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Highlights  Abstract  

▪ A TED degradation process considering the 

random initial values and stochastic effects of 

degradation rate is proposed. 

▪ The accelerated degradation model that 

considers the heterogeneity of trajectories 

subject to stress levels is developed. 

▪ Combining the MLE and the improved 

stochastic EM algorithm to complete the 

parameters estimation. 

 In the production and operation, inherent variability and uncertainty 

necessitate addressing unit-to-unit heterogeneity in initial performance 

values and degradation processes. This article presents a bi-stochastic 

exponential dispersion process (BS-ED) designed to account for 

heterogeneity in both initial performance values and degradation 

processes. First, based on the ED process, the time and acceleration 

covariates are introduced to form a nonlinear accelerated ED process, 

and a random effect coefficient associated with the accelerated stress is 

incorporated to consider the heterogeneity of the process. Meanwhile, 

through the modelling of degradation time-shift, a degradation model 

considering the stochastic initial value of the product performance is 

developed. To effectively conduct the statistic inference of the BS-ED 

process, an improved stochastic EM algorithm is proposed, and the 

information matrix and Ito calculus are combined to estimate the 

confidence intervals. Finally, the stability of the method is verified by 

simulation and analyzed by two real cases. 
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1. Introduction 

According to the provisions of reliability testing standards such 

as RTCA DO-160G 1, IEC 60300 2 and JEDEC JESD22 series 

3, lots of products are subjected to standard tests before they 

leave the factory to ensure their inherent reliability. Such tests 

cause a certain degree of degradation of the product’s initial 

performance. Moreover, before products are put into use, there 

exists a long or short process of storage and transport, which 

ultimately lead to the wear and tear. Therefore, products have a 

certain amount of initial degradation before put into use. At the 

same time, different individuals also have heterogeneity 

between degradation paths due to differences in raw material 

processes and manufacturing. As the degradation process is 

random and dynamic during the operation stage, the initial 

degradation data and degradation paths also have random and 

dynamic characteristics. It is, therefore, necessary to develop 

methods to accurately describe the degradation law of products 

with random initial performance and heterogeneity of 

degradation paths. 
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The degradation behaviors of products need to be modeled 

first. Among the stochastic degradation modeling, the 

exponential dispersion (ED) process, a generalized stochastic 

process that more accurately describes products with complex 

degradation mechanisms 4, has been proposed to facilitate the 

development of degradation modeling. Many scholars have 

studied the degradation modeling by ED processes. In the field 

of mathematics, Peter [4] and Zhou et al. 5 mathematically 

derived the solution and approximation model of ED process in 

order to facilitate the model solution in combination with the 

reliability engineering problem. Hong 6 firstly introduced 

exponential dispersion-like process in the degradation modeling, 

which unifies and extends the traditional degradation stochastic 

process. Chen et al. 7, 8, 9 proposed a nonlinear degradation 

path modeling based on ED process and introduced the 

measurement error of the test with life prediction. Wang et al. 

10 paid attention to the quantitative relationship between the 

parameters of the degradation model under different stress 

levels, investigated the mechanism equivalence of the ED 

process, and proposed a procedure for mechanism equivalence 

test of ADT through the joint application of normality tests and 

parameter hypothesis tests. Yan et al. 11, 12 established an 

accelerated ED process degradation test model based on the 

optimal design of the test and realized the application on the 

fatigue life assessment of flax fiber reinforced composites. In 

addition, the traditional test methods, especially the life test, 

require a certain amount of samples, and it is more difficult to 

determine the failure of the product to obtain the life 

information quickly 13. Therefore, it is necessary to conduct the 

accelerated degradation test to shorten the time period of 

obtaining information by subjecting the product to more severe 

and comprehensive working conditions. In recent years, many 

scholars have introduced accelerated stress covariates into 

degradation modeling. For wiener processes, Wang 14 and Ye 

et al. 15 have established a variety of degradation test models 

considering accelerated stress covariates in conjunction with the 

wiener process. In the study of Gamma process, Limon 16 and 

Wang et al.17 considered the relationship between the 

parameters of the degradation model and the stress covariates to 

establish the Gamma degradation-acceleration stress covariate 

model. In the inverse Gaussian (IG) process, Ma 18 and He et 

al. 19 established the accelerated degradation model based on 

the IG process, combined with the accelerated stress 

relationship, and used the Maximum likelihood estimation 

(MLE) for parameter estimation. Notwithstanding the foregoing, 

few scholars have considered the problem of different initial 

performance and degradation paths of products in the 

accelerated test framework, especially lacking the practical 

integration with ED processes. 

Currently, some scholars have considered the stochastic 

nature of the initial performance, which initially given  

a framework for modeling the degradation of products in the 

presence of heterogeneous initial performance. For instance, 

Shen et al. 20 assumed that the product underwent pre-

degradation. Considering that its initial performance satisfied 

the normal distribution, they introduced normal random 

variables to explain the heterogeneity of the initial degradation 

by using the Wiener process. Zheng et al. 21 considered the 

establishment of the Wiener process based on the stochastic 

process model with initial degradation and degradation rate 

correlation. Luis et al. 22 considered degradation modelling 

with random initial degradation levels and random thresholds 

based on Gamma process. Xiao et al. 23 studied the wiener 

process considering stochastic initial degradation from the 

perspective of optimal design of experiments and implemented 

the optimal design of experiments. Further, Yan et al. 24 gave a 

specific method for analyzing left-truncated data based on an 

experimental optimization design for the Wiener process, which 

is similar to initial value random data. However, most of these 

models are used for products satisfying specific distributions, 

which have certain limitations and are not fully applicable to 

products with complex degradation mechanisms. In the actual 

degradation process, the degradation paths may be nonlinear 

and the degradation increments are not necessarily monotonic 

and the distributions are not purely symmetric. Compared to 

existing models, the ED process can cover the cases of 

monotonous and non-monotonous degradation, and can also 

describe the products with biased distribution of degradation 

amount. It is more flexible in degradation modelling and more 

suitable for describing complex degradation processes. 

Some scholars have introduced random effects in 

degradation modeling so as to take the heterogeneity of the 

degradation process into account, by which the modeling is 

closer to the actual situation of batch products. First, many 
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scholars have investigated the random effects associated with 

Wiener processes, mainly in terms of the variability of means 

and variances: Hou 25, Tang 26, and Sun et al. 27 established a 

variety of improved random-effects Wiener processes that 

consider multiple performance parameter random effects and 

their dependencies, which well quantify the existence of 

heterogeneity. Xiao et al. 28 proposed a random effect with 

heteroskedastic measurement error, which can be used from the 

perspective of the random effect of the error to further measure 

the inter-individual differences. Wang et al. 29 proposed a 

Wiener process in which the degradation rate satisfies a 

generalized inverse Gaussian process to explain the units’ 

heterogeneity in the degradation process with a more general 

model, which greatly facilitates the modelling of Wiener 

process based on random effects. In addition, many scholars 

studied the heterogeneity of the degradation paths present in the 

Gamma process and the IG process, a common approach is to 

make its degeneracy parameter satisfy the stochastic process: Ye 

et al. 30 firstly proposed the use of the IG process for the 

degradation modelling, considering the random effect that the 

degeneracy parameters therein obey the Gamma distribution; 

and Hao 31 and Sun, et al. 32 proposed an extended inverse 

Gaussian process with biased-normal stochastic effect and 

consideration of the measurement error to deal with products 

with asymmetric degradation behaviors; Liu et al. 33 used 

Bayesian model averaging to highlight inter-unit heterogeneity 

based on both the IG process and the Gamma process, which 

used straightly a Bayesian model to measure the degradation 

heterogeneity between units; Hao 34 and Wang et al. 35 

proposed a degradation model considering the time 

transformations and shape scale stochasticity based on the 

Gamma process, which makes the modeling of random effects 

of stochastic processes more flexibly. However, few scholars 

have considered the influence of stress on the random effect 

parameters under acceleration, which may cause the 

degradation paths of similar products to have different degrees 

of heterogeneity in accelerated tests or when working under 

severe operating conditions. 

In essence, while current research addresses the stochastic 

initial properties and diverse degradation paths, respectively, 

accelerated ED modeling lacks comprehensive perspectives. 

Additional studies are vital to enhance model accuracy and 

applicability for complex product degradation behaviors. This 

work introduces an ED process with bi-stochastics (BS-EDP) 

model to account for initial performance variability and 

degradation heterogeneity. Key contributions include: (1) 

Models for degradation time-shift and parameter stochasticity 

based on the ED process. (2) A BS-ED accelerated degradation 

model that considers stress-induced heterogeneity. (3) An 

improved stochastic EM algorithm for estimating unobservable 

parameters. (4) Interval estimation and confidence intervals via 

information matrix and Ito integral. The model addresses the 

life extrapolation and reliability of complex, high-reliability 

products by considering initial state, degradation heterogeneity, 

and stress effects. 

The rest of this paper is organized as follows. Section 2 

describes the proposed BS-ED model. Statistical inference is 

discussed in Section 3, consisting of the point estimation 

methods based on overall MLE and improved stochastic EM 

algorithms, as well as the parameter interval estimation methods 

based on the observation information matrices. Section 4 

leverages the simulated degradation data to verify the 

effectiveness and convergence of the method. Section 5 takes 

the real GaAs laser and LED chips as objects to demonstrate the 

applicability of the proposed model. Section 6 is a summary of 

our work. Meanwhile, the key symbols related to the model are 

defined in in Table 1.

Table 1. The key symbol definition table. 

Symbol Explain Symbol Explain 

𝑌(𝑡) Independent smooth increments 𝐸(⋅) Average value 

𝐸𝐷(𝜂𝛥𝑡, 𝜆) The ED distribution 𝑉𝑎𝑟(⋅) Standard deviation 

t Time 𝛬(𝑡) Time function 

𝜂 Degeneracy parameter q Time covariate 

𝜆 Scale parameter α, β Parameters of acceleration model 

c(·) The regularization function S The standard stress 
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Symbol Explain Symbol Explain 

κ(·) The cumulative function ε Quality characteristics 

𝛥𝑦 The degree of degradation 𝜏 Initial value parameter 

ρ Shape parameter 𝜇 Mean value of heterogeneity 

σ Standard deviation of heterogeneity Z Indicator function 

D Random process deviation function 𝜔 Failure threshold 

FHT The first hitting time 𝑓𝐸𝐷(𝑡) 
The PDF of ED with random initial values after 

SAM 

αx, βx 
Heterogeneity parameters for accelerated 

models 
𝐹𝑇(𝑡) 

The CDF of life under the ED with random 

initial values by B-S 

𝑓𝑇(𝑡) 
The PDF of life under the ED with random 

initial values by B-S 
𝑅𝐸𝐷(𝑡) 

The reliability function of life under the ED with 

random initial values 

𝐹(𝑡) The CDF of life of the BS-EDP 𝑓(𝑎)(𝜂) The PDF of η (under accelerated) 

𝑅(𝑡) The reliability function of life of the BS-EDP 𝑓𝑇̄(𝑡) 
The PDF of life under the linear ED with 

random initial values by B-S 

𝑡𝑝 The p-th quantile 𝑓(𝑡) The PDF of life of the BS-EDP 

𝑧𝑝 
the p-th quantile of the standard normal 

distribution 
n Number of observations per component 

𝐿 The log-likelihood function k Number of parameters of the model 

MTTF The mean time to failure m Number of components 

2. ED process considering heterogeneity of initial value 

and degradation processes 

2.1. ED accelerates the degradation process 

2.1.1. Nonlinear ED degradation processes 

The ED process, as a generalized stochastic process, contains 

common stochastic processes, such as Wiener process, Gamma 

process, IG process, composite Poisson process, and etc. In 

some products which have complex failure mechanism, such as 

integrated chips, their degradation profiles are suitable to be 

described as ED processes, and the existing research results 

show that the ED model can improve the estimation accuracy of 

reliability analysis of products with complex degradation 

mechanisms [6]. 

The traditional ED process is determined by the drift rate 

and the dispersion rate and has three basic features: 

1) It initiates from a value of 0, denoted as 𝑌(0) = 0; 

2) Consistent with the three types of traditional stochastic 

processes, 𝑌(𝑡) has statistically independent smooth increments, 

i.e., for any 𝑡1 < 𝑡2 ⩽ 𝑡3 < 𝑡4 , the stochastic process 

increments 𝑌(𝑡4) − 𝑌(𝑡3)  and 𝑌(𝑡2) − 𝑌(𝑡1)  are independent 

of each other; 

3) For any 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖 , there exists 𝑌(𝑡𝑖+1) − 𝑌(𝑡𝑖) ∼

𝐸𝐷(𝜂𝛥𝑡, 𝜆). 

Here, 𝐸𝐷(𝜂𝛥𝑡, 𝜆) represents the ED distribution, 𝜂 signifies 

the degeneracy parameter (drift rate), and 𝜆 corresponds to the 

scale parameter (diffusivity). The probability density is 

described as follows: 

𝑓(Δ𝑦 ∣ 𝜂, 𝜆) = 𝑐(Δ𝑦 ∣ Δ𝑡, 𝜆) ⋅ 𝑒𝑥𝑝{𝜆[Δ𝑦 ⋅ 𝜔(𝜂) − Δ𝑡 ⋅ 𝜅(𝜔(𝜂))]}(1) 

where 𝑐(⋅)  and 𝜅(⋅)  represent stochastic functional 

relationships, c(·) is the regularization function that ensures that 

the cumulative distribution function of the ED distribution is 

standardized, κ(·) is the cumulative function and is quadratically 

differentiable. while 𝛥𝑦 denotes the degree of degradation. To 

make the description of the degradation distribution for 

computational convenience, we introduce a stochastic process 

shape parameter, referred to as 𝜂𝜌 = 𝜅″(𝜔(𝜂)), 𝜂 = 𝜅 ′(𝜔(𝜂)), 

where η denotes the degradation rate, which is related to the 

working environment, ρ is the shape parameter of the 

degradation model, which is related only to the product itself 

and the degradation mechanism, and λ is the scale parameter, 

which determines the scale of the distribution of the degradation 

amount. From the above definition of the ED process, the mean 

and variance of y are given by 

{
𝐸(Δ𝑦) = 𝜂𝑡
𝑉𝑎𝑟(Δ𝑦)=𝜂𝜌𝑡

𝜆

   (2) 

Also combining the definition of the generalized degenerate 
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trajectory, establish the nonlinear functions, i.e., 𝛬(𝑡) , and 

𝛬(0) = 0. In mathematical statistics and engineering practice, 

exponential and power functions are often used to describe and 

fit nonlinear processes, i.e., 𝛬(𝑡) = 𝑡𝑞 or 𝛬(𝑡) = 𝑒𝑥𝑝(𝑞𝑡) − 1, 

and the time interval is 𝛥𝛬(𝑡), then the final transformation is  

a generalized ED distribution, i.e., 

 𝑌(𝛥𝛬(𝑡)) ∼ 𝐸𝐷(𝜂𝛥𝛬(𝑡), 𝜌, 𝜆, 𝑞). 

2.1.2. Accelerated stress model 

In order to obtain the life index and reliability level of high-

reliability products, it is necessary to introduce accelerated tests 

to obtain degradation data quickly. In accelerated testing, the 

test stress covariate needs to be considered, at which point the 

drift rate η will be stress-dependent and satisfy the Arrhenius 

model [6], the Arrhenius model, originated in the field of 

chemistry, is nowadays widely used in accelerated test 

modelling, and is generally used to describe the relationship 

between the characteristic quantity of a product’s life and the 

applied temperature stress, i.e., 

𝜂(𝑇) = 𝛼 𝑒𝑥𝑝 [
𝐸𝑎

𝑘𝐵𝑇
]   (3) 

where α is a constant, called the product coefficient, related to 

the product's own failure mechanism and test method; Ea is the 

activation energy of the chemical reaction; kB is Boltzmann's 

constant, i.e., 8.617 eV/°C; and T is the temperature stress, 

generally the Kelvin temperature in K. 

The Arrhenius model shows that the amount of degradation 

is proportional to the rate of reaction, and for the purpose of 

parameter estimation and processing, the model can be 

expressed as follows: 

𝜂 = 𝛼 𝑒𝑥𝑝(𝛽𝑆)   (4) 

where α and β are the parameters to be found in the acceleration 

model and S is the standard stress.  

At the same time, stress needs to be standardized to achieve 

the unity of different units of measure [19], let Si be the 

standardized stress level, and the standardization equation is:  

𝑆𝑖 = 𝑆(𝑋𝑖) =
(𝑋𝑖−𝑋𝑖0)

(𝑋𝑖𝐻−𝑋𝑖0)
, 𝑖 ∈ [1, 𝑁]  (5) 

where Xi0 is the daily operating stress level of the i-th stress Xi, 

and XiH is the accelerated limit stress level, which is the failure 

or mechanism change level, of the i-th stress Xi. In the 

acceleration model, the standardization methods are different 

for different stresses [19], and the commonly used stress types 

are shown in Table 2.  

Table 2. Normalization methods for different types of 

commonly used accelerated stresses. 

Stress S Normalization Stress S Normalization 

temperature 𝑋𝑖 =
1

𝑆𝑖
′
 vibratory 𝑋𝑖 = 𝑆𝑖

′ 

humidity 𝑋𝑖 = 𝑙𝑜𝑔(𝑆𝑖
′) 

electrical 

stress 
𝑋𝑖 = 𝑙𝑜𝑔(𝑆𝑖

′) 

In this way, the modelling of accelerated degradation 

processes can be achieved by incorporating accelerated models 

into the underlying ED degradation process. i.e., 𝑌(𝛥𝛬(𝑡)) ∼

𝐸𝐷(𝛼 𝑒𝑥𝑝(𝛽𝑆) ⋅ 𝛥𝛬(𝑡), 𝜌, 𝜆, 𝑞). 

2.2. Modelling of ED considering bi-stochastic in initial 

values of performance and degradation process 

In this section, we propose the BS-EDP to consider the 

performance initial value and the degradation process bi-

stochastic, which can be mathematically written as: 

𝑌(𝑡) ∼ 𝐸𝐷(𝑁(𝜇, 𝜎2) ⋅ Λ(𝑡), 𝜌, 𝜆, 𝑞, 𝜀, 𝜏)  (6) 

The main features of the BS-EDP are as follows: 

(1) Introducing the time-shift parameter 𝜏 and the initial 

value parameter of quality characteristics ε, which equate the 

natural difference between the performance characteristics of 

the product after production and the characteristics at the 

beginning of the test, respectively, which have a real physical 

meaning. Due to the improvement of the manufacturing process 

level, the value of ε is generally very small for the same batch 

of products, and the better the process level, the closer it is to 

zero. 

(2) Considering the presence of random effects in the 

degradation rate parameter in the ED distribution, η satisfies  

a Gaussian distribution, i.e., 𝜂~𝑁(𝜇, 𝜎2) , which allows the 

heterogeneity among individual products to be transformed into 

random effects. 

(3) Considering the random effects of accelerated stress, we 

consider that the random effect parameters of η are all stress-

sensitive and follow the Arrhenius formula with 𝜇 =

𝛼𝜇 𝑒𝑥𝑝(𝛽𝜇𝑆), 𝜎 = 𝛼𝜎 𝑒𝑥𝑝(𝛽𝜎𝑆). 

(4) Incorporate the time covariate q to describe generalized 

degradation trajectories, including both linear and non-linear 

degradation processes. 

(5) For the same product, ρ is determined by the product 

itself and does not change without a change in the failure 

mechanism. 
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The specific model construction process is as follows: 

For processes with stochastic initial values of performance, 

initial degradation values that depend on the time shift 𝜏 can be 

correctly incorporated into the ED process. Considering the 

stochastic nature of the initial degradation, the expression form 

of the degradation model with time shift is as follows: 

𝑌(Λ(𝑡)) = 𝜀 + 𝑌(Λ(𝑡 + 𝜏))  (7) 

At the beginning of the test, i.e., at t = 0: 

𝑌(0) = 𝜎 + 𝑌(Λ(𝜏))   (8) 

and one has, 

𝑌(0) − 𝜀 = 𝑌(Λ(𝜏)) ∼ 𝐸𝐷(𝜂 ⋅ Λ(𝜏), 𝜆, 𝜌) (9) 

Thereby, 𝑌(0) obeys an ED process with mean 𝜎 + 𝜂 ⋅ 𝛬(𝜏) 

and variance 
𝜂𝜌⋅𝛬(𝜏)

𝜆
. 

Therefore, the mean value of the generalized degenerate 

process of ED considering random initial values is 𝜎 + 𝜂 ⋅

𝛬(𝑡 + 𝜏), the variance is 
𝜂𝜌⋅𝛬(𝑡+𝜏)

𝜆
. 

According to the Saddle-point approximation method (SAM) 

[4], the probability density function (PDF) can be approximated 

as: 

𝑓𝐸𝐷(𝑡) ≅ √
𝜆

2𝜋⋅Λ(𝑡+𝜏)1−𝜌[𝑌(Λ(𝑡+𝜏))−𝜀]
𝜌 ⋅ 𝑒𝑥𝑝[𝜆 ⋅ Λ(𝑡 + 𝜏) ⋅ 𝐷](10) 

where D is the random process deviation function of the ED 

distribution, denoted as: 

𝐷 =

{
 
 
 

 
 
 −

1

2
[
𝑌[Λ(𝑡+𝜏)]−𝜀

Λ(𝑡+𝜏)
− 𝜂]

2

, 𝜌 = 0

𝑌[Λ(𝑡+𝜏)]−𝜀

Λ(𝑡+𝜏)
−

𝑌[Λ(𝑡+𝜏)]−𝜀

Λ(𝑡+𝜏)
⋅ 𝑙𝑛 [

𝑌[Λ(𝑡+𝜏)]−𝜀

𝜂Λ(𝑡+𝜏)
] − 𝜂, 𝜌 = 1

1 − 𝑙𝑛 [
𝜂Λ(𝑡+𝜏)

𝑌[Λ(𝑡+𝜏)]−𝜀
] −

𝑌[Λ(𝑡+𝜏)]−𝜀

𝜂Λ(𝑡+𝜏)
, 𝜌 = 2

𝜂1−𝜌[𝑌[Λ(𝑡+𝜏)]−𝜀]

(1−𝜌)Λ(𝑡+𝜏)
−

[𝑚𝑎𝑥(
𝑌[Λ(𝑡+𝜏)]−𝜀

Λ(𝑡+𝜏)
,0)]

2−𝜌

(1−𝜌)(2−𝜌)
−

𝜂2−𝜌

2−𝜌
, 𝜌 ≠ 1,2

  (11) 

It follows that when ρ takes different values, the 

corresponding D forms may be different: when ρ = 0, a Wiener 

process; when ρ = 2, a Gamma process; when ρ = 3, an IG 

process; and when 𝜌 ∈ (1,2), a composite Poisson process. 

Distribution forms that have a closed form and consider the 

first hitting time (FHT) are important in reliability applications. 

Assuming that the failure threshold of the product is a fixed 

value, denoted by  , the FHT is defined as [40]:  

𝐹𝐻𝑇 = 𝑖𝑛𝑓{ 𝑡: 𝑌(𝑡) ≥ 𝜔|𝑌(0) < 𝜔}  (12) 

The FHT of the product obeys the ED distribution, 

combined with Eq. (9), the cumulative distribution function 

(CDF) and the PDF of the product life under the degradation 

process of ED with a random initial value can be obtained by 

the derivation of the Birnbaum-Saunders (B-S) formula [8], 

respectively: 

𝐹𝑇(𝑡) ≅ Φ(√
𝜆

𝜂𝜌
(𝜂√Λ(𝑡 + 𝜏) −

𝜔−𝜀

√Λ(𝑡+𝜏)
)) (13) 

𝑓𝑇(𝑡) =
∂𝐹𝑇(𝑡)

∂𝑡
≅

Λ′(𝑡+𝜏)

2
(𝜂 +

𝜔−𝜀

Λ(𝑡+𝜏)
)√

𝜆

Λ(𝑡+𝜏)𝜂𝜌
⋅

𝜑 (√
𝜆

𝜂𝜌
(𝜂√Λ(𝑡 + 𝜏) −

𝜔−𝜀

√Λ(𝑡+𝜏)
))                     (14) 

In particular, when the degenerate trajectory is linear, the 

PDF is: 

𝑓𝑇̄(𝑡) ≅
𝜂⋅(𝑡+𝜏)+𝜔−𝜀

2(𝑡+𝜏)
√

𝜆𝜂−𝜌

2𝜋(𝑡+𝜏)
⋅ 𝑒𝑥𝑝 (−

𝜆

2𝜂𝜌
(𝜂√𝑡 + 𝜏 −

𝜔−𝜀

√𝑡+𝜏
)
2
)(15) 

where Φ is the CDF of the standard normal distribution and φ is 

the PDF of the standard normal distribution. According to this 

approximation, some characteristic functions have closed form 

expressions. Finally, the reliability index can be obtained as: 

𝑅𝐸𝐷(𝑡) = 1 − 𝐹𝑇(𝑡) ≅ 1 − Φ(√
𝜆

𝜂𝜌
(𝜂√Λ(𝑡 + 𝜏) −

𝜔−𝜀

√Λ(𝑡+𝜏)
))(16) 

In addition, due to the presence of random effects in the 

degeneracy parameter in the ED distribution, we make η satisfy 

the Gaussian distribution, i.e., 𝜂~𝑁(𝜇, 𝜎2), which allows us to 

transform the heterogeneity into random effects. The PDF of η 

is: 

𝑓(𝜂) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝜂−𝜇)2

2𝜎2
)  (17) 

Further, considering the random effect of accelerated stress, 

in order to more accurately measure the random effect between 

the accelerated stress and the degradation rate parameter, we 

consider the random effect parameter of η to be stress-sensitive, 

and the PDF of η under the accelerated test is: 

𝑓𝑎(𝜂) =
1

𝛼𝜎 𝑒𝑥𝑝(𝛽𝜎𝑆)√2𝜋
𝑒𝑥𝑝 {−

(𝜂−𝛼𝜇 𝑒𝑥𝑝(𝛽𝜇𝑆))
2

2(𝛼𝜎 𝑒𝑥𝑝(𝛽𝜎𝑆))
2 }    (18) 

Considering the above random effects, the CDF and PDF of 

BS-EDP can be derived from Eq. (12): 

𝐹(𝑡) = ∫ 𝐹𝑇(𝑡 ∣ 𝜂)𝑓(𝜂)𝑑𝜂
+∞

0
= ∫

1

𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝜂−𝜇)2

2𝜎2
)

+∞

0
×

Φ(√
𝜆

𝜂𝜌
(𝜂√Λ(𝑡 + 𝜏) −

𝜔−𝜀

√Λ(𝑡+𝜏)
))𝑑𝜂            (19) 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 4, 2024 

 

𝑓(𝑡) = ∫
0

+∞
 𝑓𝑇(𝑡 ∣ 𝜂)𝑓(𝜂)𝑑𝜂

= ∫
0

+∞
 
Λ′(𝑡+𝜏)

2𝜎
√

𝜆𝜂−𝜌

2𝜋⋅Λ(𝑡+𝜏)
(𝜂 +

𝜔−𝜀

Λ(𝑡+𝜏)
) ×

exp (−
(𝜂−𝜇)2

2𝜎2
) × 𝜑 (√

𝜆

𝜂𝜌
(𝜂√Λ(𝑡 + 𝜏) −

𝜔−𝜀

√Λ(𝑡+𝜏)
))𝑑𝜂

(20) 

In addition, it can be learnt that the reliability of the product 

is 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 − ∫ 𝐹𝑇(𝑡 ∣ 𝜂)𝑓(𝜂)𝑑𝜂
+∞

0
 (21) 

To more fully characterize the life, the approximate mean 

time to failure (MTTF) and p-th quantile (tp) of 𝐹(𝑡) are derived 

as [7]: 

MTTF = 𝐸(𝐸(𝑡 ∣ 𝜂)) ≅ 𝐸 (Λ−1 (
𝜔−𝜀

𝜂
+

𝜂𝜌−2

2𝜆
− 𝜏))

=
1

𝜎√2𝜋
∫
0

+∞
 Λ−1 (

𝜔−𝜀

𝜂
+

𝜂𝜌−2

2𝜆
− 𝜏) exp (−

(𝜂−𝜇)2

2𝜎2
) 𝑑𝜂

(22) 

𝑡𝑝 ≅
1

𝜎√2𝜋
∫ 𝛬−1(𝐴) ⋅ 𝑒𝑥𝑝 (−

(𝜂−𝜇)2

2𝜎2
) 𝑑𝜂

+∞

0
 (23) 

A is expressed as: 

𝐴 =
1

2
𝜂𝜌−2𝜆−1(𝑧𝑝

2 + 2(𝜔 − 𝜀)𝜆𝜂1−𝜌 +

𝑧𝑝√𝑧𝑝
2 + 4(𝜔 − 𝜀)𝜆𝜂1−𝜌) − 𝜏                     (24) 

where 𝛬−1(⋅) is the inverse function of 𝛬(⋅), and zp is the p-th 

quantile of the standard normal distribution. 

Ultimately, the parameter vector of the BS-EDP can be 

expressed as 𝛩 = (𝜇, 𝜎, 𝜆, 𝜌, 𝜏, 𝜀, 𝑞) , and in the case of 

accelerated degradation, the parameter vector can be expressed 

as 𝛩 = (𝛼𝜇 , 𝛽𝜇 , 𝛼𝜎 , 𝛽𝜎 , 𝜆, 𝜌, 𝜏, 𝜀, 𝑞). 

3. Statistical inference 

3.1. Overall MLE model 

For test data, parameter estimation methods need to be used to 

solve for the unknown parameters of the BS-EDP and realize 

the extrapolation of reliability indicators. MLE is a parameter 

estimation method that provides a way to evaluate the model 

parameters using given observations, and is widely used in the 

field of reliability engineering [13]. In this work, the log-

likelihood function of all sample observations in the test can be 

expressed as: 

𝐿(𝜽) = ∑𝑖=1
𝑛  ∑𝑗=1

𝑚  ln 𝑓Δ𝑦(Δ𝑦𝑖𝑗 ∣ 𝜽)  (25) 

where 𝛥𝑦𝑖𝑗  denotes the degradation increment of the 

component and θ is the parameter to be solved. 

Then, the overall logarithmic MLE based on the ED 

distribution can be obtained by considering the initial 

performance parameters randomized as: 

𝐿(𝜂, 𝜆, 𝜌, 𝜏, 𝜀) = ∑𝑖=1
𝑛  ∑𝑗=1

𝑚  ln [√
𝜆⋅ΔΛ𝑖𝑗

𝜌−1

2𝜋(Δ𝑌𝑖𝑗−𝜀𝑍)
𝜌 ⋅ exp (𝜆 ⋅ ΔΛ𝑖𝑗 ⋅ 𝐷)]

=
𝑚𝑛

2
ln (

𝜆

2𝜋
) −

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑚  [(1 − 𝜌)ln ΔΛ𝑖𝑗 + 𝜌ln (Δ𝑌𝑖𝑗 − 𝜀𝑍) − 2𝜆 ⋅ ΔΛ𝑖𝑗 ⋅ 𝐷]

(26) 

where D is denoted as follows: 

𝐷 =

{
 
 
 
 

 
 
 
 −

1

2
[
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
− 𝜂]

2

, 𝜌 = 0

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
−

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
⋅ 𝑙𝑛 [

Δ𝑌𝑖𝑗−𝜀𝑍

𝜂⋅ΔΛ𝑖𝑗
] − 𝜂, 𝜌 = 1

1 − 𝑙𝑛 [
𝜂⋅ΔΛ𝑖𝑗

Δ𝑌𝑖𝑗−𝜀𝑍
] −

Δ𝑌𝑖𝑗−𝜀𝑍

𝜂⋅ΔΛ𝑖𝑗
, 𝜌 = 2

𝜂1−𝜌(Δ𝑌𝑖𝑗−𝜀𝑍)

(1−𝜌)ΔΛ𝑖𝑗
−

[𝑚𝑎𝑥(
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
,0)]

2−𝜌

(1−𝜌)(2−𝜌)
−

𝜂2−𝜌

2−𝜌
, 𝜌 ≠ 1,2

(27) 

and 

ΔΛ𝑖𝑗 = 𝛬(𝑡𝑖𝑗 + 𝜏) − 𝛬(𝑡𝑖(𝑗−1) + 𝜏)  (28) 

Meanwhile, the first degenerate increment Δ𝑌𝑖1 obeys the 

ED distribution, when ΔΛ𝑖1 = Λ(𝑡𝑖1 + 𝜏). 

In addition, Z is an indicator function that indicates the 

selection of the initial value of the test performance for each 

piece, indicating that σ needs to be considered when the data is 

taken to the initial degradation performance parameter value, 

which is also accompanied by the appearance of σ in D. The 

expression is as follows: 

𝑍 = {
1, 𝑗 = 1
0, 𝑗 > 1

    (29) 

Further, it is necessary to consider the solution of the 

heterogeneity parameters μ, σ of the degradation process 

parameter η. Since at this point η satisfies the Gaussian 

distribution at the same time, it needs to be converted to 

hyperparameter estimation, and thus the Bayesian estimation is 

introduced to obtain the log-likelihood function of the BS-EDP 

as: 

𝐿(Θ) = ∑ ∫ ∑ 𝑙𝑛[𝑓𝛥𝑦(𝛥𝑦𝑖𝑗 ∣ 𝜂𝑖)𝑓(𝜂𝑖)]
𝑚
𝑗=1 𝑑𝜂𝑖

+∞

0
𝑛
𝑖=1  (30) 

where 𝛩 = (𝜇, 𝜎, 𝜆, 𝜌, 𝜏, 𝜀, 𝑞) is the vector representation of the 

unknown parameter to be solved and 𝜂𝑖  denotes the 

heterogeneity degradation rate parameter for each of the n 

products, and one has: 

𝐿(Θ) = ∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚  ln [

1

2𝜋𝜎
√

𝜆⋅ΔΛ
𝑖𝑗
𝜌−1

(Δ𝑌𝑖𝑗−𝜀𝑍)
𝜌 ⋅ exp (𝜆 ⋅ ΔΛ𝑖𝑗𝐷 −

(𝜂𝑖−𝜇)
2

2𝜎2
)] 𝑑𝜂𝑖

= 𝑚𝑛 ⋅ ln (
√𝜆

2𝜋𝜎
) +

1

2
∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚   [

(𝜌 − 1) ⋅ ln (ΔΛ𝑖𝑗) + 2𝜆 ⋅ ΔΛ𝑖𝑗𝐷

−𝜌 ⋅ ln (Δ𝑌𝑖𝑗 − 𝜀𝑍) −
(𝜂𝑖−𝜇)

2

𝜎2

] 𝑑𝜂𝑖

=
𝑚𝑛

2
ln (

𝜆

2𝜋𝜎
) +

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑚   [
(𝜌 − 1) ⋅ ln (ΔΛ𝑖𝑗)

−𝜌 ⋅ ln (Δ𝑌𝑖𝑗 − 𝜀𝑍)
] + ∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [𝜆 ⋅ ΔΛ𝑖𝑗𝐷 −

(𝜂𝑖−𝜇)
2

2𝜎2
] 𝑑𝜂𝑖

(31) 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 4, 2024 

 

Furthermore, the log-likelihood function of BS-EDP in the 

accelerated case is: 

𝐿(Θ) =
𝑚𝑛

2
ln (

𝜆

2𝜋(𝛼𝜎exp (𝛽𝜎𝑆))
) +

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑚   [
(𝜌 − 1) ⋅ ln (ΔΛ𝑖𝑗)

−𝜌 ⋅ ln (Δ𝑌𝑖𝑗 − 𝜀𝑍)
]

+∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚   [𝜆 ⋅ ΔΛ𝑖𝑗𝐷 −

(𝜂𝑖−𝛼𝜇exp (𝛽𝜇𝑆))
2

2(𝛼𝜎exp (𝛽𝜎𝑆))
2 ] 𝑑𝜂𝑖

(32) 

In the parameter solving process, the optimization model 

can be constructed based on the fundamental property that the 

maximum point derivative of MLE is 0, so that the partial 

derivative of each parameter is 0. 

However, since η is unobservable, direct constrained 

optimization of the above log-likelihood function is 

computationally difficult to implement and usually fails to 

converge to a solution. Moreover, for the likelihood function in 

Eq.(31), the integral operation is too complicated to directly 

solve all parameters as a whole. It is necessary to introduce the 

EM algorithm to solve the hyperparameter solution problem. 

3.2. The Improved stochastic step-by-step EM algorithm 

of BS-EDP 

The EM algorithm provides a feasible method for solving 

unobservable and random effect parameter solutions by finding 

the MLE of the potential distribution parameter with the given 

dataset and utilizing the conditional expectation of the 

observable data in place of the hidden variables. But the 

complex integral is difficult to compute, and the results obtained 

by the EM algorithm are easily affected by the initial value 

setting when applied to real situations. To avoid this problem,  

a stochastic process is introduced into the EM algorithm, and an 

improved EM algorithm is proposed that uses Markov chain 

Monte Carlo (MCMC) instead of estimating the missing values. 

The advantages of this method are utilized to improve the 

missing value estimation accuracy. 

The overall idea of the MCMC method is to construct  

a Markov chain so that its smooth distribution is the posterior 

distribution of the parameter to be estimated, generate samples 

of the posterior distribution through this Markov chain, and 

perform Monte-Carlo integration on the samples (i.e., the valid 

samples) based on the Markov chain when it reaches the smooth 

distribution. The specific steps of the improved procedure are 

as follows: 

Step 1: Initialize the parameters, mainly including global 

parameters, local parameters and iteration number.  

a. Perform overall MLE based on global data to obtain 

initialized global parameters to be sought 𝛩0 =

(𝜆0, 𝜌0, 𝜏0, 𝜀0, 𝑞0). 

b. Initialize the local pending parameters 𝛩0
′ = (𝜇0, 𝜎0), and 

𝜂0~𝑁(𝜇0, 𝜎0
2), construct the initial Markov chain. 

c. Set the number of iterations v and initially v = 0. 

Step 2: In E-step, the posterior distribution of η is obtained 

by MCMC sampling due to the difficulty of the integral 

operation, and (𝜇𝑣 , 𝜎𝑣)  is substituted into 𝑓(𝜂𝑣+1) =

1

𝜎𝑣√2𝜋
𝑒𝑥𝑝 (−

(𝜂𝑣+1−𝜇𝑣)
2

2𝜎𝑣
2 )  to obtain 1v +  , which serves as the 

new Markov chain, and the new parameters are constructed as 

follows: 

{
𝜇𝑣+1 =

1

𝑛−𝑚
∑𝑣=𝑚+1
𝑛  𝑓(𝑥𝑣) = 𝜂𝑣 ⋅ Λ(𝑡 + 𝜏𝑣)

𝜎𝑣+1 
2 =

𝜂𝑣 
𝜌0𝜎𝑣 

2

𝜆𝑣𝜎𝑣 
2⋅[(1−𝜌0)⋅Λ(𝑡+𝜏𝑣)+𝜌0⋅𝜂𝑣⋅(𝑌−𝜀)]+𝜂𝑣 

𝜌0

 (33) 

where the first 𝜂𝑣=0 can be obtained by global overall MLE, the 

next 𝜇𝑣+1  is obtained by Monte-Carlo integration to compute 

the expectation, and 𝑓(𝑥𝑣)  is the MC simulation value of the 

distribution function of 𝜂𝑣 ; the 𝜎𝑣+1
2  is obtained by Markov 

chain a priori distribution samples and the global to-be-

demanded parameters from the previous step. 

Step 3: M-step, based on the new 𝜂𝑣+1~𝑁(𝜇𝑣+1, 𝜎𝑣+1
2) , 

maximize the MLE by combining the MLE formula of BS-EDP 

to update 𝛩𝑣+1 = (𝜆𝑣+1, 𝜏𝑣+1, 𝜀𝑣+1, 𝑞𝑣+1), where 𝜌0 will not be 

changed under the same working condition due to the product's 

own fixed characteristics. 

Step 4: Set v+1 = v+2 and repeat steps 2 and 3 until the 

global MLE is maximum and the local parameter (𝜇𝑣 , 𝜎𝑣) 

converges, convergence is defined as the difference between 

two neighboring estimates being less than a given threshold. 

In addition, for the BS-EDP considering accelerated stress 

covariates, the local parameter to be solved is 𝛩0
′ =

(𝛼𝜇(0), 𝛼𝜎(0), 𝛽𝜇(0), 𝛽𝜎(0)) , and the accelerated covariate 

parameter construction method for the E-step is based on the 

improved stochastic EM step-by-step algorithm that does not 

consider acceleration:  

{
𝛼𝜇(𝑣+1) =

𝜂𝑣⋅Λ(𝑡+𝜏𝑣)

𝑒𝑥𝑝(𝛽𝜇(𝑣)𝑆)

𝛽𝜇(𝑣+1) =
𝑙𝑛 𝜇𝑣−𝑙𝑛 𝛼𝜇(𝑣)

𝑆

  (34) 
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{
𝛼𝜎(𝑣+1) = 𝛼𝜎(𝑣)𝜂𝑣

𝜌0
2 (𝜆𝑣𝜎𝑣

2 [
(1 − 𝜌0)Λ(𝑡 + 𝜏𝑣)

+𝜌0𝜂𝑣(𝑌 − 𝜀𝑣)
] + 𝜂𝑣

𝜌0)
−2

𝛽𝜎(𝑣+1) =
𝑙𝑛 𝜎𝑣−𝑙𝑛 𝛼𝜎(𝑣)

𝑆

(35) 

M-Step will maximally update the global parameters to be 

solved based on the new parameters 

𝜂𝑣+1~𝑁[𝛼𝜇(𝑣+1) 𝑒𝑥𝑝(𝛽𝜇(𝑣+1)𝑆) , 𝛼𝜎(𝑣+1)
2 𝑒𝑥𝑝2(𝛽𝜎(𝑣+1)𝑆)]. 

The key to the EM algorithm is to alternate iterations 

between E-steps and M-steps until the parameters converge. 

This will gradually improve the accuracy of the parameter 

estimates. By improving the stochastic step-by-step EM 

algorithm, the difficulties in integral solving can be effectively 

solved to maximize the use of a priori data to obtain point 

estimates of the parameters. 

3.3. An interval estimation method based on information 

matrix and Ito calculus 

For the unknown parameters of the model obtained by the 

overall MLE and EM algorithms, they are generally 

approximations of the distributed parameters, and the 

characteristics of statistical theory make it impossible to find 

their true values. Therefore, the interval estimation, as part of 

the parameter estimation task, can determine the range that 

exists for the true values of the distributional parameters and 

determine the accuracy and confidence of the parameter 

estimates. 

Since the EM algorithm is used in this paper to solve for the 

unknown parameters, the interval estimates of the parameters 

can be derived based on the normal asymptotic nature by 

solving the inverse matrix by observing the Fisher information 

matrix and obtaining the estimated asymptotic covariance to 

derive the interval estimates of the parameters of interest. 

If it is an MLE of the parameter in the overall density 

function, then it asymptotically obeys a normal distribution: 

𝜃̂ ∼ 𝑁 (𝜃, [𝑛𝐸 (
𝜕 𝑙𝑛 𝑓

𝜕𝜃
)
2

]
−1

)  (36) 

Thus, under asymptotic theory, the parameters 𝛩̂ =

(𝜇̂, 𝜎̂, 𝜆̂, 𝜌̂, 𝜏̂, 𝜀̂, 𝑞̂)  follow a multidimensional normal 

distribution with mean 𝛩 = (𝜇, 𝜎, 𝜆, 𝜌, 𝜏, 𝜀, 𝑞) . the observed 

Fisher matrix is: 

𝐼0(Θ) =

(

 
 
 
 
 
 
 
 
 
 

−
𝜕2𝐿

𝜕𝜇2
−

𝜕2𝐿

𝜕𝜇𝜕𝜎
−

𝜕2𝐿

𝜕𝜇𝜕𝜆
−

𝜕2𝐿

𝜕𝜇𝜕𝜌
−

𝜕2𝐿

𝜕𝜇𝜕𝜏
−

𝜕2𝐿

𝜕𝜇𝜕𝜀
−

𝜕2𝐿

𝜕𝜇𝜕𝑞

−
𝜕2𝐿

𝜕𝜎𝜕𝜇
−
𝜕2𝐿

𝜕𝜎2
−

𝜕2𝐿

𝜕𝜎𝜕𝜆
−

𝜕2𝐿

𝜕𝜎𝜕𝜌
−

𝜕2𝐿

𝜕𝜎𝜕𝜏
−

𝜕2𝐿

𝜕𝜎𝜕𝜀
−

𝜕2𝐿

𝜕𝜎𝜕𝑞

−
𝜕2𝐿

𝜕𝜆𝜕𝜇
−

𝜕2𝐿

𝜕𝜆𝜕𝜎
−
𝜕2𝐿

𝜕𝜆2
−

𝜕2𝐿

𝜕𝜆𝜕𝜌
−

𝜕2𝐿

𝜕𝜆𝜕𝜏
−

𝜕2𝐿

𝜕𝜆𝜕𝜀
−

𝜕2𝐿

𝜕𝜆𝜕𝑞

−
𝜕2𝐿

𝜕𝜌𝜕𝜇
−

𝜕2𝐿

𝜕𝜌𝜕𝜎
−

𝜕2𝐿

𝜕𝜌𝜕𝜆
−
𝜕2𝐿

𝜕𝜌2
−

𝜕2𝐿

𝜕𝜌𝜕𝜏
−

𝜕2𝐿

𝜕𝜌𝜕𝜀
−

𝜕2𝐿

𝜕𝜌𝜕𝑞

−
𝜕2𝐿

𝜕𝜏𝜕𝜇
−

𝜕2𝐿

𝜕𝜏𝜕𝜎
−

𝜕2𝐿

𝜕𝜏𝜕𝜆
−

𝜕2𝐿

𝜕𝜏𝜕𝜌
−
𝜕2𝐿

𝜕𝜏2
−

𝜕2𝐿

𝜕𝜏𝜕𝜀
−

𝜕2𝐿

𝜕𝜏𝜕𝑞

−
𝜕2𝐿

𝜕𝜀𝜕𝜇
−

𝜕2𝐿

𝜕𝜀𝜕𝜎
−

𝜕2𝐿

𝜕𝜀𝜕𝜆
−

𝜕2𝐿

𝜕𝜀𝜕𝜌
−

𝜕2𝐿

𝜕𝜀𝜕𝜏
−
𝜕2𝐿

𝜕𝜀2
−

𝜕2𝐿

𝜕𝜀𝜕𝑞

−
𝜕2𝐿

𝜕𝑞𝜕𝜇
−

𝜕2𝐿

𝜕𝑞𝜕𝜎
−

𝜕2𝐿

𝜕𝑞𝜕𝜆
−

𝜕2𝐿

𝜕𝑞𝜕𝜌
−

𝜕2𝐿

𝜕𝑞𝜕𝜏
−

𝜕2𝐿

𝜕𝑞𝜕𝜀
−
𝜕2𝐿

𝜕𝑞2 )

 
 
 
 
 
 
 
 
 
 

|

|

|

|

𝜃𝑘=𝜃̂𝑘

(37) 

Since the Fisher matrix is a symmetric matrix, Iij = Iji, the 

elements in the observed Fisher matrix under the BS-ED model 

can be obtained: 

−
𝜕2𝐿

𝜕𝜇2
=
1

𝜎2
 

−
𝜕2𝐿

𝜕𝜆2
=
𝑚𝑛

2𝜆2
 

−
∂2𝐿

∂𝜎2
= −

𝑚𝑛

2𝜎2
+ ∑𝑖=1

𝑛  ∫
0

+∞
  [
3(𝜂𝑖 − 𝜇)

2

𝜎4
] 𝑑𝜂𝑖 

−
∂2𝐿

∂𝜌2
= −∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚  (𝜆 ⋅ ΔΛ𝑖𝑗

∂2𝐷

∂𝜌2
)𝑑𝜂𝑖 

−
𝜕2𝐿

𝜕𝜏2
=
1

2
(𝜌 − 1)∑𝑖=1

𝑛  ∑𝑗=1
𝑚  

[
 
 
 
 (𝛥𝛬𝑖𝑗)

−2
⋅ (
𝜕𝛥𝛬𝑖𝑗

𝜕𝜏
)

2

−(𝛥𝛬𝑖𝑗)
−1
⋅
𝜕2𝛥𝛬𝑖𝑗

𝜕𝜏2 ]
 
 
 
 

−𝜆∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚   [(𝐷

𝜕2𝛥𝛬𝑖𝑗

𝜕𝜏2
+ 2

𝜕𝛥𝛬𝑖𝑗

𝜕𝜏

𝜕𝐷

𝜕𝜏
+ 𝛥𝛬𝑖𝑗

𝜕2𝐷

𝜕𝜏2
)]𝑑𝜂𝑖

 

−
∂2𝐿

∂𝜀2
=
1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑚   [
𝜌𝑍3

(Δ𝑌𝑖𝑗 − 𝜀𝑍)
2] − ∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [𝜆 ⋅ ΔΛ𝑖𝑗

∂2𝐷

∂𝜀2
] 𝑑𝜂𝑖 

−
∂2𝐿

∂𝑞2
=
1

2
(𝜌 − 1)∑𝑖=1

𝑛  ∑𝑗=1
𝑚  

[
 
 
 
 (ΔΛ𝑖𝑗)

−2
⋅ (
∂ΔΛ𝑖𝑗

∂𝑞
)

2

−(ΔΛ𝑖𝑗)
−1 ∂

2ΔΛ𝑖𝑗

∂𝑞2 ]
 
 
 
 

−𝜆∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚   [(𝐷

∂2ΔΛ𝑖𝑗

∂𝑞2
+ 2

∂ΔΛ𝑖𝑗

∂𝑞

∂𝐷

∂𝑞
+ ΔΛ𝑖𝑗

∂2𝐷

∂𝑞2
)]𝑑𝜂𝑖

 

−
∂2𝐿

∂𝜇 ∂𝜎
= 2∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚  (

𝜂𝑖 − 𝜇

𝜎3
)𝑑𝜂𝑖  

−
∂2𝐿

∂𝜆 ∂𝜌
= −∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚  (ΔΛ𝑖𝑗

∂𝐷

∂𝜌
)𝑑𝜂𝑖 

−
∂2𝐿

∂𝜌 ∂𝜏
= −

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑚   [
1

ΔΛ𝑖𝑗

∂ΔΛ𝑖𝑗

∂𝜏
]

−𝜆∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚   [

∂ΔΛ𝑖𝑗

∂𝜏

∂𝐷

∂𝜌
+ ΔΛ𝑖𝑗

∂2𝐷

∂𝜌∂𝜏
]𝑑𝜂𝑖

 

−
∂2𝐿

∂𝜀 ∂𝑞
= −𝜆 ⋅ ∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [

∂ΔΛ𝑖𝑗

∂𝑞

∂𝐷

∂𝜀
+ ΔΛ𝑖𝑗

∂2𝐷

∂𝜀 ∂𝑞
]𝑑𝜂𝑖 

−
∂2𝐿

∂𝜀 ∂𝑞
= −𝜆 ⋅ ∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [

∂ΔΛ𝑖𝑗

∂𝑞

∂𝐷

∂𝜀
+ ΔΛ𝑖𝑗

∂2𝐷

∂𝜀 ∂𝑞
]𝑑𝜂𝑖 

−
∂2𝐿

∂𝜆 ∂𝜏
= −∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [𝐷

∂ΔΛ𝑖𝑗

∂𝜏
+ ΔΛ𝑖𝑗

∂𝐷

∂𝜏
]𝑑𝜂𝑖  
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−
∂2𝐿

∂𝜏 ∂𝜀
= −𝜆 ⋅ ∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [

∂ΔΛ𝑖𝑗

∂𝜏

∂𝐷

∂𝜀
+ ΔΛ𝑖𝑗

∂2𝐷

∂𝜏 ∂𝜀
] 𝑑𝜂𝑖  

−
∂2𝐿

∂𝜌 ∂𝜀
= −

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑚   [
𝑍

Δ𝑌𝑖𝑗 − 𝜀𝑍
] − 𝜆∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [ΔΛ𝑖𝑗

∂2𝐷

∂𝜌∂𝜀
]𝑑𝜂𝑖 

−
∂2𝐿

∂𝜏 ∂𝑞
=
1

2
(𝜌 − 1)∑𝑖=1

𝑛  ∑𝑗=1
𝑚   [(

1

(ΔΛ𝑖𝑗)
2 −

1

ΔΛ𝑖𝑗
)
∂2ΔΛ𝑖𝑗

∂𝑞 ∂𝜏
]

−𝜆∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚   [𝐷

∂2ΔΛ𝑖𝑗

∂𝜏 ∂𝑞
+
∂ΔΛ𝑖𝑗

∂𝜏

∂𝐷

∂𝑞
+
∂ΔΛ𝑖𝑗

∂𝑞

∂𝐷

∂𝜏
+ ΔΛ𝑖𝑗

∂2𝐷

∂𝜏 ∂𝑞
]𝑑𝜂𝑖

 

−
∂2𝐿

∂𝜆 ∂𝜀
= −∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [ΔΛ𝑖𝑗

∂𝐷

∂𝜀
] 𝑑𝜂𝑖 

−
∂2𝐿

∂𝜌 ∂𝑞
= −

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑚   [
1

ΔΛ𝑖𝑗

∂ΔΛ𝑖𝑗

∂𝑞
]

−𝜆∑𝑖=1
𝑛  ∫

0

+∞
 ∑𝑗=1
𝑚   [

∂ΔΛ𝑖𝑗

∂𝑞

∂𝐷

∂𝜌
+ ΔΛ𝑖𝑗

∂2𝐷

∂𝜌∂𝑞
]𝑑𝜂𝑖

 

−
∂2𝐿

∂𝜆 ∂𝑞
= −∑𝑖=1

𝑛  ∫
0

+∞
 ∑𝑗=1
𝑚   [𝐷

∂ΔΛ𝑖𝑗

∂𝑞
+ ΔΛ𝑖𝑗

∂𝐷

∂𝑞
]𝑑𝜂𝑖 

−
𝜕2𝐿

𝜕𝜎𝜕𝜀
= −

𝜕2𝐿

𝜕𝜇𝜕𝜏
= −

𝜕2𝐿

𝜕𝜇𝜕𝜀
= −

𝜕2𝐿

𝜕𝜎𝜕𝑞
= −

𝜕2𝐿

𝜕𝜇𝜕𝑞
= −

𝜕2𝐿

𝜕𝜎𝜕𝜆
= −

𝜕2𝐿

𝜕𝜇𝜕𝜆

= −
𝜕2𝐿

𝜕𝜎𝜕𝜌
= −

𝜕2𝐿

𝜕𝜇𝜕𝜌
= −

𝜕2𝐿

𝜕𝜎𝜕𝜏
= 0 

In summary, the partial derivatives of the second layer need 

to be solved; the first partial derivatives of the second layer have 

already been solved in Section 3.1, and the specific solution for 

the second partial derivatives is given in Appendix A. 

Based on the results of L second order partial derivatives, it 

is clear that the calculation contains many difficult integrals of 

random variables and integrals in non-closed form, which 

cannot be solved by the traditional methods. In this paper, the 

Ito calculus is used to deal with the complex stochastic integrals. 

First, given the product function f (η, t), where η is  

a normally distributed random variable. We can write f (η, t) in 

the form of an Ito process: 

𝑑𝑌𝑡 = 𝑓(𝜂, 𝑡)𝑑𝜂   (38) 

Next, using Ito integral processing, define a new procedure 

Zs that satisfies the following conditions: 

𝑍𝑠 = ∫ 𝑓(𝜂, 𝑠)𝑑𝜂𝑠
𝑡

0
   (39) 

where f (η, s) is a measurable function with respect to time and 

stochastic processes arising from a second partial derivative 

computation, and dηs in the Ito integral introduces stochasticity 

in η and satisfies Brownian motion. However, since f (η, s) is a 

function of η satisfying a stochastic process, after expansion by 

Taylor's formula, there are: 

Δ𝑓 = 𝑓(𝜂𝑠 + Δ𝜂𝑠) − 𝑓(𝜂𝑠) = 𝑓′(𝜂𝑠)(Δ𝜂𝑠) +

     
𝑓′′(𝜂𝑠)

2
(Δ𝜂𝑠)

2 +
𝑓′′′(𝜂𝑠)

6
(Δ𝜂𝑠)

3 +             (40) 

We find that since the Brownian motion itself has a quadratic 

variation that is not 0 and is (𝑑𝜂𝑠)
2 = 𝑑𝑠. Therefore, the second 

term of the Taylor expansion is the same order as the first term, 

and cannot be omitted, and the degeneracy parameter ηs is not 

trivial by itself. We can obtain: 

𝑑𝑓(𝜂𝑠) = 𝑓
′(𝜂𝑠)𝑑𝜂𝑠 +

1

2
𝑓″(𝜂𝑠)𝑑𝑠  (41) 

Further, more generally, if η satisfies Brownian motion ηs, 

we have: 

𝑑𝑓 =
∂𝑓

∂𝑠
𝑑𝑠 +

∂𝑓

∂𝜂
𝑑𝜂𝑠 +

1

2

∂2𝑓

∂𝜂2
(𝑑𝜂𝑠)

2 = (
∂𝑓

∂𝑠
+
1

2

∂2𝑓

∂𝜂2
) 𝑑𝑠 +

∂𝑓

∂𝜂
𝑑𝜂𝑠(42) 

The next step is to solve the specific form of complex 

calculus based on the above method. We can see that if Zs is  

a stochastic process satisfying a stochastic integral equation as 

Eq. (38), where f and η can be obtained by data estimation or 

measurement, then for η, for any s on ηs and a small increment 

Δs, one has: 

𝑍𝑠+Δs − 𝑍𝑠 =
∂𝑓

∂𝑠
𝛥𝑠 +

∂𝑓

∂𝜂
𝛥𝜂𝑠 +

1

2

∂2𝑓

∂𝜂2
(𝛥𝜂𝑠)

2 (43) 

The above process involves the product of f(η,s) with dηs and 

will accumulate over the entire η interval, thus avoiding direct 

integration by approximating the area and ultimately obtaining 

a numerical solution for each element of the observation 

information matrix that involves a complex non-closed integral. 

Since the inverse matrix of matrix I0 is the variance-

covariance matrix of parameter Θ, the two-sided confidence 

interval of the parameter at confidence level γ can be expressed 

as: 

[𝜃𝐿 , 𝜃𝑈] = [𝜃 − 𝑘√𝑣𝑎𝑟(𝜃̂) , 𝜃 + 𝑘√𝑣𝑎𝑟(𝜃̂)] (44) 

where k is the quantile of the confidence band 1-γ under the 

standard normal distribution, 𝑣𝑎𝑟(𝜃̂) is the diagonal element of 

the variance-covariance matrix, and is the asymptotic 

covariance of each parameter. 

In summary, the overall process of reliability assessment and 

life prediction based on BS-EDP is shown in Fig. 1.
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Fig. 1. The pipeline of the proposed BS-EDP-based degradation modelling framework.

4. Simulation case studies 

In this paper, multiple sets of Monte Carlo simulation tests are 

performed to show the correctness, stability and convergence of 

the method. The simulation data for two sets of degradation, 

n=50 and n=200, are first analyzed using the model proposed in 

this paper to give the estimation results and to compare the 

errors in parameter estimation. Next, real accelerated 

degradation tests are simulated to assess the time-shift-based 

random initial value and degradation heterogeneity under 

accelerated stress covariates. The parameters of the BS-EDP are 

also estimated to extrapolate reliability metrics under the 

normal stress, which are ultimately compared with the original 

real values. 

4.1. Simulation and parameter estimation validation 

without considering acceleration 

This part introduces the simulation results of the BS-ED model 

that does not consider the random effects of accelerated stress. 

The prior model and parameters of the model are as follows: 

𝑌(𝑡) ∼ 𝑇𝐸𝐷(𝑁(1,0. 12) ⋅ 𝑡1.2, 10,2.5,0,0.25) (45) 

where 𝑁(1,0. 12)  indicates that the heterogeneity of the 

degradation rate satisfies a Gaussian process with a mean of 1 

and a standard deviation of 0.1. 

The two parameters considering the time shift are realized 

by data interception after simulating the trials. Firstly, 10 sets of 

degradation data of 5 products and 20 sets of degradation data 

of 10 products, i.e., two sets of tests with n=50 and n=200, were 

simulated respectively, and τ = 0.25 and ε = 0 were intercepted 

as the true values of the time shifts. After obtaining the 

simulation data, parameter estimation is performed using our 

proposed method. 

In order to ensure the stability of the model parameter 

solution, it is necessary to compare the results of the parameter 

estimation with the true value, and the commonly used error 

measurement indexes are relative error (RE), mean absolute 

error (MAE), and mean square error (MSE). This paper mainly 

compares these three types of error indexes, and the results are 

shown in Table 3.
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Table 3. Parameter estimation results and errors from true values. 

n parameters ρ = 2.5 λ = 10 q = 1.2 τ = 0.25 ε = 0 μ = 1 σ = 0.1 

50 

estimated value 2.0827 13.5148 1.0008 0.3681 0.1186 1.2221 0.1503 

RE 0.1669 0.3515 0.1660 0.4724 0.1186 0.2221 0.5035 

MAE 0.4173 3.5148 0.1992 0.1181 0.1186 0.2221 0.0503 

MSE 3.48E-03 2.47E-01 7.94E-04 2.79E-04 2.81E-04 9.86E-04 5.07E-05 

200 

estimated value 2.3908 10.7369 1.1677 0.2550 0.0109 1.1001 0.1132 

RE 0.0437 0.0737 0.0269 0.0200 0.0109 0.1001 0.1320 

MAE 0.1092 0.7369 0.0323 0.0050 0.0109 0.1001 0.0132 

MSE 5.96E-05 2.72E-03 5.21E-06 1.25E-07 5.94E-07 5.01E-05 8.71E-07 

It can be seen that with the increase in the number of samples, 

the errors of the estimated values of each parameter compared 

with the true values are significantly reduced, and the MSEs at 

n = 200 are all controlled within 1.00E-2, which indicates that 

the model has good convergence and stability. 

According to the parameter estimation results, the time-shift 

parameters τ = 0.2550 and ε = 0.0109 at n = 200 are very close 

to the real values of the simulated interception, which can be  

a good measure of the initial randomness. After calculation, the 

heterogeneity of the degradation rate is expressed as 

𝑁(1.1001,0.11322), which is close to the true value. 

4.2. Validation of simulation and parameter estimation 

under accelerated test 

A product is subjected to accelerated degradation test, the 

normal operating temperature is 298K, the accelerated 

temperature stress is 333K and 353K, the limiting temperature 

is 383K. 

As 𝑌(𝛬(𝑡)) ∼ 𝑇𝐸𝐷(𝑁(𝛼𝜇 𝑒𝑥𝑝(𝛽𝜇𝑆) , 𝛼𝜎
2 𝑒𝑥𝑝(2𝛽𝜎𝑆)) ⋅

𝑡𝑞 , 𝜆, 𝜌), where the initial value is random: 

𝑌(0) − 𝜀 = 𝑋(𝜏𝑞) ∼ 𝑇𝐸𝐷(𝑁(𝛼𝜇 𝑒𝑥𝑝(𝛽𝜇𝑆) , 𝛼𝜎
2 𝑒𝑥𝑝(2𝛽𝜎𝑆)) ⋅

𝜏𝑞 , 𝜆, 𝜌)                                         (46) 

Therefore, the parameters to be solved are 

𝛼𝜇 , 𝛽𝜇 , 𝛼𝜎 , 𝛽𝜎 , 𝜆, 𝜌, 𝑞, 𝜏, 𝜀. 

Monte Carlo simulations of accelerated degradation tests are 

performed, with 20 sets of degradation data for each of 10 

products randomly selected, for a total of 200 sets, with a test 

interval of 0.25 units time. When the amount of degradation 

reaches 20%, we consider the product to be failure. 

The simulation parameters are set as follows: global 

parameter 𝜆, 𝜌, 𝑞, 𝜏, 𝜀 = (8,2.2,1.2,1.25,0.1) , random effect 

local parameter 𝛼𝜇 , 𝛽𝜇 , 𝛼𝜎 , 𝛽𝜎 = (3,0.1,0.4,0.6) . The 

degradation trajectory of the simulated data is shown in Fig. 2, 

and for the equivalent initial performance randomization, the 

data before t = 1.25 is deleted, and the upper side x-axis 

coordinate is the new degradation time axis.

 

Fig. 2. Simulation data and degradation trajectories under different accelerated degradation test.

The estimation is carried out using the method proposed in this paper and the results of parameter estimation are shown in 
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Table 4. 

Table 4. Parameter estimation results and errors from true 

values under simulated accelerated degradation tests. 

Parameters results RE MAE MSE 

ρ = 2.2 2.1570 1.95E-02 4.30E-02 9.24E-06 

λ = 8 8.0029 3.62E-04 2.89E-03 4.18E-08 

q = 1.2 1.1516 4.04E-02 4.84E-02 1.17E-05 

αμ = 3 3.0240 8.01E-03 2.40E-02 2.89E-06 

ασ = 0.1 0.1152 1.52E-02 1.52E-02 1.16E-06 

βμ = 0.4 0.3858 3.56E-02 1.42E-02 1.01E-06 

βσ = 0.6 0.6629 1.05E-01 6.29E-02 1.98E-05 

τ = 1.25 1.2455 3.60E-03 4.50E-03 1.01E-07 

ε = 0.1 0.0785 2.15E-01 2.15E-02 2.31E-06 

Based on the estimated results, it can be seen that RE , MAE 

and MSE are controlled within 25%, 10% and 1%, respectively, 

which indicates that the model has good stability. 

In addition, even under the condition of accelerated test, the 

degradation process still exists heterogeneity, σ and μ still 

satisfy the Gaussian distribution, as shown in Fig. 3. Compared 

with the case of normal stress, the mean and variance of η under 

acceleration are larger, the specific relationship is: 

{
 
 

 
 

𝜂1 ∼ 𝑁(3.1936,0.5280
2) =

𝑁(3.0240𝑒0.1152×0.4736, (0.3857𝑒0.6629×0.4736)2)

𝜂2 ∼ 𝑁(3.2788,0.6144
2) =

𝑁(3.0240𝑒0.1152×0.7020, (0.3857𝑒0.6629×0.7020)2)

      (47) 

 

Fig. 3. Heterogeneity distribution of η under accelerated degradation test.

For the acceleration test data, the reliability metrics under the normal stress are extrapolated, and shown in Fig. 4.

 

Fig. 4. CDF and PDF of life under normal operating conditions.

From the CDF and PDF, it can be seen that the reliability and life estimation results have less error compared to the true 
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values, and the estimated median life, characteristic life, and the 

errors, as tabulated in Table 5. It can be seen that the 

extrapolated life error is controlled within 1%.

Table 5. Lifetime and errors for extrapolation. 

 actual value estimated value RE MAE MSE 

Median lifetime 5.3833 5.3422 7.63E-03 4.11E-02 8.45E-06 

Characteristic lifetime 5.7349 5.6844 8.81E-03 5.05E-02 1.28E-05 

5. Practical case studies 

In this section, we analyze real cases of GaAs laser and LED 

chips for validation, showing that when the initial degradation 

level is unknown, the BS-ED can describe the degradation more 

accurately and realistically. One of the LED chip cases was also 

used to verify the accuracy of the extrapolation of accelerated 

degradation to normal operating life. 

5.1. GaAs laser 

We selected the laser device degradation set proposed by 

Meeker at a temperature stress of 80 ℃ and 110 ℃ 36, the 

product measured the operating current every 250 hours interval 

until the test was stopped at 4000 hours, a total of 16 times. The 

failure criterion of GaAs lasers is the operating current, when 

the product laser intensity remains consistent, the operating 

current exceeds 10mA judged as failure. We randomly select the 

data of 10 sets of these products to carry out the degradation 

trajectory analysis, model comparison and parameter estimation 

as well as life extrapolation. 

In the modelling process, we need to pay attention to the 

actual degradation trajectory of the product, so before carrying 

out the analysis, we need to determine the form of Λ(t). Through 

the analysis, it can be obtained that the RMSE using the power 

function and exponential function is 1.1724 and 1.2602, 

respectively, and the former is smaller, so the fit is better using 

the power function, and at this time the shape function is Λ(t)= 

t q. 

Meanwhile, Fig. 5 gives the normality P-P plot and 

skewness P-P plot (ED process for the assumed distribution) for 

these 10 sets of data, which can be seen that the data is 

asymmetric as a whole, which is further evidence that the data 

satisfies the skewness distribution.

 

      (a) ED process bias test                             (b) normality test 

Fig. 5. P-P plot for 10 sets of data.

In addition, in order to prove the optimality of considering 

the BS-ED model, it is necessary to compare it with other 

models. Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and AICc are introduced to prove 

the goodness of fit and the best fitting stochastic process is 

selected. Notably, (1) Both AIC and BIC consider fit and 

complexity, but penalize complexity differently, with BIC being 

stricter on parameters. (2) AICc corrects AIC, suitable for small 
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samples to prevent overfitting. (3) With large samples, AIC, BIC, 

and AICc give similar results. But for small samples, AICc is 

preferred 37. Therefore, this paper concurrently assesses three 

information criteria for model fit, rigorously considering 

complexity and preventing overfitting in small or limited 

samples. The goodness of fit is defined as follows: 

{

𝐴𝐼𝐶 = 2𝑘 − 2𝐿

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘+1)

(𝑛−𝑘−1)

𝐵𝐼𝐶 = 𝑘 𝑙𝑛( 𝑛) − 2𝐿

  (48) 

where L is the log likelihood, k is the number of parameters, and 

n is the number of samples. 

After determining the degradation trajectories, we calculate 

the parameter values and information criterion scales of the 

Wiener process, the Gamma process, the IG process, and the 

generalized trajectory ED process, respectively, and use them to 

compare the relative goodness of fit of the models, and the 

results are shown in Table 6. 

Table 6. Parameter values and Information Criterion for 

different models of the same GaAs lasers. 

 Wiener Gamma IG ED 

λ 6.5540 30.2979 59.8611 42.0377 

η 2.1181 2.1181 2.1181 2.1181 

ρ 0 2 3 2.4703 

MLE 37.0616 50.2981 50.1522 50.8073 

AIC -70.1232 -96.5961 -96.3045 -97.6145 

BIC -63.9728 -90.4458 -90.1541 -91.4642 

AICc -70.0468 -96.5197 -96.2281 -97.5381 

Through further calculations, it is found that the ED model 

has a smaller value of the information criterion scale than other 

conventional models, and therefore more accurately describes 

the degradation process of GaAs lasers. 

As can be seen from the original data, the initial degradation 

level is 0. In order to illustrate the use scenario and performance 

of the model, we delete the first 4 sets of incremental data to 

assume that the product has been degraded for 1000 hours at the 

beginning of the test and consider this moment to be 0, and to 

obtain a set of data with a random initial performance. The 

degradation trajectory can be represented in Fig. 6, with the gray 

color indicating the deleted data and the horizontal coordinates 

on the top side indicating the true time of the new degradation 

trajectory. 

 

Fig. 6. Degenerate trajectories considering initial value 

randomization. 

In this paper, we simultaneously consider the initial 

degradation random, degradation process heterogeneity 

separately, and compare it with the generalized ED model 

without component heterogeneity to illustrate the accuracy of 

the description of the BS-ED model when there is a case of 

initial value randomness, as shown in Table 7. Where the 

generalized trajectory ED model is M1[8], the ED process 

considering initial value randomness is M2[20], the ED process 

considering degradation heterogeneity is M3[7], and the BS-ED 

proposed in this paper is M0. Parameter estimation is carried 

out and the results are shown in Table 7. 

Table 7. statistical inference results from different models. 

parameters M1 M2 M3 M0 

ρ 2.3844 2.4814 2.3557 2.4703 

λ 39.4591 40.4285 39.7228 42.0377 

q 0.9802 0.9999 0.9549 0.9751 

μ (η) 2.0727 2.0463 2.1311 2.1181 

σ - - 0.5319 0.5202 

τ - 1.1234 - 0.9628 

ε - 0.0267 - 0.0229 

log-likelihood 40.0108 40.2800 64.3890 65.0974 

AIC -72.0216 -72.5600 -118.7781 -120.1949 

BIC -60.8717 -61.4100 -103.4022 -104.8190 

AICc -71.6738 -72.2122 -118.3859 -119.8027 

It can be seen that the value of the information criterion 

decreases significantly after considering the randomness of the 

initial values and the heterogeneity of the degradation process, 

indicating a more accurate description of the true situation. τ = 

0.9628 estimated by the BS-ED model indicates that at the 
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beginning of the test, the products of the 10 groups on average 

had already produced degradation equivalent to about 962.8 

hours or so at the same level of stress, which is close to the true 

value of 1000 hours. 

In addition, in the process of EM algorithm, the E-step 

obtained the posterior distribution of heterogeneity of η as 

𝑁(2.1181, 0.52022) by MCMC sampling, as shown in Fig. In 

addition, the P-P plot of the goodness-of-fit of the independent 

heterogeneity η of each test piece with the posterior distribution 

is shown in Fig. 7, which shows that the heterogeneity 

distribution obtained by the E-step is very close to the real 

situation. 

 

Fig. 7. Heterogeneity distribution of η.

Therefore, the model considers the degradation before the 

test and incorporates the uncertainty of the initial performance 

of the product and the degradation process, which helps to 

retrieve the real operation and degradation time of the product 

and makes the degradation modeling more reasonable. The 

reliability assessment of the final solution accelerated stress 

case considering double random variables and without is shown 

in Fig. 8. 

 

Fig. 8. Results of reliability assessment. 

From the above results, it can be concluded that describing 

the degradation behavior with the ED process considering the 

initial value stochastic is closer to the real situation, and the BS-

ED process fits better. Finally, the median lifetime of BS-ED 

can be obtained as 3747.6 h with a relative error of 8.60%, and 

the median lifetime of the traditional ED model is 4824.7 h with 

a relative error of 17.68%.The error of BS-ED is smaller and the 

lifetime is shorter compared to the traditional model, which is 

in line with the actual situation where the time-shift of about 

1000 h is considered. 

5.2. LED chips 

LED chips are very common in aircraft, mainly used for 

illumination and signal indication, and failure may lead to 

improper operation by the crew during flight. Therefore, it is 

necessary to analyze the reliability of LED chips. LED chips are 

generally judged by the decay value of luminous flux to obtain 

the test data, the conventional method requires a long test time, 

and the traditional reliability test method is long and costly, 

which seriously affects the development progress of products. 

In order to illustrate the validity of the proposed model, the 

accelerated degradation test of LED chips is carried out with 
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temperature as the accelerating variable. 

Tests were carried out with LED chips from GREE, and the 

product-related indexes are shown in Table 8. 

Table 8. Parameters of LED chips under test. 

Performance indicators Values 

Rating 3W 

Rated voltage 3-3.6V 

Rated current 0.6-1A 

Color temperatures 6500K White 

Junction temperature under normal 

operation 
85℃ 

Theoretical maximum ambient 

temperature 
150℃ 

Theoretical light intensity at 15cm 560Lux 

Actual life span 20000h-25000h 

To ensure that the failure mechanism is not changed under 

accelerated stress, the test needs to be carried out under the 

requirements of thermal design. The relationship between its 

ambient temperature and maximum current is shown in Fig. 9. 

 

Fig. 9. Thermal design curve of LED chip. 

The daily working stress of the product is 25°C. In order to 

ensure that the failure mechanism does not change, the product 

is operated at a rated current of 0.6A, and accelerated stresses 

of 60°C and 100°C are applied, with an ultimate stress of 150°C. 

The product is then subjected to an accelerated test with  

a constant current source. The test platform is shown in fig. 10, 

the tested parts is placed in the accelerated test chamber, 

powered by a constant current source and 5 groups of LED chips 

are connected in series to ensure a consistent operating current. 

 

Fig. 10. Accelerated Degradation Testbed. 

The luminous flux was measured once every 100 hours, and 

the light intensity of each tested piece at the vertical 15cm was 

collected separately by using an illuminance meter during the 

test, which lasted for 2000h, and the failure threshold was 

defined as 70% of the initial luminance, and the results of the 

test are shown in Fig. 11. It can be seen that there are obvious 

differences in the initial state and heterogeneity in the 

degradation process. The data are used for model building and 

parameter estimation. 

 

Fig. 11. Actual degradation data of LED chips under 

accelerated test. 

We first compare the goodness of fit of different degradation 

trajectories, the degradation trajectory is a power function with 

an RMSE of 8.5161, and when it is an exponential function, the 
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RMSE is 8.8920, which is a better fit for the power function. It 

is also important to compare the goodness of fit of different 

stochastic degradation processes, as shown in Table 9, which 

lists all the parameter estimation results and Information 

Criterion. 

Table 9. Parameter values and Information Criterion for 

different models of the same LED chips. 

 Wiener Gamma IG ED 

λ 0.5129 1.6573 0.0655 1.5425 

η 2.2273 2.2272 2.2272 2.2272 

ρ 0 2 3 1.4387 

 Wiener Gamma IG ED 

MLE -350.5544 -333.0783 -353.0723 -312.2451 

AIC 705.1087 670.1566 710.1446 630.4902 

BIC 711.7054 676.7533 716.7413 640.3851 

AICc 705.1696 670.2175 710.2055 630.6126 

It can be seen that the ED process better meets the actual 

degradation situation of LED chips. Based on this, the proposed 

BS-ED model is substituted to solve the parameters and 

compared with the ED model. The results of the parameter 

estimation for the two sets of experimental data are also given, 

as shown in Table 10.

Table 10. The parameter estimations. 

 
nonlinear ED 

(overall) 

nonlinear ED 

(60℃) 

nonlinear ED 

(100℃) 

BS-ED 

(overall) 

BS-ED 

(60℃) 

BS-ED 

(100℃) 

ρ 1.4395 1.2662 1.4916 1.4400 1.2820 1.4941 

λ 1.6394 1.8609 2.1915 1.4274 1.6412 1.9375 

q 0.9497 1.0184 0.9101 1.0547 1.1275 1.0128 

μ(η) 2.5894 1.5301 3.7150 1.8907 1.1032 2.7311 

σ - - - 0.5774 0.1318 0.3795 

τ - - - 0.0001 0.0001 0.0001 

ε - - - 0.3012 0.3013 0.2710 

MLE -312.8726 -117.9886 -174.5451 -290.8251 -118.6096 -169.8676 

AIC 631.7452 241.9772 355.0902 591.6502 247.2191 349.7353 

BIC 641.6402 249.7927 362.9057 608.1417 260.2450 362.7611 

AICc 631.8677 242.2272 355.3402 591.9594 247.8507 350.3668 

The overall estimated BS-ED model has a smaller scale of 

information criterion and fits the actual data better. It is further 

found that the time-shift parameter of the LED chip of this 

model is close to 0, about 0.01h, which can be learnt that the 

factory testing and transport almost did not affect the 

performance of the product. However, the parameter of the 

initial value of the quality characteristics is larger, and the initial 

value of the performance has a large discrepancy when it is 

shipped out of the factory, probably due to imperfections in the 

process and quality control. This is also reflected in the fact that 

the light intensity of the different test pieces was significantly 

different during the first test before the test. 

In addition, the overall estimation ensures that the failure 

mechanisms of the product under different stresses are 

statistically consistent, which is conducive to accelerated life 

extrapolation, which can also be derived from the information 

criterion that the BS-ED model fits better for the overall 

estimation but not necessarily for the separate estimation. 

Therefore, when extrapolating the life, the accuracy of the 

overall and separate estimates needs to be concerned. 

Next, the lifetimes under accelerated tests are evaluated and 

compared simultaneously with the conventional ED model, the 

overall estimated BS-ED model, and the separately estimated 

BS-ED model, with the degree of fit to the real soft failure data, 

as shown in Fig. 12.
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Fig. 12. Reliability assessment results.

It can be seen that the BS-ED process fits better compared 

to the conventional ED process, and compared to the separate 

estimation, the overall estimation of the results at 60°C has  

a better fit, and both fit better at 100°C. 

Next, the lifetime under normal use is extrapolated based on 

the statistical extrapolation of the BS-ED results. The model is 

very complex due to the large number of local parameters 

satisfied by the degradation parameters of the model after 

considering acceleration. Therefore, the MCMC method is used 

to perform Metropolis-Hasting sampling based on the posterior 

distribution of η-heterogeneity in the accelerated case, which is 

equivalent to performing the E-step in the EM algorithm. After 

that, the M-step is executed to estimate the parameter 𝛩𝜂 =

(𝛼𝜇 , 𝛽𝜇 , 𝛼𝜎 , 𝛽𝜎)  in 𝜂 ∼ 𝑁(𝛼𝜇 𝑒𝑥𝑝(𝛽𝜇𝑆) , 𝛼𝜎
2 𝑒𝑥𝑝(2𝛽𝜎𝑆)) . the 

final result of parameter estimation is obtained as shown in 

Table 11. 

Table 11. Parameter estimation results for stress covariates. 

Parameters Estimated results 

αμ 0.7411 

βμ 1.7327 

ασ 0.0475 

βσ 2.8715 

In addition, we give a comparison of the independent 

degradation heterogeneity of the same product under 

accelerated case and normal stress, as shown in Fig. 13. It can 

be seen that the mean and variance of the degradation related 

parameters become larger as the applied stress level increases. 

It can be seen that at higher stress levels, not only the 

degradation rate of the product increases and the lifetime 

decreases, but also the heterogeneity of the degradation process 

of different test pieces is magnified. This conclusion is 

particularly evident in the case of temperature-sensitive LED 

chips. 

 

Fig. 13. Heterogeneity of degradation parameters under 

accelerated vs. normal stresses. 

For this LED chip, accelerated degradation test is carried out, 

and the results show that the median life of the BS-ED model 

extrapolated to normal working conditions is 22628.35 h, while 

the median life of the traditional ED model extrapolated to 

16552.93 h. The extrapolated life of the BS-ED model is in line 

with the theoretical life, but it is not greater than the maximum 

theoretical life, which shows that the initial loss or the process 

level will affect the actual life. In summary, the proposed 

method can accurately extrapolate the reliability index under 

normal working conditions. 
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6. Conclusion 

Stochastic models for product degradation are limited in 

handling heterogeneity in initial values and processes, affecting 

reliability estimates. The BS-ED model incorporating 

heterogeneity addresses this. Simulation and case studies reveal 

that: (1) ED outperforms traditional models in describing 

degradation. (2) It considers non-zero, varying initial 

degradation for missing early data, enhancing test confidence. 

(3) For heterogeneous degradation, BS-ED provides more 

accurate measures, especially under accelerated stress. (4) BS-

ED more realistically assesses reliability and lifetime metrics 

for heterogeneous products. (5) Considering heterogeneity in 

reliability metrics helps industrial users with maintenance 

strategies, preventing premature stoppage or late maintenance 

risks. 

In the future work, we will focus on the following aspects: 

first, the BS-ED process only models one kind of performance 

degradation, and the multivariate performance degradation can 

be established for some products with multiple performance 

parameters. In addition, this paper only considers the 

degradation rate parameter and its random effect parameter to 

satisfy the accelerated process, and does not consider in depth 

that the other parameters, such as scale parameter, also have 

random effects, and may be affected by accelerating stresses as 

well. 

In addition, the proposed model is also applicable to 

modeling the degradation of mechanical products, quantifying 

the initial performance variations, for instance, in machining 

spindles, where varying degrees of intrinsic offsets may arise 

from manufacturing, transportation, and installation. Given the 

diversity of mechanical component failure modes, the selection 

of observed performance indicators and measurement of 

degradation vary significantly among products. This paper 

primarily focuses on data-driven modeling and statistical 

inference, excluding failure physics analysis. We envision that 

future research can integrate data-driven methods with failure 

physics modeling for degradation modeling and lifespan 

estimation of specific mechanical product failure modes,  

a promising research direction.

Appendix A 

Firstly, we summarize the procedure for calculating first order partial derivatives as follows: 

𝜕𝐷

𝜕𝜀
=

{
 
 
 

 
 
 

1

ΔΛ𝑖𝑗
(
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
− 𝜂𝑖) , 𝜌 = 0

1

ΔΛ𝑖𝑗
⋅ 𝑙𝑛 (

Δ𝑌𝑖𝑗−𝜀𝑍

𝜂𝑖⋅ΔΛ𝑖𝑗
) , 𝜌 = 1

1

𝜂𝑖⋅ΔΛ𝑖𝑗
−

1

Δ𝑌𝑖𝑗−𝜀𝑍
, 𝜌 = 2

1

(1−𝜌)(Δ𝑌𝑖𝑗−𝜀𝑍)
⋅ (

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
)
2−𝜌

−
𝜂𝑖
1−𝜌

(1−𝜌)ΔΛ𝑖𝑗
, 𝑜𝑡ℎ𝑒𝑟𝑠

    (A.1) 

𝜕𝐷

𝜕𝜏
=

{
 
 
 
 

 
 
 
 
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
2 (

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
− 𝜂𝑖) ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝜏
, 𝜌 = 0

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
2 ⋅ 𝑙𝑛 (

Δ𝑌𝑖𝑗−𝜀𝑍

𝜂𝑖⋅ΔΛ𝑖𝑗
) ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝜏
, 𝜌 = 1

(
Δ𝑌𝑖𝑗−𝜀𝑍

𝜂𝑖⋅ΔΛ𝑖𝑗
2 −

1

ΔΛ𝑖𝑗
) ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝜏
, 𝜌 = 2

[
1

(1−𝜌)ΔΛ𝑖𝑗
(
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
)
2−𝜌

−
𝜂𝑖
1−𝜌(Δ𝑌𝑖𝑗−𝜀𝑍)

(1−𝜌)ΔΛ𝑖𝑗
2 ] ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝜏
, 𝑜𝑡ℎ𝑒𝑟𝑠

   (A.2) 

Generally, when ρ is uncertain: 

∂𝐷

∂𝜌
=

𝜂𝑖
1−𝜌

⋅(Δ𝑌𝑖𝑗−𝜀𝑍)

(1−𝜌)2ΔΛ𝑖𝑗
+

𝜂𝑖
2−𝜌

⋅ln 𝜂𝑖

2−𝜌
+

ln (
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
)⋅(

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)(2−𝜌)

−
𝜂𝑖
1−𝜌

⋅ln 𝜂𝑖⋅(Δ𝑌𝑖𝑗−𝜀𝑍)

(1−𝜌)ΔΛ𝑖𝑗
−

(
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)2(2−𝜌)
−

(
Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)(2−𝜌)2
−

𝜂𝑖
2−𝜌

(2−𝜌)2

    (A.3) 

where ρ is determined by the product characteristics and does not change with the test setup and stress level, and in the optimization 

problem the parameter is considered to be related only to the product and can be obtained by extrapolation from a priori information. 
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In the case of engineering practice, it can be considered as a constant in the BS-EDP parameter estimation. 

In addition, the parameter solution of the time covariate requires attention to the solution method of 
𝜕𝐷

𝜕𝑞
, specifically: 

𝜕𝐷

𝜕𝑞
=

{
 
 
 
 

 
 
 
 [

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
− 𝜂]

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
2 ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝑞
, 𝜌 = 0

[𝑙𝑛 (
Δ𝑌𝑖𝑗−𝜀𝑍

𝜂⋅ΔΛ𝑖𝑗
) − 1] ⋅

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
2 ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝑞
−

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
2 , 𝜌 = 1

(
Δ𝑌𝑖𝑗−𝜀𝑍

𝜂⋅ΔΛ𝑖𝑗
2 −

Δ𝑌𝑖𝑗−𝜀𝑍

ΔΛ𝑖𝑗
) ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝑞
, 𝜌 = 2

[
(Δ𝑌𝑖𝑗−𝜀𝑍)

2−𝜌

(1−𝜌)ΔΛ𝑖𝑗
3−𝜌 −

𝜂1−𝜌(Δ𝑌𝑖𝑗−𝜀𝑍)

(1−𝜌)ΔΛ𝑖𝑗
2 ] ⋅

𝜕ΔΛ𝑖𝑗

𝜕𝑞
, 𝜌 ≠ 1,2

     (A.4) 

When the degenerate trajectory is nonlinear and indeterminate, i.e., when it satisfies the power function 𝛬(𝑡) = 𝑡𝑞 and the exponent 

𝛬(𝑡) = 𝑒𝑥𝑝(𝑞𝑡) − 1: ΔΛ𝑖𝑗 = (𝑡𝑖𝑗 + 𝜏)
𝑞
− (𝑡𝑖(𝑗−1) + 𝜏)

𝑞
；ΔΛ𝑖𝑗 = 𝑒𝑥𝑝[𝑞(𝑡𝑖𝑗 + 𝜏)] − 𝑒𝑥𝑝[𝑞(𝑡𝑖(𝑗−1) + 𝜏)]. 

We have 

𝜕ΔΛ𝑖𝑗

𝜕𝜏
= {

𝑞⋅(𝑡𝑖𝑗+𝜏)
𝑞

𝑡𝑖𝑗+𝜏
−

𝑞⋅(𝑡𝑖(𝑗−1)+𝜏)
𝑞

𝑡𝑖(𝑗−1)+𝜏
, Λ = 𝑡𝑞

𝑞 ⋅ 𝑒𝑥𝑝[𝑞(𝑡𝑖𝑗 + 𝜏)] − 𝑞 ⋅ 𝑒𝑥𝑝[𝑞(𝑡𝑖(𝑗−1) + 𝜏)] , Λ = 𝑒𝑥𝑝(𝑞𝑡)
    (A.5) 

𝜕ΔΛ𝑖𝑗

𝜕𝑞
= {

(𝑡𝑖𝑗 + 𝜏)
𝑞
⋅ 𝑙𝑛(𝑡𝑖𝑗 + 𝜏) − (𝑡𝑖(𝑗−1) + 𝜏)

𝑞
⋅ 𝑙𝑛(𝑡𝑖(𝑗−1) + 𝜏) , Λ = 𝑡

𝑞

(𝑡𝑖𝑗 + 𝜏) ⋅ 𝑒𝑥𝑝[𝑞(𝑡𝑖𝑗 + 𝜏)] − (𝑡𝑖(𝑗−1) + 𝜏) ⋅ 𝑒𝑥𝑝[𝑞(𝑡𝑖(𝑗−1) + 𝜏)] , Λ = 𝑒𝑥𝑝(𝑞𝑡)
  (A.6) 

As can be seen from the partial derivatives computational process, is mainly concerned with the second partial derivatives of  the 

ED-distributed stochastic process deviation function D with respect to the parameters ρ, τ, ε, q and the second partial derivatives of the 

time covariate function 𝛬(𝑡) with respect to τ, q. The specific solution method is shown below: 

(1) Second partial derivatives of the stochastic process deviation function D 

When 𝛬(𝑡) satisfies the power function: 

𝜕2𝐷

𝜕𝑞2
=

{
 
 
 
 

 
 
 
 (

2Δ𝑖𝑗

ΔΛ𝑖𝑗
3 −

3Δ𝑖𝑗
2

ΔΛ𝑖𝑗
4) (

𝜕ΔΛ𝑖𝑗

𝜕𝑞
)
2

+ (
Δ𝑖𝑗

2

ΔΛ𝑖𝑗
3 −

𝜂Δ𝑖𝑗

ΔΛ𝑖𝑗
2)

𝜕2ΔΛ𝑖𝑗

𝜕𝑞2
, 𝜌 = 0

𝜕ΔΛ𝑖𝑗

𝜕𝑞
(
2Δ𝑖𝑗

ΔΛ𝑖𝑗
3 + 1) + [𝑙𝑛 (

Δ𝑖𝑗

𝜂⋅ΔΛ𝑖𝑗
) − 1]

Δ𝑖𝑗

ΔΛ𝑖𝑗
2

𝜕2ΔΛ𝑖𝑗

𝜕𝑞2
− [2 𝑙𝑛 (

Δ𝑖𝑗

𝜂⋅ΔΛ𝑖𝑗
)
𝜕ΔΛ𝑖𝑗

𝜕𝑞
+ 1]

Δ𝑖𝑗

ΔΛ𝑖𝑗
3

𝜕ΔΛ𝑖𝑗

𝜕𝑞
, 𝜌 = 1

(
Δ𝑖𝑗

ΔΛ𝑖𝑗
2 −

2Δ𝑖𝑗

𝜂⋅ΔΛ𝑖𝑗
3)

𝜕ΔΛ𝑖𝑗

𝜕𝑞
+ (

Δ𝑖𝑗

𝜂⋅ΔΛ𝑖𝑗
2 −

Δ𝑖𝑗

ΔΛ𝑖𝑗
)
𝜕2ΔΛ𝑖𝑗

𝜕𝑞2
, 𝜌 = 2

[
Δ𝑖𝑗

2−𝜌

(1−𝜌)ΔΛ𝑖𝑗
3−𝜌 −

𝜂1−𝜌Δ𝑖𝑗

(1−𝜌)ΔΛ𝑖𝑗
2]
𝜕2ΔΛ𝑖𝑗

𝜕𝑞2
+ [

(𝜌−3)Δ𝑖𝑗
2−𝜌

(1−𝜌)ΔΛ𝑖𝑗
4−𝜌 +

2𝜂1−𝜌Δ𝑖𝑗

(1−𝜌)ΔΛ𝑖𝑗
3] (

𝜕ΔΛ𝑖𝑗

𝜕𝑞
)
2

, 𝜌 ≠ 1,2

   (A.7) 

𝜕2𝐷

𝜕𝜏2
=

{
 
 
 
 

 
 
 
 (

2𝜂𝑖𝛥𝑖𝑗

ΔΛ𝑖𝑗
3 −

3Δ𝑖𝑗
2

ΔΛ𝑖𝑗
4) (

𝜕ΔΛ𝑖𝑗

𝜕𝜏
)
2

+ (
𝛥𝑖𝑗

2

ΔΛ𝑖𝑗
3 −

𝜂𝑖𝛥𝑖𝑗

ΔΛ𝑖𝑗
2)

𝜕2ΔΛ𝑖𝑗

𝜕𝜏2
, 𝜌 = 0

𝛥𝑖𝑗

ΔΛ𝑖𝑗
2 𝑙𝑛 (

𝛥𝑖𝑗

𝜂𝑖⋅ΔΛ𝑖𝑗
)
𝜕2ΔΛ𝑖𝑗

𝜕𝜏2
−

𝛥𝑖𝑗

ΔΛ𝑖𝑗
3 [2 𝑙𝑛 (

𝛥𝑖𝑗

𝜂𝑖⋅ΔΛ𝑖𝑗
) + 1] (

𝜕ΔΛ𝑖𝑗

𝜕𝜏
)
2

, 𝜌 = 1

(
𝛥𝑖𝑗

𝜂𝑖⋅ΔΛ𝑖𝑗
2 −

1

ΔΛ𝑖𝑗
)
𝜕2ΔΛ𝑖𝑗

𝜕𝜏2
+ (

1

ΔΛ𝑖𝑗
2 −

2Δ𝑖𝑗

𝜂𝑖⋅ΔΛ𝑖𝑗
3) (

𝜕ΔΛ𝑖𝑗

𝜕𝜏
)
2

, 𝜌 = 2

𝜕

𝜕𝜏
[

1

(1−𝜌)ΔΛ𝑖𝑗
(
𝛥𝑖𝑗

ΔΛ𝑖𝑗
)
2−𝜌

−
𝜂𝑖
1−𝜌𝛥𝑖𝑗

(1−𝜌)ΔΛ𝑖𝑗
2]
𝜕ΔΛ𝑖𝑗

𝜕𝜏
+ [

1

(1−𝜌)ΔΛ𝑖𝑗
(
𝛥𝑖𝑗

ΔΛ𝑖𝑗
)
2−𝜌

−
𝜂𝑖
1−𝜌𝛥𝑖𝑗

(1−𝜌)ΔΛ𝑖𝑗
2]
𝜕2ΔΛ𝑖𝑗

𝜕𝜏2
, 𝑜𝑡ℎ𝑒𝑟𝑠

   (A.8) 

𝜕2𝐷

𝜕𝜀2
=

{
  
 

  
 −𝑍

2(ΔΛ𝑖𝑗)
−2
, 𝜌 = 0

−
𝑍2

ΔΛ𝑖𝑗Δ𝑖𝑗
, 𝜌 = 1

−𝑍2(Δ𝑖𝑗)
−2
, 𝜌 = 2

−𝑍2(ΔΛ𝑖𝑗)
𝜌−2

(Δ𝑖𝑗)
−𝜌
, 𝑜𝑡ℎ𝑒𝑟𝑠

      (A.9) 
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∂2𝐷

∂𝜌2
=

𝜂𝑖
1−𝜌

Δ𝑖𝑗ln (𝜂𝑖)
2

(1−𝜌)ΔΛ𝑖𝑗
−

2𝜂𝑖
1−𝜌

Δ𝑖𝑗ln (𝜂𝑖)

(1−𝜌)2ΔΛ𝑖𝑗
+

2𝜂𝑖
1−𝜌

Δ𝑖𝑗

(1−𝜌)3ΔΛ𝑖𝑗
−

2(
Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)2(2−𝜌)2
−

𝜂𝑖
2−𝜌

ln (𝜂𝑖)
2

2−𝜌
+

2𝜂𝑖
2−𝜌

ln (𝜂𝑖)

(2−𝜌)2
−

2𝜂𝑖
2−𝜌

(2−𝜌)3

−
ln (

Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2

(
Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)(2−𝜌)
+

2ln (
Δ𝑖𝑗

ΔΛ𝑖𝑗
)(

Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)2(2−𝜌)
+

2ln (
Δ𝑖𝑗

ΔΛ𝑖𝑗
)(

Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)(2−𝜌)2
−

2(
Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)3(2−𝜌)
−

2(
Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)(2−𝜌)3

  (A.10) 

𝜕2𝐷

𝜕𝜌𝜕𝜀
=

𝜕2𝐷

𝜕𝜀𝜕𝜌
=

𝑍𝜂𝑖
1−𝜌 𝑙𝑛(𝜂𝑖)

(1−𝜌)ΔΛ𝑖𝑗
−

𝑍𝜂𝑖
1−𝜌

(1−𝜌)2ΔΛ𝑖𝑗
−

𝑍 𝑙𝑛(
Δ𝑖𝑗

ΔΛ𝑖𝑗
)⋅(

Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)𝛥𝑖𝑗
+

𝑍(
Δ𝑖𝑗

ΔΛ𝑖𝑗
)

2−𝜌

(1−𝜌)2𝛥𝑖𝑗
    (A.11) 

𝜕2𝐷

𝜕𝜌𝜕𝑞
=

𝜕2𝐷

𝜕𝑞𝜕𝜌
= [

𝜂𝑖
1−𝜌 𝑙𝑛(𝜂𝑖)Δ𝑖𝑗

(1−𝜌)ΔΛ𝑖𝑗
2 −

𝜂𝑖
1−𝜌Δ𝑖𝑗

(1−𝜌)2ΔΛ𝑖𝑗
2]
𝜕ΔΛ𝑖𝑗

𝜕𝑞
       (A.12) 

𝜕2𝐷

𝜕𝜌𝜕𝜏
=

𝜕2𝐷

𝜕𝜏𝜕𝜌
= [

𝜂𝑖
1−𝜌 𝑙𝑛(𝜂𝑖)Δ𝑖𝑗

(1−𝜌)ΔΛ𝑖𝑗
2 −

𝜂𝑖
1−𝜌Δ𝑖𝑗

(1−𝜌)2ΔΛ𝑖𝑗
2]
𝜕ΔΛ𝑖𝑗

𝜕𝜏
       (A.13) 

where 𝛥𝑖𝑗 = 𝛥𝑌𝑖𝑗 − 𝜀𝑍. the solution is similar when 𝛬(𝑡) satisfies the exponential function. Due to space limitations, only part of the 

second partial derivative solution is given. 

(2) Second partial derivatives of the time covariate function 𝛬(𝑡) 

𝜕2ΔΛ𝑖𝑗

𝜕𝜏2
= {

𝑞 [
𝑞(𝑡𝑖𝑗+𝜏)

𝑞

(𝑡𝑖𝑗+𝜏)
2 −

(𝑡𝑖𝑗+𝜏)
𝑞

(𝑡𝑖𝑗+𝜏)
2 −

𝑞(𝑡𝑖(𝑗−1)+𝜏)
𝑞

(𝑡𝑖(𝑗−1)+𝜏)
2 +

(𝑡𝑖(𝑗−1)+𝜏)
𝑞

(𝑡𝑖(𝑗−1)+𝜏)
2] , Λ = 𝑡𝑞

𝑞2 [𝑒𝑞(𝑡𝑖𝑗+𝜏) − 𝑒𝑞(𝑡𝑖(𝑗−1)+𝜏)] , Λ = 𝑒𝑞𝑡
    (A.14) 

𝜕2ΔΛ𝑖𝑗

𝜕𝑞2
= {

(𝑡𝑖𝑗 + 𝜏)
𝑞
𝑙𝑛(𝑡𝑖𝑗 + 𝜏)

2
− (𝑡𝑖(𝑗−1) + 𝜏)

𝑞
𝑙𝑛(𝑡𝑖(𝑗−1) + 𝜏)

2
, Λ = 𝑡𝑞

(𝑡𝑖𝑗 + 𝜏)
2
𝑒𝑞(𝑡𝑖𝑗+𝜏) − (𝑡𝑖(𝑗−1) + 𝜏)

2
𝑒𝑞(𝑡𝑖(𝑗−1)+𝜏), Λ = 𝑒𝑞𝑡

    (A.15) 

𝜕2ΔΛ𝑖𝑗

𝜕𝜏𝜕𝑞
=

𝜕2ΔΛ𝑖𝑗

𝜕𝑞𝜕𝜏
= {

𝑞 [
(𝑡𝑖𝑗+𝜏)

𝑞
𝑙𝑛(𝑡𝑖𝑗+𝜏)

𝑡𝑖𝑗+𝜏
−

(𝑡𝑖(𝑗−1)+𝜏)
𝑞
𝑙𝑛(𝑡𝑖(𝑗−1)+𝜏)

𝑡𝑖(𝑗−1)+𝜏
] +

(𝑡𝑖𝑗+𝜏)
𝑞

𝑡𝑖𝑗+𝜏
−

(𝑡𝑖(𝑗−1)+𝜏)
𝑞

𝑡𝑖(𝑗−1)+𝜏
, Λ = 𝑡𝑞

𝑒𝑞(𝑡𝑖𝑗+𝜏)[1 + 𝑞(𝑡𝑖𝑗 + 𝜏)] − 𝑒
𝑞(𝑡𝑖(𝑗−1)+𝜏)[1 + 𝑞(𝑡𝑖(𝑗−1) + 𝜏)], Λ = 𝑒

𝑞𝑡

 (A.16) 
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