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Highlights  Abstract  

▪ Based on discrete intervals and important 

samples, the interval weights of samples are 

established to describe the distribution 

characteristics of probability boxes (p-boxes) 

variables better. 

▪ Combining the Monte Carlo method (MCS) 

and interval weights, a more efficient failure 

probability optimization model is constructed. 

▪ The boundaries fitted by the optimal weights 

are more reasonable than the ones yielded by 

Interval Monte Carlo (IMCS). 

 This paper establishes a hybrid variable system failure probability 

optimization model based on sampling methods and weighting 

coefficients. By introducing auxiliary input variables, important 

sampling functions, and p-box, failure samples are mapped from the 

random variable space to the p-box variable space. The new weight 

coefficients are constructed, including important sampling weights and 

interval weights. Combining discretization methods and Monte Carlo 

simulation (MCS), the interval weights are transformed into variables, 

and constraints conforming to the p-box variable distribution are 

constructed. After calculating the weighting coefficients for all failure 

samples, the new failure probability optimization model is built. This 

model is independent of the performance functions and does not involve 

cyclic optimization, with computational complexity only related to the 

dimensions. Six cases are used for method comparison, validating that 

the new method exhibits higher efficiency and accuracy. 
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1. Introduction 

In practical engineering, the factors influencing structural 

performance and security are frequently subject to inaccuracies. 

Many of these factors involve uncertainties, which introduce 

both epistemic uncertainty (lack of knowledge) and aleatory 

uncertainty (natural variability)[25, 34]. Therefore, conducting 

reliability analysis on systems with uncertain variables is  

a critical task in engineering. 

The conventional approach to dealing with uncertain 

parameters is through the probability model, where the 

probability distributions of the uncertain parameters are 

explicitly defined using available information. In fact, obtaining 

complete information and accurately determining the 

probability distribution of the uncertain parameters is 

challenging. This limitation constitutes the primary drawback of 

these probability-based methods. 

Furthermore, some available tools to describe the epistemic 

variables are often mentioned, such as Bayesian approaches[6, 

12, 39], interval probabilities[22, 23, 38], fuzzy sets[40, 48], 

info-gap theory[2, 14], evidence theory[11, 32] and probability 

boxes[17, 18, 24]. Specifically, Bayesian approaches and fuzzy 
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sets focus on acquiring information to establish prior 

distributions and membership functions. Evidence theory and 

interval probabilities are effective in handling fragmented 

information. The interval model is part of the info-gap theory, 

allowing for the consideration of inadequately described 

structures. In this case, uncertain parameters are quantified 

using change bounds as opposed to exact probability 

distributions. 

Probability boxes combine the advantages of probability and 

interval models, allowing for the consideration of both 

randomness and imprecision simultaneously. A p-box quantifies 

uncertainty using a pair of lower and upper cumulative 

distribution functions (CDFs). It restricts the distribution of 

epistemic variables to a specific range without requiring precise 

assumptions. In this paper, the variables are modeled by 

probability boxes that account for both aleatory and epistemic 

uncertainty. The p-box can be further classified into 

parameterized and non-parameterized (free) representations. 

Several approaches have been utilized to analyze the reliability 

of parametric p-boxes[18-20, 33]. Free p-boxes are a more 

general form, and various methods have been proposed for their 

analysis in recent years[9, 16, 29, 30, 37, 45, 46]. 

The conventional approach to handling p-box variables is 

through the Cartesian product method (CPM)[5]. However, the 

computational complexity of the CPM increases exponentially 

with the number of dimensions. Furthermore, a combination of 

line sampling and imprecise probabilities, which shows high 

efficiency in the cases with moderate non-linearities, was 

discussed by Angelis et al[7]. 

With the development of the sampling technique, the 

application of Monte Carlo simulation (MCS)[43, 44] become 

popular in hybrid reliability analysis under both random and p-

box variables (HRA-RP)[31]. Double-Loop Sampling 

(DLS)[26] and Interval Monte Carlo (IMCS)[45] were proposed 

by Recuk et al and Zhang et al, respectively. DLS contains two 

layers of sampling, the outer layer samples the distribution 

parameters, and the inner layer samples the extracted 

probability distribution to calculate the failure probability. In 

IMCS, it gained samples of random variables and intervals of p-

box variables by inverse transformation method, and calculated 

the extreme values over these samples and intervals. However, 

it was hard to deal with complex explicit performance functions 

and implicit performance function. Interval importance 

sampling[43] and interval quasi-MCS method[44] were 

proposed to solve the small failure problem and improve the 

efficiency of IMCS. On this basis, to decrease the number of 

performance function evaluations, surrogate models are 

considered, including polynomial response surface[10], support 

vector machine[28], neural networks[26], and Kriging[6, 35, 41, 

42]. Kriging is widely used because of its advantages. Thus, the 

method named Active Learning Kriging And Optimization-

based Interval Monte Carlo Simulation (ALK-OIMCS), and the 

method named Bounding-limit-state-surfaces-based Active 

Learning Kriging and IMCS (BLSK-IMCS) were proposed by 

Yang et al[38] and Zhang et al[46], respectively. They used 

some optimization algorithms[1, 3, 13, 15] to improve the 

accuracy of the model. The process of obtaining sample 

intervals in ALK-OIMCS and BLSK-IMCS is similar to IMCS, 

but the difference lies in the learning functions. 

Diego et al[4] combined subset simulation with random set 

theory to calculate the lower and upper bounds of failure 

probability. It samples a series of points from random sets, 

calculates the boundary of failure probability and utilizes subset 

simulation to do further calculations. Liu et al[21] transform the 

original uncertain space into the standard normal space and 

establish two two-layer nesting optimization models to solve the 

extremum. Schöbi and Sudret[29] proposed imprecise structural 

reliability analysis (ISRA) basef on multi-level metamodels[47]. 

The first level aims to approximate the performance function, 

and the second level included two independent Kriging 

metamodels are used to calculate the boundaries. Li et al [16] 

proposed an uncertainty propagation method based on the 

discretization of the cumulative distribution function, calculated 

the value range of the first four statistical moments of the 

response probability box, and used Johnson distribution fitting 

and percentage optimization to construct the boundary 

distribution of the response probability box. A collaborative 

interval quasi-Monte Carlo method (CIMCM) is presented by 

Xiao et al[49]. Rosen’s gradient projection method (RGPM) is 

utilized to solve the extreme values, and the number of repeated 

search iterations is reduced. A linear programming model, 

which is constructed by discrete CDF and used to solve the 

failure probability boundary, is proposed by Xie et al[36]. It 

solves the univariate problem by constructing linear constraints 
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and decomposes the multivariable problem into a series of 

single-variable problems by using iterative techniques. 

Accounting for all of them, the idea of finding extremums 

on intervals is similar. They assume that p-box variables have 

unrestricted distribution between the lower and upper CDFs, 

disregarding that the CDF of the p-box variable follows the rule 

of general CDF. Consequently, this perspective results in 

inaccurate estimations of the upper and lower bounds of failure 

probability. The method proposed by Xie et al[36] solves the 

reasonable constraint problem of univariate problems and 

compares it with IMCS. But it does not delve into the difference 

between itself and IMCS. At the same time, the method needs 

to call the function repeatedly to calculate the conditional failure 

probability in the process of iterative optimization, which 

reduces the computational efficiency. 

In order to obtain more reasonable failure probability 

boundary accurately and simplify the solving process, this paper 

proposes a novel approach that utilizes a newly constructed 

weight coefficient. The main idea is to use auxiliary input 

functions, important sampling functions, and p-box probability 

density functions to map failure samples from the random space 

to the p-box variable space. Combining discretization methods 

to assign interval weights to the samples and treating them as 

variables to construct optimization equations. This approach not 

only aligns with the characteristics of p-box CDFs but also 

guarantees accuracy. The upper and lower bounds of failure 

probability are determined through the computation of an 

optimal solution. In addition, the performance of this method is 

tested by six case studies and compared with IMCS and the 

method proposed by Xie. The findings demonstrate that the 

proposed method is both accurate and effective in the domain 

of HRA-RP. 

The rest of this article is outlined as follows. The 

characteristics of p-box variables, the IMCS, and its 

shortcomings are introduced in Section 2. Section 3 introduces 

the construction of the weight coefficient and optimization 

function of the proposed method. In Section 4, six cases studies 

are conducted to analyze the three methods. We make  

a conclusion in Section 5. 

 

 

 

2. Hybrid Reliability Analysis with Both Random and P-

box Variables 

2.1. P-box Variables and Hybrid Reliability Analysis 

The p-box variable is constructed by a pair of upper and lower 

limit cumulative distribution functions. When the cumulative 

distribution function of the P-box variable P is defined as FP(p), 

the p-box variable is expressed as 

𝐹P(p) ≤ 𝐹P(p) ≤ 𝐹P(p),  (1) 

where p is a realization of P, F
P
(p) and FP(p) are the lower and 

upper CDFs respectively. 

 

Fig. 1. Boundary curves of free p-box and realizations of the 

true but unknown CDF. 

Free p-box is only defined by Eq. (1), and it means that the 

free p-box can have any shape in the restricted region as long as 

it conforms to the characteristics of the cumulative distribution 

function. Fig. 1 shows some possible shapes of free p-box, such 

as piecewise functions (Realization 1), irregular curves with 

zero and infinite slopes (Realization 2) and normal distributions 

(Realization 3). The parameter p-box has a certain distribution 

in the restricted region, but the distribution parameters are 

unknown. Both of them are introduced clearly in[29]. The type 

of p-box discussed in this article is free p-box, and it is the 

generalization of parametric p-box and called p-box in the rest 

of this article. In particular, the p-box variables degenerate into 

random variables, if F
P
(p)= FP(p). 

According to the reliability theory of system structure, when 

the system contains both random variable X and p-box variable 

P, the expression of system failure probability is defined as 

𝑃(𝐺(X, P) ≤ 0) = ∬ 𝑓X,P(x, p)
𝐺(X,P)≤0

𝑑x𝑑p, (2) 

where G(X, P) and f
X,P

(x, p) respectively denote the limit state 
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function and the joint probability density function (PDF). The 

failure probability is an interval value, which can be expressed 

as 

[
𝑃𝑓

𝑃𝑓
] = [

𝑠𝑢𝑝
𝑥∈𝐷𝑥,𝑝∈𝐷𝑝

𝑖𝑛𝑓
𝑥∈𝐷𝑥,𝑝∈𝐷𝑝

] ∬ 𝑓X,P(x, p)
𝐺(X,P)≤0

𝑑x𝑑p, (3) 

where Dx and Dp are the value space of X and P respectively, 

sup and inf represent the minimum upper bound and maximum 

lower bound respectively. 

2.2. Interval Monte Carlo simulation 

In Monte Carlo simulation, the probability of failure is 

approximated as 

𝑃𝑓 =
1

𝑛𝑚𝑐
∑ 𝐼[

𝑛𝑚𝑐
𝑗=1 𝐺(𝑋(𝑗)) ≤ 0],   (4) 

where nmc is the total number of simulations conducted, X(j) 

represents the jth randomly simulated vector of basic variables, 

and j=1, 2, … , nmc. I[∙]  is the indicator function, having the 

value 1 if [∙] is ‘true’, and the value 0 if [∙] is ‘false’. 

For calculating the lower and upper bounds of the failure 

probability, the Monte Carlo simulation is extended to the case 

where the variables are p-box variables, the new process is 

called Interval Monte Carlo simulation (IMCS)[40]. 

For limit state function G(X, P), where X represents random 

variable, P represents n-dimensional p-box variables, and the 

corresponding CDFs of each p-box variable is expressed 

as  FPi
(p)∈[F

Pi
(p), FPi

(p)], i=1,2,…n , the main process of 

interval Monte Carlo method is as follows: 

Step 1: According to the inverse transform method and the 

CDF of the random variable X, generate random sample X(j): 

𝑋(𝑗) = 𝐹𝑋
−1(𝑟(𝑗)),  𝑗 = 1,2, … , 𝑛𝑚𝑐 ,  (5) 

where r(j) is the jth sample by [0,1] uniform distribution; 

Step 2: Generate p-box sample  P(j) . By the inverse 

transform method[27], the interval [P
i

(j),Pi

(j)
] of ith p-box sample 

Pi

(j)
 can be gained by 

{
𝑃𝑖

(𝑗)
= 𝐹𝑃𝑖

−1(𝑐𝑖
(𝑗)

)

𝑃𝑖
(𝑗)

= 𝐹𝑃𝑖

−1
(𝑐𝑖

(𝑗)
)
,   (6) 

where c(j)=[c1

(j)
⋯cn

(j)
] is generated by [0,1] uniform distribution. 

The value space formed by Eq. (6) is 

Dc(j)=[P
1

(1),P1

(1)
]×⋯×[P

n

(j),Pn

(j)
]. 

Step 3:To calculate the upper and lower limits of the failure 

probability, the maximum and minimum values of the limit state 

function on this interval should be obtained by 

{

𝐺
(𝑗)

= 𝑚𝑎𝑥
𝑃∈𝐷

𝑐(𝑗)

𝐺(𝑋(𝑗), P(𝑗))

𝐺(𝑗) = 𝑚𝑖𝑛
𝑃∈𝐷

𝑐(𝑗)

𝐺(𝑋(𝑗), P(𝑗))
,   (7) 

Step 4: Repeat Step 1 to 3 until the maximum number nmc 

of samples is met. The upper bound on the probability of failure 

is determined by G(j), while the lower bound is determined by 

G
(j)

. According to the Monte Carlo simulation, the upper and 

lower limits of failure probability can be expressed as 

𝑃𝑓 =
1

𝑛𝑚𝑐

∑ 𝐼(
𝑛𝑚𝑐
𝑗=1 𝐺

(𝑗)
≤ 0) ≤ 𝑃𝑓 ≤ 𝑃𝑓 =

1

𝑛𝑚𝑐

∑ 𝐼(
𝑛𝑚𝑐
𝑗=1 𝐺(𝑗) ≤ 0),(8) 

MCS can effectively calculate the failure probability 

boundary of systems with p-box variables, which has become 

the cornerstone of the development of random sampling 

methods. However, when dealing with complex system 

functions, IMCS's efficiency is compromised by the 

requirement for numerous function calls and complex 

optimization calculations. Moreover, when the limit state 

function is expressed implicitly, the process of obtaining the 

maximum and minimum values necessitates intricate 

optimization calculations using the interval finite element 

method. As the number of sampling instances increases, the 

time required by IMCS grows exponentially. Additionally, the 

accuracy of IMCS's boundary estimation depends on the 

precision of extreme point calculations. Considering that it is 

unreasonable to regard the statistical result of extreme points on 

each interval as the final outcome, the accuracy of IMCS is 

compromised in scenarios involving complex non-monotonic 

problems where simultaneous attainment of extreme points 

across intervals is unattainable. 

It is evident from the discussion on p-box theory in Section 

2.1 that p-box variables are not entirely unconstrained within 

their upper and lower limits. Instead, they possess an unknown 

yet distinct distribution that adheres to the distribution 

principles governing general random variables. When 

represented on the cumulative distribution function graph, the 

curve does not exhibit a downward trajectory. This implies that 

the slope of the curve at any given point is non-negative. 

The sampling process of IMCS is described by taking two 
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adjacent samples as an example. The steps are as follows： 

Step 1: Suppose there is a two-dimensional p-box variable 

P=[P1,P2], according to the uniform distribution of [0 1], two 

samples are successively generated. Suppose that the two 

samples (c(1)=[c1

(1)
,c2

(1)
] and c(2)=[c1

(2)
,c2

(2)
]) are close enough.  

Step 2: The maximum and minimum values (G
(1)

and G(1)) 

of the limit function corresponding to the first sampling are 

obtained according to IMCS. The sample points on the p-box 

variable interval corresponding to the extreme value are Pmax
(1)  

and Pmin

(1)
 respectively, Pmin

(1)
=[P1min

(1)
,P2min

(1)
] is shown in Fig. 2

  

Fig. 2. Diagram of the adjacent sampling process.

Step 3: As shown in Fig. 2, the value intervals of samples 

P1
(2)

  and P2
(2)

  obtained in the second sampling c(2) are divided 

into two regions by P1min

(1)
 and P2min

(1)
 , respectively, called a1,b1 

and a2,b2. When the function is complex and P1 and P2 are not 

completely monotonic, minimum point Pmin

(2)
 =[ P1min

(2)
,P2min

(2)
 ] 

corresponding to c(2) can occur anywhere along the entire range.  

Step 4: If P1min

(2)
  and P2min

(2)
  are located in a1 and a2 

respectively, the CDFs’ images don’t show a downward trend, 

it also means that the two minimum points can be obtained from 

the same distribution. When one or both of P1min

(2)
 and P2min

(2)
 are 

located in b1 and b2, the CDFs’ images tend to go down, so these 

two extreme points cannot be in the same distribution. 

The process means that the true value intervals of P1
(2)

 and 

P2
(2)

 are a1 and a2, but not [P1
(2)

,P1
(2)

] and [P2
(2)

,P2
(2)

]. Therefore, 

when the minimum of the limit state function solved by IMCS 

optimization is less than 0, the real minimum on the real value 

interval may be greater than 0. Because IMCS cannot identify 

the real value interval well, the upper bound of failure 

probability is overestimated. The process of solving function 

maximum by IMCS optimization is similar, leading to a smaller 

lower bound of failure probability. 

For one-dimensional p-box variables or completely 

monotone cases, IMCS can accurately calculate the upper and 

lower limits of the failure probability, avoiding the previously 

mentioned phenomenon. However, when confronted with two-

dimensional non-monotonic p-box variables or higher-

dimensional scenarios, IMCS unavoidably encounters the 

challenges discussed in this section. These challenges highlight 

areas where further improvements are necessary for IMCS. 

3. New Method Based on Weight Coefficients and 

Important Sampling 

To enhance computational efficiency and address the challenges 

mentioned in the preceding section, a novel reliability analysis 

method for systems with p-box variables is proposed. The new 

approach constructs an optimization model of failure 

probability based on failure samples and weights, enabling the 

calculation of upper and lower bounds for failure probability. 

Firstly, the p-box variables are discretized into a series of sub-

intervals, and each interval is assigned a different weight index. 

The failure probability is given by the ratio between the sum of 

the weights corresponding to the failure samples and the sum of 

the total samples. The main steps are as follows: 

Step 1: Determine auxiliary input variables for each p-box 

variable and compute design points using the limit state 

functions. Then the initial failure probability is approximated by 

importance sampling and the number of failure sample points is 

obtained. 

Step 2: Employ the auxiliary input variables to discretize the 

p-box variables and establish corresponding weight coefficients 

for each interval. 

Step 3: Update the number of samples based on the 
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maximum interval weight, coefficient of variation, and initial 

number of failure samples to mitigate the adverse effects of 

excessive weight coefficients on the results. Obtain the failure 

samples used to construct the failure probability equation. 

Step 4: Establish the optimization function for failure 

probability and solve for the upper and lower bounds of failure 

probability through optimization techniques. 

By implementing these steps, the proposed method offers  

a more efficient approach to reliability analysis, effectively 

addressing the limitations of the conventional IMCS approach. 

The flowchart is shown in Fig. 3. The calculation of interval 

weight and the construction of the failure probability equation 

are the basis of the whole algorithm and the key ensuring the 

accuracy of the results. This paper divides the entire process into 

two modules for presentation. 

 

Fig. 3. Flowchart of the proposed method. 

1.1. Construction of weight coefficients 

In the following analysis, we focus on the incorporation of 

P-box variables in reliability analysis, as the inclusion of 

random variables can be readily implemented. In other words, 

the system is considered to contain only n-dimensional 

independent p-box variable P, and the limit state function is 

G(P). Firstly, the auxiliary input variable[29] is introduced to 

approximate the p-box variable, whose expression is 

𝐹P̃(p) =
1

2
(𝐹P(p) + 𝐹P(p)).   (9) 

The joint probability density function (PDF) of auxiliary 

input variables is denoted as f
P
̃(p) . The auxiliary input 

distribution is selected to encompass the region where the 

majority of the p-box variables are located. This distribution 

aims to capture the essential characteristics of the p-box 

variables to the fullest extent possible. Additionally, it serves as 

the basis for importance sampling of the p-box variables and 

serves as a reference for dividing intervals. 

 

(a) MCS sampling of p-box variable failure samples 

 

(b) Failure sample weight mapping based on PDFs 

Fig. 4. Failure sample weight construction diagram. 

As shown in Fig. 4(a), the real CDF of the p-box is FP(p), 

and its PDF is fP(p). When G(p*)=0, p=p* is called the critical 

point. According to Eq. (4), MCS calculates the failure 

probability by collecting failure samples. In order to obtain 

sufficient failure samples to construct the optimization equation 
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and obtain a more accurate interval distribution of failure 

samples, the important sampling method is used to sample the 

auxiliary input function. This paper uses the same distribution 

type as f
P
̃(p) to construct the important sampling function h(p). 

For example, if f
P
̃(p)~N(p, σ) , h(p)~ N(p*, σ)  The p-box 

variables are sampled for the first time according to h(p), and 

the number of samples is nmc0. Eq. (4) is rewritten as 

𝑃𝑓 =
1

𝑛𝑚𝑐0
∑ 𝐼[

𝑛𝑚𝑐0
𝑗=1 𝐺(p(𝑗)) ≤ 0] ⋅

𝑓P̃(p(𝑗))

ℎ(p(𝑗))
,  (10) 

where j=1, ..., nmc0. According to Fig. 4(b), the weight of the 

sample p(j) composed of important samples can be obtained and 

written as 

𝑊𝐼𝑆
(𝑗)

=
𝑓P̃(p(𝑗))

ℎ(p(𝑗))
.   (11) 

Inspired by important sampling, the failure sample on the 

auxiliary input variable can be projected into the p-box space by 

using the real p-box variable PDF, and the weight of the failure 

sample is 

𝑊𝐼𝑁
(𝑗)

=
𝑓P(p(𝑗))

𝑓P̃(p(𝑗))
.   (12) 

As shown in Fig. 1, fP(p) is unknown and could equal infinity. 

Therefore, the weight on the neighborhood of the failure sample 

is used to approximate the weight of this point. The nodes in the 

neighborhood interval are denoted as [L, U], and Eq. (12) is 

rewritten as 

𝑊𝐼𝑁
(𝑗)

=
∫ 𝑓P(p)

𝑈
𝐿 𝑑p

∫ 𝑓P̃(p)𝑑p
𝑈

𝐿

=
𝑃𝑟

∫ 𝑓P̃(p)𝑑p
𝑈

𝐿

   (13) 

When ΔP͢͢͢͢  is small enough, the physical meaning of Pr in Fig. 

4(a) is related to the slope θ
(j)

 of the p-box’s CDF over the 

neighborhood, which is approximately calculated as 

𝑃𝑟 = 𝐹P(𝑈) − 𝐹P(𝐿) = 𝜃(𝑗)(𝑈 − 𝐿).   (14) 

According to Eq.(11) and (13), each failure sample is 

assigned an important sample weight and an interval weight 

respectively. After the weights of all failure samples are 

calculated, the failure probability of this group of samples 

projected onto the p-box space can be obtained by the 

simultaneous Eq. (10)~(13) as 

𝑃𝑓 =
1

𝑛𝑚𝑐0
∑ 𝐼[

𝑛𝑚𝑐0
𝑗=1 𝐺(p(𝑗)) ≤ 0] ⋅

𝑓P̃(p(𝑗))

ℎ(p(𝑗))
⋅

𝑃𝑟

∫ 𝑓P̃(p)𝑑p
𝑈

𝐿

      (15) 

Since FP(p) and fP(p) are unknown on the p-box space, Eq. 

(15) cannot be solved directly. By introducing the interval 

discretization method, the interval weights WIN

(j)
 of samples p(j) 

are reconstructed. The specific steps are as follows: 

Step 1: j=1, i=1. j denotes the jth sampling, and i denotes 

the ith p-box variable; 

 

Fig. 5. Construction diagram of interval weight constraints. 

Step 2: Interval partition is performed for the ith p-box 

variable. Since the interval length of each variable is different, 

uniform discretization is carried out on the vertical axis of 

FPĩ
(p), and the discretization number is np. As shown in Fig. 5, 

the kth and k+1th interval nodes of ith p-box are [Li
(k)

,Ui
(k)

] and 

[ Li
(k+1)

,Ui
(k+1)

] , respectively. According to Eq. (13), 

∫ f
P
̃(p)dp

Ui
(k)

Li
(k) =∫ f

P
̃(p)dp

Ui
(k+1)

Li
(k+1) =

1

np
, and the integrals of fPi(p) over 

the two intervals are denoted as Pri

(k)
 and Pri

(k+1)
, k=1, …, np-1; 

Step 3: Put constraints on Pri

(k)
 . Due to the ith p-box has 

bounds F
Pi

(p)  and FPi
(p) , Pri

(k)
 can be expressed as 

Pri

(k)
[ Primin

(k)
 , Primax

(k)
 ]. According to the discussion in Section 

2.2 that FP(p) should not have a downward trend and Eq. (14), 

Primin

(k)
= 0 and Primax

(k)
= FPi

(Ui
(k)

)-F
Pi

(Li
(k)

). When FPi(p) enters 

the k+1th interval along path 1, Pri

(k+1)
∈[F

Pi
(Ui

(k+1)
)-

FPi
(Li

(k+1)
), FPi

(Ui
(k+1)

)-F
Pi

(Li
(k+1)

)]. When FPi(p) enters the k+1th 

interval along path 2, Pri

(k+1)
∈[0, FPi

(Ui
(k+1)

)-F
Pi

(Li
(k+1)

)]. After 

extending the slope trend of the two intervals to all intervals, the 

constraint equation of the value of any interval Pri

(k)
 is 

{
Pr

𝑖𝑚𝑖𝑛

(𝑘) 𝑚𝑎𝑥[[𝐹𝑃𝑖
(U𝑖

(𝑘)
)−𝐹𝑃𝑖

(L𝑖
(𝑘)

)],0]

Pr
𝑖𝑚𝑎𝑥

(𝑘)𝐹𝑃𝑖𝑖

(𝑘)
𝐹𝑃𝑖𝑖

(𝑘)

{

   (16) 
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where FPi
(U

i

(np)
)  = F

Pi
(U

i

(np)
)  =1, FPi

(Li
(1)

)  = F
Pi

(Li
(1)

)  =0 and 

k=1, …, np; 

Step 4: Construct the sample p(j) ’s interval weights. Then 

i=i+1, when i=n, all p-box variables are discretized. The 

corresponding interval number of n-dimensional samples p(j) is 

k
(j)

=[k1
(j)

,…,kn
(j)

] , the weight due to the discrete interval is 

denoted as WIN

(j)
 , represents the ratio of the two probabilities 

involved in Step 2. According to Eq. (13), the sample interval 

weight is rewritten as 

𝑊𝐼𝑁
(𝑗)

= (𝑛𝑝)𝑛 ∏ Pr
𝑖

(𝑘𝑖
(𝑗)

)𝑛
𝑖=1 .   (17) 

Step 5: j=j+1, when j=nmc0, the sampling ends. 

To sum up, the sample weight index consists of WIS

(j)
 and WIN

(j)
. 

𝑊(𝑗) = 𝑊𝐼𝑆
(𝑗)

𝑊𝐼𝑁
(𝑗)

=
𝑓P̃(p(𝑗))

ℎ(p(𝑗))
(𝑛𝑝)𝑛 ∏ Pr

𝑖

(𝑘𝑖
(𝑗)

)𝑛
𝑖=1 ,(18) 

where Pr
i

(ki
(j)

)
 is a particular combination of Pri

(k)
. When Pri

(k)
 is 

treated as a group of unknown parameters, the weight can be 

used to convert the failure probability into a function of Pri

(k)
, 

and the dimension is n×np. 

3.1. Calculation of upper and lower limit of failure 

probability 

In order to prevent the increase of interval weight index WIN

(j)
, 

caused by too large Pri

(k)
 , thus affecting the accuracy of the 

solution, the proposed method sets two independent sampling. 

After the first sampling, the initial number of failed samples 

(nFail) and the coefficient of variation of failure probability 

(Cov(Pf)) are calculated according to the results of important 

sampling. After calculating Pri

(k)
, the sample number is updated 

to be 

𝑛𝑚𝑐 = 𝑚𝑎𝑥[
𝑛𝑚𝑐0⋅𝑚𝑎𝑥(𝑛𝑝Pr𝑖

(𝑘)
)

𝑛𝐹𝑎𝑖𝑙⋅𝐶𝑜𝑣(𝑃𝑓)2 , 100 × 𝑛𝑝].  (19) 

This means making it as large as possible without 

compromising accuracy. The purpose is to reduce the influence 

of excessive weight coefficient on the results and ensure the 

minimum sampling number. According to Eq. (18), Eq. (15) can 

be rewritten as 

𝑃𝑓 =
1

𝑛𝑚𝑐

∑ 𝐼[

𝑛𝑚𝑐

𝑗=1

𝐺(p(𝑗)) ≤ 0] ⋅ 𝑊(𝑗)   =
1

𝑛𝑚𝑐

∑ 𝐼[

𝑛𝑚𝑐

𝑗=1

𝐺(p(𝑗)) 

≤ 0] ⋅
𝑓P̃(p(𝑗))

ℎ(p(𝑗))
(𝑛𝑝)𝑛 ∏ Pr

𝑖

(𝑘𝑖
(𝑗)

)𝑛
𝑖=1 .  (20) 

Eq. (20) is the equation for the variable Pri

(k)
 . Pri

(k)
 has a 

series of linear constraints, so that the problem can be 

transformed into a multivariable linear constrained optimization 

problem. Combined with Eq. (16), its constraints DPr are 

constructed as follows 

{

∑ Pr𝑖
(𝑘)𝑘=𝐾

𝑘=1 ∈ [𝐹𝑃𝑖
(U𝑖

(𝑘)
), 𝐹𝑃𝑖

(U𝑖
(𝑘)

)], 𝐾 = 2,3, ⋯ 𝑛𝑝 − 1

Pr𝑖
(𝑘)

∈ [Pr
𝑖𝑚𝑖𝑛

(𝑘)𝑖𝑚𝑎𝑥
(𝑘)

| ∑ Pr𝑖
(𝑘)𝑛𝑝

𝑘=1 = 1] {
(21) 

where i=1,…,n. 

Through the optimization solution of Eq. (20) under 

constraints DPr, upper and lower bounds of failure probability 

can be obtained. The expression of upper and lower bounds is 

{

𝑃𝑓 = 𝑚𝑎𝑥
Pr

𝑖
(𝑘)

∈𝐷Pr

𝑃𝑓

𝑃𝑓 = 𝑚𝑖𝑛
Pr

𝑖
(𝑘)

∈𝐷Pr

𝑃𝑓

.   (22) 

When Eq. (22) is used to solve the upper and lower bounds of 

the failure probability, the solutions corresponding to the upper 

and lower bounds satisfying the convergence condition of the 

optimization algorithm are the optimal solutions Pr* and Pr*. 

Using Eq. (14) and (17), the weights ( W𝐼N* and W𝐼N*) of the 

optimal interval and the slopes ( θ* and θ*) of the curve on the 

corresponding interval can be calculated. Given the interval 

nodes, the boundary curves corresponding to the upper and 

lower bounds of the failure probability can be obtained by linear 

fitting. Moreover, because the solutions  Pr* and Pr* satisfies 

constraint Eq. (16), the rationality of the curve trend can be 

guaranteed, and CDFs’ trend as shown in Section 2.2 will not 

appear. 

From the above discussion, after comparing Eq. (22) and Eq. 

(7), it is found that the new method uses MCS to obtain limit 

state function G(P)’s failure samples at one time to build 

optimization equations, the process of solving the failure model 

does not need G(P). However, IMCS needs G(P) to calculate 

the extreme value of G(P) in each sampling. In other words, the 

optimization model complexity adopted by the new method is 

independent of G(P)’s complexity, but is only affected by the 

dimensions of the model itself. The complexity of the 

optimization model used in IMCS is proportional to the 

complexity of G(P). 

The proposed p-box variable analysis method has the 

following advantages: (1) The upper and lower limits of the 

failure probability can be obtained by only two optimization 
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searches with linear constraints. (2) It ensures the inherent 

characteristics of p-box variable distribution, and avoids the 

problem of obtaining a larger failure probability interval when 

IMCS deals with complex problems; (3) The approximate 

cumulative distribution function of the p-box variable can be 

obtained at the same time as the failure probability boundary; 

(4) The performance function does not need to be called again 

during the calculation. 

4. Case Study and Discussion 

Six different cases are selected to verify that the proposed 

method has higher efficiency and accuracy than IMCS and the 

method proposed by Xie et al[36]( Xie's for short). It should be 

noted that the six cases represent different models in typical 

computational examples and actual projects, and they have 

performance functions and variable structures of different 

complexity levels. The application of the proposed method in 

these cases also indicates its universality and can be extended. 

4.1. Case Study 1: Single p-box variable problem 

This case is used to verify the correctness of the proposed 

method. x is a p-box variable, and its mean value is bounded in 

the intervals [1.4, 1.6] and its standard deviation is 1. The 

performance function is defined as 

𝐺(𝑥) = 2 −
𝑥2+4

20
+ 𝑠𝑖𝑛(

5𝑥

2
).   (23) 

The results are shown in  

 

Table 1, which provids the number of partition intervals np, 

the lower and upper bounds of failure probability (Pf and Pf), 

the relative errors and the Number of Function calls (NFc). 

 

 

Table 1. Results of Case 1. 

Method np Pf(Error %) Pf(Error %) NFc 

IMCS - 0.0015 0.0039 105 

Xie’s 50 0.0016(6.66) 0.0042(7.67) 200 

The 

proposed 

method 

10 0.0018(20) 0.0035(10.25) 

4 
20 0.0016(6.66) 0.0038(2.56) 

30 0.00148(1.3) 0.00386(1.0) 

40 0.00148(1.3) 0.00388(0.3) 

The IMCS, Xie’s and proposed method are used for 

calculation, and the results are shown in  

 

Table 1. The upper and lower bounds of failure probability 

calculated by IMCS are 0.0015 and 0.0039, respectively. When 

np=50, the upper and lower bounds of failure probabilities 

calculated by Xie's are 0.0016 and 0.0042, and the relative 

errors are 6.66% and 7.67% respectively. When the proposed 

method is used, the results calculated at np=40 are 0.00148 and 

0.00388 respectively, with relative errors of 1.3% and 0.3%. 

The extreme value points obtained by IMCS and the variable 

boundaries fitted by Xie’s and the proposed method are plotted, 

as shown in Fig. 6(a). It can be seen that there are obvious 

differences between the fitting curves and the distributions of 

extreme points, so the interval distribution of failure samples in 

the calculation process of the proposed method is further 

analyzed. When np=40, the failure samples are concentrated in 

the interval 34-40. The failure point obtained by IMCS, and the 

variable boundary fitted by Xie’s and the proposed method in 

the interval 34-40 are plotted in Fig. 6(b). It can be found that 

the fitting curve of the proposed method is almost consistent 

with the distribution of IMCS failure sample points, while the 

fitting curve of Xie's is significantly different. It shows that the 

proposed method can well approximate the variable distribution 

in the failure sensitive region and obtain the accurate failure 

probability boundary
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Fig. 6. Point distribution and fitting curves of Case 1.

The failure probability boundary curves and corresponding 

relative errors of the latter two methods under different discrete 

points are calculated and plotted, as shown in Fig. 7. It can be 

seen that with the increase of np, the lower and upper bounds of 

the failure probabilities yielded by the two methods gradually 

approach the reference solution, while the relative errors 

decrease. When np<100, the relative error of the proposed 

method is always below 20%, while the maximum error of Xie’s 

can reach 70%. According to Fig, when the relative errors of 

both limits are lower than 5%, the np required by Xie's is 250, 

while the np required by the proposed method is 25, which is 

much lower than the former. It means that the proposed method 

can converge to the exact boundary faster than Xie's as np 

increases.

 

Fig. 7. Failure probability boundaries and relative errors of Case 1,

Count the number of functions calls (NFc) for each method 

when considering computational efficiency. IMCS uses the 

original function to optimize the solution in each loop, so the 

NFc is the number of sampling 105. The NFc of Xie’s is 2×2×

50, concluding two optimizations, two iterations in each 

optimization and calculating conditional failure probabilities 50 

times in each iteration. The total NFc of the proposed method is 

4, of which the number of calls of the original function is 2, and 

the number of calls of the optimization function is 2. It is far 

lower than the first two methods. In the proposed method, the 

dimensionality of the optimization function keeps growing 

linearly with the increase of np. It means the increase in 

computation caused by np is controllable, and the above results 

show that the proposed method has higher computational 

efficiency than the previous two methods. 

4.2. Case Study 2: Nonlinear numerical problem 

A nonlinear numerical problem is tested in this case. Compared 

with case study 1, this case considers the nonlinearity between 

two different types of variables. The performance function is 

defined as 

𝐺(𝑥, 𝑦) = 2 −
(𝑥−1)(𝑦2+4)

20
+ 𝑠𝑖𝑛(

5𝑦

2
),  (24) 

where x is a normal variable and y is a p-box variable, listed in 

Table 2. 

Table 2. Distribution of random variables for case 2. 

Variables Distribution type Mean 
Standard 

deviation 

x Normal 2.5 1 

y Normal [1.4,1.6] 1 

The three methods are used to calculate and plot the failure 

probability curves, and the results are shown in Table 3 and Fig. 

8, with three significant figures reserved. It can be seen that with 

the increase of np, the upper and lower bounds of the failure 

probabilities of the two methods gradually converge. Compared 

with Xie's, the proposed method has faster convergence and 

smaller errors. When np=50, the relative errors of the upper and 

lower bounds of the proposed method are 2.98% and 2.22%, 

respectively, which are lower than 9.29% and 4.56% of Xie’s. 

When np=1000, the lower and upper bounds proposed by Xie's 

converge to 0.204 and 0.429, which are slightly different from 

0.0202 and 0.0436 calculated by IMCS. After calculating the 

relative error between the proposed method and the former, it is 
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found that the Errors (Xie 1000) are all lower than the Errors 

(IMCS). Both the lower bounds’ errors (Xie 1000) and upper 

bounds’ errors (Xie 1000) are lower than 1%. It shows that the 

results of the proposed method are closer to those of Xie’s. In 

order to explain this phenomenon, the IMCS extreme points’ 

distributions, the fitting variable boundaries of the other two 

methods, and the failure samples’ distributions of the proposed 

method are plotted.

Table 3. The result of case 2. 

Method np Pf Lower Error（IMCS） 
Lower Error

（Xie 1000） 
Pf 

Upper Error

（IMCS） 

Upper Error

（Xie 1000） 
NFc 

IMCS - 0.0202 - 

- 

0.0436 - 

- 

105 

Xie’s 

50 0.0221 9.29016 0.0456 4.56178 200 

500 0.0204 1.16273 0.0430 1.31717 2000 

1000 0.0204 0.75348 0.0429 1.64152 4000 

The 

proposed 

method 

10 0.0244 20.75 19.56 0.0377 13.56 12.1 

4 

20 0.0226 11.70 10.6 0.0401 8.06 6.55 

30 0.0213 5.30 4.25 0.0414 4.96 3.41 

40 0.0209 3.44 2.43 0.0423 3.00 1.42 

50 0.0208 2.98 1.97 0.0426 2.22 0.628 

60 0.0206 1.91 0.907 0.0427 2.09 0.488 

70 0.0206 1.82 0.822 0.0428 1.91 0.313 

80 0.0206 1.73 0.729 0.0428 1.91 0.311 

90 0.0205 1.62 0.620 0.0430 1.33 0.281 

100 0.0205 1.36 0.369 0.0430 1.31 0.299 

 

Fig. 8. Failure probability boundaries and relative errors of Case 2.

As shown in Fig. 9, it can be found that there are four distinct 

slope transition regions in both the extreme points’ distributions 

and the fitting boundaries. In these four regions, the extreme 

points and failure points in the two positions on the right are 

scattered, as described in Section 2.2. After local amplification, 

it can be seen that the trend of curves fitted by the proposed 

method is consistent with that fitted by Xie’s, and the 

unreasonable variables’ distributions can be avoided in both 

cases. Most importantly, in Case 2, the fluctuation of extreme 

points mainly occurs in the failure sensitive regions, so it can be 

considered that the difference between the results of IMCS and 

the other two methods is due to statistical errors caused by the 

distribution of extreme points. The above results show that the 

proposed method can approach the exact boundaries of p-box 

variables faster with small np, so as to obtain a tighter failure 

probability boundary. 

In this case, the NFc of IMCS is 105. When np is 50, 500, 

and 1000 respectively, the NFc of Xie's is 200, 2000, and 4000 

in turn, increasing in proportion to np and the number of 

variables. The proposed method always calls the function 4 

times, and the optimization function dimension increases with 

the increase of np and the number of variables. When np=100, 
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the dimension of the optimization function is 100. 

 

Fig. 9. Point distribution and fitting curves of Case 2.

4.3. Case Study 3: A mathematical problem 

This Case is quoted from Xie's [36], and the performance 

function is 

𝐺(𝑌1, 𝑌2) = 𝑌2 + 0.1 × (𝑌1 − 2)2 + 𝑌1 − 3    (25) 

where Y1 and Y2 are all non-parameterized P-box variables. 

Their details are listed in Table 4. 

Table 4. Distribution of p-box variables for case 3. 

Variables Distribution type Mean 
Standard 

deviation 

Y1 Normal [1.76,1.84] 0.3 

Y2 Normal [1.67,1.73] 0.25 

In Xie's [36], IMCS and Xie's are used to calculate Case 3. 

The sample number of IMCS is 106, and the failure probability 

boundary calculated by IMCS is [0.0619,0.1196]. When the 

discrete number is 200, the failure probability boundary 

calculated by Xie's is [0.0606,0.1171], and the relative errors 

are 2.03% and 2.08%, respectively.  By comparing the proposed 

method with the two methods in Case 3, the results are shown 

in Table 5 and Fig. 10. As shown in Fig. 11 and Fig. 12, it can 

be seen that the failure extreme points, in this case, show  

a monotonous trend, so IMCS can obtain an accurate failure 

probability boundary. The weight fitting curve obtained by the 

proposed method can fully reflect the trend and can be regarded 

as the boundary curve. As shown in Table 5 and Fig. 10, with 

the increase of np, the accuracy of the proposed method is 

gradually improved. When np>20, the errors of the upper and 

lower failure probability calculated by the proposed method are 

less than 1%. Compared with the results of Case 2, it further 

shows that the difference between the two methods mainly 

comes from the difference between the extreme point and the 

weight fitting boundary curve. Compared with the upper and 

lower bound errors of Xie's, it can be seen that the proposed 

method can obtain more accurate results at a smaller discrete 

cost. Further comparing the NFc required by different methods, 

the proposed method has higher computational efficiency. 

Table 5. The result of case 3. 

Method np Pf(Error %) Pf(Error %) NFc 

IMCS - 0.0619 0.1198 2.09×107 

Xie’s 50 0.0606(2.03) 0.1897(1.07) 7826 

The 

proposed 

method 

10 0.06384(3.13) 0.118(1.34) 

4 

20 0.06212(0.36) 0.1186(0.84) 

30 0.06214(0.39) 0.1198(0.17) 

40 0.062(0.16) 0.1202(0.50) 

50 0.06163(0.47) 0.1202(0.50) 

60 0.06167(0.37) 0.1201(0.42) 

70 0.0616(0.49) 0.1201(0.42) 
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Fig. 10. Failure probability boundaries and relative errors of 

Case 3. 

 

Fig. 11. Points distribution and fitting curves of Y1. 

 

Fig. 12. Points distribution and fitting curves of Y2. 

4.4. Case Study 4: A single-degree-of-freedom oscillator 

Single degree of freedom oscillator is a common structure in 

engineering, and the oscillator problem is analyzed with 

multiple variables. It is a highly nonlinear undamped single-

degree-of-freedom oscillator, including three random variables 

and three p-box variables. Its schematic view is shown in Fig. 

13, and the details about these variables are listed in Table 6. 

The performance function is given as 

𝐺 = 3𝑟 − |
2𝐹1

𝑚𝜔0
2 𝑠𝑖𝑛(

𝜔0𝑡1

2
)|,  (26) 

where r is the yield displacement of the springs, and ω0  is 

calculated by 

𝜔0 = √
𝑐1+𝑐2

𝑚
.    (27) 

 

Fig. 13. Schematic diagram of a single-degree-of-freedom 

oscillator 

Table 6. Distribution of variables for a single-degree-of-

freedom oscillator 

Variables Distribution type Mean 
Standard 

deviation 

c1 Normal 1 0.1 

c2 Normal 0.1 0.01 

m Normal 1 0.05 

r Normal [0.49,0.51] 0.05 

F1 Normal [-0.2,0.2] 0.5 

t1 Normal [0.95,1.05] 0.2 

Three methods are used to calculate, and IMCS extremum 

points and fitting curves are plotted. As shown in Fig. 14-16, the 

extreme value points of IMCS show a reasonable distribution 

trend, which means that IMCS can obtain accurate calculation 

results. For r and t1, both the proposed method and Xie's can 

better approximate the distribution curve. But when according 

to F1, the slope of IMCS maximum points’ distribution and 

minimum points’ distribution appear to be non-existent and zero 

respectively in the interval [-0.4,0]. The slope variation interval 

of the curves fitted by the proposed method is [-0.44, -0.088], 

which captures the change trend of the distribution curve well 

and achieves a better fitting effect in the whole interval. The 

slope variation positions of the fitting curves yielded by Xie’s 

are the interval [-0.6, -0.18] and F1=0.616 respectively, which 

has a large deviation from the distribution curves. It shows that 

with the increase of variables and their complexity, the proposed 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 4, 2024 

 

method can approach the variables’ boundaries more accurately. 

 

Fig. 14. Points distribution and fitting curves of r  

 

Fig. 15. Points distribution and fitting curves of F1. 

 

Fig. 16. Points distribution and fitting curves of t1. 

As Table 7 listed, the upper and lower bounds of failure 

probability calculated by IMCS are 0.00065 and 0.0159. 

Calculate and plot the failure probability bounds and relative 

errors of the proposed method and Xie’s at different np. As 

shown in Fig. 17, with the increase of np, the results of the 

proposed method approach the IMCS results gradually, and the 

relative errors decrease continuously. When np exceeds 30, the 

results of the proposed method converge, and the relative errors 

of the upper and lower bounds are less than 5%. Although the 

lower bound of Xie’s presents a decreasing trend with the 

increase of np, the results are unstable, and the relative errors 

remain at about 10%. The relative error level of Xie’s upper 

bound is lower than that of the lower bound, but the relative 

errors increase when np exceeds 150. The above results show 

that the proposed method can obtain more accurate upper and 

lower bounds of failure probabilities with less discrete cost. 

When np=120, the upper and lower bounds of the failure 

probabilities obtained by the proposed method are 6.5×10-4 and 

0.157, respectively, while the relative errors are 0.13% and 

1.36%. 

Table 7. The results of case 4 

Method np Pf(Error %) Pf(Error %) NFc 

IMCS - 6.5×10-4 0.0159 106 

Xie’s 

50 8.16×10-4(25.5) 0.0169(6.23) 600 

400 7.10×10-4(9.18) 0.0155(2.58) 6000 

750 7.08×10-4(8.91) 0.0154(3.12) 12000 

The 

proposed 

method 

10 
7.43×10-

4(14.3) 
0.0142(10.7) 4 

20 
6.89×10-

4(5.94) 
0.0151(5.36) 4 

30 
6.79×10-

4(4.50) 
0.0152(4.20) 4 

40 
6.77×10-

4(4.09) 
0.0153(3.55) 4 

50 
6.73×10-

4(3.55) 
0.0154(3.31) 4 

60 
6.69×10-

4(2.98) 
0.0154(2.94) 4 

70 
6.67×10-

4(2.69) 
0.0154(2.92) 4 

80 
6.63×10-

4(2.05) 
0.0155(2.68) 4 

90 
6.56×10-

4(0.99) 
0.0155(2.47) 4 

100 
6.51×10-

4(0.12) 
0.0156(2.21) 4 

110 
6.52×10-

4(0.29) 
0.0157(1.40) 4 

120 
6.5×10-

4(0.13) 
0.157(1.36) 4 

In this case, the proposed method calls the function four 

times. When np=120, the optimization function dimension is 3

×120, and the calculation time is about 4.28s. The number of 
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IMCS calculations is 106, and the calculation time is much 

longer than the proposed method. When np=50, the NFc of Xie’s 

is 2×2×3×50=600, representing two optimizations, two 

iterations, the number of p-box variables and np in turn. Because 

the conditional failure probability needs to be calculated 

repeatedly, the calculation time is also higher than that of the 

proposed method.

 

Fig. 17. Failure probability boundaries and relative errors of Case 4.

4.5. Case Study 5: A cantilever tube 

The cantilever tube, which is used to consider the influence of 

variable complexity, is another typical application in 

engineering. Its schematic diagram is shown in Fig. 18. 

There are three external forces F1, F2, P, and a torsion T 

exerted on the tube. Because the maximum Von Mises stress 

σmax in the tube should be less than 180mpa, the performance 

function is constructed by 

 

Fig. 18. Schematic diagram of a cantilever tube. 

𝐺 = 180 − 𝜎𝑚𝑎𝑥    (28) 

and the maximum Von Mises stress σmax is computed by 

𝜎√𝜎𝑥
2 + 3𝜏𝑧𝑥

2
𝑚𝑎𝑥

   (29) 

where is normal stress σmax and is torsional stress τzx, and they 

are calculated by 

{
𝜎𝑥 =

𝑃+𝐹1 𝑠𝑖𝑛(𝜃1)+𝐹2 𝑠𝑖𝑛(𝜃2)

𝐴
+

𝑀𝑑

2𝐼

𝜏𝑧𝑥 =
𝑇𝑑

4𝐼

,  (30) 

where M, A and I are, respectively, calculated by 

{

𝑀 = 𝐹1𝐿1 𝑐𝑜𝑠( 𝜃1) + 𝐹2𝐿2 𝑐𝑜𝑠( 𝜃2)

𝐴 =
𝜋

4
[𝑑2 − (𝑑 − 2𝑡)2]

𝐼 =
𝜋

64
[𝑑4 − (𝑑 − 2𝑡)4]

.  (31) 

The details regarding the random variables and p-box 

variables can be found in Table 8. The upper and lower bounds 

of IMCS are 0.0056 and 0.0167, respectively. Set np=500, the 

upper and lower bounds calculated by Xie’s are 0.00572 and 

0.0165. The errors between the two methods are 2.14% and 

1.44%. The failure boundaries and relative errors obtained by 

the proposed method under different np are calculated and 

plotted, as shown in Fig. 19 and Table 11. When np=70, the 

results are 0.0052 and 0.0166. With the increase of np, the upper 

and lower bound of the failure probability gradually converges, 

and the relative errors of the results tend to decrease. When np 

exceeds 30, the errors between the proposed method and the 

other two methods are less than 4%. The above results can 

support the view that the proposed method can rapidly converge 

to the exact boundary at small discrete cost. 
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Fig. 19. Failure probability boundaries and relative errors of 

Case 5. 

Table 8. Distribution of variables for a cantilever tube. 

Variables Distribution type Mean 
Standard 

deviation 

t Normal 5 0.1 

d Normal 42 0.5 

P(N) Normal 12000 1200 

T(N∙m) Normal 90 9 

L2 Uniform [59.75,60.25] - 

F1(N) Normal 5000 500 

F2(N) Normal 5000 500 

L1 Normal [119.5,120.5] 1 

θ1 Normal [4.9,5.1] 0.9 

θ2 Normal [9.9,10.1] 1 

Table 9. The results of case 5. 

Method np Pf 
Lower Error

（IMCS） 

Lower Error

（Xie 500） 
Pf 

Upper Error

（IMCS） 

Upper Error

（Xie 500） 
NFc 

IMCS - 0.0056 - 
- 

0.0167 - 
- 

105 

Xie’s 500 0.00572 2.14 0.0165 1.44 9000 

The 

proposed 

method 

10 0.00639 14.1 12.1 0.0151 9.57 8.48 

4 

20 0.00589 5.24 3.39 0.0161 3.57 2.40 

30 0.00563 0.611 1.15 0.01633 2.22 1.04 

40 0.0056 0.0674 1.82 0.0164 1.80 0.606 

50 0.00554 1.09 2.83 0.0165 1.20 0 

60 0.00554 1.12 2.85 0.01658 0.718 0.485 

70 0.00552 1.38 3.11 0.0166 0.599 0.606 

 

Fig. 20. Extreme points distribution of Case 5.

The distributions of IMCS extreme points are plotted in Fig. 

20. It can be seen that the boundaries of the three variables all 

appear scattered distribution, but the calculation results show 

that this phenomenon does not affect the calculation results of 

Case 4. Plot the failure point distribution and the fitting curve 

in Fig. 21-23. As can be seen from the figure, the failure 

boundaries of the three variables present a monotonous trend 

and do not fluctuate. It is concluded that the distribution of 

failure points is the main factor affecting the calculation result 

of IMCS. After further observation of the fitting curves, it is 

found that the proposed method can better reflect the changing 

trend of the variable failure boundaries. As shown in Błąd! Nie 

można odnaleźć źródła odwołania.(a), the slope variation 

interval of the failure points distribution is [9.46,9.67]. The 

slope variation interval of the curves fitted by the proposed 

method is [9.51,9.67], and the relative errors are 0.05 and 0. The 

slope variation interval of the curves fitted by Xie’s is 

[9.352,9.50] with 0.108 and 0.17 errors. The above results show 

that the fitting curve calculated by the proposed method can 

describe the characteristics of the variables’ failure boundaries 
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more accurately, so as to obtain a more accurate upper and lower 

bound of the failure probability. 

In addition, in this case, the proposed method has  

a significant efficiency improvement compared to the other two 

methods because the function accesses are always 4 times. The 

NFc of IMCS is 105, and that of Xie’s is 2×3×3×500=9000, both 

of which far exceed the proposed method

 

Fig. 21. Failure points distribution and fitting curves of L1. 

 

Fig. 22. Failure points distribution and fitting curves of 𝜃1. 
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Fig. 23. Failure points distribution and fitting curves of 𝜃2.

4.6. Case Study 6: A truss structure 

A truss structure is a typical engineering structure, which can 

be analyzed by the finite element method. As shown in Fig. 24, 

the truss structure contains 23 bars. Eleven bars are horizontal 

with random cross section A1 and Young’s moduli E1, and the 

others are sloping with random cross section A2 and Young’s 

moduli E2. Six loads are applied on nodes of horizontal bars. 

The distribution information is listed in Table 10. When the 

deflection of node s(x) is larger than  

a given threshold value of 0.113m, this structure is treated as 

failed. Therefore, the performance function of the structure is 

defined as 

𝐺(𝑥) = 0.113 − |𝑠(𝑥)|.  (32) 

 

Fig. 24. Schematic diagram of a truss structure. 

Table 10. Distribution of variables for a truss structure. 

Variables 
Distribution 

type 
Mean 

Standard 

deviation 

P1-P6 Normal [5104,5.5104] 5103 

A1 Normal 210-3 210-4 

A2 Normal 110-3 110-4 

E1 Normal 2.11011 2.11010 

E2 Normal 2.11011 2.11010 

The sampling number of IMCS is set as 105, and the results 

are 0.0128 and 0.0523. As shown in Fig. 25, it can be found that 

the distribution of extreme points shows a monotonous trend. 

The np of Xie’s is set as 100, and the results are 0.0127 and 

0.0525. As shown in Fig. 26 and Table 11, the failure probability 

boundaries and relative errors of the proposed method with 

different np are calculated and plotted. The upper and lower 

bounds of the failure probability calculated by the proposed 

method are 0.01266 and 0.05227 at np=50. When np exceeds 20, 

the relative errors are less than 1.5%. Therefore, it can be 

considered that the results of the proposed method are 

convergent and can achieve sufficient precision. It can also be 

concluded from the results that the proposed method has lower 

discrete costs and higher computational efficiency than Xie’s. 

 

Fig. 25. Points distribution and fitting curves of Case 6. 

 

Fig. 26. Failure probability boundaries and relative errors of 

Case 6. 

Table 11. The results of case 6. 

Method np Pf(Error %) Pf(Error %) NFc 

IMCS - 0.0128 0.0523 105 

Xie’s 100 0.0127 0.0525 2400 

The 

proposed 

method 

10 0.01321 0.05281 

4 

20 0.01280 0.05266 

30 0.0127 0.05249 

40 0.01268 0.05249 

50 0.01266 0.05227 

4.7. Discussion 

The three methods are compared and analyzed according to six 

cases, and the following conclusions can be drawn: 

(1) The results of six cases indicate that the proposed method 

can obtain sufficiently accurate results at small dispersion levels. 

When np=40~50, the errors between the results of the proposed 
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method and the results of the IMCS can be kept below 5%. Xie’s 

usually requires more discrete numbers to achieve the same 

accuracy. 

(2) The results of six cases also show that the weight-fitting 

curves generated by the proposed method accurately depict the 

main distribution characteristics of IMCS failure points. In Case 

4 and Case 5, the proposed method can accurately capture the 

slope variation trend of the failure boundaries with a relative 

error of less than 0.1. 

(3) According to Case 2 and Case 5, the results show that 

IMCS exists in the problems described in section 2.2, resulting 

in a bias in the results. Failure points are the main factor 

affecting the accuracy of IMCS results. IMCS results tend to be 

conservative, while the proposed method yields results with 

higher accuracy. 

(4) Compared with Xie’s and IMCS, the computational 

efficiency of the proposed method has been significantly 

improved in the six cases. This is because the proposed method 

calls the function and optimizes fewer throughout the 

calculation process, avoiding the complicated optimization and 

iteration process. 

5. Conclusions 

In this paper, a Random-P-box various system failure 

probability optimization model based on MCS and weight 

coefficients is constructed, and the reliability of the system is 

evaluated by the proposed optimization model. The failure 

samples are mapped from the general random space to the p-

box variable space by using the PDFs of the auxiliary input 

variables and the p-box variable, as well as the important 

sampling function. During the mapping process, two types of 

weights are generated: important sampling weights and interval 

weights. After reconstructing the interval weights using interval 

discretization methods, these weights are transformed into 

variables subject to linear constraints, and a failure probability 

optimization model is established. The proposed optimization 

model not only avoids cyclic optimization during the sampling 

process but also has a complexity independent of the system's 

performance functions. By solving the optimization equations 

twice under linear constraints, upper and lower bounds of 

failure probabilities can be respectively calculated. 

By comparing with IMCS and Xie’s, the accuracy and 

efficiency of the proposed method are validated across six 

different variable dimensions and function complexity cases. 

The results from each case demonstrate that the proposed 

method can achieve more accurate results at a lower 

discretization cost. The weight fitting curves obtained through 

the proposed method can reflect the main features of the true 

boundaries of the p-box. Therefore, when dealing with a single 

p-box variable and monotonic problems, it can ensure sufficient 

accuracy. For complex monotonicity issues, this method can 

obtain a more compact failure probability interval, reducing the 

overestimation of the results. In terms of computational 

efficiency, the proposed optimization model requires fewer 

optimization iterations and does not involve calls to the 

functional functions. Case study results also demonstrate the 

higher efficiency of the proposed method. In summary, the 

proposed method is an accurate and effective approach for p-

box system reliability assessment, applicable to various 

computational models. This study has established the 

foundational model and compared it with the basic model IMCS. 

To further enhance the computational efficiency and 

applicability of the model, future work will integrate other 

optimization algorithms to improve the model solving process 

and combine it with surrogate models for engineering 

applications.
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