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Highlights  Abstract  

▪ A method for detailed analysis of the 

exploitation process using Markov process 

theory has been presented. 

▪ Identification of the sojourn time distribution 

using selected random variable distributions 

has been made. 

▪ The proposed approach allows an assessment 

of the probability of occurrence of the 

individual states and its duration. 

▪ The model that provides significant support for 

forest management processes has been made. 

 Mechanization of forestry work is crucial in forest management, and the 

specific nature of the tasks performed requires reliable machines with a 

high level of technical readiness. Therefore, models describing the 

exploitation process of multi-operational machines used to obtain wood 

raw materials, and especially assessing the level of their technical 

readiness, are extremely important. For multi-tasking objects performing 

random activities in given time intervals, calculating readiness measures 

is a complex issue. Forecasting subsequent operational states and their 

durations allows (if the Markov property is met) to predict the behavior 

of technical objects and schedule work. In addition to identifying the 

sequence of states, it is also important to identify the sojourn time in 

these states. This article presents a method for identifying the semi-

Markov process and then assessing the technical readiness of a Harvester 

machine. This allowed for conclusions regarding the timely completion 

of assigned tasks and also made it possible to adjust the activities carried 

out to the requirements of forest management. 
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1. Introduction 

Forestry and the timber industry play a crucial role in the 

economies of many countries, and effective and proper forest 

exploitation is essential to ensure biodiversity and maintain the 

continuity of ecosystem functions. Therefore, it is important to 

maintain a balance between forest cultivation and forestry 

operations. This also means implementing modern technologies, 

including the use of the best methods for timber harvesting. 

Currently, in times of increased mechanization and digitization, 

there is a dynamic growth in the use of harvesters [2]. Working 

with such forestry machines is not only 6-8 times more efficient 

compared to the alternative use of a chainsaw [15], but also 

increases work safety and ergonomic comfort, as well as 

positively influences the attitudes of machine operators towards 

modern work techniques [6]. All of this contributes to 

conducting forest management in a more sustainable manner. To 

this end, rigorous periodic inspections of machines working in 

the forest are also conducted [7]. In addition, daily checks of 

fluid levels and assessments for fluid leaks, inspections of all 
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screw connections, tightening or replacing them, and examining 

the structure for cracks are required. For these vehicles, daily 

maintenance is also performed, which involves removing 

needles, leaves, snow, ice, and other debris that may pose a fire 

hazard, restrict visibility, or hinder the assessment of technical 

condition. However, despite such a rigorous system of 

monitoring the technical condition of machines, they can still 

break down. This is primarily due to the work cycle of the 

harvester, which is characterized by a large number of short-

term intensive technological operations and is also exposed to 

adverse environmental impacts. On one hand, this poses a threat 

to the natural environment, and on the other, it can cause 

undesirable work interruptions, reducing the profitability of the 

timber harvesting process. Therefore, methods for assessing 

technical readiness, especially for such machines, are desirable 

for both environmental and economic reasons, particularly in 

terms of predicting malfunctions, identifying wear, or detecting 

operational irregularities [17]. They also support machine 

lifespan management, enabling effective equipment lifecycle 

management and planning for replacement by providing 

essential information for decision-making regarding potential 

investments in new machinery or the modernization of existing 

ones [16, 18]. Additionally, they contribute to optimizing work 

efficiency and improving safety. Hence, literature contains 

studies regarding the operation of harvesters. Most of them 

focus on evaluating machine performance. For instance, in [3], 

algorithms based on a decision tree, gradient boosting machine, 

linear regression, k-nearest neighbors, support vector machine, 

and artificial neural network were utilized to study machine 

efficiency. Similarly, in [5], based on datasets from forest 

inventory and the machine fieldbus, the article examined the 

impact of the forest environment and harvester operation 

method on machine efficiency using unsupervised machine 

learning methods (clustering model). For example, in Sweden, 

the potential of using measurement data collected from cut trees 

to provide accurate forest estimates at the stand level was 

presented, thereby supporting decisions at various levels of the 

forestry industry chain [4]. Similar research is conducted by 

Liski and others [8], utilizing gradient boosted machine (GBM), 

support vector machine (SVM), and ordinary least square (OLS) 

regression to predict the productivity of cut-to-length (CTL) 

harvesting. In article [5], a linear regression model was 

proposed to predict machine fuel consumption based on 

operator input data and forest inventory data. Most studies 

concerning the monitoring and assessment of mechanized wood 

harvesting operations using harvesters utilize analytical tools 

such as machine learning. A comprehensive literature review in 

this field conducted by Maktoubian et al. [9] demonstrates  

a significant advantage in the utilization of artificial intelligence 

in predictive maintenance issues and their continuous 

development [20]. However, as the authors claim, the quantity 

and quality of available data limit their use, and the results are 

not as reliable as expected [3, 8]. The reason for this limitation 

is the decentralization and lack of data management in the forest 

environment, which makes it impossible to acquire the required 

datasets [8]. Due to the obstacles related to the digitization of 

the forestry sector, arising from both technical and socio-

economic factors associated with the development of digital 

technologies in such areas [10], it is necessary to seek 

alternative assessment methods. The above became the genesis 

of this article, in which a semi-Markov model was used to study 

the technical readiness of heavy forestry machinery such as 

Harvesters. In this article, it was assumed that the exploitation 

process of the studied technical object involves the deliberate 

utilization of its operational potential during task execution and 

the periodic restoration of this potential to maintain the object's 

ability to continue operating.  Within this framework, five 

operational states describing the machine's activity and one state 

assigned to renewal processes were distinguished. Based on 

empirical data, the semi-Markov process was identified, and the 

technical readiness was assessed. The duration of the system's 

stay in states is influenced by many factors, sometimes difficult 

to precisely identify [18, 22].  

In the literature, the duration is most often modeled as  

a random variable with an exponential distribution. However, 

classical distributions do not always accurately reflect the 

properties of the random variable describing the time spent in  

a state. Therefore, this article proposes the use of alternative 

theoretical distributions, demonstrating their greater 

effectiveness in identifying the sojourn time in a state. Such an 

approach is not popular in the literature primarily due to the 

difficulty in estimating the parameters of such distributions. 

Especially when studying real exploitation processes, this is  

a significant challenge [18, 27, 28].  
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Additionally, these distributions may vary depending on the 

sequence of states,  an issue often overlooked in the literature. 

In the study of technical readiness, this is particularly relevant 

for the state of malfunction, as it significantly affects the 

outcome. Therefore, the article proposes a method that 

identifies the distribution of downtime with repair considering 

hidden factors that influence the duration, namely the 

probabilities of transitioning to the next state. This makes the 

proposed method innovative.  

The scientific contribution of this article is as follows: 

1. Proposing a method for detailed analysis of the 

exploitation process using Markov process theory.  

2. Identifying the distribution of sojourn time in each 

state using alternative distributions of the random 

variable. 

3. Identifying the distribution of downtime with repair 

considering the sequence of future states.  

4. Justifying the particular importance of the repair state 

in forest work planning and scheduling.  

5. Proposing an approach to assess the probability of 

occurrence of individual states, especially the repair 

state, and its duration.  

6. Presenting a model that provides significant support 

for forestry management processes. 

The structure of the article is as follows. After introducing 

and identifying the research gap, the theoretical foundations, 

limitations, and requirements of the semi-Markov process are 

presented. Next, a characterization of possible theoretical 

distributions from the family of exponential distributions is 

provided, as they are deemed best for assessing equipment 

operating time.  

In the subsequent part of the study, parameters of the semi-

Markov model are estimated, determining the transition 

probability matrix and identifying the distribution of sojourn 

time in each state. Finally, a characterization of the studied 

technical object is provided, describing the identified states 

using selected distributions, allowing for the estimation of the 

system's technical renewal time. 

2. Materials and methods 

2.1. Subject of the study 

A harvester is a multi-operational and high-performance 

forestry vehicle with an articulated structure, which is intended 

primarily for felling trees and wood manipulation. It is used for 

delimbing (cutting off side branches) of felled trees and cutting 

their trunks into ready-made assortments. Sometimes it is also 

used to debark tree trunks. At the same time, it is used to arrange 

assortment packages along the skidding route, which are later 

collected by forwarders. Harvesters can achieve capacities 

ranging from several to even 30 m3/h depending on the vehicle 

model, availability of trees, and logging system, and are able to 

cut trees with a diameter of up to 20 or even 102 cm (depending 

on the size of the machine and the head used). The study used 

data from the on-board computer of the Ponsse Ergo 8W 

harvester with an H7 thinning and felling head, with an 

automatic cutting unit, allowing the cutting of trees with  

a diameter of up to 72 cm. The tested machine operated in the 

area of Roztocze Wschodnie in the Tomaszów Forest District, 

in a mature stand, in a fresh mixed forest with a volume of 372 

m3/ha. 

 

Figure 1. Ponsse Ergo 8W Harvester with an H7 thinning and 

felling head. 

The collected empirical data constituting the basis for the 

research were in the form of PDF files (Portable Document 

Format). They contained chronological data on subsequent 
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stages (states) of the harvester's work on each working day, 

including the start time of a given stage, duration, distance 

covered, fuel consumption, and data on harvested wood. Figure 

1 shows a photo of the harvester being the source of empirical 

data, while Table 1 contains its technical parameters 

Table 1. Technical data of Ponsse Ergo 8W Harvester. 

Parameter Unit Value 

Operating Weight kg 21500 

Base Carrier Length mm 8130 

Carrier Width mm 2630 

Ground Clearance mm 600 

Transport Height mm 3800 

Engine Output kW 205 

Engine Torque Nm 1100 

Tractive Force KN 195 

Fuel Tank l 380 

Crane Pump Capacity cm3 145 

Head Pump Capacity cm3 190 

Hydraulic Oil Tank l 290 

Wheel Equipment ---- 720x45x26,5 

2.2. Semi-Markov process 

The machines in use are in various states related to their current 

use or technical condition. In general, the set of these states is 

finite and will be denoted by 𝑆 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑘} . The most 

commonly used mathematical model of such a machine 

maintenance process is a stochastic process with values in the 

set 𝑆 i.e. a sequence of random variables {𝑋𝑡}𝑡∈ℝ, 𝑋𝑡: 𝛺 → 𝑆 for 

any 𝑡 ∈ ℝ  (continuous-time stochastic process) or 𝑡 ∈ ℕ 

(discrete-time stochastic process), where ℝ  and ℕ  are the sets 

of real numbers and natural numbers including zero respectively.  

The Markov chains with finite set of states are widely used 

to model the behavior of technical systems. 

Definition 1. A discrete-time stochastic processes {𝑋𝑡}𝑡∈ℕ 

satisfying the memoryless property: 

𝑃(𝑋𝑛 = 𝑥𝑖𝑛
|𝑋𝑛−1 = 𝑥𝑖𝑛−1

, 𝑋𝑛−2 = 𝑥𝑖𝑛−2
, … , 𝑋0 = 𝑥𝑖0

)

= 𝑃(𝑋𝑛 = 𝑥𝑖𝑛
|𝑋𝑛−1 = 𝑥𝑖𝑛−1

). 

for any 𝑛 ∈ ℕ  and states 𝑥𝑖0
, 𝑥𝑖1

, … , 𝑥𝑖𝑛
∈ 𝑆  is called  

a Markov chain. 

An important role in the technical system modelling is 

played by homogeneous Markov chains for which the transition 

probability 𝑃(𝑋𝑛+1 = 𝑥𝑗|𝑋𝑛 = 𝑥𝑖) = 𝑝𝑖𝑗(𝑛)  from state 𝑥𝑖 ∈ 𝑆 

to state 𝑥𝑗 ∈ 𝑆 does not depend on moment 𝑛, i.e. 𝑝𝑖𝑗(𝑛) = 𝑝𝑖𝑗 

for any 𝑛 ∈ ℕ. 

Let 𝑃 = [𝑝𝑖𝑗]
𝑖,𝑗=1,2,…,𝑘

  be the transition probability matrix 

for a homogeneous Markov chain and  

𝑃(𝑋𝑛+𝑚 = 𝑥𝑗|𝑋𝑛 = 𝑥𝑖) = 𝑝𝑖𝑗
(𝑚)

   denotes the transition 

probability from state 𝑥𝑖  to state 𝑥𝑗  in 𝑚  steps. If the initial 

distribution of 𝑋0  random variable ( i.e. probability vector 

𝑝(0) = (𝑝1(0), 𝑝2(0), … , 𝑝𝑘(0)) , 𝑝𝑖(0) = 𝑃(𝑋0 = 𝑥𝑖)  for  

𝑥𝑖 ∈ 𝑆 , where 0 ≤ 𝑝𝑖(0) ≤ 1  for 𝑖 = 1,2, … , 𝑘  and 

∑ 𝑝𝑖
𝑘
𝑖=1 (0) = 1 ) is known, then the probability vector  

𝑝(𝑛) = (𝑝1(𝑛), 𝑝2(𝑛), … , 𝑝𝑘(𝑛))  being the distribution of the 

random variable 𝑋𝑛 (namely the vector of probabilities of being 

in particular states at the moment 𝑛 ) is determined by the 

formula: 

𝑝(𝑛) = 𝑝(0)𝑃𝑛 , 

where 

[𝑝𝑖𝑗
(𝑚)

]
1≤𝑖,𝑗≤𝑘

= 𝑃𝑚. 

Definition 2 Let {𝑋𝑡}𝑡∈ℕ be a homogeneous Markov chain. 

A distribution 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑘) , where 0 ≤ 𝜋𝑖 ≤ 1  for  

𝑖 = 1,2, … , 𝑘 and ∑ 𝜋𝑖
𝑘
𝑖=1 = 1 satisfying the equation 

𝜋𝑃 = 𝜋,                                         (1) 

is called the stationary distribution of the homogeneous Markov 

chain. 

A stationary distribution plays a key role in the study of limit 

properties of probabilities 𝑝𝑖𝑗
(𝑚)

 , when 𝑚 → ∞ , which is 

important in reliability analysis and is the content of the theorem 

below.  First recall that a state 𝑠𝑖 is called 𝑑 periodic if 𝑑 is the 

largest integer such that 𝑝𝑖𝑖
(𝑘𝑑)

> 0  and 𝑝𝑖𝑖
(𝑛)

= 0  for any 𝑛  not 

divisible by 𝑑. A chain is called irreducible if from each state it 

is possible to reach every other state after a finite number of 

steps. A state 𝑠𝑖 is called is recurrent if the process starting 𝑠𝑖 

returns to it in finite time. A state 𝑠𝑖 is said to be ergodic if it is 

aperiodic and recurrent. 

Theorem 1 Let {𝑋𝑛}𝑛∈ℕ be a homogeneous Markov chain 

with ergodic states and 𝑃  be its transition probability matrix. 

There exists a stationary distribution 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑘), such 

that 

𝜋𝑗 = lim
𝑚→∞

𝑝𝑖𝑗
(𝑚)

, 

for any 1 ≤ 𝑖, 𝑗 ≤ 𝑘. 

The theorem states that a homogeneous Markov chain with 
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ergodic states, reaches a stationary distribution after  

a sufficiently long period of time [30]. 

The semi-Markov process, which we will use in our research, 

is a continuous time stochastic process and is based on the 

concept of a Markov chain [19, 21]. This is a generalization of 

the continuous time Markov process, where the sojourn time 

distribution depends on the current state and need not be 

exponential. On the one hand, the behavior of the system is 

described by a Markov chain, while on the other hand, we 

analyze the sojourn time in states [18]. 

Definition 3 (Semi-Markov process) The right-continuous 

and piecewise constant stochastic process {𝑋𝑡}𝑡≥0  is semi-

Markov process, if: 

1. there exist random time moments  𝑡0 < 𝑡1 < 𝑡2 … 

(𝑡𝑛 ∈ ℝ , 𝑛 ∈ ℕ) such that the sequence {𝑋𝑡𝑛
}

𝑛∈ℕ
 is a 

homogeneous Markov chain with transition 

probability matrix 𝑃 = [𝑝𝑖𝑗]
1≤𝑖,𝑗≤𝑘

 , where  

𝑝𝑖𝑗 = 𝑃(𝑋𝑡𝑛+1
= 𝑥𝑗|𝑋𝑡𝑛

= 𝑥𝑖) for 𝑖, 𝑗 ∈ ℕ; 

2. the distribution of the random variable 𝜏𝑛 = 𝑡𝑛+1 − 𝑡𝑛, 

𝑛 = 1,2, … , …, namely the 𝑛-th sojourn time given that 

the system obtained the state 𝑥𝑖 at moment 𝑡𝑛 and shall 

jump to state 𝑥𝑗  at moment 𝑡𝑛+1 = 𝑡𝑛 + 𝜏𝑛 , depends 

only on the current state and the future state (after 

observing the jump) i.e. the probability  

𝑃(𝜏𝑛 ≤ 𝑡|𝑋𝑡𝑛
= 𝑥𝑖 , 𝑋𝑡𝑛+1

= 𝑥𝑗)  depends only on 𝑥𝑖 

and 𝑥𝑗. 

Therefore, a semi-Markov process is a pair process 

{(𝑋𝑛, 𝑡𝑛)}𝑛∈ℕ , where 𝑋𝑛 = 𝑋𝑡𝑛
  for 𝑛 ∈ ℕ  and  

𝑡𝑛 = 𝑡0 + ∑ 𝜏𝑗
𝑛
𝑗=1 , characterized by both its embedded Markov 

chain {𝑋𝑡𝑛
}

𝑛∈ℕ
  and corresponding the sojourn time stochastic 

process {𝜏𝑛}𝑛∈ℕ . Hence, the identification of semi-Markov 

model consists of the estimation of transition probability matrix 

of {(𝑋𝑛, 𝑡𝑛)}𝑛∈ℕ  and the determination of sojourn time 

distributions for each state. A semi-Markov process in which the 

sojourn times for all states are exponentially distributed is called 

a continuous-time Markov chain [30]. 

Let 𝜏𝑖  be a random variable denoting the sojourn time in 

state 𝑠𝑖. The sojourn time distribution in state 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑘 is 

estimated as follows: 

 

𝐹𝑖(𝑡) = ∑ 𝑃

𝑘

𝑗=1

(𝜏𝑛 < 𝑡|𝑋𝑛+1 = 𝑠𝑗 , 𝑋𝑛 = 𝑠𝑖) × 

                          𝑃(𝑋𝑛+1 = 𝑠𝑗|𝑋𝑛 = 𝑠𝑖) = ∑ 𝐹𝑖𝑗

𝑘

𝑗=1

(𝑡)𝑃𝑖𝑗 .           (2) 

The stationary distribution of semi-Markov process {𝑋𝑡}𝑡≥0 

is calculated as  

𝛱𝑖 =
𝜋𝑖𝐸𝜏𝑖

∑ 𝜋𝑗
𝑘
𝑗=1 𝐸𝜏𝑗

, 1 ≤ 𝑖 ≤ 𝑘,                    (3) 

where the embedded homogeneous Markov chain {𝑋𝑛}𝑛∈ℕ have 

a stationary distribution 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑘) , but  𝐸𝜏𝑖  denotes 

expected sojourn time in state 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑘. 

2.3. Markov property test 

Let {𝑥𝑡}0≤𝑡≤𝑛  be a realization of the Markov chain, where  

𝑥𝑡 ∈ 𝑆  for 0 ≤ 𝑡 ≤ 𝑛  and let 𝑛𝑖 = #{𝑡: 𝑥𝑡 = 𝑠𝑖 , 0 ≤ 𝑡 ≤ 𝑛}  for 

𝑖 = 1,2, … , 𝑘 𝑘 i.e. the number indicating how many times the 

system remained in the state 𝑠𝑖 , obviously ∑ 𝑛𝑖
𝑘
𝑖=1 = 𝑛 . The 

value 𝑛𝑖𝑗 = #{𝑡: 𝑥𝑡 = 𝑠𝑖 , 𝑥𝑡+1 = 𝑠𝑗 , 0 ≤ 𝑡 ≤ 𝑛 − 1}  for  

1 ≤ 𝑖, 𝑗 ≤ 𝑘 denotes  the number of transitions from state 𝑠𝑖 to 

state 𝑠𝑗 , thus ∑ 𝑛𝑖𝑗
𝑘
𝑗=1 = 𝑛𝑖 . Let 𝑝̂𝑖𝑗   be the estimator of 

probability 𝑝𝑖𝑗  (the transition probability form state 𝑠𝑖 to state 

𝑠𝑗 ) and 𝑝̂𝑖𝑗 = 𝑛𝑖𝑗/𝑛𝑖  for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 . The estimated transition 

probability matrix of the embedded homogeneous Markov 

chain has the form 𝑃 = [𝑝̂𝑖𝑗]
1≤𝑖,𝑗≤𝑘

. 

To verify the Markov property, at the significance level  

𝛼 ∈ (0,1) we formulate a null hypothesis: 

𝐻0  : 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦, 𝑋𝑡−2 = 𝑧) = 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦) 

(the chain {𝑋𝑡}𝑡∈ℕ has a Markov property) 

and an alternative hypothesis: 

𝐻1  : 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦, 𝑋𝑡−2 = 𝑧) ≠ 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦) 

(the chain {𝑋𝑡}𝑡∈ℕ does not satisfy Markov property), 

where 𝑥, 𝑦, 𝑧 ∈ 𝑆. 

The test statistic 

𝑉 = ∑
(𝑛𝑖𝑗𝑙 − 𝑛𝑖𝑗𝑝̂𝑗𝑙)

2

𝑛𝑖𝑗𝑝̂𝑗𝑙

𝑘

𝑖,𝑗,𝑙=1,𝑛𝑖𝑗≠0,𝑛𝑗𝑙≠0

                  (4) 

has 𝜒2  distribution with  (𝑘 − 1)2𝑘  degrees of freedom. The 

probability value (the p-value)is given by 

𝑝𝑣𝑎𝑙 = ∫
𝑥𝑚/2−1𝑒−𝑥/2

2𝑚/2𝛤(𝑚/2)

∞

𝑉

𝑑𝑥                         (5) 
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where 𝑚 = (𝑘 − 1)2𝑘  and 𝛤(⋅)  is the gamma function. If 

𝑝𝑣𝑎𝑙 ≤ 𝛼  then at significance level 𝛼   we reject the null 

hypothesis in favor of the alternative hypothesis (we accept that 

the sequence does not have Markov property) otherwise we 

have no grounds to reject the null hypothesis and assume that 

the sequence {𝑥𝑡}0≤𝑡≤𝑛 satisfies the Markov property. 

2.4. Family of exponential distribution 

The family of exponential distributions is an important class of 

probability distributions used in statistics and probability theory, 

particularly in reliability analysis [23]. The following 

probability distributions were used to identify sojourn time in 

states: 

• gamma distribution; 

• log-normal distribution; 

• Weibull distribution; 

• inverse Weibull distribution; 

• log-Weibull distribution; 

• compound Weibull distribution; 

• Keis and Phani’s distribution; 

• generalized Weibull distribution;  

• gamma Weibull distribution. 

2.4.1. Gamma distribution 

The gamma distribution is widely used in probability theory, 

statistics, and reliability analysis. It is also defined by two 

parameters. The gamma distribution with shape 𝑏 > 0 and scale 

1/𝑎 (rate 𝑎 > 0 ) [26] has density 

𝑓𝐺(𝑥) =
𝑎𝑏

𝛤(𝑏)
𝑥𝑏−1𝑒−𝑎𝑥 , 𝑥 > 0,                      (6) 

and the cumulative distribution function is given by  

𝐹𝐺(𝑥) =
𝛾(𝑏, 𝑎𝑥)

𝛤(𝛼)
, 𝑥 > 0.                            (7) 

where the gamma function is defined by  

𝛤(𝑠) = ∫ 𝑡𝑠−1+∞

0
𝑒−𝑡𝑑𝑡 and the incomplete gamma function is 

defined by 𝛾(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑥

0
𝑒−𝑡𝑑𝑡. 

2.4.2. Log-normal distribution 

The log-normal distribution is a probability distribution of  

a random variable whose natural logarithm has a normal 

distribution. Thus if random variable 𝑌  has a normal 

distribution, then the random variable 𝑋 = 𝑒𝑥𝑝 (𝑌) has a log-

normal distribution. It is used to model behavior of features 

whose realizations take only positive values. The random 

variable 𝑋 has a log-normal distribution with parameters 𝑎 and 

𝑏, if the random variable 𝑌 has a normal distribution with mean 

𝑎  and standard deviation 𝑏 . The log-normal distribution with  

𝑎 ∈ ℝ and 𝑏 > 0 has the density 

𝑓𝐿𝑁(𝑥, 𝑎, 𝑏) =
1

√2𝜋𝑏𝑥
𝑒

−
(ln𝑥−𝑎)2

2𝑏2 , 𝑥 > 0                 (8) 

and the cumulative distribution function is given by 

𝐹𝐿𝑁(𝑥, 𝑎, 𝑏) = 𝐹 (
ln𝑥 − 𝑎

𝑏
) , 𝑥 > 0                       (9) 

where 𝐹 denotes the normal distribution 𝑁(0,1). 

2.4.3. Weibull distribution 

The Weibull distribution with shape 𝛽 > 0  and scale 1 √𝛼
𝛽

⁄  

(𝛼 > 0)  [24, 25] has density given by  

𝑓𝑊(𝑥) = αβ𝑥𝛽−1𝑒−𝛼𝑥𝛽
, 𝑥 > 0,                       (10) 

and the cumulative distribution function is given by  

𝐹𝑊(𝑥) = 1 − 𝑒−𝛼𝑥𝛽
, 𝑥 > 0.                           (11) 

2.4.4. Inverse Weibull distribution 

The inverse Weibull distribution is most commonly used for 

modeling extreme values, particularly in the context of 

reliability and risk analysis. If the random variable 𝑌  has  

a Weibull distribution, then the random variable 𝑋 = 1/𝑌 has 

an inverse Weibull distribution. Usually, this distribution is used 

to describe the time to failure in situations where the risk of 

failure decreases with time [29]. The inverse Weibull 

distribution with parameters 𝑎 > 0 and 𝑏 > 0 has density given 

by 

𝑓𝐼𝑊(𝑥) = 𝑎𝑏𝑥−𝑏−1𝑒−𝑎𝑥−𝑏
, 𝑥 > 0,                     (12) 

and the cumulative distribution function is given by  

𝐹𝐼𝑊(𝑥) = 𝑒−𝑎𝑥−𝑏
, 𝑥 > 0,                                    (13) 

2.4.5. Log-Weibull distribution 

The log-Weibull distribution [29] is a continuous probability 

distribution that combines features of the Weibull distribution 

and the logarithmic transformation. Let 𝑌  be the random 

variable which has Weibull distribution with 𝛼 > 0 and 𝛽 > 0 

parameters, then the random variable 
𝑋−𝑎

𝑏
= 𝑙𝑜𝑔(𝛼𝑌𝛽) has log-

Weibull distribution with 𝑎 ∈ ℝ  and 𝑏 > 0   and density 

function is given by 

𝑓𝐿𝑊(𝑥) =
1

𝑏
𝑒(𝑥−𝑎)/𝑏𝑒−𝑒(𝑥−𝑎)/𝑏

, 𝑥 ∈ ℝ,                  (14) 
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whereas the cumulative distribution function is given by  

𝐹𝐿𝑊(𝑥) = 1 − 𝑒−𝑒
(𝑥−𝑎)

𝑏 , 𝑥 ∈ ℝ                          (15) 

2.4.6. Compound Weibull distribution 

Let 𝑌1, 𝑌2, … , 𝑌𝑁  be a sequence of independent identically 

Weibull distributed random variables,  𝑁 be geometric random 

variable with parameter 𝑝 and  𝑁 is independent of 𝑌1, 𝑌2, … , 𝑌𝑁. 

The random variable 𝑋 = min{𝑌1, 𝑌2, … , 𝑌𝑁}  has compound 

(geometric) Weibull distribution. The density function of 

compound Weibull distribution [29] is given by 

𝑓𝑊𝐺(𝑥) =
𝑎𝑏𝑎(1 − 𝑝)𝑥𝑎−1𝑒−(𝑏𝑥)𝑎

(1 − 𝑝𝑒−(𝑏𝑥)𝑎)2
, 𝑥 > 0,                  (16) 

and the cumulative distribution function is given by 

𝐹𝑊𝐺(𝑥) =
1 − 𝑒−(𝑏𝑥)𝑎

1 − 𝑝𝑒−(𝑏𝑥)𝑎 , 𝑥 > 0,                              (17) 

where  𝑎 > 0 , 𝑏 > 0 and 0 < 𝑝 < 1.  

2.4.7. Keis and Phani’s (modified Weibull) distribution 

The Phani-Keis distribution is a specialized probability 

distribution that is also used in reliability analysis. Keis 

introduced a modification of the Weibull distribution by adding 

the constraint that the realization of a random variable takes 

values from the interval (𝑎, 𝑏) , where  0 < 𝑎 < 𝑏 . Keis 

distribution is defined by shape 𝛽 and scale 𝛼 parameters. Phani 

[31] proposed an extension with an additional shape 𝛾 

parameter. The density function of modified Weibull 

distribution is given by  

𝑓𝑃𝐾(𝑥) =
𝛼(𝑥 − 𝑎)𝛽−1((𝑏𝛽 − 𝑎𝛾) + (𝛾 − 𝛽)𝑥)

(𝑏 − 𝑥)𝛾+1
𝑒

−𝛼
(𝑥−𝑎)𝛽

(𝑏−𝑥)𝛾 , 

                                                         (18) 

where 𝑥 > 0,  0 < 𝑎 < 𝑏 < ∞ and 𝛼, 𝛽, 𝛾 > 0. The cumulative 

distribution function is given by 

𝐹𝑃𝐾(𝑥) = 1 − 𝑒
−𝛼

(𝑥−𝑎)𝛽

(𝑏−𝑥)𝛾                                 (19) 

The special case of modified Weibull distribution 

 γ = 𝛽 > 0 was presented by Keis [30]. 

2.4.8. Generalized Weibull distribution 

Mudholkar and Kollia [32] proposed an extension of the 

standard Weibull distribution. The generalized Weibull 

distribution is used most often to model the lifetime of technical 

objects, in reliability analysis when ageing or wear processes 

are relevant. The generalized Weibull distribution is described 

by three parameters: the shape parameter 𝑏 > 0  determines 

shape of the survival curve, the scale parameter 𝑎 > 0 

determines the time scale and the shift parameter 𝑐. Depending 

on shift parameter c the realization of random variable takes 

values from the set  

𝐷 = {
(0, ∞), dla 𝑐 < 0,

(0, (𝑎𝑐)−1/𝑏), dla 𝑐 > 0.
 

The density function of generalized Weibull distribution is 

given by 

𝑓𝐺𝑊(𝑥) = 𝑎𝑏𝑥𝑏−1(1 − 𝑎𝑐𝑥𝑏)
1
𝑐

−1, 𝑥 ∈ 𝐷,            (20) 

for 𝑎, 𝑏 > 0 and 𝑐 ≠ 0 , the cumulative distribution function 

is given by 

𝐹𝐺𝑊(𝑥) = 1 − (1 − 𝑎𝑐𝑥𝑏)
1
𝑐 , 𝑥 ∈ 𝐷.                        (21) 

2.4.9. Gamma Weibull distribution 

The gamma-Weibull distribution [33] is a specific combination 

of the gamma distribution and the Weibull distribution. This 

makes it possible to fit more flexibly to different empirical data 

by combining the characteristics of both distributions. The 

gamma-Weibull distribution is defined by three parameters. For  

𝑎 > 0, 𝑏 > 0 and 𝑘 > 0 the density function is given by  

𝑓𝐺𝑊(𝑥) =
𝑏𝑎𝑘

𝛤(𝑘)
𝑥𝑘𝑏−1𝑒−𝑎𝑥𝑏

, 𝑥 > 0,                  (22) 

and the cumulative distribution function is given by 

𝐹𝐺𝑊(𝑥) =
𝛾(𝑘, 𝑎𝑥𝑏)

𝛤(𝑘)
, 𝑥 > 0,                              (23) 

where 𝛾(𝑎, 𝑥)  denotes the incomplete gamma function. When 

𝑘 = 1   we have Weibull distribution, whereas with 𝑏 = 1  we 

have gamma distribution. 

3. Identification of the technical system 

3.1. Characteristics of operational states 

From chronological readings regarding the harvester's work in 

the period from March 3, 2021, to June 24, 2022 (a total of 113 

working days), a set of data was created regarding subsequent 

stages (states) of the harvester's work on each working day, 

taking into account the start time of a given stage and its 

duration. The first stage of building a Markov model is to isolate 

the possible operating states of the tested machine. Six states 

have been specified, which are presented, along with their 

characteristics, in Table 1. At any time, the machine can be in 
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one of them.

Table 2. Operational states of the tested forest machine. 

State name Characteristics 

Break interruptions due to various factors 

Driving drives to the working surface and along operational routes, lasting longer than 1 minute 

Off-road travel exits from the operational trail (i.e. driving around the operational field), to hard-to-reach trees 

Other work application status update, data transfer, communication, head calibration and others 

Processing 

drives between working positions (shorter than 1 minute), sequential cutting down of subsequent trees 

from a given working position and producing various ready-made wood assortments from them (firewood, 

logs, sawmill wood, etc.) 

Repair waiting time for repair and removal of the fault, transport to the service center and removal of the fault  

3.2. Identification of the semi-Markov process 

A correct description of the exploitation system still requires 

defining the relations between its elements, therefore it was 

necessary to determine possible transitions of the object 

between individual states, which was presented in the form of a 

matrix (Table 2.) and using a graph (Figure 1), which also 

presents the values of the probability of transitions between 

individual states.

 

Figure 1. Transition graph between states. 

Table 3. Transition probability matrix for a Markov chain. 

 Break Driving Off-road travel Other work Processing Repair 

Break 0.0000 0.0000 0.3590 0.0256 0.5897 0.0256 

Driving 0.0000 0.0000 0.1379 0.2414 0.5517 0.0690 

Off-road travel 0.0323 0.0323 0.0000 0.0808 0.7413 0.1132 

Other work 0.0000 0.0562 0.3483 0.0000 0.5056 0.0899 

Processing 0.0564 0.0090 0.7720 0.0880 0.0000 0.0745 

Repair 0.0000 0.0645 0.4516 0.0860 0.3978 0.0000 

The value 𝑉 = 156.95   of the test statistic was estimated 

using formula (4). The distribution of the test statistic is  𝜒2 with 

150 degrees of freedom. From formula (5), the test probability 

equals 𝑝𝑣𝑎𝑙 = 0.3322 . Therefore, at the significance level of 

0.05, there are no grounds to reject the working hypothesis, we 

assume that the sequence of states satisfies the Markov property. 

Next, the stationary distribution for the Markov chain, which 

describes the long-term behavior of the Markov chain when it 

reaches an equilibrium state, was calculated. This allows to 

assess the limit behavior of the tested exploitation system. The 
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expected sojourn times in each state were also determined, and 

then the limit distribution of the semi-Markov process was 

estimated using formula (3). Stationary distribution and 

expected sojourn times in the states are presented in Table 4. 

Table 4. Stationary distribution for the Markov chain, expected 

sojourn times in a state, and the stationary semi-Markov 

distribution. 

 𝜋𝑖 𝐸𝜏𝑖 𝛱𝑖  

Break 0.0345833 28.282051 0.0322402 

Driving 0.0257821 47.827586 0.0406458 

Off-road 

travel 
0.3843541 8.969977 0.1136429 

Other work 0.0798523 32.888889 0.0865677 

Processing 0.3927980 47.426637 0.6140604 

Repair 0.0826303 41.430107 0.1128430 

The obtained results show that almost 39.28% falls in the 

Processing state, i.e. from the Markov chain properties we can 

conclude that the tree-cutting machine was in this state with  

a probability of 39.28%. However, taking into account the 

average sojourn times and analyzing the stationary distribution 

of the semi-Markov process, we see that the tested system tends 

to stay in the Processing state, which is over 61% of the total 

exploitation of the Harvester machine. 

The second-best result concerns off-road travel and amounts 

to over 11.36%. This is due to the need to move the machine to 

the place of work. The remaining values are negligible and 

range from 3% for the Break state, through 4% for the Driving 

state, and almost 8% for the other work state. Being in the 

Repair state took over 11% of the total operating time. 

4. Repair time analysis 

From the point of view of the correctness of the operation 

process and prevention of potential disruptions, the repair time 

is the most important, therefore it will be subject to detailed 

analysis. Predicting repair time is an important element of 

creating a machine operation schedule. Nevertheless, repair 

time schedules 𝜏 depend on the subsequent states in which the 

object resides, therefore they are estimated as follows: 

𝐹Repair(𝑡) = ∑ 𝑃

𝑗∈𝑆∖{Repair}

(𝜏𝑛 < 𝑡|𝑋𝑛+1 = 𝑗, 𝑋𝑛 = Repair)𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = Repair)                  

= ∑ 𝐹Repair,𝑗

𝑗∈𝑆∖{Repair}

(𝑡)𝑃Repair,𝑗 .                                                                                                        (24)
 

 

Therefore, in order to obtain full information regarding the 

repair time of a technical object in the operation system, Repair 

time distributions should be determined, taking into account the 

transition to the future state. From Table 3 we see that from the 

Repair state the system moves to the states: Driving, Off-road 

travel, Other work, Processing states. Depending on the future 

state, the distribution of sojourn time in the Repair state was 

identified. The maximum likelihood method was used to 

identify the parameters of the distributions.

 

Figure 2. Fitting plots of the sojourn time distribution in the Repair state during the transition to Processing state.  
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Table 5 shows the parameter values of the distributions of 

the sojourn time in the Repair state and the value of the 

logarithm of the likelihood function in the case of transition to 

the Processing state. Figure 2 shows the density functions for 

each type of distribution.

Table 5. Parameters of the sojourn time in Repair during the transition to Processing state and the values of the logarithm of the 

likelihood function. 

Type Parameters LogLik 

Weibull a = 0.0102 ; b = 1.2458 -168.142 

Gamma a = 0.0561 ; b = 2.0395 -202.155 

Log-normal a = 3.3363 ; b = 0.6121 -157.781 

Inverse Weibull a = 2144.8819 ; b = 2.4924 -150.494 

Log Weibull a = 61.4028 ; b = 69.9605 -207.422 

geometric Weibull a = 3.0464 ; b = 0.004 ; p = 0.999 -156.168 

Phani and Keis a = 3.3718 ; b = 285.6 ; 𝛼 = 0.0172 ; 𝛽 = 1.1433 ; 𝛾 = 0.000001 -171.101 

generalized Weibull a = 1e-04 ; b = 2.8918 ; c = -1.3086 -155.878 

gamma Weibull a = 0.0881 ; b = 0.9003 ; k = 2.1728 -201.755 

The highest value of the likelihood function was obtained 

for the inverse Weibull distribution. The sojourn time in the 

Repair state and the transition to the Processing state should be 

modeled using a random variable with inverse Weibull 

distribution with parameters a = 2144.8819 ; b = 2.4924. 

Table 6 presents the values of parameters of the sojourn time 

distributions in the Repair state and the value of the logarithm 

of the likelihood function in the case of transition to the Other 

work state. Figure 3 shows the density functions for each type 

of distribution.

 

Figure 3. Fitting plots of sojourn time distribution in the Repair state during the transition to the Other work state.  

Table 6. Parameters of the sojourn time in Repair during the transition to Other work state and the values of the logarithm of the 

likelihood function. 

Type Parameters LogLik 

Weibull a = 0.0039 ; b = 1.4532 -36.773 

Gamma a = 0.0525 ; b = 2.1458 -44.275 

Log-normal a = 3.496 ; b = 0.6019 -35.258 

Inverse Weibull a = 1367.9745 ; b = 2.2383 -34.355 
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Type Parameters LogLik 

Log Weibull a = 59.6117 ; b = 42.1587 -41.487 

geometric Weibull a = 3.0182 ; b = 0.0058 ; p = 0.9945 -35.138 

Phani and Keis a = 15.84 ; b = 147.6 ; 𝛼 = 0.1384 ; 𝛽 = 0.7022 ; 𝛾 = 0.0329 -35.397 

generalized Weibull a = 1e-04 ; b = 2.7202 ; c = -1.1517 -35.208 

gamma Weibull a = 0.0496 ; b = 1.0126 ; k = 2.1327 -44.274 

Table 7 presents the values of the parameters of sojourn time 

distribution in the Repair state and the value of the logarithm of 

the likelihood function in the case of transition to the Off-road 

travel state. Figure 4 shows the density functions for each type 

of distribution.

 

Figure 4. Fitting plots of sojourn time distribution in the Repair state during the transition to Off-road travel state.

The highest value of the likelihood function was obtained 

for the Phani and Keis distribution. The sojourn time in the 

Repair state and the transition to the Off-road travel state should 

be modeled using Phani and Keis distribution with parameters 

a = 14.85 ; b = 373.2 ; 𝛼 = 0.1648 ; 𝛽 = 0.6051 ; 𝛾 = 0.00001.

Table 7. Parameters of sojourn time in  Repair during the transition to Off-road travel state and the values of the logarithm of the 

likelihood function. 

Type Parameters LogLik 

Weibull a = 0.0148 ; b = 1.0931 -201.875 

Gamma a = 0.0325 ; b = 1.4747 -242.811 

Log-normal a = 3.4372 ; b = 0.76 -192.433 

Inverse Weibull a = 603.2954 ; b = 2.0566 -184.079 

Log Weibull a = 78.7882 ; b = 90.6824 -246.793 

geometric Weibull a = 2.4207 ; b = 0.0021 ; p = 0.999 -191.684 

Phani and Keis a = 14.85 ; b = 373.2 ; 𝛼 = 0.1648 ; 𝛽 = 0.6051 ; 𝛾 = 0.00001 -178.26 

generalized Weibull a = 1e-04 ; b = 2.9284 ; c = -1.8947 -188.496 

gamma Weibull a = 0.1225 ; b = 0.7709 ; k = 2.1474 -240.838 

Table 8 presents the values of the parameters of sojourn time 

distributions in the Repair state and the value of the logarithm 

of the likelihood function in the case of transition to the Driving 

state. Figure 5 shows the density functions for each type of 

distribution. 
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Figure 5. Fitting plots of sojourn time distribution in the Repair state during the transition to Driving state.  

Table 8. Parameters of sojourn time in  Repair during the transition to Driving state and the values of the logarithm of the likelihood 

function. 

Type Parameters LogLik 

Weibull a = 0.001192 ; b = 1.702891 -27.757 

Gamma a = 0.0487 ; b = 2.2415 -33.574 

Log-normal a = 3.6617 ; b = 0.5499 -26.896 

Inverse Weibull a = 2603.1611 ; b = 2.3081 -26.474 

Log Weibull a = 62.6339 ; b = 35.37828 -30.218 

geometric Weibull a = 3.1325 ; b = 0.00768 ; p = 0.9803 -26.928 

Phani and Keis a = 18.81 ; b = 130.8 ; 𝛼 = 0.142839 ; 𝛽 = 0.709003 ; 𝛾 = 0.070675 -27.744 

generalized Weibull a = 1e-04 ; b = 2.5459 ; c = -0.8647 -27.142 

gamma Weibull a = 0.0237 ; b = 1.168 ; k = 2.1098 -33.467 

 

Figure 6. Sojourn time distribution in the Repair state.
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The highest value of the likelihood function was obtained 

for the inverse Weibull distribution. The sojourn time in the 

Repair state and the transition to the Off-road travel state should 

be modeled by random variable having inverse Weibull 

distribution with parameters a = 2603.161 ; b = 2.3081. 

In the next stage of the study, using the results obtained 

above (Table 4-7), the repair time distribution was estimated 

using formula (24). The density function is shown in Figure 6.  

The expected repair time is estimated using the formula  

𝐸𝜏𝑅𝑒𝑝𝑎𝑖𝑟 = ∫ 𝑡
𝜕

𝜕𝑡

∞

0

𝐹Repair(𝑡) 

and 𝐸𝜏𝑅𝑒𝑝𝑎𝑖𝑟 = 34.53 min.  

This value is lower than the classically estimated value 

presented in Table 3. This is due to the fact that in Table 3 

estimated the expected values of the stay time in states without 

taking into account the change in the sequence of states. 

Moreover, the identification of the repair time taking into 

account the transition to next states resulted in a change in the 

stationary distribution of the semi-Markov process, which is 

presented in Table 8. 

Table 8. Stationary distribution of the semi-Markov process 

after taking into account the change in the expected sojourn time 

in the Repair state 

 Break Driving 
Off-road 

travel 

Other 

work 
Processing Repair 

𝛱𝑖  0.03286 0.04142 0.11582 0.08823 0.62582 0.09586 

After correcting the time spent in the Repair state, we see 

that the analyzed system stays in the Processing state for more 

than 62% of the total utilization, while in the Repair state, it 

spends less than 10% of the total utilization. Taking into account 

the probability of transition between states allowed for a more 

accurate identification of the time distribution of the sojourn 

time in the repair state. For each transition from the repair state 

to other states, an appropriate sojourn time distribution was 

determined, and among those presented, the distributions with 

the highest value of the likelihood function were selected.  

A more accurate estimate of the repair time distribution enables 

better identify the stationary distribution of the system modeled 

by semi-Markov process.  

5. Conclusion 

The application of semi-Markov process theory allowed for  

a detailed analysis of the exploitation process, in this case, 

concerning a forestry machine such as a Harvester. Special 

attention was given to the repair state, as it is crucial in planning 

and scheduling forest work. Through analysis using Markov 

processes, the repair time distribution was presented as the 

scalar product of the repair time distribution and the transition 

probability between the repair state and the other states. In the 

literature on the subject  the use of  known random distributions 

or mixture of distributions to describe operational events is 

often used and is not new [18,27,28]. The approach presented in 

the paper consists on solution the problem of estimation of 

readiness of technical system. The originality of presented 

method is the identification of the machine’s behavior 

performing many tasks in variable operating conditions, which 

enable the modeling work plans. Therefore, less common 

distributions of random variables in the literature were chosen 

to accurately identify sojourn times in the states. The proposed 

model enables the assessment of the probability of occurrence 

of individual states, especially the repair state, and its duration. 

Within the studied process, three operational states describing 

the machine's activity and two states assigned to renewal 

processes were distinguished, based on which a semi-Markov 

model was constructed, and the technical readiness was 

assessed.  

However, the most significant achievement of this study is 

demonstrating that the assessment of the repair state's sojourn 

time is a mixture of different exponential distributions, each 

dependent on the transition to the next state. The precise 

identification of the repair state's sojourn time influences the 

identification of the readiness of the entire system. Neglecting 

this element can lead to erroneous conclusions and result in an 

unreliable assessment of the tested machine's readiness level, 

ultimately leading to a misjudgment of the entire system. 

Therefore, the authors' intention was to highlight the 

discrepancies in results – especially regarding the system's 

boundary stabilization – depending on the sequence of states 

executed. The presented method also has utilitarian value, 

allowing for inference regarding the timely completion of 

designated tasks by the machine and enabling the alignment of 

performed activities with the requirements of forestry 

management. 
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