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Highlights  Abstract  

▪ This study utilizes Dynamic Time Warping 

(DTW) to select a representative rail worn 

profile for optimization design from the rail 

worn profile. 

▪ This paper proposes an optimization 

mathematical model that considers the 

evolution of wheel profile wear for design 

optimization. 

▪ Adaptive weight adjustment factor coefficients 

are introduced to avoid the subjective influence 

of the designer’s experience. 

 The grinding of curved rails is a crucial aspect of subway maintenance 

and repair. It effectively reduces wear. This paper proposes a multi-

objective optimization design method for grinding profiles in curved 

sections. First, the Dynamic Time Regularisation (DTW) algorithm 

selects representative grinding profiles as the initial population. Then, 

the optimal design region is determined through wear characterization 

analysis. Mathematical expressions of wheel profiles are selected as 

design variables to build a parametric model. Next, the predictive model 

that considers the evolution of wheel wear is incorporated into the multi-

objective function. The objective function's adaptive weight adjustment 

coefficient factors are introduced to establish the multi-objective 

optimization model for wheel profiles. The Latin hypercubic sampling 

method establishes the RBF agent model for simulation calculation. The 

optimization design of wheel profiles is carried out using the TS-NSGA-

II multi-objective algorithm. Finally, a comparative verification analysis 

is conducted to assess the profiles before and after optimization. This 

analysis includes three key aspects: wheel wear evolution analysis, 

wheel-rail static contact analysis, and vehicle dynamics performance 

analysis. 
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1. Introduction 

Steel rails are a crucial rail system component, supporting 

vehicles and playing vital roles in vehicle guidance, force 

transmission for driving and braking, and forming rail circuits. 

However, the repeated rolling contact between rails and wheels 

on their contact surfaces can lead to problems caused by fatigue 

and wear. These problems include localized collapse of rail 

surfaces, block stripping, and multiple cracking disorders. Such 

issues shorten the rail's lifespan and can result in serious 

accidents. Particularly in curved tracks, the contact stress 

between the wheel flange and rail surface is higher than in 

straight tracks. This will lead to increased wear on both the 

wheel and rail, shorter grinding and replacement cycles for the 

rail, increased noise, and a decline in ride comfort. Traditional 

wheel and rail profile designs mainly focus on the wheel and 

rail profile design. These designs heavily rely on the designer's 

experience. However, with the rapid advancement of computing 
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technology, numerical design methods involving numerical 

simulation and optimization techniques are widely utilized for 

optimizing wheel-rail profiles. 

In recent years, domestic and international scholars have 

made significant progress in wheel-rail matching and profile 

optimization design. They have proposed numerous new 

methods for deriving optimal wheel-rail profiles, which aim to 

enhance railroad systems' performance, safety, and efficiency. 

For instance, Lin et al.1developed and established  

a numerical calculation method for the rail grinding mode in the 

GMC96 rail grinding train. This method considers the rail's 

grinding target profile and each grinding stone's grinding 

capacity. It includes calculations for the appropriate grinding 

angle and grinding power for each grinding stone. Li et al. 

2focused on accurately predicting rail wear to optimize wheel-

rail profiles and the rail grinding cycle. This was achieved by 

introducing a numerical model predicting rail wear as the total 

passing weight increases. Wang et al.3presented a rail profile 

optimization method that considers the wear rate over the design 

cycle. The objective is to minimize rail wear in curves on large 

freight tracks and extend the life of the rails. In order to facilitate 

the modification of the target profile, Zeng et al.4 utilized non-

uniform rational B-spline curves in the asymmetric grinding 

region to establish a parametric model of the rail head curve. 

Liang et al.5proposed an algorithm to estimate the rail profile 

using the vehicle's vertical acceleration resulting from train-rail 

dynamics interaction. Based on actual speed and energy data 

collected from a real urban rail system, Huang et al.6proposed 

a data-driven model and a comprehensive heuristic algorithm 

based on machine learning. This model aims to determine the 

optimal speed profile with minimum energy consumption. Ye et 

al.7proposed a method that combines the regression capability 

of the Kriging Surrogate Model (KSM) with the iterative 

computational power of particle swarm optimization (PSO). 

This approach allows for quick and reliable profile optimization. 

In order to reduce rail wear and achieve sustainable 

transportation, Jiang et al.8proposed an approach that combines 

artificial neural networks (ANN) and genetic algorithms (GA) 

for track contour optimization. Pacheco et al.9 introduced a 

methodology for developing optimal railway wheel profiles by 

considering their rolling contact fatigue (RCF) and wear 

performance. Qi et al.10 introduced a novel Gaussian Function 

Correction (GFC) method for designing  

a new rail profile. This method incorporates two parameters to 

control the wear region. The Kriging Surrogate Model (KSM) 

is used to reduce the number of simulations, and the Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) is 

employed to optimize the rail profile. Lin et al.11 developed a 

rail profile curve reconstruction method based on the theory of 

NURBS curves. Additionally, they proposed an economical 

grinding design method for rail profiles in freight railroads 

based on the Archard wear computation model. Shi et al.12 

introduced a technique whereby two fixed and multiple 

movable points were strategically positioned on the rail profile. 

The NURBS method was then utilized to generate a novel 

profile. Zhai et al.13developed an asymmetric design for the 

inner and outer rail profiles of the 600 m curve on the China 

Shuohuang heavy load line. Subsequently, the operational 

performance of the rail profile was tested, resulting in  

a reduction of 30%-40% in wear on the curve side. Mao et al. 

14introduced an inverse design approach that utilizes the ideal 

rolling radii difference (RRD) function to optimize rail grinding 

profiles.  

This study utilizes the dynamic time regularization (DTW) 

algorithm to select representative profiles from rail wear 

profiles for design optimization to optimize rail grinding target 

profiles. Traditional methods often only focus on the initial 

profile and overlook the evolution of wheel profiles due to 

wear[15-23]. An optimization mathematical model considering 

the evolution of wheel profile wear is employed to address this 

limitation, along with introducing adaptive weight adjustment 

factors to mitigate the subjective influence of the multi-

objective function weights. 

Currently, most multi-objective optimization algorithms are 

based on genetic algorithms (GA), with the non-dominated 

sorting genetic algorithm II (NSGA-II) being a commonly used 

method. However, traditional NSGA-II requires significant 

computational resources when tackling complex combinatorial 

optimization problems, especially with large search spaces. In 

order to enhance solution efficiency and accuracy, this study 

adopts the hybrid TS-NSGAII algorithm, which combines the 

strengths of different algorithms. This approach allows for more 

efficient problem space exploration, population diversity 

maintenance, local optima avoidance, and improved 
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approximation of the Pareto frontier. 

 

Fig.1. Flowchart of the wheel profile optimization process. 

2. Multi-objective optimization design method of wheel 

profile 

2.1. Profile Optimization Procedure 

The multi-objective optimization design method for rail profiles 

comprises six main modules, as illustrated in Fig. 

(1) Wear characteristics analysis and representative profile 

selection module: This module involves tracking measurements 

of rail profile wear in the test section, analyzing the wear range 

and characteristics of the profile, and utilizing the dynamic time 

adjustment algorithm to select the representative worn profile 

as the initial population from the measured rail wear profile. 

(2) Profile generation module: This module determines the 

optimization design range based on the wear characteristics 

analysis, selects the mathematical expression form of the wheel 

profile as the design variable, and determines the value range of 

each design variable. Using MATLAB software, the design 

variables are used as inputs, and the discrete points of wheel 

profiles are generated as outputs to create new wheel profiles. 

(3) Dynamics simulation module: This module utilizes 

SIMPACK software to establish a vehicle dynamics model, 

which calculates the samples' objective function values and 

constraint function values. The accuracy of the model is verified 

based on the measured data. An agent model is also established 

using the radial basis function (RBF) as an approximate 

mathematical model. This model utilizes the sample parameters, 

objective function, and constraint function values to conduct 

fast and efficient dynamics simulations. 

(4) Rail Profile Update Module: In this module, the results 

of the kinetic simulation are used to evaluate the incremental 

wear depth within the wheel-rail contact zone. The wear depth 

is then mapped onto the profile to update the rail profile. 

(5) Multi-objective Optimization Module: This module 

selects the predicted wheel wear, grinding removal amount, and 

the axle transverse force as the optimization objective functions. 

It also incorporates the tipping coefficient, derailment 

coefficient, and curve tread geometric constraints as the 

constraint functions. This module establishes a multi-objective 

optimization approach that considers the evolution of wheel 

profile wear. 

(6) Solver module: The TS-NSGA-II algorithm is utilized in 

this module to solve the multi-objective optimization problem. 

New populations are generated for the next iteration through 

global+local search, selection, mutation, and crossover 

operations. Modules (2) to (6) are repeated until the iteration-

stopping conditions are met, resulting in the Optimal optimized 

profiles. 

2.2. Analysis of rail wear characteristics and extraction of 

representative worn profiles 

2.2.1. Measurement of rail wear profiles 

For the Metro Line 1 system in Nanchang, China, a section of 

heavily worn curved tracks was selected for detailed field rail 

measurements. This curved section is located in a vital part of 

the metro network, approximately 1 km from the city center 

interchange station. The interchange station is a key node 

connecting various areas and belongs to a high-traffic zone. 

Consequently, this area experiences frequent train movements, 

necessitating regular maintenance and inspections to ensure 

smooth train operation and passenger safety. We utilized the 

Rail Profile Gauge for continuous and digital measurements to 

obtain crucial data regarding the rail wear profile. We carefully 

chose several measurement points within this specific curved 

area, considering the curve's radius, height, and angle. Nine 
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measurement points were established to cover the entire curve 

section and obtain detailed data about rail wear profiles. There 

were 36 measurements for each rail, resulting in  

a comprehensive analysis. 

During the rail measurements, data regarding side wear, 

gauge angle wear, and vertical wear of the rail were acquired 

(refer to Fig. 2). Since this was a curved section, particular 

attention was given to side wear and gauge angle wear, which 

typically occur as trains navigate curves (refer to Table 1). 

By analyzing the measured wear data of the low and high 

rails, it can be learned from Fig.3 that the maximum depth of 

vertical wear of both the low and high rails is less than 2.0mm. 

The low rail primarily experiences top wear within the range of 

[-25, 30 mm], with wear values ranging from 0.64 mm to 1.07 

mm. On the other hand, the wear range of the high rail is mainly 

distributed within the interval of [-1,34mm]. Compared to the 

low rail, the high rail exhibits more severe lateral and gauge 

angle wear, with maximum wear depths reaching 4.915 mm and 

4.144 mm, respectively. This can be attributed to the greater 

wheel-rail lateral force exerted on the high rail in the small 

radius curve section, making it more susceptible to wear and 

fatigue. Conversely, the low rail experiences less wheel-rail 

lateral force, resulting in relatively lower levels of wear and 

deformation. 

 

Fig.2. Schematic of rail wear measurement. 

 

 

 

 

 

Table1  Partial low and high rail wear data 

Position Low rail wear（mm） High rail wear（mm） 

Point W1 W2 W3 W1 W2 W3 

1 0.124 0.951 0.863 0.215 3.592 3.456 

2 0.067 0.794 0.592 0.075 2.284 2.614 

3 0.227 1.053 0.777 0.006 2.290 2.796 

4 0.042 0.810 0.811 0.061 2.025 2.736 

5 0.179 0.888 1.126 0.125 2.410 3.571 

6 0.161 0.928 1.155 0.161 2.159 2.630 

7 0.126 0.935 0.740 0.214 2.170 3.498 

8 0.099 0.874 0.708 0.043 2.526 3.602 

9 0.143 0.905 0.859 0.172 5.062 4.061 

 

 

b） Low rail 

 

b） High rail 

Fig.3. Measured worn rail profile for the curve segment. 

2.2.2. Representative Profile Selection based on Dynamic 

Time Warping (DTW) Algorithm 

The Dynamic Time Warping (DTW) algorithm is used to assess 

the similarity between two-time series and is particularly 

effective for analyzing irregularly aligned time series data24. A 

non-linear mapping can be applied to capture their similarity 

when comparing two-time series, X and Y. Fig.4 illustrates an 

example of such a mapping. 
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Fig.4. Alignment between two sequences X and Y. 

In this study, a significant amount of rail profile data will be 

collected from various cross-section locations and used as input 

data. The Dynamic Time Warping (DTW) algorithm will 

calculate the DTW distance between different profiles. This 

distance calculation allows for identifying the most similar 

profile to serve as a representative example. The following steps 

and associated formulas outline the methodology: 

Step 1: Data formatting and standardization 

Firstly, the collected data should be organized into a uniform 

format. Each profile should be represented by an equal number 

of data points, denoted as N, to facilitate subsequent 

calculations. Data formatting can be accomplished using data 

processing tools or scripts. Additionally, it is important to 

standardize the data to ensure that the scale or units do not affect 

the DTW distance calculations. Standardization may involve 

translating, scaling, or rotating the data to establish a consistent 

reference point or coordinate system. 

The wear profile data comprises m profiles, each consisting 

of n 2D XY axis data points that form a time series. 

𝑋1 = {(𝑥11, 𝑦11), (𝑥12, 𝑦12), … , (𝑥1𝑛 , 𝑦1𝑛)}

𝑋2 = {(𝑥21, 𝑦21), (𝑥22, 𝑦22), … , (𝑥2𝑛 , 𝑦2𝑛)}

⬚
 𝑋𝑚 = {(𝑥𝑚1, 𝑦𝑚1), (𝑥𝑚2, 𝑦𝑚2), … , (𝑥𝑚𝑛 , 𝑦𝑚𝑛)}

 （1） 

Step 2: Dynamic Planning Calculation 

The Dynamic Time Warping (DTW) algorithm is utilized to 

compute the DTW distances between each pair of profiles, 

enabling the identification of the most similar profiles for 

subsequent selection as representative examples. 

(1) Initializing the Local Distance Matrix: 

A Local Distance Matrix (LDM) of size n×n is initialized to 

store the local distances between two profiles, where n 

represents the length of the time series. 

Using the chosen Euclidean distance metric, the distance 

between each profile i and profile j data point is calculated, 

populating the local distance matrix. The formula for 

calculating the local distance matrix (denoted as d) is as follows: 

𝐿𝐷𝑀𝑖,𝑗(𝑘, 𝑙) = 𝑑((𝑥1𝑘 , 𝑦1𝑘), (𝑥2𝑘 , 𝑦2𝑘))  （2） 

Where LDMi,j(k,l) represents the elements of the local distance 

matrix, indicating the distance or similarity measure between 

the kth data point of profile i and the lth data point of profile j. 

The Accumulated Distance Matrix (ADM) is then generated to 

compute the accumulated distance. Initialization of the 

Accumulated Distance Matrix: 

An n×n ADM is created, with the first row and column 

initialized to initial distance values. These initial distances 

represent the cumulative distances from the starting point to 

each data point. The formula for initializing the cumulative 

distance matrix (denoted as D) is as follows: 

𝐴𝐷𝑀𝑖,𝑗(0,0) = 𝐿𝐷𝑀𝑖,𝑗(0,0)𝐴𝐷𝑀𝑖,𝑗(𝑘, 0) =

𝐿𝐷𝑀𝑖,𝑗(𝑘, 0) + 𝐴𝐷𝑀𝑖,𝑗(𝑘 −

1,0), 𝑓𝑜𝑟𝑘 = 1,2, . . . , 𝑛 − 1 ⬚𝐴𝐷𝑀𝑖,𝑗(0, 𝑙) = 𝐿𝐷𝑀𝑖,𝑗(0, 𝑙) +

                   𝐴𝐷𝑀𝑖,𝑗(0, 𝑙 − 1), 𝑓𝑜𝑟𝑘 = 1,2, . . . , 𝑛 − 1 ⬚ （3） 

These initialization values represent the cumulative distance 

from the starting point to each data point. 

(2)The cumulative distance is calculated using dynamic 

programming: 

Beginning with ADMi,j(1,1), the remaining elements of the 

cumulative distance matrix are computed using the following 

update formula: 

𝐴𝐷𝑀𝑖,𝑗(𝑘, 𝑙) = 𝐿𝐷𝑀𝑖,𝑗(𝑘, 𝑙) +

                 𝑚𝑖𝑛 {
𝐴𝐷𝑀𝑖,𝑗(𝑘 − 1, 𝑙), 𝐴𝐷𝑀𝑖,𝑗(𝑘, 𝑙 − 1),

𝐴𝐷𝑀𝑖,𝑗(𝑘 − 1, 𝑙 − 1)
}         （4） 

The main function in the equation selects the smallest value 

among the three neighbouring elements: one above, one to the 

left, and one diagonally above to the left. This minimum value 

is then added to the corresponding element in the current local 

distance matrix. 

(3) Calculate DTW distance: 

The DTW distance is determined by the lower right element 

of the cumulative distance matrix, which quantifies the DTW 

distance between profile i and profile j. The calculation of the 

DTW distance is as follows: 
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𝐷𝑇𝑀𝑖,𝑗 = 𝐴𝐷𝑀𝑖,𝑗(𝑛 − 1, 𝑛 − 1) （5） 

The dynamic programming process involves the calculation 

of the DTW distance between two-time series using a local 

distance matrix and a cumulative distance matrix. Dynamic 

programming enables the capture of similarity between 

different time series, with smaller DTW distances indicating 

greater similarity. 

Based on the calculated DTW distances, an m×m distance 

matrix is constructed, where the elements in the ith row and jth 

column represent the DTW distance between the ith type profile 

and the jth type profile. 

 

Step 3: Selection of representative typefaces 

In Step 2, we computed the DTW distances between each 

facet and all other facets. Step 3 selects the facet with the 

smallest average DTW distance as the representative facet. This 

facet exhibits the highest overall similarity to the other facets. 

The average DTW distance is calculated using the following 

formula: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑇𝑀𝑖 =
∑ 𝐷𝑇𝑀𝑖,𝑗𝑖≠𝑗

𝑚−1
  （6） 

AverageDTWi represents the average DTW distance of 

profile i, and DTWi j represents the DTW distance between 

profile i and profile j. By selecting the profile with the smallest 

average DTW distance, we can capture the rail wear 

characteristics that best represent the entire group of profiles. 

The samples X =(x1, x2, x3, x4) with the smallest average DTW 

distances, ranked 1-4, are chosen as representative typical wear 

profiles for the initial population in the optimization design. 

2.3. Mathematical modeling of rail profiles 

Typical rail profiles, both domestically and internationally, are 

typically composed of arcs and straight lines. The wheel-rail 

contact area is primarily concentrated in the rail head region. 

Therefore, optimizing the design of the arc segments within the 

high rail head becomes crucial. Initially, the rail's optimization 

region is determined based on the wheel-rail contact area. The 

boundary points p1 (xp1, yp1) and p5 (xp5, yp5) are fixed, with their 

respective tangent slopes kp1 and kp5. 

To optimize the contour curve within the region, a 4-

segment continuous tangent arc approach is employed, denoted 

as arcs 1 to 4. The coordinates of the center of each arc are O1 

(xO1, yO1) to O4 (xO4, yO4), and the radii of the arcs are R1 to R4. 

Additionally, the points of tangency for the four arcs are p2 (xp2, 

yp2) to p4 (xp4, yp4). The geometric relationship of each 

parameter in the contour can be deduced using analytic 

geometry formulas. 

By employing these mathematical formulas, optimizing the 

rail profile's contour can be accurately determined, allowing for 

improved design and performance of railway tracks. 

 

Fig.5. The geometric expression of the rail profile. 

1）Calculation of the center coordinates of circle arc 1: 

To determine the center coordinates of circle arc 1, we can 

calculate them using the known point p1 and the given radius R1. 

First, we need to calculate the angle a between the tangent line 

at p1 and the horizontal line. Then, we can use this angle to 

calculate the center circle's center coordinates. 

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛( |𝑘𝑝1|)   （7） 

 Since arc 1 is tangent to the fixed point p1, the center 

coordinates of the circle O1 can be determined as follows: 

{
𝑥01 = 𝑥𝑝1 − 𝑅1 𝑠𝑖𝑛( 𝛼)

𝑦01 = 𝑦𝑝1 − 𝑅1 𝑠𝑖𝑛( 𝛼)
  （8） 

2）Calculation of the vertical coordinates of the tangent 

point of arc 2: 

The longitudinal coordinate yp2 of the tangent point of arc 

two can be calculated using the coordinates and radius of the 

center of arc 1, along with the transverse coordinates xp2 of the 

adjacent arc 2. 

𝑦𝑝2
= 𝑦𝑜1

+ √𝑅1
2 − (𝑥𝑝2

− 𝑥𝑜1
)

2
  （9） 

3）Calculation of the center coordinates of circle arc 2: 

The center coordinates of circle arc 2, denoted as O2, can be 

computed using the slope k12 and intercept b12 of the line 

connecting the tangent point p2 to the center of circle O1, along 

with the known longitudinal coordinates of the tangent point p2. 
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𝑘12 = (𝑦𝑝2 − 𝑦𝑜1)/(𝑥𝑝2 − 𝑥𝑜1)

𝑏12 = −𝑘12𝑥𝑜1 + 𝑦𝑜1

𝑦𝑜2 = 𝑘12𝑥𝑜2 + 𝑏12

     （10） 

4）Determination of parameters associated with Arc Three 

and Arc 4: 

Following a similar approach, we can calculate the 

longitudinal coordinates yp3 and yp4 of the tangent points of arc 

three and arc four and the coordinates of the centers of the 

circles O3 and O4. 

5）Determination of the longitudinal coordinates of the 

fixed point p5: 

Finally, we must ensure that the fixed point p5 lies on Arc 4. 

By calculating the ordinate yO4 of the center O4 and the radius 

R4 of Arc 4, we can determine the ordinate of p5. 

𝑘34 = (𝑦𝑝4
− 𝑦𝑜3

) (𝑥𝑝4
− 𝑥𝑜3

)⁄ 𝑏34 = −𝑘34𝑥𝑜3
+ 𝑦𝑜3

𝑦𝑜4
=

𝑘34𝑥𝑜4 + 𝑏34𝑅4 = √(𝑥𝑝5
− 𝑥𝑜4

)
2

+ (𝑦𝑝5
− 𝑦𝑜4

)
2

     （11） 

In this manner, we obtain the design variables and related 

formulas for the contour curve of the rail within the optimized 

region. The contour curve within the optimized region can be 

described by the following parameters: the radii of the arcs (R1, 

R2, R3), representing the radii of the four consecutive tangent 

segments of the arc, and the horizontal coordinates of the 

tangent points (xp2, xp3, xp4), indicating the positions of the 

tangent points in the horizontal direction. Therefore, the design 

variables can be defined as ds=(R1, R2, R3, xp2, xp3, xp4). 

Adjusting these variables can optimize the track design to meet 

specific engineering requirements or performance 

specifications. 

The 4-segment tangent arc Gi can be expressed as: 

𝐺𝑖 = 𝑔𝑖(𝑑𝑠)   （12） 

Where gi(ds) (i = 1, 2, 3, 4) represents the analytical equation of 

the circular arc segment i. 

The rail profile curve Gr within the optimized region can be 

expressed as: 

𝐺𝑟 = 𝑔𝑟(𝑑𝑠)   （13） 

Where gr(ds) represents the analytical equation of the circular 

arc within the optimized region. 

Since the rail with a small radius curve adopts asymmetric 

grinding, the grinding parameters of the high and low rails are 

not the same. Therefore, the design variables of the high and 

low rails need to be optimized separately. The model variables 

can be expressed as: 

Since the small radius curve rail adopts asymmetric grinding, 

the grinding parameters for the high and low rails are not the 

same. Therefore, the design variables for the high and low rails 

need to be optimized separately. Thus, the model variables can 

be expressed as follows: 

𝑑 = (𝑑𝑠ℎ , 𝑑𝑠𝑙)   （14） 

Where dsh and dsl are the design variables for the high and low 

rails, respectively. 

2.4. Optimize the mathematical model 

The wheel profile optimization problem can be described as 

optimizing the design variables d=(R1, R2, R3, xp2, xp3, xp4). The 

optimization model can be expressed as follows: 

{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒：𝐽𝑖(𝐝)⬚ ⬚ ⬚ ⬚𝑖 = 1 ⋯ 2

Subject to ∶  𝐺𝑗(𝐝)  ≤ 𝐺0(𝐝)⬚𝑗 = 1 ⋯ 3

𝐝𝑊 ≤ 𝐝 ≤ 𝐝𝐿

 （15） 

Ji(d) represents the objective function, and Gi(d) satisfies the 

inequality constraints of the safety criterion. The upper and 

lower bounds of the design variables are dw and dL, respectively. 

2.4.1. Objective function 

(1) Cumulative wear amount 

The prediction of rail profile wear is conducted using the wear 

index-based wear model proposed by BRAGHIN 25. To 

determine the wear coefficients in the rail wear modeling 

process, we refer to the Tγ/A wear rate function of our CL60 

wheel material matched with U71Mn rail material26. The 

analytical expression of the wear rate function is as follows: 

𝐾𝑩 = {

3.58𝐼𝒘⬚ ⬚ ⬚ 𝐼𝒘＜5

17.9                ⬚5 ≤ 𝐼𝒘 ≤

12.3𝐼𝒘 − 228⬚ 𝐼𝒘＞20

20  (16)  

Where KB/[µg/(m·mm2)] is the wear rate of the material when 

rolling unit distance per unit contact area; Iw/(N/mm2 ) is the 

friction work in the unit cell area within the contact patch; Iw 

can be estimated by the wear index: 

𝐼𝑤(𝑥𝑖 , 𝑦𝑗) = 𝑇𝑖𝑗𝛾𝑖𝑗 𝐴𝑖𝑗
⁄ = 𝑝(𝑥𝑖 , 𝑦𝑗) ⋅ 𝛾(𝑥𝑖 , 𝑦𝑗) (17) 

Where P(xi,yj) represents the magnitude of tangential stress and 

(xi,yj) denotes the creep-slip displacement within each cell (xi,yj) 

in the contact patch. 

The contact area is discretized, as shown in Fig. 6, to 

evaluate the loss of wheel material. The incremental wear depth 

is then calculated individually for each cell (xi,yj) within a given 
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time step t, as shown in Eq. 18. 

Δ𝑍𝑤(𝑥𝑖 , 𝑦𝑗) = 𝐾𝑤 ⋅
𝑉Δ𝑡

𝜌
          (18) 

Where 、V and Kw represent the material density, travel speed, 

and wear rate functions, respectively, after determining the wear 

depth at each cell, the wear depth in a non-rotating planar 

coordinate system can be defined. Eq.19 integrates over the 

longitudinal axis of the contact area from -a(yj) to a(yj) and then 

averages the values along the wheel's circumference. This 

allows for the prediction of the wear of a single cross-section of 

the wheel at y= yj as follows: 

Δ�̄�𝑤(𝑦𝑗) =
1

2𝜋𝑟(𝑦𝑗)
⋅

𝑉Δ𝑡

𝜌
⋅ ∫ 𝐾𝑤

𝑎(𝑦𝑗)

−𝑎(𝑦𝑗)
⋅ 𝑑𝑥       (19) 

According to the transverse displacement distribution of the 

wheel contact points during the dynamic simulation, the wear at 

all contact spots can be superimposed to obtain the total rail 

wear amount. The formula for calculating the wheel wear 

amount is as follows: 

𝐽1(𝐝) = 𝜔 ⋅
ℎ

2𝜋𝑟
⋅ ∫ Δ�̄�𝑤(𝑦𝑗)

𝑡𝑒

𝑡𝑠
⋅

𝑉Δ𝑡

𝜌
 (20) 

Where  is the amplification factor,r represents the radius 

of the wheel rolling circle, ts is the start time of the simulation 

calculation, he is the end time, and h represents the spacing 

between the sampling points. The contact spot parameter 

information is collected once every h sampling point during the 

dynamic simulation. When the wheel completes one full 

rotation, 2πR/h contact spots are obtained. Since the same part 

of the wheel only contacts once during one rotation, the 

calculated wheel wear is divided by 2πR/h, and the wear of all 

contact spots obtained from one rotation is averaged into one 

contact spot wear. 

 

Fig. 6. Discretization of contact patch for slip evaluation. 

The wear of the rail profile gradually changes with the 

increase in the number of train passes, known as wear evolution. 

Simulating this wear evolution process in numerical simulation 

is challenging. Based on the actual situation of the metro, the 

length of operation will be 17 hours per day, and the number of 

calculated trips will be increased during the peak period so that 

approximately 300 trips will be operated per day. The annual 

train throughput is estimated to be 90 million passes based on 

calculations for 8-car trains. In the simulation calculation, the 

updated passing amount for the rail profile is set to 75,000 

passes, and the total simulated passing amount is set to 90 

million passes. After each calculation of rail wear, the wear 

distribution is smoothed, and the profile is updated according to 

the updated strategy until it reaches the preset passing volume. 

The rail wear prediction process involves multiple profile 

updates to account for changes in the geometry of the rail profile, 

allowing for the automatic consideration of wear evolution in 

the optimization process. 

(2) Amount of Rail Grinding Removal 

𝑊 |∫ 𝑔𝑙−𝑤ear(𝑥)𝑑𝑥
𝑏

𝑎

− ∫ 𝑔𝑙−𝑜𝑝𝑡(𝑥)𝑑𝑥
𝑏

𝑎

|
𝑚𝑖𝑛

 

+𝛽 |∫ 𝑔ℎ−𝑤ear(𝑥)𝑑𝑥
𝑏

𝑎
− ∫ 𝑔ℎ−𝑜𝑝𝑡(𝑥)𝑑𝑥

𝑏

𝑎
|               (21) 

Wmin represents the difference between the area of the worn 

profile and the optimized profile, indicating the amount of rail 

grinding. gl-wear(x) and gh-wear(x) are the typical worn 

representative profile curve equations for the low and high rails. 

After optimization, gl-opt (x) and gh-opt(x) are the low and high 

rail profile curve equations. a and b represent the left and right 

boundaries of the optimized region of the rail profile, i.e., the 

fixed points on the left and right sides of the optimized region. 

α and β are the weighting coefficients for rail grinding. Based 

on engineering experience in rail grinding and maintenance 

processes, α=0.4 and β=0.6 are used in the calculation. 

(3) Wheelset lateral force 

Wheelset lateral force is a crucial parameter for assessing 

the stability and safety of the rail system. It plays a significant 

role in ensuring smooth train operations and passenger safety. 

By employing appropriate wheel and rail profile designs, the 

magnitude of the wheelset lateral force can be effectively 

minimized, thereby enhancing the safety and reliability of the 

railroad system. The objective function for the wheelset lateral 

force is expressed as follows: 

𝐶𝑖 = max（|𝑄𝑖 𝑤
− 𝑄𝑖𝑛

|）  (22) 
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Ｑih and Ｑil are the transverse forces of the high and low 

rails, respectively. 

(4) Comprehensive Objective Function 

1） Normalization of objective function values: 

To enable comparison between objective function values, it 

is necessary to normalize each value between 0 and 1. Let Ji(d) 

represent the value of the ith objective function. The normalized 

objective function value can be calculated as follows: 

𝐽𝑖
′（𝑑） =

𝐽𝑖（𝑑）−𝐽𝑑𝑚𝑖𝑛

𝐽𝑑𝑑𝑚𝑖𝑛𝑚𝑎𝑥

  (23) 

Jmin(d) is the minimum value of the ith objective function, 

and Jmax(d) is the maximum value. 

2）Fitness Function 

The fitness value of a solution is determined by calculating 

a weighted sum of the normalized objective function values. 

The fitness function can be expressed as: 

𝐹 = ∑ 𝜆𝑗 ⋅ 𝐽𝑖
′𝑚

𝑗=1 (𝑑)   (24) 

Where λj represents the weighting factor for the jth objective 

function. 

3)Dynamic update of weight adjustment coefficients: 

An adaptive weight adjustment coefficient is introduced to 

consider the impact of wheel profile changes on each 

optimization objective. The weight adjustment factor λj is 

updated based on the performance of the solutions in the 

population during the evolutionary process, specifically the 

proportion of better solutions. 

Let N represent the total number of solutions and m denote 

the number of objective functions in the population. For the ith 

solution, the value of the normalization function under the jth 

objective function is Fij. The weight adjustment factor λi for the 

jth objective function can be updated using the following 

equation: 

𝜆𝑗 =
∑ 𝐹𝑖𝑗

𝑁
𝑖=1

∑ ∑ 𝐹𝑖𝑗
𝑁
𝑖=1

𝑚
𝑗=1

                      (25) 

Where the weight adjustment factor depends on the relative 

proportion of the normalization function values of each solution 

in the entire population, objectives with higher normalization 

function values will have higher proportions in the weights, 

making them more likely to be retained or selected in the next 

generation of solutions. 

By employing this adaptive weight adjustment method, the 

algorithm can dynamically adjust the weights of the objective 

functions during the search process, better adapting to the 

problem’s characteristics. This adaptive weight adjustment 

during the evolutionary process improves the algorithm’s 

performance and convergence speed. 

2.4.2. Constraints 

(1) Coefficient of overturning 

In the analysis of train overturning stability, the coefficient of 

overturning is a critical engineering parameter. It measures the 

train’s ability to remain stable when subjected to external 

moments, such as side winds or changes in curve radius, during 

travel. A smaller overturning coefficient indicates a lower 

likelihood of train overturning and better stability. The 

calculation formula for the overturning coefficient is as follows: 

𝐺3（𝑃） = 𝜂 =
∑ 𝑄𝑖𝐴−𝑄𝑖𝐵

∑ 𝑄𝑖𝐴+𝑄𝑖𝐵
≤ 0.8  (26)  

In the formula, QiA and QiB sum the wheel-rail normal forces 

for the high and low rails, respectively. 

(2) Derailment Coefficient 

𝑌

𝑄
=

𝒕𝒂𝒏 𝛼−𝜇

1+𝜇 𝒕𝒂𝒏 𝛼
             （27） 

The ratio between the lateral and vertical forces (Y/Q) is 

often used to indicate the track's mass and reflects the vehicle's 

safety based on its dynamic behavior. In the Nadel formula,  

ɑ represents the wheel flange angle, μ is the friction factor 

between the wheel and rail, and Y and Q represent the lateral 

and vertical forces, respectively. The Nadel formula illustrates 

the relationship between the lateral and vertical forces that can 

be transmitted to the rail without causing derailment. 

(3) Geometric Constraints of Curve Tread 

The optimized design uses the CN60 and measured profiles 

with maximum wear as boundary constraints. The constraint 

function is defined as follows: 

𝑓𝑑(𝑦𝑖) ≤ 𝑦𝑖 ≤ 𝑓𝑢(𝑦𝑖)⬚ 𝑖 ∈ (1,2, ⋯ ,8)  (28) 

fd(yi) represents the maximum wear profile, and fu(yi) 

represents the CN60 rail profile. Considering the contact 

characteristics between the wheel and rail, the wheel-rail 

contact region, which is also the optimization region, should be 

defined as a convex curve. Since the rail profile exhibits the 

characteristics of a convex curve, the slopes between two 

adjacent points are expected to increase monotonically and 

continuously. Therefore, these slopes should be constrained 

according to the position of each control point to ensure the 
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generation of effective profiles during the optimization process. 

This constraint reduces the computational time and ensures the 

production of desirable profiles. The constraint function can be 

expressed as follows: 

(
𝑧𝑗−𝑧𝑗−1

𝑦𝑗−𝑦𝑗−1
) (

𝑧𝑗+1−𝑧𝑗

𝑦𝑗+1−𝑦𝑗
)⁄ ≤ 1(𝑗 = 2,2, ⋯ , 𝑁𝑚𝑜𝑣 − 1)

(𝑧1 − 𝑧𝑎) (𝑦1 − 𝑧𝑎) ≥ 𝑆𝑎⁄

(𝑧𝑏 − 𝑧𝑁mov
) (𝑦𝑏 − 𝑦𝑁mov

) ≤ 𝑆𝑏⁄

  （29） 

Sa and Sb represent the slopes of the fixed points at both ends 

of the optimization region. 

2.5. Dynamics Simulation Model 

2.5.1. Vehicle Dynamics model 

In the dynamics software SIMPACK, a dynamics model of  

a Chinese A-type subway train is constructed. The vehicle 

consists of 4 wheelsets, eight axle boxes, two frames, and one 

body. The axleboxes have only one rotational degree of freedom, 

while the other rigid bodies have 6 degrees of freedom, resulting 

in 50 degrees of freedom in the model. Table 2 shows some 

parameters of the vehicle system. The line parameters include  

a curve radius of 800 m, a front and rear straight section length 

of 100 m each, a gentle curve section length of 65 m, a track 

height of 0.03 m, a curve section length of 280 m, and a total 

line length of 610 m. The measured track unevenness NC50 is 

imposed on the entire section throughout the simulation. The 

LM wheel profile is used. 

Table 2. Parameters of Type A Subway Trains. 

Vehicle model number AW3 

Vehicle Body Mass/kg 50650 

Chassis Mass/kg 2800 

Wheelset Mass/kg 1140 

Vehicle Fixed Distance/m 15.7 

Wheelbase/m 2.5 

Rolling Diameter of Wheels/m 0.84 

Longitudinal Stiffness of One Series of Steel 

Springs/ (MN/m) 
1.4 

Lateral Stiffness of One Series of Steel 

Springs/ (MN/m) 
1.4 

Vertical Stiffness of One Series of Steel 

Springs/ (MN/m) 
1.1 

Longitudinal Stiffness of Axle Box Pivot 

Node/ (MN/m) 
12 

Lateral Stiffness of Axle Box Pivot Node/ 

(MN/m) 
2.5 

Longitudinal Stiffness of Air Spring/ 0.12 

(MN/m) 

Lateral Stiffness of Air Spring/ (MN/m) 0.12 

Vertical Stiffness of Air Spring/ (MN/m) 0.25 

2.5.2. Model Validation  

To ensure the accuracy of the multi-body dynamics model of the 

train, we collected lateral acceleration data of the Type  

A subway train’s car body in the test section. Virtual simulations 

of the dynamics model were conducted using SIMPACK 

software, considering the actual working conditions. In the 

numerical simulation, we used the actual measured rail wear 

data and a NURBS curve fitting function formula as inputs to 

obtain the numerical results of the car body’s transverse 

acceleration. These results were then compared and analyzed 

against the test results. 

As shown in Fig.7, the test results indicate that the lateral 

acceleration of the car body is slightly higher than the 

simulation results. However, the two are generally consistent. 

This can be attributed to the fact that the uneven power spectrum 

used in the simulation is based on the measured NC50 uneven 

spectrum, which closely resembles the actual track unevenness. 

Consequently, the test data and model data exhibit a closer 

match. It should be noted that the dynamic model does not 

consider the flexible deformation of key rail components such 

as rails, fasteners, and sleepers. Therefore, there is still some 

disparity between the simulation and measured data. 

Nonetheless, the model's calculations closely align with the line 

test results, indicating that the dynamic model accurately 

simulates the vehicle's dynamic performance. 

 

Fig. 7. Comparison between simulated and measured lateral 

acceleration of the car body 
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2.5.3. Proxy Model 

To simulate the dynamic performance of tens of thousands of 

wheel profiles and obtain optimal designs, traditional vehicle 

dynamics simulation software is often time-consuming and 

resource-intensive, making large-scale simulations impractical. 

In order to address this issue, a proxy model is employed to 

approximate the simulation results, reducing computational 

costs and improving design space search efficiency. This study 

chooses Radial Basis Functions (RBFs) as the approximate 

mathematical model among various proxy models. RBFs can 

accurately model arbitrary functions and excel in handling 

complex design spaces, multivariate relationships, and 

nonlinearities27. RBF is relatively straightforward to 

implement compared to other models such as Kriging, neural 

networks, and multivariate adaptive regression spline. 

Therefore, this paper uses the RBF proxy model to establish the 

mapping relationship between design variables and the 

objective function for wheel profile optimization design. 

To ensure the proxy model's computational accuracy, the 

Latin hypercubic sampling method is employed for the 

experimental design of the optimization variables and 

parametric analysis of the experimental results. This method 

allows efficient optimization of wheel profiles, and approximate 

results can be obtained within a shorter timeframe. 

Initially, the initial parameters are defined, and the interval 

values of the objective function and its variables are determined. 

A sampling design is then performed with 100 samples for the 

optimization variables, and initial design samples are generated 

based on these variables. Subsequently, the objective function 

and constraint values are obtained using the established 

MATLAB/SIMPACK joint simulation model. Finally, an RBF 

agent model is created, and its accuracy is evaluated using three 

metrics: 

(1) R² (R-squared): R² is a measurement used to evaluate 

the goodness of fit of a proxy model to observed data. It 

quantifies the proportion of variance in the target variable that 

the model explains. 

(2) RAAE (Relative Average Absolute Error): RAAE is 

utilized to assess the proxy model's average prediction error. It 

represents the ratio of the average absolute error between the 

model's predicted values and the actual observed values relative 

to the average of the actual observed values. 

(3) RMAE (Relative Maximum Absolute Error): RMAE is 

employed to measure the maximum prediction error of the 

proxy model. It represents the ratio of the maximum absolute 

error between the model's predicted value and the actual 

observed value relative to the average value of the actual 

observed values. 

These evaluation metrics are valuable in determining the 

accuracy and reliability of the proxy model, allowing for an 

assessment of its suitability in practical applications as an 

alternative to more time-consuming simulations. Table 3 

presents the results of the three evaluation indexes, 

demonstrating the high accuracy of the proxy model and its 

effectiveness in optimizing wheel profiles. 

Table 3. Accuracy evaluation criteria for RBF surrogate models. 

Objective and constraint 

functions 
R2 RAAE RMAE 

Cumulative wear amount 0.980 0.138 0.316 

Grinding removal 

amount 
0.994 0.116 0.289 

Wheelset Lateral force 0.974 0.136 0.344 

Derailment coefficient 0.984 0.127 0.320 

Coefficient of 

overturning 

0.972 0.135 0.342 

2.6. TS-NSGA-II optimization algorithm 

NSGA-II is known for its excellent global search capabilities 

but is weak in local search and susceptible to falling into local 

optima28. Taboo Search (TS), a widely used meta-heuristic 

algorithm, is employed to overcome this limitation. TS can 

explore unexplored regions of the search space and prevent 

repetitive visits to the same solutions by utilizing a taboo table 

memory structure. By iteratively moving from the current 

solution to a more optimal one, TS-NSGA-II enhances the 

localized search capabilities of NSGA-II, resulting in improved 

performance and convergence characteristics. The algorithm 

flow of TS-NSGA-II is depicted in Figure 8. 

Similar to NSGA-II, TS-NSGA-II utilizes fast, non-

dominated ordering to classify individuals in the population into 

different frontier classes and measures the densities among 

individuals using crowding distances to ensure solution 

diversity. However, TS-NSGA-II deviates from the traditional 

approach by selecting the first and second-best individuals as 

parent individuals for crossover and generating two offspring. 

After sorting the selected samples, the TS program is employed 

to find better individuals, resulting in D1 and D2. Finally, the 
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two best individuals from S1, S2, C1, C2, D1, and D2 are 

selected, and this process is repeated until a new population is 

generated. The TS algorithm requires parameter tuning, 

including setting stopping conditions, taboo table length, 

maximum number of iterations, etc. The parameter settings used 

in this study are presented in Table 4. 

Table 4. Parameter settings for TS-NSGA-II. 

Population 

size 

Iterations 

(NSGA-II) 

Crossover 

rate 

Mutation 

rate 

Iterations 

(TS ) 

Tabu list 

length 

100 100 0.9 0.1 20 50 

 

Fig.8. Population iteration and update process of the TS-

NSGA-II algorithm. 

2.7. Optimization Results 

The TS-NSGA-II algorithm is employed to optimize the design 

variables and achieve the desired objectives and constraints, 

using the RBF agent model to establish the mapping 

relationship. The NSGA-II algorithm is then utilized to obtain 

100 Pareto optimal solutions within a specific number of 

iterations. The optimization was conducted on a high-

performance workstation with an Intel Core i9 processor, 64GB 

RAM, and NVIDIA GeForce RTX 3090 graphics card. Each 

iteration, which involves stochastic operations such as 

crossover and mutation in the genetic algorithm, takes 

approximately 20 to 30 minutes to compute. The optimization 

process, including parameter setting, model training, 

optimization computation, and result analysis, takes around 2 to 

3 days to complete, based on several calibration calculations. 

The responses of the three objective functions can be observed 

in Figure 9. 

 

Fig. 9. Optimization results obtained from the TS-NSGA-II 

algorithm 

The red dots represent the Pareto frontiers obtained at the 

end of the iteration, and the weight adjustment coefficients are 

determined based on the solution set. After careful 

consideration, the 94th sample from the 100th iteration is 

selected as the final optimized solution (represented by blue 

dots). The results of the iterative calculations are presented in 

Table 5. 

Table 5. Numerical changes of the objective function and 

constraint function during the iteration process 

Number of 

iterations 

Cumulative 

Wear/mm2 

Grinding 

removal/ 

mm2 

Wheelset lateral 

force /KN 
Fitness Constraint 

20 241.38 29.51 20.68 0.97 Satisfied 

40 226.55 27.71 19.67 0.86 Satisfied 

60 213.41 26.55 18.54 0.79 Satisfied 

80 188.56 21.47 16.24 0.63 Satisfied 

100 183.76 21.13 15.94 0.60 Satisfied 

2.7.1. Analysis of Rail Grinding Removal and Wear 

Evolution 

Fig.10 illustrates the profiles before and after optimization and 

compares the amount of rail grinding removal before and after 

optimization. In order to compare the amount of rail grinding 

removal before and after optimization, the profiles are shifted 

downward to the point where there is only one tangent to the 

rail head curve, aligning them with the wear-representative 

profile. Based on Fig.10, when the CN60 profile is taken as the 

grinding target profile, the drop height of the high rail top is 2.74 
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mm, resulting in an area of rail material removal of 161.22 mm2. 

Similarly, the drop height of the low rail top is 1.72 mm, with 

an area of rail material removal of 102.81 mm2. However, when 

the optimized profile is used as the grinding target profile, the 

drop height of the high rail top is reduced to 1.62 mm, which is 

1.12 mm less than before optimization. 

Additionally, the area of rail material removal decreases to 

109.45 mm2, representing a reduction of 32.11%. Similarly, the 

drop height of the low rail top is reduced to 0.98 mm, which is 

0.65 mm less than before optimization. The area of rail material 

removal is reduced to 74.31 mm2, representing a reduction of 

27.72%. 

 

(a）High rail

 

(b）Low rail  

Fig.10. Comparison of rail grinding profile. 

Fig.11 compares rail wear on the circular curve profile 

before and after optimization at different total numbers of 

passes. When the total number of passes reaches 9×106, the 

maximum wear depth of the high rail prior to optimization is 

0.584 mm, while the maximum wear depth of the low rail is 

0.382 mm. After optimization, the wear depth of the high rail is 

reduced to 0.392 mm, representing a reduction of 32.9%. 

Similarly, the maximum wear depth of the low rail is reduced to 

0.278 mm, representing a reduction of 27.2%.In terms of 

predicted wear, the area of wear for the high rail is reduced from 

16.25 mm2 to 10.61 mm2, indicating a reduction of 34.7%. For 

the low rail, the wear area is reduced from 9.85 mm2 to 7.24 

mm2, representing a reduction of 26.4%. 

 

(a)High Rail 

 

(b)Low Rail  

Fig.11. Accumulated Wear under Different Throughput Levels. 

2.7.2. Wheel-Rail Static Contact Geometry Analysis 

Both the CN60 and Opt profiles are employed in the analysis of 

wheel-rail contact static geometry. The bottom rail slope is set 

at 1/40, and the gauge is fixed at 1435 mm. Fig.12 illustrates the 

wheel-rail contact states of the CN60 and Opt profiles matched 

with the LM rail profile. 

From the Fig, it can be observed that prior to optimization, 

the lateral displacement falls within the range of [-4 mm, -8 

mm]. This indicates the wheel-rail contact point jumping from 

the rail top region to the rail gauge angle contact region. The 

contact points on the low rail are primarily concentrated at the 

top, with additional jumps occurring in the rail gauge angle 

transition region within the range of lateral displacement [6 mm, 

10 mm]. These conditions result in concentrated wheel-rail 

contact points on the rail, leading to uneven wear of the rail and 

a reduction in the wheel-rail service life. 
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(a)High rail(CN60) 

(b)Low rail(CN60) 

 

(c)High rail(Opt) 

 

(d)Low rail(Opt) 

Fig.12. Distribution map of wheel-rail contact spots before and 

after optimization. 

After optimization, the contact points of the high rail are 

primarily located at the top of the rail, with no significant jump 

points observed. Furthermore, the zero-transverse contact point 

of the high rail is shifted inward by approximately 6.9mm, while 

the zero-transverse contact point of the low rail is shifted 

outward by about 6.1mm compared to the CN60 profile. This 

shift results in a larger wheel-rail track diameter difference, 

enhancing the train’s performance when traversing curves. 

Additionally, compared to the CN60 profile, the contact point 

of the high rail's rail head is biased more towards the outer side 

of the rail, closer to the center of the rail head. The wheel-rail 

contact point of the low rail at the outer side of the top of the 

rail is more uniformly distributed, resulting in a wider 

distribution of the rail head's contact point. This helps to reduce 

contact stress on the rail and mitigate local rail wear. 

The rolling circle radius difference is a crucial parameter 

that reflects a vehicle’s ability to navigate curves and its 

serpentine instability. By analyzing the matching status of the 

rail profile and LM wheel profile before and after optimization, 

the correlation between the rolling circle radius difference of the 

wheelset and the wheelset traverse can be determined. As 

depicted in Fig.13, in the range of [9.5,10mm], the wheelset's 

rolling circle radius difference remains similar for both rail 

profiles. However, in the range of [0,9.5mm], the rolling circle 

radius difference of the optimized profile is larger than that of 

the CN60 profile. This larger rolling circle radius of the 

wheelset helps reduce the transverse displacement of the vehicle 

when traversing curves, thereby improving vehicle stability, 

safety, and curve-passing performance. 

 

Fig.13. Comparison of RRD 
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Fig.14. Difference of wheel/rail contact angle. 

The wheel-rail contact angle difference curve significantly 

impacts the wheel-rail contact stiffness. It influences the 

relationship between the wheel-pair rolling circle radius 

difference and the wheel-pair traverse. This relationship is 

crucial for the vehicle's curve-passing performance. Fig.14 

illustrates the contact angle difference curve of the LM wheel 

profile matched with the rail before and after optimization. 

From the Fig, it can be observed that the contact angle 

difference of the optimized profile is larger than that of the 

CN60 profile within the wheel pair traverse range of [0 mm, 9.5 

mm]. Increasing the contact angle difference has several 

benefits. It helps enhance the rail's transverse guiding force in 

the curved section, reducing wear and deformation of the rail 

gauge angle. Moreover, it improves the train's lateral stability, 

ultimately improving overall performance during curve 

traversal. 

2.7.3. Analysis of Curve Passing Performance 

In this analysis, we focused on the CN60 profile and the train's 

first wheelset, with the optimized profile matched to the LM 

wheel profile. Various performance indicators were calculated, 

including the train body's lateral acceleration, wheel-rail 

transverse force, derailment coefficient, wheel-weight reduction 

rate, and change in wheelset transverse displacement. The mean 

values of the data from the circular curve section were used for 

the analysis. 

The lateral acceleration of the train body is a key indicator 

for evaluating vehicle sway and comfort. A low-pass filtering 

process with a cutoff frequency of 10 Hz was applied to the 

lateral acceleration data of the train body. As shown in the graph 

in Fig.15, both the original bogie configuration and the 

optimized rail profile showed no instability. However, the 

results indicate that the optimized rail profile improved the 

lateral stability of the train body. This demonstrates that rail 

optimization can enhance the lateral stability of the train body, 

effectively reducing vehicle oscillations and improving ride 

comfort. 

Fig.16 illustrates the comparison of wheel-rail transverse 

forces before and after optimization. Prior to optimization, the 

mean value of the high rail transverse force was -7.27 kN, while 

the mean value of the low rail transverse force was 5.17 kN. 

After optimization, these values were reduced to -5.32 kN and 

4.26 kN, respectively, representing reductions of 26.9% and 

17.6%. By reducing the lateral forces, the risk of side slip and 

derailment in the curve section can be effectively mitigated, 

resulting in a lower derailment coefficient. This risk reduction 

not only decreases maintenance costs but also enhances the 

safety of train operations. 

  

 

Fig.15. Lateral acceleration of car body 

 

Fig.16. Lateral forces of wheel/rail 
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Fig.17. Derailment coefficient. 

In order to assess the overturning performance of the speed-

enhanced freight train before and after rail grinding, the wheel 

load reduction rate is shown in Fig.18. It can be observed that 

rail grinding equalizes the left and right wheel weights of the 

train wheelset on the curve by increasing the difference in wheel 

diameters, resulting in a reduction of approximately 24.5% in 

the wheel load reduction rate. 

 

Fig.18. Rates of wheel load reduction 

 

Fig.19. Lateral displacement of wheelsets. 

The optimized profile improves the balance of the wheelsets' 

left and right wheel weights through the increase in rolling 

circle radius. Compared to the CN60 profile, the optimized 

profile significantly reduces the average lateral displacement of 

the wheelsets from 8.67 mm to 7.24 mm before grinding, 

representing a reduction of 16.5%. The comparison of Figs 15-

19 demonstrates the improved kinetic performance of the 

optimized rail profiles. Moreover, the kinetic performance 

indices of the optimized profiles fall within the superior class of 

rolling stock kinetic performance29. 

3. Conclusion 

（1）This study utilized the dynamic time regularization 

algorithm (DTW) to select representative worn profiles that 

accurately reflect rail wear as the initial population for 

optimization. This approach reduces the search space and 

increases the convergence speed and reliability of the 

optimization results. 

（2）In this study, a multi-objective rail profile optimization 

model considering wear evolution has been developed, and the 

wear simulation capability has been successfully integrated into 

the dynamics simulation module. This model enables accurate 

prediction of wheel profile wear. To achieve the optimal design 

of the rail grinding profile, the TS-NSGA-II algorithm is 

employed to solve this wheel profile optimization model. This 

optimization algorithm can be used to obtain the optimal design 

of the rail grinding profile. 

（3）The static wheel-rail contact relationship between 

different LMa wheel profiles was analyzed. The optimized 

profiles exhibited a more uniform distribution of contact points, 

which helps slow down local rail wear. The rolling circle radius 

difference and wheel-rail contact angle difference were 

improved, enhancing the curve passing performance of the 

vehicle in curved sections. Furthermore, various performance 

indicators were significantly improved, including vehicle lateral 

acceleration, maximum lateral forces on the wheels and rail, 

derailment coefficient, wheel weight reduction rate, and 

transverse displacement. 

（4）A comparison of the profile before and after optimization 

as a rail grinding profile shows that after optimization, the 

grinding drop height of the top of the outer rail is reduced by 

1.12mm, the grinding drop height of the top of the inner rail is 

reduced by 0.65mm, and the total rail material removal area is 
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reduced by 30.4%, which effectively reduces the amount of rail 

grinding removal. 

（5） Considering the need for simplified data requirements, 

experimental validation, computational efficiency, and accuracy, 

the equivalent elastic contact method was utilized to predict 

wheel-rail wear. However, this method may have limitations in 

accurately capturing the complexity of the wheel-rail contact 

region. Therefore, future studies will investigate the feasibility 

of incorporating a discrete elastic contact model to enhance the 

prediction's accuracy and comprehensiveness.
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