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Highlights  Abstract  

▪ This paper conducts Fast Fourier transform on 

the signals to enhance sample features. 

▪ Parallel CNNs are employed to capture bearing 

fault information at various scales. 

▪ Maximize domain adaptation through joint 

mean discrepancy. 

▪ Introduces concentrated loss (C-Loss), 

prioritizing minority samples. 

▪ Integrates lead weight factors to enhance focus 

on easily confused samples. 

 Bearing fault diagnosis is an effective technical means to improve the 

reliability of centrifugal fan bearings. In this paper, a transfer learning-

based fault diagnosis method for Centrifugal fan bearings is proposed, 

utilizing the improved CNN (I-CNN) and Joint Maximum Mean 

Discrepancy (JMMD) algorithms. The raw vibration signals of bearings 

are enhanced through fast Fourier transform for feature representation. 

The enhanced signals are then processed by parallel multi-scale CNNs 

with an embedded Squeeze-and-Excitation (SE) attention mechanism to 

extract and focus on key features. Furthermore, the JMMD is introduced 

as a metric for quantifying the disparity between the source and target 

domains, thereby mitigating domain shift. In the loss function, weight 

factors and scaling factors are introduced to increase attention on 

minority samples and easily confused samples within the imbalanced 

dataset. The proposed method is validated on the Centrifugal fan bearing 

dataset from Jiangnan University and the CWRU dataset. 

  Keywords 
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1. Introduction 

Centrifugal fans find extensive application across diverse 

industrial sectors including manufacturing, chemical 

engineering, and energy production[1-4]. They play an 

indispensable role in ventilation, cooling, dust removal, and 

exhaust gas emission, among other applications[5]. As crucial 

components of Centrifugal fan transmission systems, 

Centrifugal fan bearings operate at high speeds for extended 

periods in complex and variable environments, often 

experiencing faults due to fluctuating loads and mechanical 

wear. Studies indicate that approximately 30% of failures in 

rotating machinery are attributed to bearings[6]. Faults in 

Centrifugal fan bearings can lead to sudden shutdowns or severe 

vibrations, posing safety risks to personnel and equipment. 

Timely diagnosis and maintenance can reduce the probability of 

accidents and enhance workplace safety. Therefore, achieving 

rapid and accurate fault diagnosis of rolling bearings is of 

paramount importance. 

Traditional fault diagnosis methods typically involve 

processing and analyzing signals such as vibration, sound, and 

temperature from bearings[7]. These signals can be acquired 
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through sensors, monitoring devices, etc., and then analyzed 

and diagnosed using signal processing techniques[8]. Common 

signal processing methods include wavelet transform (WT), 

Fourier transform (FT), power spectral analysis (PSA), 

autocorrelation function (AF), variational mode decomposition 

(VMD)[9-12]. Although traditional fault diagnosis methods 

have good results, their feature extraction relies on manual 

experience, and they often face challenges such as slow 

processing speed when dealing with large amounts of data, 

leading to many limitations in the field of fault diagnosis[13]. 

Recently, with a significant boost in computational power, 

deep learning has emerged and rapidly found application in 

bearing fault diagnosis. Researchers have leveraged the 

powerful feature extraction capabilities of deep learning to 

diagnose faults in critical components of rotating machinery 

such as bearings, ensuring the smooth operation of 

machines[14]. Li et al.[15] proposed a method based on  

a combination optimization algorithm, using the ResNet18 

network for classifying and diagnosing bearing faults. Tang et 

al.[16] proposed a new deep confidence network embedded 

with a Kalman filter, which utilizes multi-sensor information to 

achieve bearing fault diagnosis under noisy conditions.  

Machine learning-based fault diagnosis of Centrifugal fan 

bearings has drawn significant attention from researchers. Xie 

et al.[17] introduced a fault diagnosis technique for fan bearings, 

employing continuous wavelet transform and autocorrelation 

analysis. This method offers a novel approach to diagnose and 

predict faults in cooling fans used in electronic equipment. Cui 

et al.[18] introduced a method that converts one-dimensional 

vibration signals into SDP images and utilizes convolutional 

neural networks (CNN) for fault identification in mine fan 

bearings. He et al.[19] introduced a vibration-based health 

monitoring approach for cooling fans, employing wavelet filters 

to enable early detection and severity assessment of fan bearing 

faults. 

Traditional fault diagnosis typically involves training and 

diagnosing networks under the same operating conditions, 

which can effectively handle bearing fault diagnosis under 

specific conditions[20]. However, the operating conditions of 

rotating machinery are often variable. Diagnosis under various 

conditions using traditional approaches requires collecting large 

amounts of labeled data for each condition. To address this issue, 

researchers have considered cross-domain (CD) fault diagnosis 

of bearings, where source domain (SD) data is used to train 

models to diagnose fault data in the target domain. Zhao et 

al.[21] proposed a rolling bearing fault diagnosis method based 

on twin-domain adversarial transfer learning, improving the 

convolutional and pooling layers of the transfer learning feature 

extraction using twin neural networks. This approach reduces 

differences in fault sample distributions under different 

operating conditions, enhances model generalization, and 

achieves CD fault diagnosis. Cao et al.[22] introduced an 

unsupervised shared-domain CNN for effective fault transfer 

diagnosis from stable to time-varying speeds, achieving cross-

domain diagnosis of bearings. Xiao et al.[23] simulated SD 

bearing fault signals using simulation techniques to train neural 

networks, and then applied transfer learning techniques to target 

domain (TD) data, realizing a data-physics coupled fault 

diagnosis approach. 

Furthermore, traditional data-driven bearing fault diagnosis 

methods often use simulated data with an equal number of 

samples per class[18]. However, in practical working conditions, 

once a problem occurs with Centrifugal fan bearings, the turbine 

needs to be shut down for inspection and repair, making it 

difficult to collect fault data. Moreover, due to the long 

accumulation period, time consumption, and incomplete fault 

data obtained during the collection of Centrifugal fan bearing 

fault data, healthy data is inevitably much more abundant than 

fault data. Especially as we enter the big data era, the density of 

data collection has grown exponentially, leading to even more 

healthy data and exacerbating data imbalance. Therefore, 

bearing fault diagnosis inevitably faces the challenge of dealing 

with data imbalance. Mao et al.[24] proposed an unbalanced 

fault diagnosis method based on Generative Adversarial 

Networks (GANs) and conducted detailed comparative studies. 

Hang et al.[25] proposed a two-step clustering algorithm to 

enhance the imbalanced data classification of the original 

synthetic minority oversampling technique algorithm. Lu et 

al.[26] proposed an improved active learning intelligent fault 

diagnosis method for unbalanced sample rolling bearings, 

which obtains the distribution representation of samples by 

constructing a Gaussian mixture model. 

This paper conducts research based on the background of 

transfer learning and sample imbalance. By leveraging CNN 
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networks and the JMMD algorithm, an unsupervised fault 

diagnosis method for Centrifugal fan bearings under 

imbalanced data is proposed, termed I-CNN and JMMD. The 

primary contributions of this paper include: 

1. Prior to utilizing neural networks to process bearing fault 

signals, this paper conducts Fast Fourier transform (FFT) on the 

signals to enhance sample features. Subsequently, parallel 

CNNs with different kernel sizes are employed to capture 

bearing fault information at various scales. 

2. This paper adopts a transfer learning approach to address 

the time-consuming and labor-intensive signal acquisition 

problem in real-world operating conditions. By considering the 

joint maximum mean discrepancy (JMMD) between the SD and 

the TD as a crucial term in the loss function, domain shift is 

minimized, achieving domain adaptation. 

3. In response to the common challenge of imbalanced data 

in reality, this paper innovatively introduces concentrate loss 

(C-Loss), lead weight factors and scaling factors into the loss 

function, enhancing the focus on minority samples and easily 

confused samples. 

The remaining sections of the paper are structured as follows: 

Section 2 presents an overview of related work, while Section 3 

elaborates on the proposed method for diagnosing bearing faults; 

Section 4 outlines the experimental details on the CWRU 

dataset; Section 5 covers the experimental details on the JNU 

dataset; Lastly, Section 6 provides the conclusion of the paper. 

2. Related Work 

2.1. Fast Fourier transform 

The FFT is an efficient algorithm for computing the Fourier 

transform[27, 28]. It reduces the computation time of 

calculating the Fourier transform of a discrete sequence from 

𝑂(𝑛2)  to 𝑂(𝑛 𝑙𝑜𝑔 𝑛) , where  𝑛  is the length of the sequence. 

FFT finds extensive applications in signal processing, image 

processing, and various other fields. 

Suppose have a complex sequence  𝑥0, 𝑥1, . . . , 𝑥𝑁−1,  of 

length 𝑁. Its Discrete Fourier Transform (DFT) is defined as: 

𝑋𝑘 = ∑ 𝑥𝑛
𝑁−1
𝑛=0 𝑒−𝑖2𝜋𝑘𝑛/𝑁 ,  𝑘 = 0,1, . . . , 𝑁 − 1 (1) 

Where 𝑋𝑘 is the transformed sequence, 𝑥𝑛 is the element of the 

original sequence, and 𝑘 is the frequency index. 

The FFT algorithm is based on the divide-and-conquer 

strategy, decomposing a DFT of length 𝑁  into two DFTs of 

length 
𝑁

2
 . Specifically, for even 𝑁 , we can decompose 𝑋𝑘  into 

two parts: 𝐸𝑘  containing elements with even indices and 𝑂𝑘 

containing elements with odd indices: 

 𝐸𝑘 = ∑ 𝑥2𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁/2−1
𝑛=0   (2) 

𝑂𝑘 = ∑ 𝑥2𝑛+1𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁/2−1
𝑛=0   (3) 

According to Euler's formula, 𝑒𝑖𝑥 = 𝑐𝑜𝑠( 𝑥) + 𝑖 𝑠𝑖𝑛( 𝑥), 𝐸𝑘 

and 𝑂𝑘 can be rewritten as: 

𝐸𝑘 = ∑ 𝑥2𝑛 (𝑐𝑜𝑠 (
2𝜋𝑘𝑛

𝑁
) − 𝑖 𝑠𝑖𝑛 (

2𝜋𝑘𝑛

𝑁
))

𝑁/2−1
𝑛=0  (4) 

𝑂𝑘 = ∑ 𝑥2𝑛+1 (𝑐𝑜𝑠 (
2𝜋𝑘𝑛

𝑁
) − 𝑖 𝑠𝑖𝑛 (

2𝜋𝑘𝑛

𝑁
))

𝑁/2−1
𝑛=0  (5) 

Then, by utilizing the relationship 𝑋𝑘 = 𝐸𝑘 + 𝑒−𝑖2𝜋𝑘/𝑁𝑂𝑘 , 

we can recursively calculate 𝐸𝑘 and 𝑂𝑘 to obtain 𝑋𝑘. 

The FFT algorithm recursively halves the length of the 

sequence and exploits the symmetry of frequencies, 

significantly improving computational efficiency. Its time 

complexity is 𝑂(𝑁 𝑙𝑜𝑔 𝑁). 

2.2. Unsupervised Transfer Learning 

Transfer learning involves leveraging knowledge gained from  

a SD to tackle issues in a target domain. Utilizing unsupervised 

transfer learning for fault diagnosis in bearings under various 

operating conditions can decrease the reliance on labeled fault 

data specifically for rolling bearings[29]. The dataset containing 

fault labels under specific operating conditions is denoted as the 

SD, while the dataset lacking fault labels under different 

operating conditions is referred to as the target domain. The 

distribution of bearing fault data differs across various operating 

conditions. To implement unsupervised transfer learning for 

rolling bearings across diverse operating conditions, a common 

strategy involves integrating neural network models with 

domain adaptation techniques. Throughout network training, 

domain adaptation is conducted on both the SD and TD to 

mitigate distribution disparities, consequently enhancing the 

predictive capabilities of the network model for the TD. As 

shown in Figure 1, let the SD data be 𝐷𝑠 and the TD data be 𝐷𝑡 . 

Through training on the SD data, the relationship between 

samples and true labels, 𝑋𝑆 → 𝑌𝑆, is established. Based on the 

fundamental assumption of transfer learning, there exists  

a certain correlation between the SD data and the TD data. After 

feature mapping of the SD data and the TD data, there exists 

domain bias between the SD and TD, but there is still a certain 
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degree of feature similarity, indicating a shared feature space. 

Transfer learning algorithms can mitigate the domain bias 

between the SD and TD. This enables accurate classification of 

TD data using a model trained on the SD data.

 

Fig. 1. The workflow diagram of transfer learning.

2.3. Maximum Mean Discrepancy 

The Maximum Mean Discrepancy (MMD) is a commonly used 

metric in transfer learning to measure the distribution 

discrepancy between the SD and TD[30]. The MMD function 

calculates the mean discrepancy after mapping the source and 

target domains to the reproducing kernel Hilbert space.  

A smaller MMD value indicates a greater similarity between the 

distributions of the SD and TD. The expression for calculating 

MMD is: 

𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡)2 =
1

𝑚𝑠
∑ 𝑓(𝑥𝑖

𝑠)𝒩
2𝑚𝑠

𝑖=1 −
1

𝑚𝑡
∑ 𝑓(𝑥𝑖

𝑡)𝒩
2𝑚𝑡

𝑖=1   

=
1

𝑚𝑠
2 ∑ ∑ 𝑘(𝑥𝑖

𝑠, 𝑥𝑗
𝑠)

𝑚𝑡
𝑗=1

𝑚𝑠
𝑖=1 −

2

𝑚𝑠𝑚𝑡
∑ ∑ 𝑘(𝑥𝑖

𝑠, 𝑥𝑗
𝑡)

𝑚𝑡
𝑗=1

𝑚𝑠
𝑖=1   

+
1

𝑚𝑡
2 ∑ ∑ 𝑘 (𝑥𝑖

𝑡 , 𝑥𝑗
𝑡𝑡

)
𝑚𝑡
𝑗=1

𝑚𝑠
𝑖=1                                          (6) 

where, 𝑥𝑖
𝑠 is the i-th sample vector from the SD, 𝑥𝑖

𝑡 is the j-th 

sample vector from the TD; 𝑚𝑠 is the number of samples in the 

SD; 𝑚𝑡  is the number of samples in the TD; 𝒩  is the 

reproducing kernel Hilbert space; 𝑓(•) is the nonlinear mapping 

function that maps the SD and TD data to the Hilbert space. In 

this paper, a Gaussian kernel function 𝐾(•) is used as the 

mapping function, expressed as: 

𝑓(•) = 𝑘(a, a′) = 𝑒
−

𝑎−𝑎⋅2

2𝜎2    (7) 

where, 𝑎 can represent the i-th sample vector from SD 𝑥𝑖
𝑠 or the 

i-th sample vector from the TD 𝒙𝑖
𝑡; 𝑎′ can be represented as the 

transpose of 𝑎⬚; 𝜎 is the bandwidth, which influences the local 

effect range of 𝐾(•). In transfer learning, MMD algorithm can 

be utilized to reduce the discrepancy between the SD and TD, 

thereby enhancing the accuracy of fault diagnosis. 

3. Proposed Method 

The proposed method in this paper for Centrifugal fan bearing 

fault diagnosis under imbalance-sample based on I-CNN and 

JMMD transfer learning is outlined as shown in Figure 2. 

Step 1: Collect raw vibration signals of Centrifugal fans 

under multiple operating conditions, divide the collected data 

samples into SD training set, SD validation set, and TD 

validation set, and perform fast Fourier transform on the 

samples. 

Step 2: Input the SD samples into a multiscale parallel neural 

network embedded with SE attention mechanism for network 

training and validation. Utilize multiscale convolutional 

windows to capture sample features at different granularities 

and focus on key features using Squeeze-and-Excitation 
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attention mechanism. Additionally, introduce concentrate 

loss(C-Loss) with weighting factors and scaling factors to 

address the issue of sample imbalance and the presence of easily 

confused samples. 

Step 3: Input the target domain samples into the network 

trained on the SD training set and validated on the SD validation 

set. Utilize the trained network to diagnose TD data, and 

introduce maximum mean discrepancy calculation to narrow the 

domain bias between the SD and TD, further optimizing the 

fault diagnosis performance of transfer learning. 

Step 4: Apply publicly available datasets and Centrifugal fan 

datasets to validate the proposed method, analyze experimental 

results, and demonstrate the effectiveness of the method. Details 

are discussed in Sections 4 and 5.

 

Fig. 2. The flowchart of this study.

3.1. Fast Fourier transform of Fault Signals 

Performing Fourier Transform on bearing fault signals 

transforms the time domain signal 𝑥(𝑡)  into the frequency 

domain signal 𝑋(𝑓) , where 𝑡  represents time and 𝑓  represents 

frequency. 

The mathematical expression for Fourier Transform is as 

follows: 

𝑋(𝑓) = ∫
−∞

∞
𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡  (8) 

However, for practical digital signal processing, we use 

Discrete Fourier Transform (DFT), The mathematical 
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expression as follows: 

𝑋(𝑘) = ∑ 𝑥𝑁−1
𝑛=0 (𝑛)𝑒−𝑖2𝜋𝑘𝑛/𝑁  (9) 

Where 𝑥(𝑛) is the discrete sample of the time-domain signal, 

𝑋(𝑘) is the discrete sample of the frequency-domain signal, 𝑁 

is the number of samples in the time domain signal, and 𝑘 is the 

frequency index. 

By employing the efficient algorithm for computing DFT 

known as FFT, the computational complexity is reduced from 

𝑂(𝑛2)  to 𝑂(𝑁 𝑙𝑜𝑔 𝑁) , expediting the process of spectrum 

analysis. As shown in Figure 3, this article performs FFT 

transformation on the original signal, normalizes it, and then 

selects only the first half based on Nyquist's theorem.

 

Fig. 3. The FFT processing diagram of fault signals.

3.2. Multiscale Neural Network 

The ability to accurately and effectively extract key features that 

reflect differences between signals is crucial for accurate 

bearing fault diagnosis. Traditional single-scale neural networks 

can only cover specific periods of signals, and their feature 

extraction process is often mechanical, lacking adaptability to 

changing and complex operating conditions and environments. 

In contrast, multi-scale neural networks use convolutional units 

with different sizes of convolutional kernels, allowing the multi-

scale feature extraction network to perceive the input signal's 

field of view with different kernel sizes. This not only reduces 

the empirical requirements for selecting convolutional kernel 

sizes but also enables the extraction of robust multi-scale 

features. 

Compared to single-scale features, multi-scale features 

better capture the description of different fault data. As shown 

in Figure 4, the proposed method constructs parallel channels of 

the same shape in the multi-scale network, utilizing 

convolutional kernels of different sizes paired with varying 

numbers of filters to extract multi-scale features from samples. 

Smaller convolutional kernels focus more on local connections 

within the data, emphasizing the localization of key information 

in the signal, while larger convolutional kernels are conducive 

to extracting global features of the signal. In order to enrich the 

scale of feature perspectives, the convolutional kernel sizes 

should cover a certain range. Choosing odd-sized kernels can 

match the center point of the data, reducing the likelihood of 

feature shifting. Therefore, the convolutional kernel sizes for 

different parallel channels are set as 3, 11, and 17. 
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Fig. 4. The diagram of multi-scale neural network. 

3.3. Squeeze-and-Excitation Attention Mechanism 

The multi-scale neural network can capture fault information 

from different granularities of the original vibration signals. In 

order to further extract important features from the signals, this 

paper integrates an attention mechanism into the network 

architecture, as shown in Figure 4. The attention mechanism can 

learn the importance of different features in bearing fault 

diagnosis, thereby weighting the features. Consequently, the 

model can focus more on the features relevant to fault diagnosis, 

reduce reliance on irrelevant features, and improve diagnostic 

accuracy. 

The SE attention mechanism dynamically adjusts the 

responses of different channels in the feature map by learning 

the importance of each channel, thereby enhancing the 

network's representational capacity. Assuming the input feature 

map is 𝑋 ∈ ℝ𝐻×𝑊×𝐶  , where H and W denote the height and 

width of the feature map, respectively, and C represents the 

number of channels. The operations of the SE network can be 

divided into two steps: Squeeze and Excitation. 

Squeeze. In the Squeeze step, global pooling operation is 

applied to the feature map of each channel, compressing it into 

a single value. Global average pooling operation is used. For 

each channel C, its compressed representation 𝑧𝑐  can be 

computed as: 

𝑧𝑐 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋𝑐)   (10) 

Excitation. In the Excitation step, each channel's 

compressed representation is mapped to a new representation 

space through fully connected layers and an activation function. 

This process can be represented by a subnetwork, which 

captures relationships between channels by learning weights for 

each channel. Assuming the parameters of the Excitation 

subnetwork are 𝑊𝑒𝑥𝑐 and 𝑏𝑒𝑥𝑐 , and ReLU activation function is 

used, the excitation value 𝑠𝑐   for each channel 𝑐  can be 

computed as: 

𝑠𝑐 = 𝜎(ReLU(𝑊𝑒𝑥𝑐 ⋅ 𝑧𝑐 + 𝑏𝑒𝑥𝑐))  (11) 

Finally, by multiplying each channel's excitation value cs  

with the original feature map, we obtain the weighted feature 

map: 

𝑌 = 𝑋 ⊗ 𝑠    (12) 

Where ⊗ represents element-wise multiplication operation. 

3.4. Joint Maximum Mean Discrepancy 

JMMD is an extension of MMD that introduces an embedding 

function to enhance the performance of distribution comparison. 

The SD dataset and TD dataset are denoted as 𝑋  and 𝑌 

respectively, where 𝑋  contains 𝑛  vibration signal samples and 

𝑌 contains 𝑚 vibration signal samples. 

For the sample set 𝑋, compute the mean 𝜇𝑋 and covariance 

matrix 𝛴𝑋: 

𝜇𝑋 =
1

𝑛
∑ 𝑓(𝑥𝑖)

𝑛
𝑖=1    (13) 

𝛴𝑋 =
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝜇𝑋)(𝑓(𝑥𝑖) − 𝜇𝑋)𝑇𝑛

𝑖=1   (14) 

For the sample set 𝑌, compute the mean 𝜇𝑌 and covariance 

matrix 𝛴𝑌: 

𝜇𝑌 =
1

𝑚
∑ 𝑔(𝑦𝑗)𝑚

𝑗=1    (15) 

∑ 𝑌 =
1

𝑚
∑ (𝑔(𝑦𝑗) − 𝜇𝑌)(𝑔(𝑦𝑗) − 𝜇𝑌)𝑇𝑚

𝑗=1  (16) 

Measure the similarity between two sets of vibration signals 

by calculating the mean discrepancy between embedded 

samples. Specifically, you can compute the square of JMMD as: 

𝐿𝐽𝑀𝑀𝐷 = 𝐽𝑀𝑀𝐷2(𝑋, 𝑌) =∥ 𝜇𝑋 − 𝜇𝑌 ∥𝐹
2   (17) 

During the construction of the transfer learning network, 

JMMD is combined with the cross-entropy loss function. This 

integration is intended to enhance the similarity between the 

predicted data distribution of the model and the actual data 

distribution, simultaneously mitigating the distribution gap 

between the SD and TD. 

3.5. Concentrate Loss (C-Loss)  

The traditional cross-entropy loss function computes loss by 

assessing the disparity between the predicted probability 
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distribution and the true labels: 

Cross-Entropy Loss = −
1

𝑁
∑ ∑ 𝑦𝑖𝑗

𝐶
𝑗=1 𝑙𝑜𝑔( 𝑦̂𝑖𝑗)𝑁

𝑖=1  (18) 

Where N represents the number of samples, while C denotes the 

number of classes, 𝑦𝑖𝑗 is the true label of the i-th sample for the 

j-th class, which is 1 if the i-th sample belongs to the j-th class, 

and 0 otherwise; 𝑦̂𝑖𝑗 is the predicted probability by the model 

for the i-th sample for the j-th class. 

For traditional balanced fault diagnosis, the cross-entropy 

loss function treats the classification cost for each class equally, 

the total loss is the summation of losses across all samples. 

However, in the face of data imbalance, the loss function also 

affects the performance of fault diagnosis. This is mainly 

manifested in: 

𝐿 = 𝐿1 + 𝐿2 = −
1

𝑁
∑ 𝜔𝑗(1 − 𝑦̂𝑖𝑗)𝛼𝑦𝑖𝑗 𝑙𝑜𝑔( 𝑦̂𝑖𝑗)𝑁

𝑖=1,𝑗=1 + 𝐿𝐽𝑀𝑀𝐷    (19) 

Improvements over traditional loss functions include: 

1) Introducing domain adaptation loss using the JMMD 

algorithm to minimize the difference between the two 

domains. 

2) Introducing weighting factor 𝜔𝑗  to assign different 

weights to samples of different quantities, to balance 

the difference in quantity between healthy samples 

and fault samples. 

3) Incorporating a scaling factor to adjust the weighting 

of losses, diminishing the impact of easily classified 

samples and augmenting the significance of 

challenging samples. This adjustment directs the 

neural network's focus towards the more challenging 

samples during training. 

4. Case Study 1: Case Western Reserve University Dataset 

4.1. Introduction to the Case Western Reserve University 

Experimental Platform 

The CWRU dataset is derived from the Case Western Reserve 

University's bearing fault simulation test rig, as shown in Figure 

5. The test rig consists of a 1.5 kW motor, a torque sensor, drive-

end bearings, and fan-end bearings. Accelerometers, affixed to 

the casing through magnetic bases, are employed for collecting 

vibration data. The accelerometers are situated at the 12 o'clock 

positions on both the drive end and fan end of the motor casing. 

This paper utilizes fan-end bearing fault data, with the 

bearing model being SKF6203. The fault is created through 

electrical discharge machining, with a fault diameter of 0.1778 

mm and a depth of 0.2794 mm. The sampling frequency is set 

at 12 kHz. 

 

Fig. 5. The test rig of CWRU fault experimental. 

4.2. Construction of Imbalanced Dataset 

To validate the result of the proposed method, the CWRU public 

dataset is utilized for validation. This paper selects data from 

four health conditions: normal，inner race fault, outer race fault 

and rolling element fault condition for the fan-end bearing. The 

health conditions and corresponding labels are shown in Table 

1 (Bold labels represent imbalanced data). Additionally, 

experiments on transfer learning are conducted considering data 

at different operating speeds: 1772, 1750, and 1730 r/min. Six 

transfer tasks are established, as outlined in Table 2. 

Table 1. Labels and health conditions. 

Health conditions Label 

Normal 0 

0.007_InnerRace 1 

0.007_Ball 2 

0.007_OutRace6 3 

Table 2. Transfer tasks and results 

Task Transfer Task Accuracy(r/min) Loss 

𝛼 1772rpm→1750rpm 98.80% 0.0495 

𝛽 1772rpm→1730rpm 99.40% 0.0537 

𝛾 1750rpm→1772rpm 99.39% 0.0276 

𝛿 1750rpm→1730rpm 99.80% 0.0151 

𝜀 1730rpm→1772rpm 98.79% 0.0916 

𝜁  1730rpm→1750rpm 98.80% 0.0542 

In this study, data from the fan-end bearing at three different 

speeds are selected. The sampling length is set to 1024, with a 

total of 827 samples for each transfer task, including 827 SD 
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samples and 166 TD samples. The dataset is divided into SD 

training set, SD validation set, and TD validation set. To 

simulate the imbalance in the dataset, out of the 827 SD samples, 

there are 573 healthy samples and a total of 254 fault samples 

across various categories. The SD data is divided into SD 

training set and SD validation set in an 8:2 ratio. The TD data 

consists of 95 healthy samples and 71 fault samples out of 166 

samples. Through the aforementioned data processing, an 

imbalanced dataset with a majority of healthy samples is 

constructed. 

4.3. Experimental Results and Analysis 

The solver settings include an initial learning rate of 1 × 10−4 

and a batch size of 16. The model is trained for 300 epochs. The 

experimental findings are presented in Table 2, where each task 

is repeated 10 times, and the average accuracy and average loss 

over 10 repetitions are taken as the experimental results. To 

further illustrate the effectiveness of the proposed method, 

confusion matrices for the 6 transfer tasks are plotted in Figure 

6. It can be observed from the confusion matrices that the 

proposed transfer learning method for bearing fault diagnosis 

performs well on all 6 tasks. To showcase the effectiveness of 

the proposed method, it is benchmarked against five other 

methods: CNN_1d[22], Resnet18[15], S-CNN[31], MK-

CNN[32], and Swin Transformer[33]. t-SNE plots are drawn in 

Figure 7. It can be concluded that the proposed method achieves 

better clustering results and can perform better fault 

classification compared to the other five methods. This article 

also includes accuracy and loss as evaluation indicators. The 

experimental results are shown in Table 3, Table4 and Figure 8. 

From the table and figure, it can be seen that the method 

proposed in this article has a high accuracy in each migration 

task, with relatively small loss values, and the area under the 

ROC curve for each migration task is also the largest. 

To demonstrate the effectiveness of the proposed method, 

we conducted ablation experiments, including E-CNN, E-

CNN+JMMD, E-CNN+SE, and E-CNN +JMMD+SE. The 

results are shown in Figure 9 (ROC curves). The curve of our 

method is closest to the upper-left corner and has the largest area 

underneath it, demonstrating the effectiveness of our approach.

 

Fig. 6. The confusion matrix on CWRU dataset. 
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Fig. 7. t-SNE clustering plot. 

Table 3. The accuracy of comparison method in case1. 

Task CNN_1d Resnet18 S-CNN CNN_1d+MK-MMD Swin-transformer Proposed method 

𝛼 96.04% 98.34% 98.20% 98.64% 95.88% 98.80% 

𝛽 98.31% 98.73% 97.78% 99.16% 94.33% 99.40% 

𝛾 97.51% 94.74% 98.10% 99.06% 98.39% 99.39% 

𝛿 98.68% 99.12% 99.27% 98.54% 97.37% 99.80% 

𝜀 94.74% 96.49% 98.60% 98.89% 95.91% 98.79% 

𝜁  94.44% 96.58% 97.86% 97.32% 95.30% 98.80% 

 

Table 4. The loss of comparison method in case1. 

Task CNN_1d Resnet18 S-CNN CNN_1d+MK-MMD Swin-transformer Proposed method 

𝛼 0.6910 0.1123 0.5719 0.0833 0.1056 0.0495 

𝛽 0.3476 0.2364 0.7004 0.0804 0.6700 0.0537 

𝛾 0.4573 0.5081 0.2056 0.0304 0.0916 0.0276 

𝛿 0.1020 0.0163 0.0603 0.0384 0.0390 0.0151 

𝜀 1.0034 1.0987 0.0890 0.0459 0.0565 0.0916 

𝜁  1.1008 0.9816 0.0450 0.0987 0.0961 0.0542 
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Fig. 8. Accuracy ring chart of case 1.

 

Fig. 9. The ROC curve on CWRU dataset. 

5. Case Study 2: Jiangnan University Fan Bearing Dataset 

The purpose of this paper is to diagnose faults in fan bearings. 

In addition to the commonly used CWRU dataset for fault 

diagnosis, we also select the fan bearing dataset to validate the 

proposed method for fan bearing fault diagnosis-related 

research. 

5.1. Introduction to Jiangnan University Experimental 

Setup 

The Jiangnan University bearing dataset is collected from the 

Jiangnan University fan test rig (as shown in Figure 10)[34]. 

The centrifugal fan test rig at Jiangnan University consists of  

a motor, transmission device, coupling, fan bearing under test, 

accelerometer, fan, fan casing, etc. The electric fan is mainly  

a type commonly used in industry. Therefore, this experimental 

data is adopted in this paper to validate the effectiveness of the 

proposed method.

 

Fig. 10. The test rig of JNU dataset[34].

The Jiangnan University fan bearing data includes four 

health conditions: inner race fault, rolling element fault, outer 

race fault, and normal. The correspondence between fault types 

and labels is shown in Table 5 (Bold labels represent imbalanced 

data). As shown in Figure 11, the bearing faults are generated 

by wire cutting. Bearing data for each health condition is tested 

at speeds of 600, 800, and 1000 r/min, respectively, to simulate 

fan bearing fault data under different operating conditions. 

Likewise, six distinct transfer tasks are established to validate 

the effectiveness of our method, as outlined in Table 6. 
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Table 5. Labels and health conditions 

Health conditions Label 

inner race fault 0 

normal 1 

out race 2 

roller fault 3 

 

Fig. 11. Schematic Diagram of Bearing Faults. (a) Outer Race 

Fault, (b) Inner Race Fault, (c) Rolling Element Fault. 

Table 6. Transfer tasks and results. 

Task Transfer Task Accuracy(r/min) Loss 

𝛼 600rpm→800rpm 95.90% 0.1964 

𝛽 800rpm→600rpm 97.09% 0.1632 

𝛾 800rpm→1000rpm 98.78% 0.1827 

𝛿 1000rpm→800rpm 96.80% 0.2972 

𝜀 600rpm→1000rpm 95.09% 0.3016 

𝜁  1000rpm→600rpm 96.01% 0.4037 

Similar to the data processing for the CWRU dataset, the 

dataset is divided into source domain training set, source 

domain validation set, and target domain validation set. To 

construct an imbalanced dataset, each source domain training 

set for the transfer tasks consists of 2432 samples, while each 

source domain validation set consists of 586 samples, and each 

target domain validation set consists of 586 samples. Among 

these, there are 1172 healthy samples in the source domain data 

and 293 healthy samples in the target domain data, with a total 

of 293 fault samples across various fault types in the target 

domain. Through data selection and partitioning, an imbalanced 

dataset is established. 

5.3. Experimental Results 

The solver settings and operations on the Jiangnan University 

dataset are essentially the same as those on the CWRU dataset. 

The accuracy and loss statistics are also summarized in Table 6. 

Similarly, confusion matrices for the six transfer tasks are 

plotted, as shown in the Figure12. It can be observed that the 

proposed method can effectively identify bearing faults in an 

imbalanced dataset. To illustrate the superiority of our method, 

we compared it with five other methods on the Jiangnan 

University Centrifugal fan bearing dataset and plotted t-SNE 

clustering graphs, as shown in Figure 13. It is evident that our 

method outperforms the others in terms of clustering 

effectiveness. In order to better compare with other methods, we 

included the accuracy and loss under 6 migration tasks of our 

method and five comparison methods in the evaluation 

indicators. The results are shown in Figure 14, Table 7 and Table 

8, indicating that our method has a higher accuracy and a lower 

loss than other methods. 

Additionally, to demonstrate the effectiveness of our method, 

we conducted ablation studies on our approach and plotted ROC 

curves, as shown in Figure 15. It is evident that our method 

improves the accuracy of bearing fault diagnosis. Furthermore, 

to better demonstrate the proposed method’s effectiveness and 

evaluate the classification performance of each method for each 

type of fan bearing fault, F1 score plots are generated as shown 

in Figure 16. From the F1 score plots, it is evident that the 

proposed method performs well in each fault category, generally 

outperforming the other methods. Although there may be 

instances where the proposed method's score for certain 

categories is lower than that of other methods in individual tasks, 

it still achieves high scores for these categories and can achieve 

high-accuracy fault diagnosis.
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Fig. 12. The confusion matrix on JNU dataset. 

 

Fig. 13. The t-SNE clustering plot on JNU dataset. 

Table 7. The accuracy of comparison method in case 2. 

Task CNN_1d Resnet18 S-CNN CNN_1d+MK-MMD Swin-transformer Proposed method 

𝛼 87.72% 90.88% 92.01% 92.94% 94.69% 95.90% 

𝛽 92.22% 93.13% 92.30% 96.72% 95.33% 97.09% 

𝛾 97.51% 94.24% 94.73% 98.39% 96.05% 98.78% 

𝛿 89.96% 91.76% 94.30% 96.62% 93.50% 96.80% 

𝜀 90.34% 93.28% 93.51% 94.71% 94.23% 95.09% 

𝜁  92.71% 95.50% 94.00% 95.03% 95.09% 96.01% 

Table 8. The loss of comparison method in case2. 

Task CNN_1d Resnet18 S-CNN CNN_1d+MK-MMD Swin-transformer Proposed method 

𝛼 5.6027 1.4490 1.0122 0.9907 0.6000 0.1964 

𝛽 2.0933 0.9006 0.9990 0.3074 0.4501 0.1632 

𝛾 1.2704 0.7041 0.5038 0.2106 0.3340 0.1827 

𝛿 3.9000 1.4098 0.4602 0.3003 0.8976 0.2972 

𝜀 2.5092 0.9081 0.9973 0.7034 0.6043 0.3016 

𝜁  2.3078 0.3901 0.4072 0.4156 0.4889 0.4037 

(b) Resnet18 (c) S-CNN(a) CNN_1d

(d) CNN_1d+MK-MMD  (f) Proposed method  (e) Swin-Transformer  

0 1 2 3
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Fig. 14. Accuracy ring chart of case 2. 

 

Fig. 15. The ROC curve plot on JNU dataset. 

E-CNN+JMMD+SE 

E-CNN 

E-CNN+JMMD 

E-CNN+SE 

7ROC
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Fig. 16. The F1 score on JNU dataset.

In order to compare common signal processing methods 

such as wavelet transform, Fourier transform, power spectrum 

analysis, autocorrelation function, variational mode 

decomposition, etc., we conducted experiments on the wind 

turbine bearing dataset of Jiangnan University using Python 

1.10.2 software; CPU is i5-12400F; The GPU is RTX3050. We 

selected the data under the working condition of 600 rpm for 

analysis, with 4 data files, each containing 500000 single 

column data points. We selected the model running time as the 

evaluation index to evaluate the processing speed of the model, 

and the results are shown in Table 2. Although the amount of 

data we selected is relatively small compared to the large 

amount of data for big data analysis, as shown in Table 9, the 

Fourier transform takes the shortest time and has the fastest 

processing speed. Therefore, in this article, the Fourier 

transform is used for preliminary data processing. These 

common signal processing methods cannot directly classify 

faults. The main reason for the time-consuming processing of 

large-scale data is to obtain relevant features through these 

analyses and then rely on manual classification or commonly 

used classification methods for fault classification and 

recognition. 

Table 9. The comparison in common signal processing methods 

Method WT FT PSA AF VMD 

Time 0.4427 0.1410 0.3160 0.3420 64.2839 

In addition, we also made corresponding comparisons with 

commonly used fault signal classification methods. We also 

selected data at a speed of 600 and compared it with SVM and 

random forest methods. We also conducted one training session, 

and the time and accuracy are shown in Table 10. From the table, 

it can be seen that the CNN model in this article is more suitable 

for processing large-scale data. The amount of data in this 

article is relatively small compared to the large industrial data. 

As the amount of data increases, the powerful feature extraction 

ability of convolutional neural networks can play a greater role. 

Table 10. Comparison of common signal classification methods 

Method SVM Random forest CNN 

Time(s) 1.4989 10.1697 1.4972 

Accuracy 0.4659 0.5935 0.7362 

We added Gaussian noise with standard deviations of 0.5 

and 1 to the original signals in the Jiangnan University dataset 

to simulate the noise situation in industrial practice and verify 

the robustness of our method to noise. Then, a new experimental 

CNN_1d Resnet18 S-CNN

 

CNN_1d+MK-MMD Swin-Transformer  Proposed method
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study was conducted on the migration task, and the results are 

shown in Table 11. It can be seen that although the accuracy of 

our method fluctuates after adding noise, it still remains above 

90%, indicating that the proposed model has a certain degree of 

robustness when facing noise. 

Table 11. Accuracy under different levels of noise on JNU 

Task Transfer Task 
Accuracy 

Std_0.5 Std_1.0 

𝛼 600rpm→800rpm 92.02% 90.90% 

𝛽 800rpm→600rpm 96.42% 94.60% 

𝛾 800rpm→1000rpm 96.30% 95.09% 

𝛿 1000rpm→800rpm 93.42% 91.04% 

𝜀 600rpm→1000rpm 94.44% 91.46% 

𝜁  1000rpm→600rpm 95.69% 93.99% 

6. Conclusion 

In the context of imbalanced samples, a transfer learning 

method for fan bearing fault diagnosis based on I-CNN and 

JMMD is proposed. This method addresses the issue of sample 

imbalance in fault diagnosis while also considering the 

challenges of data collection in the target domain and 

insufficient training data in the target domain by applying 

transfer learning algorithms. Effective features are extracted by 

performing FFT transformation on the data before processing 

them in the neural network. Furthermore, the SE attention 

mechanism is embedded in a parallel multi-scale neural network 

to extract key information from the signals. The JMMD 

algorithm is introduced within the transfer learning framework 

to calculate the maximum mean difference between the SD and 

TD, thereby minimizing losses while reducing domain shift 

between the SD and TD. Additionally, to address the issue of 

sample imbalance, a loss function based on weight factors and 

scaling factors is proposed, which focuses more on small 

samples and easily confused samples in imbalanced samples, 

thereby improving fault diagnosis performance in the context of 

sample imbalance.
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