE module combined with UPA is proposed. The 

MSPFE module can extract features at different levels by 

pooling the input data at different scales. In this way, various 

details and features in the vibration signal can be captured more 

comprehensively, including different frequencies and 

amplitudes. By combining features of different scales, the 

multi-scale pooling feature extraction module can provide 

richer and more comprehensive information representation, 

thereby improving the performance of the MSPRCNN model.  

3) Gated convolution and a new activation function IReLU 

are put forward. Gated convolution combined with IReLU 

activation function can effectively utilize the nonlinear 

characteristics of function and the feature selection and 

information transmission ability of gated convolution, so as to 

improve the network 's ability to characterize complex data. In 

addition, retaining the advantages of the ReLU function, the 

IReLU activation function introduces a new continuous 

function in the negative half axis to overcome the shortcomings 

of ReLU function, so as to better activate the feature 

information and improve the accuracy of bearing fault diagnosis. 

2. Theoretical backgrounds 

2.1. One-dimensional convolutional neural network 

1D-CNN is a variant of CNN, which is used to process one-

dimensional sequence data such as time series data and signal 

data. Different from 2D-CNN, 1D-CNN has unique advantages 

in processing time series data. 1D-CNN usually includes  

a convolutional layer, a pooling layer, an activation function 

layer, and a fully connected layer. The convolution layer 

extracts local features of the input sequence data through the 

convolution operation, which is similar to the feature extraction 

of the image in 2D-CNN.The pooling layer is adopted to reduce 

the length and number of feature sequences to decrease the 

complexity of the model. The activation function layer is used 

to activate each element. The fully connected layer maps the 

extracted features to the output category. 

2.2. Pooling and unpooling 

Pooling is a down-sampling operation to reduce the dimensions 

and parameters of data. It combines multiple adjacent data 

points into one output value by aggregating the local areas of 

the input data. The common pooling operations are Max Pooling 

and Average Pooling. The purpose of pooling is to preserve 

main features of input data, reduce the sensitivity to location 

information and the amount of data, improve computational 

efficiency and prevent overfitting. Global Average Pooling 

(GAP) is a special average pooling operation, which is robust to 

different sizes of input. 

Unpooling or up-sampling is the inverse process of pooling 

operation, which is used to restore the down sampled data to the 

original size. Unpooling refills the lost information in the 

pooling operation by interpolation or replication. 

Pooling and unpooling operations are often widely used in 

time series data, audio signal processing and models such as 

CNNs [25-26]. The advantages of pooling and unpooling 

operations in 1D-CNN are that they can effectively compress 

features, improve the robustness of the model, and recover lost 

details when needed, thereby improving the performance of 
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model. 

2.3. Gated Convolution 

Gated convolution is a convolutional neural network structure 

used to process sequential data. The basic idea is to introduce  

a gating mechanism to control the output of convolution 

operations. Gated convolution can adaptively select and retain 

the information in the input sequence through the gated 

information learned, so as to improve the expressive ability of 

model. 

In gated convolution, the commonly used gated mechanism 

is Gated Linear Unit (GLU). GLU consists of two parts:  

a convolutional layer and a gated layer. The convolutional layer 

is responsible for extracting features, while the gated layer 

determines which features should be retained [27]. The specific 

process is shown in formula (1)∼ (3). 

𝐺𝑎𝑡𝑖𝑛𝑔𝑦,𝑥 = ∑ ∑ 𝑊𝑔 ⋅ 𝐼  (1) 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑦,𝑥 = ∑ ∑ 𝑊𝑓 ⋅ 𝐼  (2) 

𝐺𝑎𝑡𝑖𝑛𝑔𝑦,𝑥 = Sigmoid(𝐺𝑎𝑡𝑖𝑛𝑔𝑦,𝑥) ⊗ φ(𝐹eature𝑦,𝑥)        

(3) 

where, ⊗ is element-by-element multiplication, Sigmoid is the 

Sigmoid function, 𝜑  indicates activation function, 𝑊𝑔  and 𝑊𝑓 

are two different convolution filters, and 𝐼 is the feature input.  

3. Fault diagnosis method based on MSPRCNN 

The traditional fault diagnosis method has the problems of 

inaccurate diagnosis when dealing with complex operating 

conditions such as strong noise and variable working conditions. 

In this paper, the MSPRCNN model is proposed by improving 

multi-scale CNN to solve the problem that strong noise and 

variable working conditions affect the performance of the model. 

This section describes in detail the structures of key modules in 

the MSPRCNN methodology to demonstrate the design features 

and specific functions of each module. 

3.1. Multi-scale pooling feature extraction module 

Traditional multi-scale convolution structures increase 

computational complexity and cannot effectively reduce the 

feature dimension, and pooling operation loses location 

information during feature down sampling. In order to enhance 

the neural network's perception ability for features of different 

scales, extract feature representations with richer semantic 

information, and reduce the loss of location information,  

a multi-scale pooling feature extraction (MSPFE) module is 

proposed. The MSPFE module captures multi-scale feature 

information by pooling input data at different scales, so that the 

MSPRCNN model can better adapt to input data of different 

sizes and maintain robustness even the input size changes. At 

the same time, the position attention module for up-sampling 

learns different position feature representations to improve 

position variation robustness. The specific structure is shown in 

figure 1.

 

Figure 1. Multi-scale pooling feature extraction module.

The MSPFE module uses three different scales of pooling to 

provide relatively balanced feature representation, covering 

different levels of feature information. The MSPFE module 

selects three average pooling windows with 17, 9, and 5 pooling 

cores, which are relatively large and suitable for capturing  

a wider range of feature information. The pooling window of 17 

can cover a longer feature sequence and capture global 

information. The pooling window of 9 and 5 can further refine 
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the feature representation and extract local features. Here, the 

steps of 8, 4 and 2 are selected to maintain a certain degree of 

overlap under different pooling windows to ensure the 

continuity and integrity of feature information. The MSPFE 

module performs feature extraction by using three average 

pooling windows and a point-by-point convolution with  

a channel number of 32 to form a multi-scale pooling operation 

to obtain features Y1, Y2, Y3, and Y4, respectively. 

The average pooling reduces the data dimension and extracts 

the main features by defining the size of the pooling window 

and calculating the average value of the elements in the window. 

The specific process of average pooling operation is shown in 

formula (4). 

𝑦[𝑖] =
1

𝑘
∑ 𝑥[𝑖 × 𝑘 + 𝑗]𝑘−1

𝑗=0   (4) 

where, 𝑦[𝑖]  is the output value after pooling, 𝑖  is the output 

position, 𝑥 is the input data, 𝑘 is the size of the pooling window, 

and 𝑗 is the index variable for iterative calculation. 

The point-by-point convolution is introduced to adjust the 

number of output channels without increasing the 

computational complexity, and to transform the dimension of 

the feature tensor between the multi-scale feature layers. After 

the multi-scale pooling operation, the up-sampling position 

attention module is connected for up-sampling, which makes 

the model better recover the position information and maintain 

the scale invariance. The purpose of introducing up-sampling 

after point-by-point convolution operation is to improve the 

detail information and processing effect of the signal by 

increasing the number of sampling points, so as to complete the 

mutual fusion between features. After fusing features, this paper 

proposes a full-band attention mechanism to achieve the goal of 

attention mechanism allocation to guide fusion features. Point-

by-point convolution compresses the channel of feature 

information, GAP provides global information for the receiving 

domain, Reshape changes the feature size, and Sigmoid 

function assigns weights to fusion features. In order to make the 

network adapt to complex data distribution and learning tasks, 

the MSPFE module introduces residual connection to stack the 

input features and the obtained features as output. 

3.2 Up-sampling position attention module 

In the multi-scale pooling operation, due to the down-

sampling of feature information, some position information is 

lost. Therefore, an up-sampling position attention (UPA) 

module is introduced after each layer of pooling operation. The 

UPA module can recover the lost location information during 

the up-sampling process, and handle the positional relationship 

in the feature information, including the relative position and 

global positional relationships between the feature information, 

enabling the model to better reconstruct features and extract 

information of different scales. The UPA module structure is 

shown in figure 2.

 

Figure 2. Up-sampling position attention module.

The UPA module introduces an outer product operation. The 

outer product operation is an important concept in linear algebra, 

which is used to multiply two vectors to generate a matrix, and 

represented by the symbol ‘⊙’ in the figure 2. As can be seen 

from figure 2, the UPA module first converts the module 

extracted from the convolution with a convolution kernel size 

of 3 to 𝛼  and 𝛽  under two vectors through the Reshape 

operation, and generates the matrix 𝐶 through the outer product 

operation. Then, the matrix 𝐶  and the vector obtained by the 

input feature reconstruction are subjected to an outer product 

operation to generate a higher-dimensional tensor, and then it is 

converted into a vector by the Reshape operation. Two outer 

Conv(3，16)

Conv(1，32)

BN Reshape

Reshape

Reshape

Reshape Sigmoid

IReLU

UP

Output

Input C

X2





Conv(3，16) BN

BNConv(1，32)



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

product operations can not only introduce more feature 

interaction information between different dimensions, to 

capture the complex patterns and relationships in the input data, 

but also introduce more high-order feature interaction 

information to improve the nonlinear expression ability of the 

model. Finally, the channel number of input feature is changed 

by point-by-point convolution, and then the feature X2 is 

obtained by multiplying the elements with the features 

processed by the Sigmoid function. Subsequently, the feature 

X2 is up-sampled to obtain the output feature. After each layer 

of convolution, the Batch Normalization (BN)regularization 

operation is added to avoid over-fitting of the model during 

training. The specific process is shown in formula (5)∼ (6). 

𝑌 = 𝑅𝑒 s hape𝐴𝑙 ⊗ (𝑅𝑒 s hape𝐴𝑞 ⊗ 𝑅𝑒 s hape𝐴𝑘)       (5) 

𝑂𝑢𝑡𝑝𝑢𝑡 = Up[Sigmoid(𝑅𝑒 s hape𝑌) ⊗ 𝐴𝑣]       (6) 

where, 𝐴𝑙 is the module input feature, 𝐴𝑞and 𝐴𝑘 are the features 

obtained by convolution normalization, 𝐴𝑣 is the feature after 

convolution, normalization and IReLU function activation, Up 

is up-sampling operation, Reshape is the operation of changing 

the shape of the input data, and 𝑌 is the high-dimensional tensor 

obtained by the outer product operation. 

3.3. Gated convolution 

In order to utilize the information of different positions in the 

sequence, reduce the over-fitting of model, and improve the 

identification accuracy and generalization ability of network, 

the Gated Convolution (GC) is introduced, and its structure is 

shown in figure 3.

 

Figure 3. Gated convolution.

GC introduces a gating unit to control the transmission and 

screening of features, which improves the modeling ability of 

model for long-distance dependence. Firstly, the input features 

in the GC module are decomposed into two parts. The 

convolution with a convolution kernel size of 3 is used to 

capture the local features in the input sequence. In addition, the 

normalized layer BN is added after the convolution, which can 

accelerate the model training and alleviate the problem of 

gradient disappearance. Secondly, the Sigmoid function is used 

to control the transmission of information, so as to obtain the 

feature X4, and the IReLU function is used to control the 

neglect of information, so as to obtain the feature X5. Finally, 

the feature X4 and X5 are fused by element multiplication to 

obtain the output. This mechanism allows the network to 

selectively learn the interaction between features, thereby 

improving the performance of network. The specific process is 

shown in formula (7). 

𝑋 = Sigmiod（𝑊 ⋅ 𝑥𝑖 + 𝑏）⊗ IReLU（𝑊′ ⋅ 𝑥𝑖 + 𝑏′）  (7) 

where, 𝑥𝑖  is the 𝑖th  element in the input sequence, 𝑊  and 𝑊 ′ 

are convolution filters, 𝑏  and 𝑏′  are bias values, IReLU  is the 

IReLU activation function, and 𝑋  is the output of gated 

convolution operation.  

3.4. Activation function-IReLU 

After extracting features, in order to enhance the nonlinear 

expression ability of model, it is necessary to use the activation 

function to activate the features. In neural network-based 

models, common activation functions include ReLU, Tanh and 

ELU. However, the traditional function has some problems. For 

example, the ReLU function will directly set the negative value 

to zero, which leads to the loss of important information. Tanh 

and ELU have the problem of gradient disappearance. In order 

to solve these problems, a new activation function IReLU is 

proposed, and the function image is shown in figure 4. The 

calculation formula of IReLU is shown in Equation (8). 
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𝑓(𝑥) = {
𝑥 (𝑥 > 0)

𝑒𝑥−1

𝑒𝑥+1
(𝑥 ≤ 0)

   (8) 

The derivative function of 𝑓(𝑥) is shown in equation (9). 

𝑓′(𝑥) = {
1 (𝑥 > 0)

2𝑒𝑥

(𝑒𝑥+1)2 (𝑥 ≤ 0)
   (9) 

 

Figure 4. IReLU activation function. 

It can be seen from equation (9) that when 𝑥 = 0, 𝑓 ′(𝑥) =
1

2
, 

when 𝑥 < 0, 𝑓 ′(𝑥) > 0. The derivative of IReLU is always in 

the (0, 1) interval on the negative half axis, which avoids the 

saturation problem of Tanh and ELU activation functions in the 

negative region. The derivative of value on positive half axis is 

always 1, which means that the gradient will not disappear in 

the positive input range, which is conducive to the transmission 

of information and the update of gradient. Different from ReLU 

and ELU where the derivative value is 0 at point 0, the IReLU 

function has a clear derivative value when the input is 0, which 

improves the convergence speed of the network and reduces the 

training time. At the same time, the participation of negative 

input signals introduces some control noise into the network, 

which alleviates the mandatory sparsity of activation function. 

Therefore, it shows that the IReLU activation function can 

better support the training and optimization of deep learning 

model, and can better cope with the problems such as gradient 

vanishing and exploding, thus improving the training effect of 

model. 

3.5. Fault diagnosis process based on MSPRCNN 

In the MSPRCNN model, the original vibration signal is first 

converted into a frequency domain signal using Fourier 

Transform as the input of MSPRCNN method. Then, a wide 

convolution kernel is used to extract features, and a multi-scale 

pooling feature extraction module combined with the Up-

sampling position attention mechanism is introduced to 

adaptively extract features of different scales. Next, the feature 

representations of different scales are stacked together on the 

channel dimension through the Concat operation. Among them, 

the multi-scale pooling operation performs feature extraction at 

different scales, which resists the interference of strong noise 

and improves the robustness of model, and enables the network 

to adapt to different operating conditions. The Up-sampling 

position attention module promotes the MSPFE module to 

better understand the importance and relevance of different 

positions in the sequence data, thereby extracting more 

representative and discriminative feature information, and 

improving the accuracy and reliability of model in time series 

prediction and analysis tasks. Through feature fusion, 

information at different scales can be retained, which enables 

the network to better understand data features and distinguish 

effective features from noise, thereby improving accuracy and 

robustness.  

Secondly, ordinary convolution and gated convolution are 

used to further extract and learn the features with noise. The 

structure of gated convolution enables the network to adaptively 

select the appropriate receptive field to extract key information. 

Then, in order to prevent gradient disappearance and explosion, 

residual connection is introduced, and the features extracted by 

the first layer convolution are fused with the features processed 

by gated convolution. In the next diagnostic process, the 

maximum pooling and global average pooling are used 

successively to further reduce the data dimension while 

retaining important features. In addition, inserting the Group 

Normalization (GN), MSPFE module and UPA module, can 

better adapt to the data distribution at different scales and reduce 

computational complexity. Finally, the fusion features are 

identified and classified through the fully connected layer and 

the Softmax layer. The structure of MSPRCNN is shown in 

figure 5. The details of model constructed in this paper are 

shown in table 1. The number of neurons in the fully connected 

layer is 100, and the number of neurons in the Softmax layer is 

7. 
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4. Experimental validation 

4.1. Rolling bearing data set construction 

In this paper, the bearing data set of Case Western Reserve 

University (CWRU) and the data set collected by the MFS fault 

simulation test bench of our laboratory are used for 

experimental verification. The sample length of both data sets 

is set to 2048. In the anti-noise experiment, the randomly 

generated Gaussian white noise is added to the original signal, 

and the size of SNR is adjusted to simulate the influence of 

different degrees of noise.

 

Figure 5. MSPRCNN model. 
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MSPRCNN 98.88 99.29 99.27 98.94 99.03 99.14 99.09
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Table 1. MSPRCNN optimal structure parameters. 

Layer Type Convolutional kernel size Number of convolutional kernels Output size 

Input / / 20481 

Conv1D_1 7 64 204864 

Group Normalization 1 / / 204864 

Conv1D_2 1 32 204832 

MSPFE / / 204832 

Group Normalization 2 / / 204832 

Conv1D_3 3 16 204816 

GC / / 204832 

Group Normalization 3 / / 204832 

Concatenate / / 204896 

Max Pooling / / 102496 

Global Average Pooling / / 196 

Fully connected / 100 100 

Dropout / / 100 

Softmax / 7 7 

Data set 1 is the CWRU rolling bearing data set [28], and the 

CWRU bearing fault test bench is shown in figure 6 (a). The 

bearing model is SKF6205, the sampling frequency is 12kHz, 

and the load is 1hp 3hp. The failure mode is pitting corrosion, 

the diameters are 0.18 mm and 0.36 mm, respectively, and the 

single point failure is formed by EDM. There are 7 fault types, 

including inner ring, outer ring, and rolling element fault and 

normal state. The data sets are denoted as A, B and C, 

corresponding to loads of 1hp, 2hp and 3hp, respectively. The 

operating conditions and fault information of CWRU are shown 

in table 2. 

Data set 2 is the MFS bearing data set of our laboratory, and 

the MFS fault diagnosis test bench is shown in figure 6 (b). The 

bearing model is ER-16K, and the faults are inner ring fault, 

outer ring fault and rolling element fault, as shown in figure 7. 

The sampling frequency is 15.36kHz, and the rotation speeds 

are 1200rad/min, 1300rad/min and 1400rad/min, respectively. 

The corresponding data sets are recorded as D, E and F, 

respectively. The fault is processed by laser etching technology, 

with a diameter of 0.6mm and 1.2mm, a total of 7 fault types. 

The operating conditions and fault information of MFS are 

shown in table 3.

    

(a)CWRU mechanical fault simulation test platform   (b)MFS mechanical fault simulation test platform 

Figure 6. Test platform. 

Table 2. CWRU rolling bearing data set. 

Fault diameter /mm 
0 0.18 0.36 

Load 
Normal Inner ring Outer ring Rolling element Inner ring Outer ring Rolling element 

Label 0 1 2 3 4 5 6  

A 
Training set 100 100 100 100 100 100 100 1hp 

(0.7457kW) Testing set 100 100 100 100 100 100 100 

B 
Training set 100 100 100 100 100 100 100 2hp 

(1.4914kW) Testing set 100 100 100 100 100 100 100 

C 
Training set 100 100 100 100 100 100 100 3hp 

(2.2371kW) Testing set 100 100 100 100 100 100 100 
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      (a) Inner ring fault                             (b) Outer ring fault                               (c) Rolling element fault 

Figure 7. Fault location of rolling bearing. 

Table 3. MFS rolling bearing dataset. 

Fault diameter /mm 

0 0.6 1.2 

Revolution speed 
Normal 

Inner 

ring 
Outer ring Rolling element Inner ring Outer ring Rolling element 

Label 0 1 2 3 4 5 6  

D 
Training set 100 100 100 100 100 100 100 

1200
1rad min−  

Testing set 100 100 100 100 100 100 100 

E 
Training set 100 100 100 100 100 100 100 

1300
1rad min−  

Testing set 100 100 100 100 100 100 100 

F 
Training set 100 100 100 100 100 100 100 

1400
1rad min−  

Testing set 100 100 100 100 100 100 100 

Figure 8 shows the comparison between the frequency 

domain signal of original signal after Fourier transform and the 

frequency domain signal after adding Gaussian white noise. 

From the figure 8, the characteristics of the original signal and 

the change of the frequency domain spectrum with Gaussian 

white noise can be clearly observed.

 

           (a) Original signal                                                             (b) −4dB 

Figure 8. Frequency domain diagram.

4.2. Selection of parameters 

In the experiment of this paper, the software version is 

PyCharm2020.1.2. The software environment is Tensorflow, 

and the hardware configuration is Intel (R)Xeon-(R)Silver 4110 

CPU, 64-GB RAM, NVIDIA Quadro P4000 GPU. The 

experimental optimizer uses Adam optimizer, and the number 

of training is 30 times. In order to reduce the error, all 

experiments are tested 10 times and averaged. 

The selection of hyperparameters is very important to 

improve the diagnostic performance of model. Therefore, the 

parameter selection experiments are carried out under the 

conditions of A-B and A-C and SNR of-6dB, –4dB and –2dB, 

respectively. Among them, A-B means that the training set 

adopts data set A, and the test set adopts data set B. The 

experimental results are shown in figures 9 and 10. Because the 

width of first layer convolution kernel has a great influence on 

the performance of model, wide convolutions with kernel sizes 

of 16, 32, 64, 128 and 256 are tried for comparison experiments. 

It can be seen from figure 9 (a) and figure 10 (a) that when the 
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convolution kernel width is 64, the performance of model is 

optimal. Therefore, the convolution layer with a kernel width of 

64 is selected. In addition, the appropriate batch size and 

learning rate are also very important for model performance. It 

is observed from figures 9 and 10 that when the batch size is 8 

and the learning rate is 0.0005, the model performance is 

optimal. These choices can effectively control the 

computational complexity and parameters while improving 

model performance. 

     

(a) Wide convolution kernel selection       (b) Batch size selection        (c) Selection of learning rate 

Figure 9. Hyperparamete selection under A-B condition. 

     

(a) Wide convolution kernel selection       (b) Batch size selection        (c) Selection of learning rate 

Figure 10. Hyperparamete selection under A-C condition.

4.3. Validation 

In order to verify the effectiveness of proposed method, this 

model is compared with MSD-CNN [29], MSC-MpResCNN 

[30], AMFCN [31], ADCNN [32] models under the condition 

of SNR= −4dB. Among them, MSD-CNN is a multi-scale deep 

convolutional neural network, and MSC-MpResCNN is a multi-

scale cascaded midpoint residual convolutional neural network. 

AMFCN is an adaptive multi-scale fully convolutional network 

that uses large kernel convolution for feature extraction. 

ADCNN is an adaptive denoising convolutional neural network. 

The fault diagnosis results of above methods under the same 

working conditions are shown in figure 11. It can be seen from 

figure 11 that the above methods show good fault recognition 

performance under noise conditions, but the classification 

accuracy of this method is higher, and the recognition accuracy 

under all working conditions is more than 98%. At the same 

time, the average accuracy of MSPRCNN model reaches 

99.09%, which is 0.91% higher than that of MSC-MpResCNN, 

1.11% higher than that of ADCNN, 3.13% higher than that of 

MSD-CNN, and 3.19% higher than that of AMFCN. These 

results clearly show that the proposed method can realize fault 

identification in noisy environment, and has higher fault 

classification performance than other methods. 

 

Figure 11. Fault diagnosis results under the same working 

conditions. 

4.4. Experimental verification under variable conditions 

In actual production, the operating conditions of mechanical 
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equipment are often complex and changeable situations, among 

which variable load and variable speed are the most common 

situations. Under the influence of these factors, it is very 

important to diagnose the fault information stably. In order to 

verify the generalization ability of MSPRCNN model under 

different working conditions, the fault diagnosis results of 

MSPRCNN and other models are compared and analyzed under 

SNR = −4dB and variable working conditions. 

4.4.1. Experimental analysis under variable load 

The classification results of MSPRCNN model and other 

methods under variable load are shown in figure 12, where A-B 

represents the data set A as the training set and B as the test set. 

It can be observed from figure 12 that the average accuracy 

of proposed method reaches 98.71%, which is 1.33% 6.25% 

higher than other methods. Under six working conditions, the 

fault diagnosis accuracy of MSPRCNN method is the highest 

under working conditions A-B, reaching 99.86%, which is 6.6% 

higher than that of AMFCN with the lowest diagnostic accuracy 

and 0.83% higher than that of ADCNN with the highest 

diagnostic accuracy. The lowest accuracy under the working 

condition B-A is 98.34%, which is 0.63% higher than the 

ADCNN. 

At the same time, the error line in the figure 12 shows that 

the stability of proposed method is also significantly higher than 

other methods. Therefore, it can be concluded that the 

MSPRCNN model has excellent fault recognition performance 

and generalization ability under strong noise and variable load 

conditions. 

 

Figure 12. Fault diagnosis results under variable load. 

In order to observe the misclassification of faults more 

clearly, a confusion matrix is used for visual comparative 

analysis in operating conditions A-B. At the same time, the 

diagnostic performance of MSPRCNN model is analyzed by 

controlling the SNR in condition A-C. The diagnosis results are 

shown in figure 13 and 14, respectively. 

It can be seen from figure 13 that in strong noise 

environment with SNR = −4dB, the MSPRCNN can accurately 

identify most faults, but there are also some fault categories that 

are misclassified. Among the 100 samples of 0.18mm outer race 

faults, 3 samples are misdiagnosed as 0.36mm rolling element 

faults, resulting in a misdiagnosis rate of 3%. ADCNN, which 

has the highest classification accuracy among other comparison 

methods, misclassified 0.36mm rolling element faults as 

0.18mm inner ring faults, leading to misdiagnosis rate of 12%. 

This further validates the diagnostic advantages of proposed 

method in the diagnosis of rolling bearing faults.

 

(a) MSD-CNN                                (b) MSC-MpResCNN                              (c) AMFCN  
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(d) ADCNN                                      (e) MSPRCNN 

Figure 13. Confusion matrix under variable load.

It can be seen from figure 14 that the diagnostic performance 

of MSPRCNN model improves with the increase of SNR. When 

SNR = −10dB, 79 out of 700 test samples are misclassified, and 

when SNR = −4dB, only 8 samples are misclassified. This 

indicates that the MSPRCNN model also has better diagnostic 

performance at higher SNRs. By analyzing the confusion matrix, 

the performance of system under different working conditions 

can be evaluated more clearly, which provides a useful reference 

for further optimizing the algorithm. Overall, the MSPRCNN 

model has higher fault recognition performance in strong noise 

environment.

 

(a) −10dB                                                 (b) −8dB 

 

(c) −6dB                                                   (d) −4dB 

Figure 14. Confusion matrix under different SNRs.

4.4.2. Experimental analysis under variable speed 

The MSPRCNN model is compared with the other four 

comparison methods under variable speed conditions, and the 

experimental results are shown in figure 15. It can be seen that 

the average recognition accuracy of MSPRCNN model reaches 

98.2 %, which is 1.51 % higher than that of MSC-MpResCNN 

with the highest accuracy among four comparison methods, and 

4.38 % higher than MSD-CNN with the lowest accuracy. This 

shows that the MSPRCNN model has stronger anti-interference 

ability in noisy environment. In the working condition E-F, the 

accuracy of model proposed reaches 99.14%, which is 1.37% 

higher than that of the best AMFCN accuracy. This shows that 

the MSPRCNN method has stronger feature recognition effect, 
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more accurate extraction of useful features in noisy 

environment, and improves the accuracy of fault diagnosis. At 

the same time, by observing the error line in the graph, it can be 

found that the recognition stability of MSPRCNN model is 

better than other methods when SNR = −4, which proves that 

the proposed method has stronger stability performance. In 

summary, these results show that the MSPRCNN model has 

better performance under variable speed conditions. 

 

Figure 15. Fault diagnosis results under variable speed. 

In order to further prove the performance of this method 

under stronger noise conditions, different SNRs are selected for 

experimental comparison under working conditions D-F. As 

shown in figure 16, the fault accuracy of above methods in 

different noise environments is shown. It can be seen from 

figure 16 that the stronger the noise, the more obvious the 

diagnostic performance advantage of MSPRCNN model. When 

the SNR is −10 dB, the fault accuracy of MSPRCNN reaches 

86.57%, which is 4.34% higher than AMFCN, 9.05% higher 

than MSC-MpResCNN, 14.93% higher than MSD-CNN, and 

16.38% higher than ADCNN. With the increase of SNR, the 

accuracy of above methods increases, while the change range of 

method proposed is the smallest, which shows that the 

MSPRCNN model is less sensitive to noise. When the SNR = 

4dB, the accuracy of MSPRCNN model reaches 100%, which 

is 0.29% 0.57% higher than other models. In summary, under 

the condition of strong noise, the MSPRCNN model can 

effectively suppress noise interference, improve the accuracy 

and stability of fault identification, and provide reliable 

technical support for monitoring the operation status of 

industrial equipment. 

 

Figure 16. Fault diagnosis results under different signal-to-

noise ratios. 

In order to further evaluate the effectiveness of MSPRCNN 

model in fault identification, t-distributed stochastic 

neighborhood embedding (t-SNE) is used to visualize the 

distribution of features under the condition of SNR = −4dB. The 

fault classification results are shown in figure 17. It can be seen 

that the feature information learned by the MSPRCNN model 

exhibits good discriminative ability for various fault types. 

Within the same fault category, features have better clustering 

performance, while features from different fault categories are 

easier to separate, which indicates that the MSPRCNN model 

can effectively distinguish different types of faults and cluster 

the same type of fault features.  

4.4.3. Experimental analysis under mixed load conditions 

In order to test the diagnostic performance of proposed 

diagnostic method under mixed load conditions, comparative 

experiments under variable load mixed conditions are 

conducted. Among them, A+B represents the fusion of data 

under condition A and condition B, A+B-C represents A + B as 

the training set and C as the test set. The experimental results 

are shown in figure 18. It can be clearly seen that the 

MSPRCNN model has higher prediction accuracy than other 

diagnostic methods under three different mixed conditions.
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(a) Conditions D-E                       (b) Conditions D-F                     (c) Conditions E-D 

 

(d) Conditions E-F                        (e) Conditions F-D                     (f) Conditions F-E 

Figure 17. Visualization of t-SNE under variable speed.

 

Figure 18. Experimental comparison of variable load mixed 

conditions. 

4.5. Ablation experiment 

In this section, ablation experiments are carried out under A-B 

conditions to verify the role of each module presented in this 

paper. The comparative models designed are as follows. 

MSPRCNN1 is the MSPRCNN model without the wide 

convolutional layer. MSPRCNN2 is the MSPRCNN model 

without the MSPFE module. MSPRCNN3 is the MSPRCNN 

model without the GC module. MSPRCNN4 is the MSPRCNN 

model with ReLU activation function instead of IReLU function. 

The experimental results are shown in table 4. The 

diagnostic accuracy of MSPRCNN1 model is significantly 

reduced. When SNR = −4dB, the fault recognition accuracy is 

reduced from 99.86% to 79.29%, which shows that the wide 

convolution module plays a key role in feature extraction and 

pattern recognition. The accuracy of MSPRCNN2 model is 

lower than that of the MSPRCNN model. When SNR = −10, the 

accuracy rate is 87.43%, which is 2.43% lower than that of 

MSPRCNN, which indicates that the MSPFE module plays an 

important role in improving the attention and discrimination 

ability of the model to key features. The accuracy of 

MSPRCNN3 model is also lower than that of MSPRCNN 

method, which shows that the GC module plays an important 

role in the connection and information transmission of model. 

The diagnostic performance of MSPRCNN4 model is also 

lower than that of MSPRCNN. When SNR = −10 dB, the 

accuracy rate reaches 85.43%, which is 4.43% lower than that 

of MSPRCNN method, which exhibits that the introduction of 

nonlinear IReLU activation function will alleviate the gradient 

disappearance of model and improve the expression ability and 

generalization ability of model. 

Based on the above results, it is concluded that each module 

has an important impact on the overall model performance. 

These analysis results provide important references for further 

optimizing the model, which is helpful to understand the 

relationship between model structure and performance, so as to 

design more efficient and accurate models. 
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Table 4. Ablation experimental results. 

SNR(dB) −10 −8 −6 −4 −2 0 2 4 6 

A
cc

u
ra

cy
(%

) 

IMSPRCNN1 77.57 78.64 78.86 79.29 86.14 88.03 90.71 94.43 97.29 

IMSPRCNN2 87.43 91.64 93.93 98.57 99.11 99.46 100 100 100 

IMSPRCNN3 88.57 90.86 93.14 98.43 98.86 99.43 99.14 99.29 100 

IMSPRCNN4 85.43 90.29 93.57 97.29 97.56 98.57 99.86 100 100 

MSPRCNN 89.86 91.79 94.52 98.86 98.95 99.82 100 100 100 

5. Conclusion 

Aiming at the influence of strong noise and variable working 

condition on the diagnostic performance of model, this paper 

proposes a fault diagnosis method based on MSPRCNN. In this 

method, the multi-scale pooling, up-sampling position attention, 

gated convolution and IReLU activation function are combined 

into the CNN. This structural design not only improves the 

ability of model to extract data features, but also enhances the 

robustness and generalization ability of network in dealing with 

complex problems. The following are the specific conclusions: 

1) The wide convolution kernel is used for feature extraction. 

Global features in the vibration signal can be better captured by 

the wide convolution kernel. In addition, the wide convolution 

kernel provides a wider receptive field, which helps to increase 

the context information of signal. In the experiment, when the 

SNR is −4dB, the accuracy of MSPRCNN method is improved 

by 20.57% using the wide convolution kernel. 

2) The MSPFE module is constructed. The MSPFE module 

combined with UPA can abstract and extract features at different 

levels, and understand the information in the vibration signal 

more comprehensively. In the verification experiment, when the 

SNR = −10 dB, the application of MSPFE module improves the 

diagnostic accuracy of MSPRCNN method by 2.43%. 

3) The MSPRCNN model is proposed and the IReLU 

activation function is designed. The MSPRCNN model 

combines multi-scale pooling with gated convolution 

operations to effectively capture features at different time scales. 

The presented IReLU activation function enhances the 

nonlinear modeling ability of network. In the experiment, when 

SNR = −4dB, the accuracy of MSPRCNN model combined with 

IReLU activation function is 2.57 % higher than that of method 

without IReLU activation function. 

4) The experimental results show that the MSPRCNN 

method shows better classification accuracy and stronger 

robustness in noisy environment. Specifically, the experimental 

results show that the average accuracy of variable load and 

variable speed of MSPRCNN model in noise environment 

reaches 98.71% and 98.2% respectively, which verifies the 

effectiveness and superiority of this method in dealing with 

strong noise interference and adapting to different working 

conditions.
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