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Highlights  Abstract  

▪ Introduces two new parameters, product 

sampling pass rate and carbon emissions. 

▪ The concepts of expected value model and 

chance-constrained model are proposed. 

▪ A multi-objective analysis method and an 

improved sparrow algorithm are proposed. 

▪ The performance of the improved sparrow 

algorithm is significantly improved. 

 This paper analyzes the transportation issue involving multiple 

objectives and items with fixed costs amid uncertainty, which aims to 

increase net profit while minimizing carbon emissions, to determine an 

optimal product shipping strategy. This paper introduces the use of 

uncertain theory to address the transportation dilemma, considering 

various challenges such as potential uncertainties during the actual 

transport process. It involves defining variables such as supply, demand 

and the rate of product sampling qualification as uncertain factors, 

constructing mathematical models, and deriving the corresponding 

model as well as the respective equivalent form by means of uncertainty 

theory. A linear weighted method is adopted to reflect the significance of 

each objective as identified by policymakers and suggest a sparrow 

optimization algorithm combined with butterfly search for numerical 

experiments to discover the optimal solution. This demonstrates the 

practicality and effectiveness of the proposed models. 
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1. Introduction 

Against the background of global economic integration, the 

expansion of the transportation sector across the globe has 

catalyzed the rapid growth of the logistics industry, underlining 

its increased importance in both manufacturing and everyday 

life. Transportation serves as a crucial component in the 

logistics chain, significantly influencing the national economy 

[1,2,3,4]. The classic transportation problem, first identified by 

Hitchcock in 1941 [5], is a well-established optimization 

challenge. It requires decision-makers to formulate efficient 

transportation strategies ensuring that the total cost of moving 

goods from their origin to the intended destination is kept to  

a minimum [6]. Generally, the TP involves two types of 

constraints: supply and demand constraints. The solid transport 

problem builds upon the conventional challenges of solid 

transport, an idea initially introduced by Haley [7]. It introduces 

three main categories of constraints: supply, demand, and 

transportation. The transportation constraint focuses on the 

method of moving the product from its starting point to its 

endpoint. In the STP, these constraints are analyzed through  

a spatial lens, leading to the development of the three-
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dimensional STP. Later, Qiu et al. [8] offered an approach based 

on neutrosophic logic to solve the neutrosophic solid 

transportation problem. In addition, Prathyusha et al. [9] 

developed hierarchical sequential goal planning techniques to 

tackle the two-objective solid transport problem. 

The Fixed Charge Transportation Problem (FCTP) is 

classified under the umbrella of traditional transportation issues. 

It was first proposed by Hirsch and Dantzig et al. [10]. FCTP 

considers transportation costs, introducing a fixed charge as an 

additional expense. These extra costs might consist of tolls, 

vehicle rental charges, permit fees, and more, all of which do 

not depend on the amount of goods transported. If the fixed 

charges are not taken into account, this can lead to the selection 

of options with high fixed charges, which do not make full use 

of transport resources and lead to problems such as long 

transport distances and lower loading rates, which in turn 

increase the volume of road traffic, emissions and other 

environmental burdens, and reduce the efficiency of transport. 

Following this introduction, a growing body of research has 

emerged around the topic. Ghosh et al. [11] uses fuzzy 

programming method and other methods to find the Pareto 

optimal solution of this transportation problem. [12] proposed a 

two-stage fixed-charge transportation model, introducing three 

algorithms that utilize priority coding. Buson et al. [13] 

developed a mathematical heuristic method to tackle the 

complexities of large-scale transportation problems with fixed 

charges, demonstrating through comparative experiments that 

this approach rapidly yields high-quality, nearly optimal 

solutions. ldrissi et al. [14] studied the effect of various 

adaptation operators in FCTP and introduced a new crossover 

operator (IPX) aimed at finding the optimal solution. 

In transportation issues, all variables are typically treated as 

deterministic. However, the complex networks and numerous 

links characteristic of transportation organizations mean their 

operations are influenced by various uncertainties, including 

road conditions, weather factors, and fluctuations in product 

supply and demand. Therefore, a multitude of researchers have 

explored the dynamics of traffic under uncertain conditions. For 

instance, Maity et al. [15] evaluated transportation problems 

including multiple objectives in uncertain environments. Midya 

and Roy [16] proposed a transportation model that integrates 

multiple objectives, indices, and stochastic components, 

alongside a fixed charge and a singular destination, employing 

fuzzy programming methods for resolution. In scenarios limited 

by a single source, [17] established a simple approximation 

method, providing a foundation for deriving initial solutions. 

Fuzzy set theory serves as a mathematical tool for 

characterizing and manipulating uncertain and vague data, 

enabling the quantification of such information for further 

analysis and inference [18]. This is particularly relevant in 

transportation, where demand and supply often exhibit 

uncertainties, more so in practical scenarios where they display 

ambiguity. Fuzzy set theory offers a methodology for describing 

this ambiguity, facilitating the modeling and analysis of 

indistinct demand and supply patterns. Upmanyu et al. [19] 

introduced an innovative method for handling objective values 

composed of multiple fractions with fuzzy values. Liu et al. [20] 

developed a transportation model that addresses multiple 

objectives and integrates uncertainty in the production-sales 

framework, which was streamlined into a single-objective linear 

programming model using the maximin approach and then 

resolved. Effati et al. [21] unveiled a cutting-edge fuzzy neural 

network model aimed at tackling fuzzy linear programming 

problems encountered in real-world engineering scenarios. 

Frequency is often considered a collection of observations 

from a random occurrence. In probability theory, the probability 

of an event occurring can be approximated by tallying how 

frequently that event has been observed across numerous trials 

and experiments. This method of estimation is grounded in 

empirical data and draws upon the law of large numbers, 

suggesting that the event's frequency will approach its 

probability as the number of trials increases. However, in 

certain situations, the application of probability theory may not 

be practical due to the lack of accessible, adequate, or accurate 

data. For instance, in the context of natural disasters, accidents, 

or other hard-to-measure phenomena, acquiring enough reliable 

data for probability calculations proves challenging. Persisting 

in applying probability theory to analyze these types of 

empirical data from experts [22] can lead to markedly different 

conclusions. In transportation issues, variables such as the cost 

of transport, duration, and the volume of goods required versus 

dispatched present significant challenges for measurement due 

to a range of factors. To address cognitive uncertainties, Liu [23] 

introduced the concept of uncertain theory, further optimized in 
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[24]. The outcomes of uncertain theory research have found 

broad application across various fields lately, especially in 

uncertain risk mitigation [25,26,27], strategies for financial 

investments [28,29,30], decisions in supply chain management 

[31,32,33], and in the field of statistics [34,35]. For more 

applications of uncertainty theory to transportation problems, 

see references [36,37]. 

Uncertain theory has gained significant traction in 

addressing transportation problems, where various risks and 

uncertainties, such as potential loss or damage to goods or 

fluctuating demands for transportation, are prevalent. Mou [38] 

devised an uncertain programming model that simplifies these 

issues into a model with a single-objective based on uncertain 

opportunity constraints. Roy [39] et al. analyzed the complexity 

of transportation problems characterized by dual uncertainties, 

multiple objectives, and numerous items with fixed charges. 

As mentioned above, the transportation problem under 

uncertain environment has been widely studied. People usually 

treat supply and demand, fixed cost, etc. as uncertain variables, 

and take maximizing profit or shortest transportation time as 

goals to find an optimal transportation scheme. The text 

provided delves into the complexities of the transportation 

problem in the framework of maximizing profits while also 

addressing the multifaceted nature of such issues, including 

considerations such as costs, time, and safety of cargo. It 

highlights the necessity of adopting a multi-objective to ensure 

a balanced and comprehensive strategy, especially in light of 

global warming challenges and the push for a dual-carbon 

policy aimed at reducing carbon emissions. This policy shift 

prompts companies to incorporate environmental 

considerations into their decision-making processes, especially 

regarding carbon emissions during the transportation of goods. 

The variability of emissions, influenced by factors such as 

vehicle type, fuel efficiency, and cargo nature, necessitates  

a sophisticated approach to planning. In a volatile market 

environment, in order to help companies to better predict and 

control their transportation costs and gain greater profits, as well 

as to optimize the use of transportation resources, improve 

transportation efficiency, and reduce energy consumption and 

carbon emissions, among other things, this study proposes  

a novel model that incorporates these diverse elements, utilizing 

uncertain theory to balance profit maximization with carbon 

emission reduction. The model introduces new parameters, such 

as the product sampling pass rate and carbon emissions, to adapt 

to current needs and mitigate potential damage to cargo during 

transit. By converting the model into an expected value model 

and a chance-constrained model, the research establishes 

deterministic models that are then solved, followed by 

numerical tests and analysis to evaluate the efficacy of the 

proposed solutions. 

In summary, the primary contributions of this research are 

as follows: taking into account the various problems in actual 

transportation, in order to help companies to obtain greater 

profits while optimizing the use of transportation resources, an 

innovative model for fixed-charge transportation problem is 

developed through a mathematical modeling approach, 

enhanced by introducing new parameters for product sampling 

pass rate and carbon emissions, which aims to maximize net 

profit while minimizing CO2 emissions during vehicle 

transportation, to determine the optimal product transportation 

strategy. Establish the corresponding expected value model and 

chance-constrained model through the knowledge of 

uncertainty theory, and derive the corresponding equivalent 

model for solution. Subsequently, a multi-objective analysis 

method is introduced to transform a multiple-objective transport 

problem proposed in this study into a simplified single-

objective transport problem, and an improved sparrow search 

algorithm (BFSSA) is proposed to solve it. The study 

culminates in numerical experiments and analysis through 

MATLAB to assess the models' performance. The experimental 

results show that the improved algorithm (BFSSA) outperforms 

the original algorithm (SSA) in seeking the optimal solution and 

has better performance. This paper assesses the impact of 

various practical aspects of the transportation process, which 

not only increases profit margins, but also reduces negative 

impacts on the environment such as carbon emissions, making 

the results of the study more relevant and realistic. 

In Section 2, the foundational principles of uncertainty 

theory are introduced. Section 3 is dedicated to providing  

a detailed description of the problem, including both the 

notation and the mathematical formulation of the issue being 

evaluated in this paper. Section 4 outlines two distinct models: 

the expected value model and the chance-constrained model. In 

Section 5, the uncertainty theory is applied to derive the 
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corresponding determinate model. Section 6 recommends  

a method for transforming the multi-objective optimization 

problem into a problem with a single objective, alongside 

proposing an enhanced algorithm based on our theoretical 

findings. Numerical experiments are then conducted in Sections 

7 to evaluate the performance of the proposed algorithms 

through an analysis of the experimental results. 

2. Preliminary 

Uncertainty theory is primarily employed to address and 

characterize the nature of uncertainty and fuzziness. This theory 

acknowledges the challenges decision-makers face when they 

encounter various incomplete and ambiguous pieces of 

information during the processes of information processing and 

decision-making, complicating the achievement of clear-cut 

decisions. As a result, uncertain theory offers systematic 

methods for quantifying and managing this uncertainty, thereby 

improving the handling of vague and partial information. To put 

it succinctly, functions measured in an uncertain environment 

are referred to as uncertain variables. 

Let ℒ represent 𝜎 -algebra on a set 𝛤 that is not empty. Each 

of the elements in ℒ is referred to as an event 𝛬. An uncertainty 

measure means a function, which is mapped from ℒ to a gap 

[0,1]. Every event 𝛬  has a probability, that it will occur; this 

likelihood is known as the measure ℳ{𝛬}. Liu defines a triple 

(𝛤,ℒ,ℳ)  consisting of a non-empty set 𝛤  , 𝜎  -algebra ℒ  and 

an uncertainty measure ℳ as an uncertainty space.  

For a better characterization and description of the uncertain 

phenomenon, Liu defines the uncertain variable. Function 𝜉 is 

considered measurable when it maps the uncertain space 

(𝛤,ℒ,ℳ) to the list of actual numbers ℝ, i.e., for an arbitrary 

Borel set 𝔹, set  

{𝜉 ∈ 𝔹} = {𝛾 ∈ Γ}|𝜉(𝛾) ∈ 𝔹. 

is an event, which is considered to be a variable that is 

characterized by uncertainty, and the uncertain distribution 𝛷 is 

defined as  

Φ(𝑥) = ℳ{𝜉 ≤ 𝑥}. 

The inverse function 𝛷−1(𝛼)  is referred to as the inverse 

uncertainty distribution of 𝜉  when 𝜉  is an uncertain variable 

with a regular uncertainty distribution 𝛷(𝑥). 

Theorem 1 Let 𝜉1, 𝜉2, ⋯ , 𝜉𝑛 be a set of independent 

uncertain variables and their uncertain distributions 

𝛷1(𝑥), 𝛷2(𝑥),⋯ ,𝛷𝑛(𝑥)  are all regular. If the function 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)  is mono-increasing for 𝑥1, 𝑥2, ⋯ , 𝑥𝑚  and 

mono-decreasing for 𝑥𝑚+1, 𝑥𝑚+2, ⋯ , 𝑥𝑛 , then  

Ψ−1(𝛼) = 𝑓(Φ1
−1(𝛼),⋯ ,Φ𝑚

−1(𝛼), Φ𝑚+1
−1 (1 − 𝛼),⋯ ,Φ𝑛

−1(1

− 𝛼)) 

is the inverse uncertainty distribution of the indeterminate 

variable 𝜉 = 𝑓(𝜉1, 𝜉2, ⋯ , 𝜉𝑛) , where𝛼  stands for an integral 

variable from 0 to 1. 

Theorem 2 Let 𝜉 be an uncertain variable and have a regular 

uncertainty distribution 𝛷(𝑥). If its expectation exists, then we 

have 

𝐸[𝜉] = ∫ Φ−1
1

0

(𝛼)𝑑𝛼 

where 𝛼 stands for an integral variable from 0 to 1. 

Theorem 3 (LiuandHa[40]) Let 𝜉1, 𝜉2, ⋯ , 𝜉𝑛 

be independent uncertain variables and their uncertainty 

distributions 𝛷1(𝑥), 𝛷2(𝑥),⋯ , 𝛷𝑛(𝑥)  are regular. If the 

function 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) is simple increasing for 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 

and simple decreasing for 𝑥𝑚+1, 𝑥𝑚+2, ⋯ , 𝑥𝑛 , the expectation of 

the indeterminate variable 𝜉 = 𝑓(𝜉1, 𝜉2, ⋯ , 𝜉𝑛) is 

𝐸[𝜉] = ∫ 𝑓
1

0

(Φ1
−1(𝛼),⋯ ,Φ𝑚

−1(𝛼), 

        Φ𝑚+1
−1 (1 − 𝛼),⋯ ,Φ𝑛

−1(1 − 𝛼))𝑑𝛼 

where 𝛼 stands for an integral variable from 0 to 1. 

3. Problem Description 

This section offers an in-depth analysis of the fixed-charge 

transportation problem in an uncertain context. Taking into 

account the actual situation in the transportation process, such 

as the damage caused by road bumps, the generation of fixed 

charges such as tolls, vehicle rental fees and other uncertain 

situations, some parameters are set as uncertain parameters to 

seek an optimal transportation scheme. Thereafter, the notations 

and assumptions are presented that will underpin the 

mathematical model. 

Notations 

𝑖: quantity of starting points (𝑖 = 1,2, … ,𝑚) 

𝑗: quantity of destinations (𝑗 = 1,2, … , 𝑛) 

𝑘: type of transportation mode (𝑘 = 1,2, … , 𝑙) 

𝑝: type of item (𝑝 = 1,2, … , 𝑞) 

𝑎𝑖
𝑝
 : quantity of item 𝑝  from starting points 𝑖  that may be 

shipped and sold  

𝑏𝑗
𝑝
: quantity of item 𝑝 needed in destination 𝑗 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 1, 2025 

 

𝑐𝑖𝑗𝑘
𝑝

 : unit transportation cost of item 𝑝  from origins 𝑖  to 

destinations 𝑗 via means of transportation 𝑘  

𝑓𝑖𝑗𝑘: the fixed charge of conveyance 𝑘 

𝜆𝑖𝑗𝑘
𝑝

: the passing rate of sampling inspection of item  

𝑝 from source 𝑖 to destination 𝑗 via conveyance 𝑘 

𝜔𝑖
𝑝
: the purchase price for item 𝑝 at origin 𝑖  

𝜂𝑘: transportation capacity of conveyance 𝑘 

𝑒𝑘 : carbon emissions per unit of item transported  

via means of transportation 𝑘  

𝜉𝑗
𝑝
: the price at which item 𝑝 is being sold in destination 𝑗 

𝑥𝑖𝑗𝑘
𝑝

: amount of item 𝑝 that was transported from  

origin 𝑖 to destination 𝑗 by means of conveyance 𝑘 

Assumptions： 

1. 𝑎𝑖
𝑝
> 0 , 𝑏𝑗

𝑝
> 0 , 𝜂𝑘 > 0 ∀𝑖, 𝑗, 𝑝, 𝑘. 

2. The product does not deteriorate during transportation. 

3. Each variable considered is positive in its component. 

4. The units of 𝑎𝑖
𝑝
, 𝑏𝑗

𝑝
, 𝜂𝑘 and 𝑥𝑖𝑗𝑘

𝑝
are cubic meters, the units 

of 𝑓𝑖𝑗𝑘 are dollars, the units of 𝑒𝑘 are kilograms per cubic meter. 

𝑐𝑖𝑗𝑘
𝑝

, 𝜉𝑗
𝑝
and 𝜔𝑖

𝑝
are dollars per cubic meter. 

Then the mathematical representation of the multi-objective 

FCTP is presented, involving 𝑚 origins, 𝑛 destinations, 𝑙 

transportation modes, and 𝑞  items to be transported between 

any given origin and destination. Thus, the FCTP can be 

constructed as 

(𝑀1)

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑚𝑎𝑥 𝑖 𝑚𝑖𝑧𝑒 𝑍1 =∑∑∑∑(𝜉𝑗

𝑝
𝜆𝑖𝑗𝑘
𝑝
− 𝑐𝑖𝑗𝑘

𝑝
− 𝜔𝑖

𝑝
)

𝑞

𝑝=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗𝑘
𝑝
            

                       −∑∑∑𝑓𝑖𝑗𝑘

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

𝑦𝑖𝑗𝑘                                     (1)          

𝑚𝑖𝑛 𝑖 𝑚𝑖𝑧𝑒 𝑍2 =∑(𝑒𝑘∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

)                         (2)          

𝑙

𝑘=1

𝑠. 𝑡.                                                                                                            

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑛

𝑗=1

≤ 𝑎𝑖
𝑝
                                                                     (3)          

∑∑𝜆𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑚

𝑖=1

𝑥𝑖𝑗𝑘
𝑝
≥ 𝑏𝑗

𝑝
                                                              (4)          

∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

≤ 𝜂𝑘                                                                (5)          

 

where 𝑥𝑖𝑗𝑘
𝑝
≥ 0 , 𝑦𝑖𝑗𝑘 ∈ {0,1}, the overall model is referred to as 

model 𝑀1. 

The network chart pertaining to this transportation problem 

is depicted in Fig. 1. This illustration provides a view of  

a network diagram featuring two origins, two destinations, and 

two different items being transported using two different modes 

of transportation. Indeed, the fixed charge transportation 

problem has a wide range of applications in areas such as 

logistics and supply chain management, urban transportation 

planning, and power transmission networks. 

 

Fig.1. Network diagram of multi-objective transportation 

problem. 

In our indicated FCTP, two primary objectives functions are 

introduced. The first objective function (1) denotes the net 

benefit, considering the deduction of purchase price, 

transportation expenses, and fixed charges. This calculation 

must also factor in the product's sampling rate at each 

destination, acknowledging the potential for item damage due 

to irregular road conditions and constraints imposed by the 

transportation carrier. The objective function (2) focuses on the 

reduction of carbon emissions during item transport. To balance 

the supply and demand effectively, constraints (3) and (4) 

ensure that the volume of items shipped meets the needs of 

suppliers and retailers alike, where constraint (4) specifically 

refers to the quantity of items 𝑝  shipped to a retailer 𝑗  from 

various suppliers 𝑖  through all modes of transport 𝑘  after 

sampling inspection, the quantity of qualified items is more than 

the items required by retailer 𝑗  to meet the oversupply. In 

addition, constraint (5) represents the limitations associated 

with the transportation carrier. 

In addition, 𝑦𝑖𝑗𝑘 is a binary decision variable and indicates 

that, if 𝑥𝑖𝑗𝑘
𝑝
> 0, an item is carried from origin 𝑖 to destination 𝑗 

by means of transportation 𝑘 ,  thus a fixed charge should be 

included in the total transport cost, at which point  

𝑦𝑖𝑗𝑘  = 1, otherwise 𝑦𝑖𝑗𝑘  = 0. 
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4. Uncertain mathematical models 

In scenarios characterized by uncertainty, 

𝑎𝑖
𝑝
 , 𝑏𝑗

𝑝
 , 𝑐𝑖𝑗𝑘

𝑝
 , 𝑓𝑖𝑗𝑘 , 𝜆𝑖𝑗𝑘

𝑝
 ,𝜔𝑖

𝑝
 , 𝜂𝑘 , 𝑒𝑘 are treated as independent 

uncertainties. Our approach to addressing this complexity 

involves various modeling strategies. This paper focuses on the 

expected value model and the chance-constrained model as 

methodologies for analyzing the FCTP. 

4.1. Expected value model 

The expected value model (EVM) calculates the average of 

uncertain variables, offering a quantitative assessment of 

uncertainty. It reflects the quantitative value on uncertainty. It 

has been widely applied in numerous real-world problems. Our 

objective is to elevate the goal function to its optimal level, 

considering the expected values and adhering to several 

constraints related to these expectations.  

Thus, EVM is expressed as: 

(𝑀2)

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑚𝑎𝑥 E [𝑍1]                                                          (6)                       

𝑚𝑖𝑛 E [𝑍2]                                                           (7)                       
𝑠. 𝑡.                                                                                                      

𝐸 [∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

k=1

𝑛

j=1

− 𝑎𝑖
𝑝
] ≤ 0                                (8)                       

𝐸 [∑∑(𝜆𝑖𝑗𝑘
𝑝
𝑥𝑖𝑗𝑘
𝑝
)

𝑙

𝑘=1

𝑚

𝑖=1

− 𝑏𝑗
𝑝
] ≥ 0                       (9)                       

𝐸 [∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

− 𝜂𝑘] ≤ 0                           (10)                      

 

It is critical to ensure that constraints (8)-(10) comply with 

established guidelines. 

4.2. Chance-constrained model  

In practical applications, various risks are omnipresent. 

Therefore, to craft an ideal transpor-tation schedule, it is crucial 

for policymakers to establish a confidence level beforehand. 

This approach acknowledges that decisions might not always 

meet established criteria under unfavorable conditions. Hence, 

a guideline is adopted allowing for some deviation from these 

criteria, provided that the probability of the decision meeting 

the criteria exceeds a minimally acceptable confidence level. 

For instance, setting the confidence level at 0.90 means the 

decision-maker must predict a target value, denoted as 𝑓̄ Should 

this transportation strategy be implemented, it is critical to 

ensure that the target value surpasses the predicted value, with 

a confidence level exceeding 0.90 , i.e.ℳ{𝑓(𝑥) ≥ 𝑓̄} ≥ 0.9 . 

Therefore, the chance-constrained model (CCM) is formulated 

as: 

(𝑀3)

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑚𝑎𝑥 𝑍1                                                                            (11)        

𝑚𝑖𝑛 𝑍2                                                                             (12)        
𝑠. 𝑡.                                                                                                    

ℳ{𝑍1 ≥ 𝑍1} ≥ 𝛼1                                                          (13)        

ℳ{𝑍2 ≤ 𝑍2} ≥ 𝛼2                                                          (14)        

ℳ {∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑛

𝑗=1

≤ 𝑎𝑖
𝑝
} ≥ 𝛼𝑖

𝑝
, 𝑖 = 1,2, … ,𝑚             (15)        

ℳ {∑∑𝜆𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑚

𝑖=1

𝑥𝑖𝑗𝑘
𝑝
≥ 𝑏𝑗

𝑝
} ≥ 𝛽𝑗

𝑝
, 𝑗 = 1,2, … , 𝑛        (16)        

ℳ {∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

≤ 𝜂𝑘} ≥ 𝜃𝑘 , 𝑘 = 1,2, … , 𝑙,        (17)        

 

where 𝛼1,𝛼2,𝛼𝑖
𝑝
,𝛽𝑗
𝑝
,𝜃𝑘 all represent confidence levels. 

5. Equivalent transitions 

The FCTP model incorporates several uncertain variables, 

posing challenges in calculation and simulation. To streamline 

the computational effort, these variables can be converted into 

a deterministic format. Uncertain models usually involve proba-

bility and random variables, whereas deterministic models base 

their calculations on definite values. Deterministic variables are 

easier to model and compute mathematically, which helps 

decision makers better assess possible outcomes and make 

rational decisions, reduces the complexity of the solution, and 

improves the efficiency of the solution. 

5.1. The expected value model of equivalent 

transformation 

Theorem 4 We hypothesized that in an uncertain 

environment, 𝑎𝑖
𝑝
 ,𝑏𝑗

𝑝
 ,𝑐𝑖𝑗𝑘

𝑝
 ,𝑓𝑖𝑗𝑘 ,𝜆𝑖𝑗𝑘

𝑝
 ,𝜔𝑖

𝑝
 ,𝜂𝑘 ,𝑒𝑘 are independent 

uncertain variables which each have a regular uncertainty 

distribution 𝛹𝑖
𝑝
,𝛷𝑗

𝑝
,𝛱𝑖𝑗𝑘

𝑝
,𝛩𝑖𝑗𝑘,𝛬𝑖𝑗𝑘

𝑝
,𝛯𝑖
𝑝

,𝜏𝑘,𝛾𝑘. Then the following 

model is the same as model 𝑀2: 
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(𝑀4)

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
𝑚𝑎𝑥∑∑∑∑{𝜉𝑗

𝑝
∫ (Λ𝑖𝑗𝑘

𝑝
)−1

1

0

(𝛼) 𝑑 𝛼                               

𝑞

𝑝=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

−∫ (Π𝑖𝑗𝑘
𝑝
)−1

1

0

(1 − 𝛼)𝑑𝛼 −∫ (Ξ𝑖
𝑝
)−1

1

0

(1 − 𝛼) 𝑑 𝛼}𝑥𝑖𝑗𝑘
𝑝
            

−∑∑∑𝑦𝑖𝑗𝑘

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

∫ (Θ𝑖𝑗𝑘)
−1

1

0

(1 − 𝛼) 𝑑 𝛼                       (18)      

𝑚𝑖𝑛∑(∫ (𝛾𝑘)
−1

1

0

(𝛼) 𝑑 𝛼∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

)                  (19)    

𝑙

𝑘=1

𝑠. 𝑡.                                                                                                       

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑛

𝑗=1

−∫ (Ψ𝑖
𝑝
)−1

1

0

(1 − 𝛼) 𝑑 𝛼 ≤ 0                      (20)    

∫ (Φ𝑗
𝑝
)−1

1

0

(𝛼) 𝑑 𝛼 −                                                          

∑∑(∫ (Λ𝑖𝑗𝑘
𝑝
)−1

1

0

(1 − 𝛼) 𝑑 𝛼)

𝑙

𝑘=1

𝑚

𝑖=1

𝑥𝑖𝑗𝑘
𝑝
≤ 0                     (21)    

∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

−∫ (𝜏𝑘)
−1

1

0

(1 − 𝛼) 𝑑 𝛼 ≤ 0                 (22)    

 

 

Proof : according to 𝐸[𝑎𝜉 + 𝑏𝜂] = 𝑎𝐸[𝜉] + 𝑏𝐸[𝜂] 

and Theorem 3, we have 

𝐸 {∑∑∑∑(𝜉𝑗
𝑝
𝜆𝑖𝑗𝑘
𝑝
− 𝑐𝑖𝑗𝑘

𝑝
− 𝜔𝑖

𝑝
)

𝑞

𝑝=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗𝑘
𝑝
} 

=∑∑∑∑(𝜉𝑗
𝑝
𝐸(

𝑞

𝑝=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

𝜆𝑖𝑗𝑘
𝑝
) − 𝐸(𝑐𝑖𝑗𝑘

𝑝
) − 𝐸(𝜔𝑖

𝑝
))𝑥𝑖𝑗𝑘

𝑝
 

=∑∑∑∑(𝜉𝑗
𝑝
∫ (Λ𝑖𝑗𝑘

𝑝
)−1

1

0

(𝛼) 𝑑 𝛼

𝑞

𝑝=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 

  − ∫ (Π𝑖𝑗𝑘
𝑝
)−1

1

0
(1 − 𝛼) 𝑑 𝛼 − ∫ (Ξ𝑖

𝑝
)−1

1

0
(1 − 𝛼) 𝑑 𝛼)𝑥𝑖𝑗𝑘

𝑝

 (23) 

Similarly, the rest of the formulas are derived in the same 

way. 

5.2 The chance-constrained model of equivalent 

transformation 

Lemma 1 Consider𝜉1, 𝜉2, ⋯ , 𝜉𝑛 as independent variables with 

uncertainty, and their uncertain distributions 𝛷1, 𝛷2, ⋯ , 𝛷𝑛 are 

regular. If the function 𝑓(𝜉1, 𝜉2, ⋯ , 𝜉𝑛)  is monoincreasing 

exclusively for 𝜉1, 𝜉2, ⋯ , 𝜉𝑛, then 

ℳ{𝑓(𝜉1, 𝜉2, ⋯ , 𝜉𝑛) ≤ 𝑓̄} ≥ 𝛼 

is the same as  

𝑓(Φ1
−1(𝛼),⋯ ,Φ𝑛

−1(𝛼)) ≤ 𝑓̄, 

Among them, 𝛼 is the confidence level. 

Theorem 5 Under the assumptions of Theorem 4, the model 

𝑀3 can be converted to 

(𝑀5)

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑚𝑖𝑛[Φ𝑁

−1(𝛼1)]                                                                 (24)                

𝑚𝑖𝑛[Φ𝑍2
−1(𝛼2)]                                                                 (25)                

𝑠. 𝑡.                                                                                                             

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑛

𝑗=1

− (Ψ𝑖
𝑝
)−1(1 − 𝛼𝑖

𝑝
) ≤ 0                          (26)                

(Φ𝑗
𝑝
)−1(𝛽𝑗

𝑝
) −∑∑𝑥𝑖𝑗𝑘

𝑝

𝑙

𝑘=1

𝑚

𝑖=1

(Λ𝑖𝑗𝑘
𝑝
)−1(1 − 𝛽𝑗

𝑝
) ≤ 0 (27)                

∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

− (𝜏𝑘)
−1(1 − 𝜃𝑘) ≤ 0                       (28)                

 

where 

𝑁 = −𝑍1 =∑∑∑∑(𝑐𝑖𝑗𝑘
𝑝
+ 𝜔𝑖

𝑝

𝑞

𝑝=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 

−𝜉𝑗
𝑝
𝜆𝑖𝑗𝑘
𝑝
）𝑥𝑖𝑗𝑘

𝑝
+ ∑ ∑ ∑ 𝑓𝑖𝑗𝑘

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 𝑦𝑖𝑗𝑘  (29) 

and(𝛹𝑖
𝑝
)−1,(𝛷𝑗

𝑝
)−1,(𝛱𝑖𝑗𝑘

𝑝
)−1,(𝛩𝑖𝑗𝑘)

−1,(𝛬𝑖𝑗𝑘
𝑝
)−1,(𝛯𝑖

𝑝
)−1,(𝜏𝑘)

−1,

(𝛾𝑘)
−1 is the inverse distribution of 

𝛹𝑖
𝑝
,𝛷𝑗

𝑝
,𝛱𝑖𝑗𝑘

𝑝
,𝛩𝑖𝑗𝑘,𝛬𝑖𝑗𝑘

𝑝
,𝛯𝑖
𝑝

,𝜏𝑘,𝛾𝑘 respectively, 𝛷𝑁
−1(𝛼1),𝛷𝑍2

−1(𝛼2) 

are the inverse distributions of 𝑁 and 𝑍2, and 𝛼1,𝛼2,𝛼𝑖
𝑝
,𝛽𝑗
𝑝
,𝜃𝑘 is 

the preset confidence level. 

Proof: from equation (29), our objective function equation 

(11) can be changed into 

{
𝑚𝑖𝑛 𝑁
𝑠. 𝑡.
ℳ{𝑁 ≤ 𝑁} ≥ 𝛼1.

   (30) 

By Theorem 1 and Lemma 1, equation (30) is equivalent to 

{
𝑚𝑖𝑛 𝑁
𝑠. 𝑡.
Φ𝑁
−1(𝛼1) ≤ 𝑁

   (31) 

which can be reduced to  

𝑚𝑖𝑛 Φ𝑁
−1(𝛼1) = ∑∑∑∑[(Π𝑖𝑗𝑘

𝑝
)
−1
(𝛼1)

𝑞

p=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 

+(𝛯𝑖
𝑝
)
−1
(𝛼1) − 𝜉𝑗

𝑝
(𝛬𝑖𝑗𝑘

𝑝
)−1(1 − 𝛼1)] 𝑥𝑖𝑗𝑘

𝑝
 

+∑ ∑ ∑ 𝑦
𝑖𝑗𝑘
(𝛩𝑖𝑗𝑘)

−1
(𝛼1)

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1            (32) 

In order to analyze the multi-objective optimization problem 

more conveniently, the two objective functions are unified to 

find the minimum value. Therefore, the objective function 
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equation (11) is transformed from maximizing to minimizing 

the value. The same is true for the transformation of the 

objective function equation (12). 

For constraint (15), 𝑎𝑖
𝑝
  is a monotonically increasing 

continuous function, then −𝑎𝑖
𝑝

  is mono-tonically decreasing 

and 𝑎𝑖
𝑝
  is an uncertain variable with its inverse uncertain 

distribution being (𝛹𝑖
𝑝
)−1. By Lemma 1 and Theorem 1, the 

ℳ{∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑙

𝑘=1
𝑛
𝑗=1 ≤ 𝑎𝑖

𝑝
} ≥ 𝛼𝑖

𝑝
   (33) 

is the same as 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑙

𝑘=1
𝑛
𝑗=1 − (Ψ𝑖

𝑝
)−1(1 − 𝛼𝑖

𝑝
) ≤ 0  (34) 

Similarly, the remaining constraints are derived in the same 

way. 

Therefore, the deterministic transformation of model 𝑀5 is 

equivalent to 

(𝑀6)

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑚𝑖𝑛∑∑∑∑[(Π𝑖𝑗𝑘

𝑝
)
−1
(𝛼1)

𝑞

𝑝=1

𝑙

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

                                                         

+(𝛯𝑖
𝑝
)
−1
(𝛼1) − 𝜉𝑗

𝑝
(𝛬𝑖𝑗𝑘

𝑝
)
−1
(1 − 𝛼1)] 𝑥𝑖𝑗𝑘

𝑝
                                         

+∑∑∑ 𝑦
𝑖𝑗𝑘
(𝛩𝑖𝑗𝑘)

−1
(𝛼1)

𝑙

𝑘=1

𝑛

𝑗=1

                                          

𝑚

𝑖=1

(35)                    

𝑚𝑖𝑛∑((𝛾𝑘)
−1(𝛼2)∑∑∑ 𝑥𝑖𝑗𝑘

𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

)                      

𝑙

𝑘=1

      (36)                

𝑠. 𝑡.                                                                                                             

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑛

𝑗=1

− (Ψ𝑖
𝑝
)−1(1 − 𝛼𝑖

𝑝
) ≤ 0                          (37)                

(Φ𝑗
𝑝
)−1(𝛽𝑗

𝑝
) −∑∑𝑥𝑖𝑗𝑘

𝑝

𝑙

𝑘=1

𝑚

𝑖=1

(Λ𝑖𝑗𝑘
𝑝
)−1(1 − 𝛽𝑗

𝑝
) ≤ 0 (38)                

∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

− (𝜏𝑘)
−1(1 − 𝜃𝑘) ≤ 0                       (39)                

 

 

where 𝛼1,𝛼2,𝛼𝑖
𝑝
,𝛽𝑗
𝑝
,𝜃𝑘 is the preset confidence level. 

6. Solutions 

This section presents an overview of a multi-objective analysis 

method: the linear weighted method, followed by an improved 

algorithm proposing in this paper. A flowchart on the overall 

structure of the research content method is shown in Fig . 2 

below. 

6.1. Linear weighted method 

This study also introduces a multi-objective analysis method: 

the linear weighted method, and proposes an enhanced 

algorithm. The linear weighted method evaluates functions by 

assigning weights based on the relative importance of each 

objective. These weights are then linearly assembled to derive 

an optimal solution for the multi-objective problem[41]. 

Weights are assigned to each objective function according to 

their significance, ensuring the total of all weights equals 1. The 

objective functions are then multiplied by these weights to 

formulate the solution for the objective function. 

𝑈(𝑋) =∑𝑤𝑖

𝑚

𝑖=1

∗ 𝑓𝑖(𝑥) 

Model 𝑈(𝑋), 𝑋 ∈ ℝ is solved to seek the best result，where 

𝑤𝑖  represents the weight coefficients and 𝑓𝑖(𝑥) represents each 

objective function. 

In this study, a method of linearly weighted summation is 

employed to adjust the relative weight of each index in the 

overall weighting scheme, thereby transforming a multiple-

objective transport problem into a simplified single-objective 

transport problem. This approach allows us to represent the 

importance of each objective according to the policy maker's 

perspective as a linear weighted sum. 

The multi-objective function in this paper can be changed to 

by linear weighted method as 

𝑚𝑖𝑛 𝑈 = −𝑤1𝑍1 +𝑤2𝑍2  (40) 

For the EVM, it can be expressed as 

(𝑀7)

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑚𝑖𝑛 −𝑤1𝐸[𝑍1] + 𝑤2𝐸[𝑍2]                                             (41)  
𝑠. 𝑡.                                                                                                 

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑛

𝑗=1

−∫ (Ψ𝑖
𝑝
)−1

1

0

(1 − 𝛼)𝑑 𝛼 ≤ 0                   (42)  

∫ (Φ𝑗
𝑝
)−1

1

0

(𝛼) 𝑑 𝛼 −∑∑(∫ (Λ𝑖𝑗𝑘
𝑝
)−1                 

1

0

𝑙

𝑘=1

𝑚

𝑖=1

(1 − 𝛼) 𝑑 𝛼)𝑥𝑖𝑗𝑘
𝑝
≤ 0                                                        (43)  

∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

−∫ (𝜏𝑘)
−1

1

0

(1 − 𝛼)𝑑 𝛼 ≤ 0               (44)  

 

For the CCM, it can be denoted as 
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Fig. 2. General flowchart of the research methodology.

(𝑀8)

{
 
 
 
 
 
 

 
 
 
 
 
 𝑚𝑖𝑛𝑤1𝑁 + 𝑤2𝑍2                                                           (45)
𝑠. 𝑡.

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑘=1

𝑛

𝑗=1

− (Ψ𝑖
𝑝
)−1(1 − 𝛼𝑖

𝑝
) ≤ 0                           (46)

(Φ𝑗
𝑝
)−1(𝛽𝑗

𝑝
) −∑∑𝑥𝑖𝑗𝑘

𝑝

𝑙

𝑘=1

𝑚

𝑖=1

(Λ𝑖𝑗𝑘
𝑝
)−1(1 − 𝛽𝑗

𝑝
) ≤ 0 (47)

∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑞

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

− (𝜏𝑘)
−1(1 − 𝜃𝑘) ≤ 0                      (48)

 

where 𝑤1  and 𝑤2  represent the weight coefficients 

corresponding to 𝑍1  and 𝑍2 , respectively. For both models, it 

needs to be guaranteed that 𝑤1 + 𝑤2 = 1,𝑤1, 𝑤2 ∈ [0,1]. 

6.2. Heuristic Algorithm 

Considering the complexity of the model, resolving it with 

conventional mathematical programming tools proves 

challenging. In response, a revised sparrow optimization 

algorithm (BFSSA) that integrates elements of the butterfly 

search mechanism is introduced. This innovation is motivated 

by the global update strategy of the butterfly algorithm, 

incorporating its unique individual-awareness ability into the 

sparrow algorithm, simulating the foraging and evasion 

strategies of butterfly flight limits the search process to a certain 

range, which helps to improve the accuracy of local search. This 

integration not only boosts the sparrow algorithm's capacity for 

optimization but also strengthens its ability to search globally, 

and avoids falling into the local optimal solution and failing to 

find the global optimal solution, and also improves the 

convergence speed. 

The Sparrow Search Algorithm (SSA) draws its inspiration 

from the foraging behavior of sparrows [42]. Typically, 

sparrows are categorized into two roles while foraging: 

followers and finders. The finders are tasked with locating food 

and guiding the group to areas abundant in resources, thereby 

informing the direction of foraging activities. In contrast, 

followers rely on the finders for direction and then acquire their 

sustenance based on this guidance. Moreover, a select number 

of sparrows are designated as vigilants. These birds forego their 

own feeding opportunities to serve as an early warning system 

against potential threats, prioritizing the safety of the flock over 

personal nourishment. The position of the finder is updated 

using the formula provided below. 

𝑋𝑖𝑑
𝑡+1 = {

𝑋𝑖𝑑
𝑡 ⋅ 𝑒𝑥𝑝 [

−𝑖

𝛼 ⋅ 𝑇
] ,if 𝑅2 < 𝑆𝑇

𝑋𝑖𝑑
𝑡 + Γ ⋅ 𝐿,         if 𝑅2 > 𝑆𝑇

 

where 𝑋𝑖𝑑
𝑡   denotes , in the 𝑑𝑡ℎ  dimension, the location of the 

𝑖𝑡ℎ  sparrow in the population at generation 𝑡  and 𝑇 represents 

the highest number of iterations. 𝛤 is a stochastic number that 

meets the requirements of a standard normal distribution. 𝛼 

takes any number from 0 to 1. 𝐿  represents a matrix with all 

elements of 1 and its size is 𝑖 × 𝑑 . 𝑅2 ∈ [0,1]  indicates early 

warning value while 𝑆𝑇 ∈ [0.5,1] denotes a security value. In 

the revised algorithm, the search strategy of the butterfly 

algorithm is incorporated into the discoverer phase, applying the 

following equation when 𝑅2 ≤ 𝑆𝑇 is present:  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑔∗ − 𝑥𝑖
𝑡) × 𝑓𝑖 

where 𝑓𝑖 is the perception strength of the sparrow to the food; 𝑟 

is a random numeral between 0 and 1, and 𝑔∗  stand for the 
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overall optimal solution. In the detector search phase, the 

sparrow moves towards the food. Implementing a triangle 

wandering strategy is recommended while 𝑅2 ≥ 𝑆𝑇 is on. This 

approach involves the sparrow encircling the food rather than 

moving straight towards it, thereby increasing its randomness. 

The triangle wandering strategy is detailed as follows: 

𝐿1 = 𝑝𝑜𝑠𝑏(𝑡) − 𝑝𝑜𝑠𝑐(𝑡) 

𝐿2
→

= 𝑟𝑎𝑛𝑑() × 𝐿1
→

 

where 𝐿1 is the distance between the population and prey, and 

𝐿2 is the range of wandering steps of the population. 

The following equation is then utilized to define the 

direction of travel : 

𝛽 = 2 × 𝑝𝑖 × 𝑟𝑎𝑛𝑑() 

where 𝛽 represents the direction of travel. 

The following formula is then adopted to arrive at the 

position of the sparrow after it has wandered off. 

𝑃 = 𝐿1
2 + 𝐿2

2 − 2 × 𝐿1 × 𝐿2 × 𝑐𝑜𝑠( 𝛽) 

𝑃𝑜𝑠𝑛𝑒𝑤 = 𝑝𝑜𝑠𝑏(𝑡) + 𝑟 × 𝑃 

Next, update the follower's position with the following 

formula: 

𝑋𝑖𝑑
𝑡+1 = {

Γ ⋅ 𝑒𝑥𝑝 [
𝑋𝑤𝑑
𝑡 − 𝑋𝑖𝑑

𝑡

𝑖2
] ,         if 𝑖 >

𝑛

2

𝑋𝑝𝑑
𝑡+1 + |𝑋𝑖𝑑

𝑡 − 𝑋𝑝𝑑
𝑡+1|𝐴+ ⋅ 𝐿,otherwise

 

𝑋𝑤𝑑
𝑡  means the worst position of the sparrow at generation 𝑡. 

𝑋𝑝𝑑
𝑡+1 indicates the position where the population is most fit for 

the sparrow at generation 𝑡 + 1.𝐴 represents a one-row multi-

dimensional matrix, where each element is 1 or -1. When 𝑖 >
𝑛

2
, 

it indicates that the 𝑖𝑡ℎ joining sparrow was required to travel to 

other regions to forage. Conversely, this process can be 

interpreted as the joiner 𝑖 seeking food near the current optimal 

position. 

Approximately 10 to 20 percent of the population consists 

of early warners, whose positions are determined randomly 

through the following position update formula: 

𝑋𝑖𝑑
𝑡+1 = {

𝑋𝑏𝑑
𝑡 + 𝛽(𝑋𝑖𝑑

𝑡 − 𝑋𝑏𝑑
𝑡 ),      if 𝑓𝑖 ≠ 𝑓𝑔

𝑋𝑖𝑑
𝑡 + 𝐾 [

𝑋𝑖𝑑
𝑡 − 𝑋𝑤𝑑

𝑡

|𝑓𝑖 − 𝑓𝑤| + 𝛿
] ,if 𝑓𝑖 = 𝑓𝑔

 

where, 𝑋𝑏𝑑
𝑡  is the current globally optimal position, 𝛽 is the 

exponent of the control step. 𝐾is a stochastic number between 

[-1,1] in which represents the movement direction of the 

sparrow. 𝛿  denotes a tiny constant. 𝑓𝑖  means the adaptation 

value of the 𝑖𝑡ℎ  sparrow, 𝑓𝑔  and 𝑓𝑤 are the best and worst 

adaptation values of the currently population. In essence, when 

𝑓𝑖 = 𝑓𝑔，the early warning agent is positioned centrally in the 

population, it will continue to move closer to its companions for 

safety; otherwise, when 𝑓𝑖 ≠ 𝑓𝑔，  it will adjust its position 

towards a safer location. 

Thereby, the following Fig. 3 is how the BFSSA operates: 

 

Fig. 3. Flow chart of BFSSA. 

7. Numerical experiments and analysis of results 

To verify the accuracy of the model, numerical experiments are 

conducted in this chapter. Our analysis involves the use of two 

types of transport vehicles (trucks and vans) to move two items 

from two starting points to two destinations. All variables with 

uncertainty are assumed to follow a linear distribution and are 

detailed in Tables 1 through 6. Our objectives seek to maximize 

the overall profit derived from the transport process while 

striving to reduce the carbon emissions produced. All 

simulations are performed using Matlab. In addition, the 

parameters of both algorithms are set as follows: 

Maxgeneration=2000, Popsize=50. 
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Table 1. Quantities of shipped items 𝑎𝑖
𝑝
 and the purchase price 

𝜔𝑖
𝑝
. 

 𝑖\𝑝 1 2 

𝑎𝑖
𝑝
 

1 (73,85) (62,79) 

2 (75,90) (64,78) 

𝜔𝑖
𝑝
 

1 (7,10) (8,12) 

2 (8,12) (6,10) 

Table 2. Demand for items 𝑏𝑗
𝑝
and sale price 𝜉𝑗

𝑝
 

 𝑗\𝑝 1 2 

𝑏𝑗
𝑝
 

1 (60,68) (46,50) 

2 (50,56) (40,52) 

𝜉𝑗
𝑝
 

1 35 35 

2 38 34 

 

Table 3. Unit transportation costs 𝑐𝑖𝑗𝑘
1  and 𝑐𝑖𝑗𝑘

2  

 𝑘 1 2 

 𝑖\𝑗 1 2 1 2 

𝑐𝑖𝑗𝑘
1  

1 (0.07,0.10) (0.11,0.13) (0.15,0.16) (0.11,0.14) 

2 (0.10,0.13) (0.11,0.15) (0.14,0.18) (0.16,0.18) 

𝑐𝑖𝑗𝑘
2  

1 (0.14,0.16) (0.13,0.15) (0.13,0.18) (0.12,0.15) 

2 (0.15,0.19) (0.10,0.14) (0.09,0.15) (0.09,0.12) 

Table 4. Sampling and inspection pass rate 𝜆𝑖𝑗𝑘
1  and𝜆𝑖𝑗𝑘

2  

 𝑘 1 2 

 𝑖\𝑗 1 2 1 2 

𝜆𝑖𝑗𝑘
1  

1 (0.94,0.96) (0.96,0.98) (0.92,0.96) (0.92,0.95) 

2 (0.94,0.97) (0.94,0.97) (0.92,0.93) (0.90,0.93) 

𝜆𝑖𝑗𝑘
2  

1 (0.90,0.92) (0.90,0.92) (0.95,0.98) (0.95,0.96) 

2 (0.93,0.95) (0.95,0.98) (0.90,0.92) (0.92,0.96) 

Table 5. Fixed charges 𝑓𝑖𝑗𝑘 

 𝑘 1 2 

 𝑖\𝑗 1 2 1 2 

𝑓𝑖𝑗𝑘 
1 (3,7) (8,9) (4,6) (4,7) 

2 (6,9) (7,9) (5,7) (4,8) 

Table 6. The conveyance capacity 𝜂𝑘  and per unit carbon 

emissions 𝑒𝑘. 

𝑘 1 2 

𝜂𝑘 (152,162) (161,175) 

𝑒𝑘 (0.4,0.7) (0.5,0.6) 

Table 7. Optimal solutions of the expected value model. 

AL TP TE TL Optimal solution 

SSA 6681.2 152.3 276.8 

𝑥111
1 = 18.8198, 𝑥111

2 = 16.4569, 𝑥112
1 = 20.0778, 𝑥112

2 = 15.6694 

𝑥121
1 = 15.7381, 𝑥121

2 = 16.0414, 𝑥122
1 = 17.9330, 𝑥122

2 = 15.9485 

𝑥211
1 = 19.0320, 𝑥211

2 = 15.8952, 𝑥212
1 = 20.8603, 𝑥212

2 = 17.4703 

𝑥221
1 = 16.8626, 𝑥221

2 = 14.5973, 𝑥222
1 = 18.7980, 𝑥222

2 = 16.6269 

BFSSA 7525.7 166.6 303.0 

𝑥111
1 = 0.0232, 𝑥111

2 = 0.2756, 𝑥112
1 = 6.2629, 𝑥112

2 = 53.8266 

𝑥121
1 = 39.5528, 𝑥121

2 = 0.1233, 𝑥122
1 = 33.1603, 𝑥122

2 = 16.2742 

𝑥211
1 = 64.4764, 𝑥211

2 = 1.2412, 𝑥212
1 = 0.6709, 𝑥212

2 = 7.9398 

𝑥221
1 = 15.5063, 𝑥221

2 = 35.2518, 𝑥222
1 = 1.8456, 𝑥222

2 = 26.5605 

 

An enhanced sparrow optimization algorithm is employed 

to solve a specific fixed-charge transportation problem. The 

outcomes from two different models are presented through  

a linear weighted sum programming method. Considering that 

the objective functions are total profit and total carbon 

emissions, respectively, the weight values are set to 

𝑤1=0.8,w2=0.2 for combining according to the actual situation, 

and the optimal results obtained by the algorithm are displayed 

in the following table. Where AL stands for intelligent algorithm, 

TP represents total profit (Z1), TE denotes total carbon emission 

(Z2), and the value 𝑥𝑖𝑗𝑘
𝑝

 in the optimal solution corresponds to 

the decision variables' values. TL signifies the aggregate of the 
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decision variables 𝑥𝑖𝑗𝑘
𝑝

. TP, TE, and TL are in dollars, kilograms, 

and cubic meters, respectively.  

As shown in Table 7, it is clear that BFSSA outperforms SSA. 

To further compare the algorithms, The relative error (RE) can 

be used as a measure, denoted as: 

𝑅𝐸 =
∑(𝑓 − 𝑓∗)

𝑛𝑓∗
× 100% 

where 𝑓∗ denotes the optimal value, 𝑓denotes the value of the 

objective function, 𝑛 is the number of tests.  

When analyzed from the point of view of relative error in Table 

8, the relative error value of BFSSA is lower than that of SSA, 

and it is clear that BFSSA is superior to SSA. 

Table 8. Comparison of RE of Algorithms. 

Iterations 
RE 

SSA BFSSA 

100 6.07% 3.77% 

500 5.12% 2.68% 

800 3.79% 2.19% 

1000 3.15% 1.05% 

Table 9. Optimal solutions of BFSSA based chance-constrained model. 

𝛼 TP TE TL Optimal solution 

0.9 7496.4 130.4 279.8 

𝑥111
1 = 0.1031, 𝑥111

2 = 0.9162, 𝑥112
1 = 6.4765, 𝑥112

2 = 52.1671 

𝑥121
1 = 41.0791, 𝑥121

2 = 0.0899, 𝑥122
1 = 26.5423, 𝑥122

2 = 10.5278 

𝑥211
1 = 51.5440, 𝑥211

2 = 0.4161, 𝑥212
1 = 8.3751, 𝑥212

2 = 19.5999 

𝑥221
1 = 15.2415, 𝑥221

2 = 42.0555, 𝑥222
1 = 1.3404, 𝑥222

2 = 2.3296 

0.8 7501.3 139.3 285.6 

𝑥111
1 = 0.1223, 𝑥111

2 = 0.1818, 𝑥112
1 = 7.2447, 𝑥112

2 = 49.0569 

𝑥121
1 = 40.8141, 𝑥121

2 = 0.0297, 𝑥122
1 = 27.2197, 𝑥122

2 = 16.1324 

𝑥211
1 = 61.4594, 𝑥211

2 = 0.8766, 𝑥212
1 = 0.3778, 𝑥212

2 = 16.6182 

𝑥221
1 = 12.6451, 𝑥221

2 = 37.2562, 𝑥222
1 = 3.5182, 𝑥222

2 = 12.0499 

0.7 7502.7 148.2 291.4 

𝑥111
1 = 0.0285, 𝑥111

2 = 2.1323, 𝑥112
1 = 9.3186, 𝑥112

2 = 51.6435 

𝑥121
1 = 40.1013, 𝑥121

2 = 0.0428, 𝑥122
1 = 27.1524, 𝑥122

2 = 13.2822 

𝑥211
1 = 62.3603, 𝑥211

2 = 0.1318, 𝑥212
1 = 0.6150, 𝑥212

2 = 16.8607 

𝑥221
1 = 13.7523, 𝑥221

2 = 35.7917, 𝑥222
1 = 2.7733, 𝑥222

2 = 15.4166 

0.6 7536.8 157.4 297.2 

𝑥111
1 = 0.2073, 𝑥111

2 = 0.6100, 𝑥112
1 = 4.6265, 𝑥112

2 = 54.0461 

𝑥121
1 = 40.5918, 𝑥121

2 = 0.1559, 𝑥122
1 = 32.3754, 𝑥122

2 = 13.9890 

𝑥211
1 = 62.9584, 𝑥211

2 = 0.8924, 𝑥212
1 = 0.0947, 𝑥212

2 = 3.9369 

𝑥221
1 = 16.1495, 𝑥221

2 = 34.4356, 𝑥222
1 = 1.7984, 𝑥222

2 = 30.3360 

Table 10. Optimal solutions of chance-constrained model via SSA and BFSSA. 

𝛼 AL TP TE TL 

0.9 
SSA 6739.4 124.6 264.4 

BFSSA 7496.4 130.4 279.8 

0.8 
SSA 6794.4 131.3 267.5 

BFSSA 7501.3 139.3 285.6 

0.7 
SSA 6846.0 138.2 270.6 

BFSSA 7502.7 148.2 291.4 

0.6 
SSA 6894.4 145.2 273.7 

BFSSA 7536.8 157.4 297.2 

Table 11. Optimal solutions for optimization of EVM and CCM by BFSSA. 

Weights EVM CCM 

𝑤1 𝑤2 𝐸[𝑍1] 𝐸[𝑍2] 𝑍1 𝑍2 

0.8 0.2 7525.7 166.6453 7496.4 130.4405 

0.5 0.5 7523.8 166.6520 7485.3 130.5131 

0.3 0.7 7520.2 166.6520 7478.2 130.5203 

0.1 0.9 7518.1 166.6523 7475.2 130.5321 

 

Concerning the chance-constrained model, different 

confidence levels 𝛼 = 0.9 , 𝛼 = 0.8  , 𝛼 = 0.7 and 𝛼 = 0.6 were 

selected for the experiments and solved by SSA and BFSSA. As 

shown in Table 9, Table 10, similar to the expected value model, 

the results of BFSSA are better than SSA. Moreover, with the 

gradual decrease of the confidence level 𝛼, there appears to be 
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a trend towards increasing net profit and carbon emissions. This 

occurs as a lower 𝛼  reduces the reversal of certain uncertain 

parameter distributions, leading to a decrease in the objective 

function’s outcome, hence causing both metrics to increase 

inversely. 

To verify the effect of the linear weighted approach in 

optimizing search results, the two objective functions are 

recombined with varying weights. The outcome of the solution 

is presented below in Table 11. According to Table 11, it is 

evident that optimal solution varies with the parameter 

𝑤1, 𝑤2under uncertainty and their outcomes are independent of 

one another. As 𝑤1  gradually decreases and 𝑤2  gradually 

increases, the objective function value changes accordingly. The 

linear weighted method mentioned in this manuscript obtains  

a unique solution when the weights are given, whereas the 

optimal solution derived from the neutrosophic linear 

programming (NLP) method mentioned in [43] is a large range 

of intervals, and the decision maker often needs to choose 

among these solutions, which increases the complexity of 

decision making. Therefore, the linear weighted method 

proposed in this paper better simplifies the decision-making 

process when each objective is relatively clear. 

In addition, this paper will conduct numerical experiments 

to further explore the sensitivity of the chance-constrained 

scenario by assessing the effects of varying confidence levels 

on the models. The results, presented in Table 12, reveal that the 

objective functions do not increase with an increase in the 

confidence level.  

Table 12. Sensitivity analysis of confidence level for objective 

functions. 

𝛼 𝑍1 𝑍2 

0.95 7417.1 126.1 

0.9 7468.8 130.4 

0.8 7503.4 139.3 

0.7 7525.7 148.3 

0.6 7543.3 157.4 

This phenomenon occurs because the model operates on  

a maximization principle, where expands the feasible domain of 

the problem, leading to a rise in the objective function as the 

confidence level reduces. This observation highlights that 

higher level of initiative prompt more cautious decision-making.  

Finally, to further compare the algorithms, this manuscript 

was tested using the specific test function CEC2005, and the 

convergence curves are shown in Fig. 4, which clearly show that 

BFSSA performs much more favorably than SSA. BFSSA 

proves to be exceptionally effective in identifying optimal 

solutions, and it quickly adapts and accommodates changing 

problem conditions during the search process with good 

scalability and efficiency for optimization in high-dimensional 

search spaces, and also offers significant value in decision 

support systems.

   

Fig. 4. Convergence curves for F5, F7, F13 in CEC2005.

8. Conclusion  

This paper delves into a multi-objective transportation problem 

characterized by fixed charges and uncertainty. The study 

proposes a mathematical model designed to maximize net profit 

while minimizing carbon dioxide emissions during vehicle 

transportation, aiming to determine the best product 

transportation strategy. Subsequently, the basic model is 

expanded into two uncertain model variants. It then proves 

relevant theorems and derives corresponding forms through the 

application of the inverse uncertain distribution method, 

followed by employing a linear weighting method to address the 

parsing issue. Finally, the paper presents numerical examples to 

identify optimal solutions through the newly proposed sparrow 

optimization algorithm, enhanced by the integration of  
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a butterfly search method. Through the method proposed in this 

paper, a complex multiple-objective transport problem can be 

transformed into a simplified single-objective transport problem, 

and assigning weights to each objective based on the subjective 

decision of the decision maker. The method is simple and 

intuitive and is suitable for multi-objective optimization 

problems. The proposed improved algorithm incorporates its 

unique individual-awareness ability into the sparrow algorithm, 

which enhances its global searching ability, which greatly 

facilitates our search for the optimal value and is more suitable 

for high-dimensional complex optimization problems. The 

results show that the improved algorithm is more conducive to 

finding the optimal solution and has better performance.  

FCTP have a wide range of applications in areas such as 

logistics and supply chain management, urban transportation 

planning and transmission networks. This study has taken into 

account the uncertainties that may arise in the actual 

transportation process, introduced two new parameters of 

product sampling pass rate and carbon emissions, and 

developed an optimal product transportation strategy, which 

provides managers with an effective decision support tool to 

help them make transportation decisions based on profit-benefit 

and environmental-benefit considerations, and is very helpful to 

organizations or companies in solving economic and 

environmental problems. Based on the analysis of FCTP, it can 

help managers make more accurate and data-based decisions to 

optimize supply chain structure and operations. However, only 

profit and environmental impacts have been considered in this 

paper, and in the realities of transportation, where there are often 

more influencing factors and decision makers often need to 

consider a wider range of factors, such as delivery time, service 

quality, customer satisfaction and many other factors. In future 

research, the proposed methodology could be expanded upon 

and applied to address complex issues in nonlinear and 

imbalanced transportation challenges, among others. 

Developing an efficient loading and unloading strategy to 

significantly reduce time for specific goods presents a complex 

topic of study. Solutions to scheduling dilemmas, incorporating 

uncertainty, can be developed through a similar approach. 

Moreover, analyses could explore multi-stage transportation 

across varied settings, the timely delivery of multiple items, and 

the complex logistics of transporting hazardous materials under 

specific load limitations. In addition, delving into multi-

objective optimization problems that consist of additional 

constraints will broaden the applicability of these solutions 

across various situations, thus offering more robust decision-

making tools.
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