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Highlights  Abstract  

▪ Utilizing the GAF coding method enables the 

representation of low-dimensional signal 

features within high-dimensional nonlinear 

data. 

▪ The incorporation of the SE attention 

mechanism into the DenseNet model facilitates 

enhanced feature transfer and reuse. 

▪ The diagnostic accuracies for the three datasets 

achieved were 100%, 100%, and 99.85%, 

respectively. 

 The fault diagnosis in rotating machinery is crucial for ensuring the safe 

and dependable operation of  intricate mechanical systems. Addressing 

the limitations inherent in traditional deep learning approaches 

concerning extended time sequence encoding and subpar generalization 

capability is paramount. The study utilizes the Gramian Angular Field 

(GAF) and Squeeze and Excitation (SE) attention mechanisms to 

alleviate these constraints. GAF enhances feature extraction by 

emphasizing the angular relationships among adjacent signal points to 

uncover latent fault characteristics. Simultaneously, through the 

integration of SE with DenseNet architecture, the network facilitates 

global information exchange and improves multi-scale fusion, thereby 

enhancing the precise identification of fault type and location within the 

signal.  Experiments conducted on two datasets achieved accuracies of 

100% and 99.85%, respectively, outperforming other methods and 

models, thereby validating the effectiveness of this study. 
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1. Introduction 

In the industrial sector, there is a substantial presence of rotating 

machinery. However, these machines often face various failures 

during engineering practice, which can result in significant 

damage, as well as severe injury or even loss of life. Many faults 

exhibit numerous ambiguous features. Therefore, conducting 

research on feature extraction and analysis methods for fault 

diagnosis of rotating machinery holds immense importance 1. 

Traditional fault diagnosis methods based on expert systems 

heavily rely on the expert's empirical knowledge, leading to 

high manual labor intensity and low accuracy in real 

engineering environments 2. These methods are based on 

mechanical fault mechanisms, signal characteristics, or feature 

extraction. Traditional fault diagnosis using expert systems 

relies on experts' practical experience and professional 

knowledge of rotating machinery, making it difficult to carry 

out efficient fault diagnosis 3. Machine learning-based fault 

diagnosis is a data-driven method that utilizes machine learning 

techniques to automate the diagnosis of faults in equipment or 

systems 4. The model is trained with historical data and applied 

to real-time data to determine the type and location of faults. Ye 

et al. 5 used variational modal decomposition to decompose the 

original mechanical vibration signal into multiple intrinsic 

modal functions , constructed multidimensional feature vectors 

of the signal through multiscale permutation entropy, and 
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inputted the multidimensional vectors into a particle swarm 

optimization-based support vector machine classification model 

to achieve the diagnosis of fault diagnosis of rolling bearings. 

Liu et al. 6 proposed a method based on twin prototype 

networks with noisy label self-correction to address fault 

diagnosis for wind turbine gearboxes with noisy labels. Guo et 

al. 7 proposed a measure of the intensity of periodic pulses in 

the signal, cyclic kurtosis entropy , to address the problem of 

rotating machinery that may lead to failure of fault diagnosis 

techniques in the presence of strong noise disturbances or 

composite fault coupling phenomena. The algorithm utilizes the 

entropy value to calculate all delayed periodic kurtosis, 

overcoming the shortcomings of poor adaptive ability of 

kurtosis and obtaining a more stable value, resulting in 

enhanced fault feature extraction of rotating machinery under 

stationary operating conditions. Su et al. 8 proposed a novel 

intelligent fault diagnosis model based on singular value 

manifold features , optimized support vector machines and 

multi-sensor information fusion. Li et al. 9 tackled the issue of 

frequency distortion caused by strong noise or dense 

frequencies in rotating machinery by mapping the signal into  

a new pseudo-temporal domain to eliminate non-smoothness in 

the basis of the rotating machinery mechanism. They also 

addressed the impact of velocity variations or acceleration 

fluctuations at complex and dense frequencies on fault 

diagnosis. Li et al. 10 proposed an interpretable wavelet packet 

kernel-constrained convolutional network for noise robust fault 

diagnosis, which demonstrated superior robustness and noise 

immunity compared to other models. Aasi et al.11 established  

a setup specifically designed for condition monitoring of 

angular contact bearings using acoustic emission sensors. 

During the experimentation process, acoustic emission signals 

were collected from bearings containing defects, with a focus 

on analyzing and recording defects occurring on the inner or 

outer rings of the bearings. By screening and conducting  

a detailed analysis of several common time-domain features, the 

results revealed the applicability of these features in diagnosing 

the condition of the bearings. Notably, the clearance factor 

demonstrated significant effectiveness in detecting small-sized 

defects, and the sixth-order central moment was particularly 

adept at identifying larger defects. This research provides an 

efficient technical method for the industrial application of 

rolling bearing condition monitoring and fault detection. 

The implementation of machine learning has facilitated 

certain advancements in the field of fault diagnosis 12. However, 

due to its shallow architecture, machine learning often struggles 

with obtaining high-dimensional and invisible characterizations 

13. In the realm of big data, deep learning-based algorithms 

have emerged as a prominent area of focus for fault diagnosis. 

These algorithms can learn fault features from raw fault signals 

without relying on expert experience or manual extraction, 

making deep learning-based fault diagnosis methods a popular 

research direction among scholars in recent years. Zhang et al. 

14 proposed a Bayesian augmented convolutional neural 

network , which focuses on capturing the time dependence of 

the signals in non-stationary relationships collected from raw 

fault signals and achieves impressive results in the fault 

diagnosis of large-scale low-speed wind turbine bearings. Wang 

et al. 15 proposed an adaptive denoising convolutional neural 

network , which integrates an adaptive denoising unit to remove 

noise while retaining sensitive fault features, eliminating the 

need for manual denoising function setting and achieving 

superior fault diagnosis performance in noisy environments. 

Wang et al. 16 proposed a fast fault diagnosis method based on 

the swarm decomposition  algorithm, the improved multi-scale 

reverse discrete entropy algorithm, and bidirectional long-term 

memory network for gear transmission systems, achieving high 

accuracy and stability in fault signal classification. Chen et al. 

17 proposed a nonlinear system identification strategy based on 

deep migration learning domain adversarial neural network, 

achieving high identification accuracy in 16 operating 

conditions of helicopter transmission systems. Cheng et al. 18 

proposed a wavelet transform-local two-stage convolutional 

neural network fault diagnostic method, in which vibration 

signals from bearings are passed through a wavelet transform 

and then separately input to a local two-cross convolutional 

neural network to diagnose rotating machinery. Since 

machinery failures do not exhibit only one characteristic, 

methods that fuse multiple source signals into a neural network 

for fault diagnosis have been proposed. Wang et al. 19 proposed 

a multi-modal sensor fusion method, using acceleration sensors 

and acoustic sensors to collect vibration and acoustic signals 

respectively and feeding the collected signals into a constructed 

binary convolutional neural network to carry out fault diagnosis. 
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Luo et al. 20 proposed an intelligent motor bearing early fault 

diagnosis algorithm based on Wasserstein GAN Meta learning, 

and verified its superiority compared with existing algorithms. 

It is widely recognized that Convolutional Neural Networks 

(CNNs) have shown excellent performance in fault diagnosis 

and prediction tasks. CNNs are primarily used for 2D image 

processing, but they have also been successfully applied to 

equipment fault diagnosis and prediction due to their strong 

feature learning ability and fault tolerance in complex 

environments and confusing knowledge rules. There are two 

main strategies for using CNNs for rotating machinery fault 

diagnosis: one is to use a 1D-CNN model and input one-

dimensional mechanical signals into the network to diagnose 

faults; the other is to convert one-dimensional mechanical 

signals into two-dimensional images and input them into the 

network. Xia et al. 21 combined the raw data collected by 

multiple sensors into a 2D matrix and input the raw data into the 

CNN in 2D form to achieve end-to-end feature learning. Chen 

et al. 22 proposed a method of combining cyclic spectral Cscoh 

2D maps with CNNs using double Fourier transform to estimate 

vibration signal 2D Cscoh maps and reveal valuable health state 

information. Xiong et al. 23 proposed a vibration signal for fault 

diagnosis using mutual dimensionless similarity Gram matrix 

data preprocessing and feeding the processed feature maps into 

the CNN for diagnosis. Bai et al. 24 proposed a new spectral 

Markov transfer field algorithm, which constructs a first-order 

Markov transfer matrix of frequency domain signals to 

represent the spectral characteristics of vibration signals as an 

image and shows effectiveness in comprehensively 

characterizing composite fault features. He et al. 25 proposed  

a multi-sensor data fusion method that integrates multivariate 

data into pixel matrices and feeds these matrices into a two-

scale residual network for fault diagnosis. Fan et al. 26 proposed 

a graph generation method to generate correlation diagrams 

from table data and feed these diagrams into neural networks 

for HVAC system fault diagnosis. Chang et al. 27 initially 

transformed the battery voltage signal into a time-frequency 

representation through continuous wavelet transform following 

variational modal decomposition. Subsequently, they utilized 

image entropy to decipher the parameters of the battery 

malfunction for fault diagnosis. 

The utilization of attention mechanisms in intelligent fault 

diagnosis enhances the accuracy of classification by selectively 

focusing on relevant features and suppressing irrelevant 

information, thereby greatly improving efficiency. Wang et al. 

28 applied Empirical Mode Decomposition to preprocess the 

original signal, incorporated a multi-head attention mechanism 

into the graph neural network, and achieved notable 

performance in bearing diagnosis.Tong et al. 29 proposed  

a CNN model utilizing multi-sensor information fusion and 

coordinated attention, resulting in a lightweight convolutional 

neural network with integrated attention mechanism, known as 

ACNN. Xia et al. 30 introduced a hierarchical attention-based 

method for multi-source data fusion fault diagnosis in 

autonomous underwater vehicles. The method employs an 

encoder-decoder network, a fusion network stacked with 

encoders, and an attention mechanism to diagnose faults. 

Validation of the method was conducted using monitoring data 

from the "Submarine Dragon II" underwater robot during sea 

trials in the South China Sea, which demonstrated its 

effectiveness. 

Despite the advancements made by the aforementioned 

methods in fault diagnosis, the realm of mechanical fault 

diagnosis confronts persistent challenges in real-world 

operational scenarios. Rotating mechanical equipment typically 

operates under fluctuating load conditions, resulting in dynamic 

alterations in fault information. Moreover, the vibration signals 

captured by sensors often exhibit high levels of complexity, 

coupling, and uncertainty. Conventional deep learning models 

lack the adaptability to dynamically extract fault features in 

accordance with specific requirements, thereby resulting in 

inadequate generalization of the models for practical 

engineering applications. 

To address the inherent limitations of traditional deep 

learning methods in expanding time series encoding and 

generalization capabilities, as well as to facilitate global 

information exchange in fault diagnosis models and enhance 

multi-scale feature fusion, this study has designed a fault 

diagnosis model based on GAF encoding technology and 

SEDenseNet . This approach aims to achieve precise 

identification of fault types and locations within signals.This 

method is employed to detect common fault conditions in 

bearings and gears within rotating machinery, thereby 

preventing losses in engineering projects.The design concept 
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entails merging deep learning and signal processing 

methodologies to enhance the efficacy of fault diagnostic 

detection. This is achieved by incorporating the GAF coding 

technique to capture the fault characteristics of signals and 

integrating it into the deep learning framework. The fault 

characteristics embedded within vibration signals, 

encompassing multivariate time domain information, are 

extracted utilizing the angular parsing mechanism of GAF 

coding, thereby enhancing the feature representation. 

Subsequently, the resultant feature maps are processed through 

the SE Attention module and DenseNet module to recalibrate 

the feature maps. Leveraging learnable weight parameters, the 

model dynamically selects and accentuates pivotal information 

within the feature maps, thus augmenting the model's capability 

to discern fault features. The efficacy of the proposed 

methodology is validated across three dataset, affirming its 

robust performance. 

2. Gramian Angular Field 

The GAF image encoding method maintains the time 

dependence of the signal 31, with the time sequence information 

increasing as the location moves from the upper left corner to 

the lower right corner, ensuring that no information is lost 

within the signal. The main process for constructing a GAF is 

as follows: 

First, given the time series X = {x1, x2, ..., xn} of n values of 

a vibration signal, rescale X so that all signal values fall within 

the interval [0, 1], and perform normalization processing on X 

to obtain 𝑥
~

𝑖; then encode the signal values into cosine angles 

using the following equation and encode the timestamps into 

radii to represent the rescaled time series X in polar coordinates. 

{
𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠( 𝑥

~

𝑖), −1 ≤ 𝑥
~

𝑖 ≤ 1, 𝑥
~

𝑖 ∈ 𝑋
~

𝑟 =
𝑡𝑖

𝑁
, 𝑡𝑖 ∈ 𝑁

  (1) 

In the above equation, it is the timestamp and N is the 

constant used to regularize the span of the polar coordinate 

system. Since cos (ϕ) is monotonic when ϕ ∈ [0, π], the above 

equation is bijective. 

Angular perspective is utilized to consider the triangular 

sum or triangular difference coming between each point, thus 

identifying temporal correlations in different time intervals. 

Gramian Angular Summation Field(GASF) and Gramian 

Angular Difference Field(GADF) are defined as follows: 

𝐺𝐴𝑆𝐹 = [cos⁡(𝜙𝑖 + 𝜙𝑗)]

= 𝑋
~
′ ⋅ 𝑋

~

− √𝐼 − 𝑋
~
2

′

⋅ √𝐼 − 𝑋
~
2

  (2) 

𝐺𝑆 =(
cos⁡(𝜙1 + 𝜙1) ⋯ cos⁡(𝜙1 + 𝜙𝑛)

⋮ ⋱ ⋮
cos⁡(𝜙𝑛 + 𝜙1) ⋯ cos⁡(𝜙𝑛 + 𝜙𝑛)

) (3) 

𝐺𝐴𝐷𝐹 = [sin⁡(𝜙𝑖 − 𝜙𝑗)]

= √𝐼 − 𝑋
~
2

′

⋅ 𝑋
~

− 𝑋
~
′ ⋅ √𝐼 − 𝑋

~
2

  (4) 

𝐺𝐷 =
(
sin⁡(𝜙1 − 𝜙1) ⋯ sin⁡(𝜙1 − 𝜙𝑛)

⋮ ⋱ ⋮
sin⁡(𝜙𝑛 − 𝜙1) ⋯ sin⁡(𝜙𝑛 − 𝜙𝑛)

) (5) 

Where I is the unit row vector [1, 1, ... 1]. One-dimensional time 

series can be transformed into quasi-Gramian matrix by the 

above transformation. Due to the large size of the n n Gramian 

matrix, Piecewise Aggregate Approximation 32 is used to 

smooth the time series while maintaining the trend of the signal. 

The GAF generation process is shown in Fig. 1.Every pixel in 

the GAF 2D image corresponds to the magnitude of the value 

in the corresponding position of the proposed Gramian matrix. 

Given that GASF and GADF compute the angle between 

neighboring points of the temporal signal in distinct manners, 

the resulting 2D images exhibit disparities. 

 

Fig. 1. Schematic diagram of GAF generation. 

3. SEDenseNet components 

A DenseNet 

ResNet allows for deeper training by establishing "shortcuts" 

(skip connections) between front and back layers. Conversely, 

DenseNet establishes dense connections between all previous 

layers and those behind them. DenseNet solves gradient 

vanishing issues in deep CNNs and enhances feature transfer 

and reuse 33. This dense connectivity regularization can reduce 
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overfitting in small dataset to some extent. At its core, the dense 

connection mechanism is the foundation of DenseNet, which is 

illustrated in Fig. 2.

 

Fig. 2. Dense connection mechanism.

A dense connection block makes any layer directly 

connected to all subsequent layers, and the nth layer receives 

the feature maps x0, x1, ..., xL-1 as input: 

𝑥𝐿 = 𝐻𝐿([𝑥0, 𝑥1, … , 𝑥𝐿−1])   (6) 

Where [x0,x1, ... ,xL-1] are the connections of the feature maps 

generated at layers 0, 1, ... , L-1 layers of the resulting feature 

maps are connected, and HL() is a nonlinear transformation 

composite function of three consecutive operations, including 

batch normalization (BN), rectified linear unit 

(ReLU),3×3convolutional (Conv) and average pooling. Dense 

connected blocks are alternately connected in series with the 

transition layer to form the DenseNet module. The structure of 

the transition layer is shown in Fig. 3.

 

Fig. 3. Transitional layers.

B Squeeze-and-Excite Attention Mechanism 

The Squeeze-and-Excitation attention mechanism is originated 

from SENet 34. SE attention module introduces a weight matrix 

to assign different weights to different locations in the image 

from the perspective of channel domain, so as to obtain more 

important feature information from different channels. The 

structure is shown in Fig. 4.

 

Fig. 4. Squeeze and Excitation module.

SE attention mechanism implementation steps are as follows: 

Transformation(Ftr): Enter a feature map X and generate a 

feature map X after Ftr operations. 

Squeeze(Fsq()): The feature graph is globally average 

pooling to generate a vector of 1×1×C, and each channel is 

represented by a numerical value, thus realizing the global 

information of U is low-dimensional, so that a numerical value 

has the global sensitivity field of the channel. 

𝑧𝑐 = F𝑠𝑞(u𝑐) =
1

𝐻×𝑊
∑ ⁡𝐻
𝑖=1 ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊

𝑗=1
  (7) 

Excitation(Fex):This operation is realized by two fully 

connected layers (FC), the weights (W) obtained from learning 

to indicate the importance of the features, the z obtained in the 

previous step is processed by W1 and W2 of the two fully 

connected layers (FC) to obtain the desired channel weight 

value s. After two fully connected layers, s to indicate the weight 

information of different channels. 
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s = F𝑒𝑥(z,W) = 𝜎(𝑔(z,W)) = 𝜎(W2𝛿(W1z)) (8) 

Scale(Fscale):Assign the weight vector s generated in the 

previous step to the feature map U to obtain the feature map X~, 

whose size is the same as the feature map U. The SE attention 

module does not change the size of the feature map. 

x̃𝑐 = F𝑠𝑐𝑎𝑙𝑒(u𝑐 , 𝑠𝑐) = 𝑠𝑐u𝑐    (9) 

By multiplying the generated feature vector s(1×1×C) with 

the feature map U(H×W×C), even if the H×W individual values 

of each channel in the feature map U are multiplied by the 

weights of the corresponding channel of s, so that each channel 

dimension realizes the calibration of the feature. 

4. Experimental data and model 

This section presents two types of experimental data and 

describes the experimental model. The experiments utilize Case 

Western Reserve University(CWRU) motor bearing fault 

diagnosis dataset, as well as the bearing fault data and gearbox 

fault data collected by Wind Turbine Drivetrain Simulator Fault 

Diagnosis Comprehensive Experimental Platform. These 

dataset are used to validate the proposed rotating machinery 

fault diagnosis method based on SEDenseNet and Gramian 

angular field. 

A Case 1: Case Western Reserve University Bearing 

Dataset 

The experimental data for Case 1 was obtained from the motor 

bearing troubleshooting testbed at Case Western Reserve 

University 35. The platform in Fig. 5, which includes a 2-hp 

electric motor, torque transducer, power test meter, and 

electronic controller (not shown), serves as the experimental 

setup. The data was acquired at the drive end of the bearing 

model SK6205, with a sampling frequency of 12 kHz, bearing 

speed of 1797 r/min, and under no load conditions.

 

Fig. 5. CWRU experimental setup.

The bearing dataset comprises four health conditions: 

normal state (N), inner race fault (IR), outer race fault (OR), and 

ball fault (Ball). The data was collected from the drive-end 

bearing and is presented in Table 1. To augment the network 

model's learning and generalization capabilities, this paper 

employs dataset augmentation techniques to expand the dataset. 

Specifically, one-dimensional bearing vibration signals are 

oversampled using overlapping sampling, whereby there is an 

overlap between consecutive samples. The sampling method is 

illustrated in Fig. 5, and the signal length of each sample 

segment, overlap step, and final total number of samples can be 

determined using the following formula. 

𝑛 =
𝑁−𝑆𝑙

𝑆𝑙−𝑂𝑙
+ 1    (10) 

Where N represents the length of a health type vibration signal; 

n represents the total number of samples, Ol represents the 

overlap step, and Sl represents the length of each sample. 
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Fig. 6. Signal sample interception.

In order to make the length of each sample signal greater 

than the length of the signal produced by the bearing rotating 

for two weeks (12000×60/1797), the length of each section of 

the sample signal was selected to be 1000, the step size was 500, 

and 240 samples of each type, totaling 1,680 samples for the 

seven types. According to the ratio of 8:2 the samples are 

divided into training set, test set. Where Figs 7, 8 give the GAF 

for the seven data transformations of Case 1.

Table 1. Details of the experimental dataset selected from the CWRU dataset. 

Label Fault type Sample size Fault diameter(mm) Frequency Speed r/min Load Sample length 

N Normal 240 0 12kHZ 1797 0 1000 

IR1 Inner Race fault 240 0.3556 12kHZ 1797 0 1000 

IR2 Inner Race fault 240 0.7112 12kHZ 1797 0 1000 

OR1 Outer Race fault 240 0.3556 12kHZ 1797 0 1000 

OR2 Outer Race fault 240 0.7112 12kHZ 1797 0 1000 

Ball1 Roller fault 240 0.3556 12kHZ 1797 0 1000 

Ball2 Roller fault 240 0.7112 12kHZ 1797 0 1000 

 

 

Fig. 7. GASF of CWRU bearing health status. 

 

Fig. 8. GADF of CWRU bearing health status.
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During the experiment, it was found that the diagnostic 

accuracy of these two images was not much different, so GASF 

with smaller storage space was selected as the input of 

SEDenseNet. 

B Case 2: Wind Turbine Drivetrain Simulator Dataset 

The experimental data for Case 2 were obtained from the Wind 

Turbine Drivetrain Simulator(WTDS) Fault Diagnosis 

Comprehensive Experimental Platform, which comprises  

a motor controller, a drive motor, a speed sensor at the drive end, 

a bearing housing, a parallel gearbox, a planetary gearbox,  

a magnetic powder brake, and an output speed sensor. The 

sampling frequency of the faulty acceleration signals of the 

bearings and gearboxes detected by the WTDS is 20480Hz, and 

the type of faulty bearing in question is ER-16K.

 

Fig. 9. WTDS experimental setup.

The bearing dataset includes the following four health types: 

normal condition (N), inner race fault (IR), outer race fault (OR), 

and ball fault (Ball), as shown in Table 2. Same as CWRU 

bearing data set division, in order to make each sample signal 

length is greater than the length of the bearing and gear rotation 

two weeks to produce signals (20480 × 60/1500), selected each 

sample signal length of 2000, while making the two adjacent 

signal overlap length of 1000 to ensure sufficient data. The 

gearbox dataset consists of the following four health states: 

normal state (N), broken tooth (BT), tooth surface wear (TSW), 

and gear tooth crack (GTC), as shown in Table 3.

Table 2. Details of the experimental dataset selected from the WTDS bearing dataset. 

Label Fault type Sample size Load(hp) Frequency（Hz） Speed r/min Sample length 

N Normal 480 0.4 20480 1500 2000 

IR1 Inner Race fault 480 0.8 20480 1500 2000 

IR2 Inner Race fault 480 1.2 20480 1500 2000 

OR1 Outer Race fault 480 0.8 20480 1500 2000 

OR2 Outer Race fault 480 1.2 20480 1500 2000 

Ball1 Ball fault 480 0.8 20480 1500 2000 

Ball2 Ball fault 480 1.2 20480 1500 2000 

Table 3. Details of the experimental dataset selected from the WTDS gearbox dataset. 

Label Fault type Sample size Load(hp) Frequency（Hz） Speed r/min Sample length 

N Normal 240 0.4 20480 1500 2000 

TSW1 Tooth Surface Wear 240 0.8 20480 1500 2000 

TSW 2 Tooth Surface Wear 240 1.2 20480 1500 2000 

GTC1 Gear Tooth Crack 240 0.8 20480 1500 2000 

GTC2 Gear Tooth Crack 240 1.2 20480 1500 2000 

BT1 Broken Tooth 240 0.8 20480 1500 2000 

BT2 Broken Tooth 240 1.2 20480 1500 2000 
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C Experimental model 

The present study employs a CNN model based on DenseNet to 

classify GADFs derived from rotating machinery vibration 

signals. The DenseNet169 network architecture primarily 

comprises of DenseBlocks and Transition layers. SEDenseNet 

that retains the DenseBlock and Transition components of 

DenseNet while incorporating the SE attention mechanism into 

the feature extraction layer of DenseNet. This leads to an 

enhancement in the feature extraction capability of the model. 

The proposed methodology is illustrated in Fig. 10.

 

Fig. 10. Proposed fault diagnosis method for rotating machinery.

The segmented signal samples are initially transformed into 

a 500×500 two-dimensional image via GAF coding technique. 

The image is subsequently scaled to a dimension of 224×224 

before being incorporated into the network model.  

Following these layers, the GAF containing health status 

information of rotating machinery is classified, resulting in loss 

error and accuracy being obtained. The backpropagation of loss 

error is performed to optimize the network model and retrain it 

to minimize the gradient, thus enabling the network to be trained 

for 100 iterations to achieve optimal classification results. 

D Experimental platform setup 

A fault diagnosis model for rotating machinery is developed 

using the programming language Python 3.8, running on the 

PyTorch deep learning framework. Development tools such as 

PyCharm are employed, and the code is executed in  

a computing environment utilizing CUDA v12.1 and an 

NVIDIA GeForce RTX 3060 computer graphics card. The batch 

size for each feed during network training is set to 20, and the 

Nesterov-accelerated Adaptive Moment (Nadam) Estimation 

algorithm is utilized to update the network training parameters. 

Cross-entropy is applied to calculate the model loss. The initial 

learning rate is set at 0.001, and a fixed-step descent method is 

used to update the learning rate, which is reduced by a factor of 

0.7 after every five iterations. 

5. Experimental results and comparative analysis 

This chapter further validates the superiority of the rotating 

machinery fault diagnosis method proposed in this paper by 

diagnosing the fault class types of the two dataset and 

comparing other network models with signal preprocessing 

methods. 

A Fault diagnosis in Case 1 

The vibration signals of the seven bearing health states selected 

in Case 1 were fed into an experimental model for training, and 
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as the number of iterations increased, the model continued to 

learn and optimize until convergence. The recognition accuracy 

and loss of these seven bearing health states under Case 1 are 

presented in Fig. 11. 

 

Fig. 11. Test set accuracy and loss under Case 1. 

As can be observed from the figure, the model achieves 

convergence at approximately 25 iterations. Thereafter, while 

there may be slight fluctuations in accuracy and loss, they are 

not significant. By the time 65 iterations have been reached, the 

model has fully converged and ultimately attains a perfect 100% 

accuracy on the test set with minimal loss. 

A confusion matrix is used to evaluate the performance of  

a classification model in predicting the correct label for a given 

input. As shown in Fig. 12, the health status information in the 

test set of 7 are correctly classified in their corresponding 

positions. 

t-SNE (t-distribution stochastic neighbor embedding) is  

a non-supervised, nonlinear dimensionality reduction algorithm 

that is used to visualize high-dimensional data by reducing it to 

two or three dimensions while preserving local features of the 

data. As illustrated in Fig. 13, after completing 100 rounds of 

training, the network model has successfully distinguished all 

seven health states of the bearings and no cases of 

misclassification have been observed.

 

Fig.12 Confusion matrix of Case 1 data.

 

Fig.13 t-SNE of Case 1 data.

To assess the effectiveness of the network models proposed 

in this paper, a comparative analysis was conducted by 

comparing six different models: SEDenseNet, DenseNet, 

EfficientNet, ResNet50, ShuffleNet, and VGG16. The 

experiments were repeated for ten iterations each time, with 

failures during training results being excluded from the final 

analysis. The results are presented in Figs 14,15.

 

Fig. 14. 10 times accuracy of different network models for case 1

 

Fig. 15. Case 1 signal preprocessing method 10 times accuracy.
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As can be observed from the Fig.14, the proposed network 

model in this paper consistently achieves 100% accuracy in 

recognizing bearing health information across all 10 validations. 

While other network models also achieve a recognition rate of 

over 95%, they do not guarantee correct recognition of certain 

samples and there remains some gaps between their 

performance and that of the network model proposed in this 

paper. 

To evaluate the effectiveness of the proposed GAF coding 

technique for extracting health information from vibration 

signals, a comparison was made with the Markov 

Transformation Field (MTF) coding technique. Ten tests were 

conducted and their results were analyzed in detail as shown in 

Fig.15. The comparison revealed that while the MTF coding 

technique failed to achieve 100% accuracy in diagnosing the 

health status of bearings in the Case 1 dataset, it did manage to 

attain 98.91% accuracy when using the network model 

proposed in this paper. 

Table 4. Comparison of average accuracy of different network 

models and signal preprocessing methods. 

Model Accuracy(%) 

GAF+SEDenseNet 100±0 

GAF+DenseNet 99.73±0.17 

GAF+ResNet50 99.57±0.21 

GAF+EfficientNet 98.42±0.13 

GAF+VGG16 97.45±0.98 

GAF+ShuffleNet 97.96±0.45 

MTF+SEDenseNet 98.91±0.21 

B Fault Diagnosis under Case 2 

In this section, the health state data of bearings and gearboxes 

collected by the WTDS experimental platform is recognized and 

diagnosed. A series of evaluations of the diagnostic effects are 

conducted, including the recognition accuracy and loss of the 

WTDS bearing and gearbox dataset health state shown in Figs 

16 and 17.

 

Fig. 16. Gearbox dataset accuracy and loss in Case 2.

 

Fig. 17. Bearing dataset accuracy and loss in Case 2.

As can be seen from the figures, the gearbox and bearing 

dataset of the WTDS experimental platform exhibit a gradual 

convergence after around 20 rounds of training. Even though 

there may be slight fluctuations in accuracy and loss, the 

magnitude of these changes is not significant. After 

approximately 40 rounds of training, the test set accuracy for 

both dataset remains consistently high, with the gearbox dataset 

achieving an accuracy of almost 100% and the bearing dataset 

achieving an accuracy of almost 99.86%. Additionally, both 

dataset have nearly zero loss after reaching this point of 

convergence. 

The confusion matrix in Figs. 18,19 and the t-SNE 

visualization in Figs. 20,21 demonstrate that all samples in the 

Case 2 gearbox dataset were correctly classified in the test set, 

while one sample of the ball fault at 0.8hp load in the test set of 

the Case 2 bearing dataset was incorrectly classified as the outer 

ring fault at 0.8hp load. The error resulted in a diagnostic 

accuracy of 99.86% for the bearing data test set. 
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Fig. 18. Case 2 Gearbox Data Confusion Matrix.

 

Fig. 19. Case 2 Bearing Data Confusion Matrix.

 

Fig. 20. Case 2 gearbox data t-SNE.

 

Fig. 21. Case 2 bearing data t-SNE.

Similar to the comparison experiment for the Case 1 dataset, 

a comparison was conducted between six network models: 

SEDenseNet, DenseNet, EfficientNet, ResNet50, ShuffleNet, 

and VGG16. Additionally, MTF coding techniques were 

compared. Each method was tested 10 times (excluding any 

training failures) and the results were analyzed in detail as 

illustrated in Figs. 22 and 23.

 

(a) Gearbox data network model comparison

 

(b) Bearing data network model comparison

Fig. 22. Accuracy of 10 validations of different network models for case 2.
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(a) Gearbox data signal preprocessing comparison

 

(b) Bearing data signal preprocessing comparison

Fig. 23. Accuracy of 10 validations for different signal preprocessing methods in Case 2.

The 10 validation results of the gearbox dataset in Case 2 all 

achieved 100% diagnostic accuracy, while the 10 validation 

results of the bearing dataset had 9 diagnostic accuracies of 

99.86% and 1 diagnostic accuracy of 99.72%, respectively. This 

corresponded to 1 incorrect classification in the other categories 

in the test set for bearings and 2 for gearboxes. 

The average accuracy of ten validations of the network 

model proposed in this paper with the five network models 

compared and the MTF coding technique is shown in Tables 5,6. 

Table 5. Comparison of average accuracy of different network 

models and signal preprocessing methods for gearbox data. 

Model Accuracy(%) 

GAF+SEDenseNet 100±0 

GAF+DenseNet 99.71±0.09 

GAF+ResNet50 99.45±0.13 

GAF+EfficientNet 98.72±0.32 

GAF+VGG16 98.48±0.29 

GAF+ShuffleNet 95.5±0.54 

MTF+SEDenseNet 97.96±0.25 

Table 6. Comparison of average accuracy of different network 

models and signal preprocessing methods for bearing data. 

Model Accuracy(%) 

GAF+SEDenseNet 99.85±0.04 

GAF+DenseNet 99.15±0.28 

GAF+ResNet50 98.09±0.18 

GAF+EfficientNet 98.75±0.15 

GAF+VGG16 97.14±0.36 

GAF+ShuffleNet 95.38±0.25 

MTF+SEDenseNet 98.87±0.19 

6. Fault diagnosis model performance metrics 

The potential ramifications of failing to identify or accurately 

report fault types during diagnosis are significant, thus the 

diagnostic accuracy metric alone cannot be utilized to assess the 

effectiveness of the fault diagnosis model. To comprehensively 

evaluate the model's performance, four key indicators will be 

considered: accuracy, precision, recall, and F1 value. 

In the rotating machinery health state classification model 

proposed in this paper, the true categories of the samples and 

the model's predicted categories are classified into four distinct 

groups: True Positive (TP), False Positive (FP), True Negative 

(TN), and False Negative (FN). 

In order to ensure that the fault diagnostic model does not 

experience false alarms, the performance measure of the model 

is performed using precision, where the precision formula is as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (11) 

In order to ensure that the fault diagnostic model does not 

suffer from underreporting, recall is used to measure the 

performance of the model, where the recall formula is as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (12) 

Given that various types of troubleshooting exhibit varying 

preferences for model predictions, the F1 score is calculated by 

taking a reconciled average of precision and recall, using the 

following formula: 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (13) 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 4, 2024 

 

The most satisfactory results of the three sets of data were 

chosen to assess the fault diagnostic model's performance, as 

illustrated in Table 7, which displays the average values across 

ten trials.

Table 7. Model metric average results. 

 Case1 bearing data Case2 gearbox data Case2 bearing data 

Accuracy(%) 100 100 99.861304 

Precision(%) 100 100 99.862637 

Recall(%) 100 100 99.861304 

F1(%) 100 100 99.861301 

Support 329 329 721 

Receiver operating characteristic (ROC) curve is  

a comprehensive metric that assesses the sensitivity and 

specificity of a continuous variable. The points on the ROC 

curve represent the perceptibility of a given signal stimulus. The 

ROC curve displays the true positive rate (TPR，sensitivity) on 

the vertical axis and the false positive rate (FPR，specificity) 

on the horizontal axis. The ROC curve is as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   （14） 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
   （15） 

As the specificity increases, the optimal classification 

results are obtained when the sensitivity reaches 1. In other 

words, the larger the area under the seven health state curves is, 

the better the experimental results will be. The ROC curves for 

Case 1, as depicted in Fig. 24, demonstrate that the optimal 

classification results are achieved when the area under each of 

the ROC curves is equal to 1 for each category.

 

Fig. 24. ROC curve for Case 1 experiment.

 

Fig. 25. Case 2 gearbox data experiment ROC curve.

 

Fig. 26. Case 2 bearing data experiment ROC curve.
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As can be observed from the ROC curves of the two types 

of data in Case 2, the area under each of the ROC curves for the 

two types of data is almost equal to 1, indicating that the model 

proposed in this paper achieves outstanding results in 

classifying the health states of both types of data. 

7. Conclusions 

An intelligent fault diagnosis method for rotating machinery 

that combines GASF and improved SEDenseNet is proposed in 

this paper. The effectiveness and superiority of the GASF-

SEDenseNet model are verified by utilizing two rolling bearing 

dataset and one gearbox dataset. The conclusions are as follows: 

(1) An GASF coding method is introduced to transform one-

dimensional mechanical vibration signals into two-dimensional 

feature maps. This approach effectively expresses the features 

in the low-dimensional signals in high-dimensional nonlinear 

data while preserving the temporal sequence of the original 

signals. Experimental results demonstrate the superiority of this 

signal preprocessing method in the field of rotating machinery 

fault diagnosis. 

(2) A novel SEDenseNet fault diagnosis model is proposed, 

which enhances the transfer and reuse of features through its 

dense connectivity mechanism. Additionally, the introduction of 

the SE attention mechanism enables the network to learn feature 

information and enhances the representation of informative 

features. Compared to traditional densely connected networks, 

SEDenseNet avoids network degradation and accelerates the 

training process. 

(3) The proposed fault diagnosis method is validated using 

the CWRU dataset with bearings and gearboxes under different 

operating conditions in the WTDS dataset. The results 

demonstrate that compared to other deep learning methods, the 

GASF-SEDenseNet model achieves the highest accuracy on the 

test set, with Precision, Recall, and F1 values above 99.86%, 

which represents the best overall performance. Furthermore, the 

results of confusion matrix and t-SNE visualization reveal that 

GASF-SEDenseNet has strong feature mining capabilities and 

can effectively classify the health status of rotating machinery. 

This study focuses on deep neural network structures 

tailored specifically for fault diagnosis in rotating machinery,  

a methodology aimed at significantly enhancing both the 

accuracy and robustness of fault diagnosis. However, the 

proposed method also exhibits certain limitations. Notably, it 

necessitates the prior monitoring of common fault types and the 

training of corresponding fault data. Failure to do so may result 

in misclassification of unlearned fault types into trained 

categories. Additionally, the method relies solely on a single 

vibration signal and has yet to incorporate the fusion of multiple 

data sources for fault diagnosis. Moreover, it demands  

a substantial amount of pre-collected data to yield satisfactory 

results. In subsequent work, it is expected that federated transfer 

learning will be employed to address these constraints, aiming 

to acquire a more comprehensive dataset that includes a variety 

of faults observed in industrial rotating machinery. Furthermore, 

the future work will involve the multimodal fusion of other 

signals with vibration data to further improve and optimize the 

proposed fault diagnosis method.
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