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Highlights  Abstract  

▪ We propose a novel economically quality 

design model under model parameter 

uncertainty. 

▪ The model covers both pre-sale manufacturing 

and post-sale warranty costs. 

▪ Warranty cost models considering model 

parameters uncertainty have been constructed. 

▪ In modeling process trade-offs between cost 

and quality are considered. 

▪ A micro-drilling manufacturing process 

validates the effectiveness of the method. 

 This paper proposes a novel total cost model for the micro‐products' 

entire life cycle that takes into account the uncertainty of the model 

parameters. The total cost includes pre-sale manufacturing and post-sale 

warranty costs. Additionally, different marketing strategies are also 

given based on the weight of internal and external costs. Furthermore, 

limited data and unknown effects in experiments may cause large errors 

in parameter estimates. This could prevent the achievement of reliable 

designs. To address this, robust optimization and interval estimation are 

used. This approach reduces the impact of uncertainty on parameter 

estimates. It ensures optimality and robustness in micro-manufacturing 

parameters. Example analysis and numerical simulation results show 

that the proposed method assists companies in selecting the optimal 

manufacturing parameter level that aligns with their marketing 

strategies. Besides, considering uncertainty factors can ensure that the 

optimization results remain guaranteed, even under the worst-case 

scenarios. 
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1. Introduction 

Laser beam micro-machining is a precision machining 

technology that allows efficient processing and fabrication at 

the micron and nanometer scales by controlling the focusing 

position of the laser beam[1,2]. In recent years, with the rapid 

development of micro-hole machining technology, micro-

precision products generated by micro-hole arrays have been 

widely applied. Quality improvement in micro-manufacturing 

process is one of the most challenging issues and a hot topic of 

research in the field of industrial engineering. Unlike traditional 

manufacturing processes, the micro-manufacturing process may 

exhibit many lower or even zero output levels in the 

experimental space[3]. The first issue to consider in the laser 

micro-machining process is the instability of laser output or the 

subsequent beam delivery system. That is, laser parameters may 
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change with temperature, humidity, and material modification 

variations, thereby affecting the quality of machining. Minor 

manufacturing changes (such as variation in laser power or 

beam shape distortion) may also result in the final product 

quality falling below standards, thereby incurring additional 

time and cost. For instance, micro-holes produced during 

manufacturing that fall below or exceed specified limits can 

lead to rework or scrap costs, respectively. In addition, there are 

warranty costs associated with products sold to customers. 

Robust parameter design, crucial for continuous quality 

improvement, is extensively used in product/process quality 

design, significantly improving product quality and 

reliability[4,5]. Most studies use response surface and 

optimization models for robust parameter design, focusing on 

Taguchi's quadratic loss function, rework, and scrap costs. For 

example, Ouyang et al.[6] constructed a robust design model for 

micro-manufacturing that includes quality loss, rework cost, 

and scrap cost from the perspective of the whole product life 

cycle. The quadratic loss function has a limitation in that it 

attempts to lump all the costs associated with a product's 

deviation from its ideal value into one vaguely defined 

parameter[7]. There is difficulty in accurately estimating the cost 

of external failures. Moreover, these losses are often related to 

many factors that may be interrelated. Therefore, consolidating 

all these losses into a single cost coefficient k is overly 

simplistic and restrictive[8]. 

Product quality design depends not only on the collected 

market information and customer preferences but also 

significantly influences subsequent process design, production, 

sales, and after-sales services. Neglecting the choice of 

production processes and the related costs of sales and after-

sales services can lead to unnecessary costs and resource 

wastage[9]. Product warranty policy is an important means of 

connecting businesses with customers. On one hand, businesses 

can convey information about the product's quality and 

reliability through the warranty policy; on the other hand, 

quality issues experienced by customers during the product's 

use are reflected back to the business in the form of warranty 

claims data. By analyzing warranty claims data, businesses can 

identify defects in product design, manufacturing, and sales 

processes, and take measures to further improve product quality 

and reliability. To replace the vague concept of societal loss in 

the quadratic loss function, this paper uses warranty costs to 

represent the loss costs incurred after products are sold to 

customers. Therefore, for economic reasons, it is necessary to 

consider manufacturing costs, warranty costs, and marketing 

decisions in micro-product quality design to achieve maximum 

efficiency and profitability. 

Some studies suggest that building a comprehensive model 

incorporating manufacturing and marketing information during 

the product development can help companies achieve higher 

profits (e.g., Karmarkar et al.[10], Kirkizoğlu and Karaer[11], Park 

et al.[12]). Typically, manufacturers produce products and then 

ask the marketing team to sell them. In another scenario, 

products designed to meet market demands and customer needs, 

including functional requirements, parameters, and tolerances, 

often overlook manufacturing costs. These practices can result 

in unnecessary costs, resource waste, lower investment returns, 

missed opportunities, and failure to meet customer expectations. 

Therefore, a more rational approach involves integrating 

marketing decisions and customer expectations with 

manufacturing capabilities and costs during product 

development to maximize efficiency and profitability. 

Karmarkar et al.[10] noted that although quality in manufacturing 

is often equated with specification conformance, in marketing, 

it is defined by the product's performance or grade. 

Acknowledging the different conceptions of quality in 

manufacturing and marketing, this research bridges the gap by 

developing a customer utility function and a manufacturing cost 

optimization objective. Although manufacturing costs are 

related to the mean and variance of product characteristics, the 

form of the manufacturing cost function in the model is overly 

simplistic. Some researchers, such as Zhang et al.[13], Wang[14], 

and Qiao et al.[15], have indicated that product warranty can 

serve as a major influencing factor of product quality. That is, 

longer warranty periods and better warranty policies are seen by 

customers as signs of higher quality and more reliable products. 

The selling price is tied to reliability and warranty; as reliability 

increases, so does the selling price, potentially improving 

warranty terms for the customer. However, higher reliability 

means higher manufacturing costs, leading to lower warranty-

related costs. Higher manufacturing costs might result in higher 

selling prices, which in turn could negatively impact sales 

volumes. Zhang et al.[13] proposed a total cost optimization 
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model that addresses manufacturing issues affecting product 

reliability as well as marketing issues related to price and 

warranty to maximize profits. To enhance the reliability and 

robustness of products, Wang et al.[16] developed a new expected 

loss function from the perspectives of manufacturers and 

customers, considering product warranty period, design life, 

and customer satisfaction. Cheng et al.[17] constructed  

a comprehensive life cycle cost model, incorporating capital, 

annual operating, and risk costs, to assess product quality's 

robustness and reliability throughout its life cycle. However, 

their research did not consider the impact of product warranty 

strategies on aspects such as product quality level and qualified 

product rate. Despite Hassain[18] considering tolerance, rework, 

scrap, and warranty costs in constructing a total cost model for 

products, the approach had limitations. The models for mean 

and variance relied on the simplest linear and nonlinear forms 

with constant parameters, overlooking the uncertainty of these 

model parameters. And no marketing strategies were developed 

based on internal and external costs. 

Due to uncertainty factors like environmental instability 

(temperature, humidity, etc.), variability in material batches, 

and inaccuracy of measuring instruments, the accuracy of the 

experimental data required for modeling is impacted. 

Peterson[19] once pointed out that neglecting the uncertainty 

factors in modeling could lead to an overestimation of the 

reliability of the optimal input levels. Ng[20] also believes that 

overlooking the uncertain disturbances in modeling could lead 

to incorrect parameter estimation, resulting in irrational process 

design and a decrease in product pass rates. In recent years, 

many scholars have been focusing on the issue of uncertainty 

factors interference and have also achieved some very 

meaningful research results. Tan and Wu[21] adopted an 

improved quadratic loss in optimization design, enhancing the 

credibility of confidence intervals for controllable factors under 

parameter uncertainty compared to traditional methods. Feng et 

al.[22] employed Markov Chain Monte Carlo sampling to 

establish simulation models and quantify uncertainty. They 

introduced interval analysis to traditional quality loss functions, 

devising an optimization strategy that reduces the effect of 

model uncertainty on solutions. To reduce the fluctuation 

problems in micro-manufacturing processes, Han et al.[23] 

established new quality loss functions, rework costs, and scrap 

costs through Monte Carlo simulation and quantified the 

model's uncertainty using interval analysis theory. Ouyang, Dey, 

and Park[24] noted that sampling variations often lead to 

inaccuracies in assessing Prediction Confidence Intervals 

(PCIs). Given the widespread use but notable time consumption 

of the bootstrap method, the delta method has been employed as 

an alternative to construct robust confidence intervals for PCIs. 

Nevertheless, applying traditional normal theory methods to 

skewed data and overlooking uncertainties in parameters can 

lead to a progressive decline in optimization quality. 

Zeybek[25]introduced an innovative method that utilizes 

confidence interval (CI) response modeling for the process 

mean. This new interval robust design approach effectively 

addresses the challenges posed by both the skewed nature of the 

data and data contamination. Li, He, and Zhang[26] addressed 

prediction variability by integrating regression model 

confidence intervals into a robust desirability function. This 

approach maintains solution viability amidst parameter 

uncertainty. Wilcox[27] proposed a new method for calculating 

confidence intervals for the population mean in situations 

involving small sample sizes. Shah and Abdeljawad[28], Khan et 

al.[29], Sher et al.[30], and Ahmed et al.[31] employed numerical 

simulation methods to analyze the robustness and effectiveness 

of the proposed model. However, this method did not consider 

information related to marketing. 

While the literature mentioned above have discussed 

uncertainty issues and yielded significant outcomes, research on 

robust design that accounts for uncertainty factors has not been 

optimized from an economic perspective. There is scant 

attention to the issue of model parameter uncertainty in 

integrated models considering information related to 

manufacturing and marketing. Taking into account the economy 

and robustness of the laser micro-manufacturing process, the 

quality evaluation of micro-holes is closely related to 

manufacturing costs, rework costs, scrap costs, and warranty 

costs. Meanwhile, model parameters are treated as interval 

numbers during modeling to increase the reliability of 

parameter estimation. To address the aforementioned issues, 

this paper introduces a robust optimization design method for  

a cost-quality model that considers uncertainty in model 

parameters. The goal is to find optimal micro-manufacturing 

parameters, ensuring high-quality, low-cost products in laser 
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processing. First, the relationship between quality 

characteristics (such as radius) and input parameters (such as 

average power, switching frequency, and cutting) in the micro-

manufacturing process is studied using the response surface 

model. Next, interval estimation is performed on the model 

parameters. Then, utilizing the method of minimizing the worst-

case scenario, a two-layer nested optimization model is 

constructed. Finally, intelligent algorithms are employed to seek 

the optimal economic parameter settings for the micro-

manufacturing process. 

The structure of this paper is organized as follows. we 

introduce the assumptions required for the model parameters. 

Section 3 establishes a total cost model considering the 

uncertainty of model parameters from a whole lifecycle 

perspective. In Section 4, we employ micro-manufacturing 

examples and simulation analysis to validate the effectiveness 

of the proposed model. Section 5 provides some concluding 

remarks. The proposed method has three possible significances: 

(1) Manufacturers can vary weights for expected loss costs 

based on marketing strategy type, choosing optimal input levels 

for more flexible outcomes. 

(2) Incorporating interval estimation theory into robust 

design reduces uncertainty impacts on micro-product 

performance, enhancing process robustness and reliability. 

(3) Creating a cost model from a lifecycle perspective 

improves quality cost-effectively in complex manufacturing, 

providing a reliable strategy for optimizing parameters. 

2. Interval estimation of model parameters 

Assume that in the micro-manufacturing process, the output 

quality characteristics follow a normal distribution. The set of 

controllable processing parameters that affect the quality 

characteristic Y is (𝑥1, 𝑥2, ⋯ , 𝑥𝑣) . Utilizing the design of 

experiments based on response surface methodology yields the 

corresponding experimental data, as shown in Table 1. The 

controllable parameters are subjected to n treatments, with each 

treatment being replicated m times for experimentation. ypq is 

the observed value (𝑝 = 1,2,⋯ , 𝑛; 𝑞 = 1,2,⋯ ,𝑚)  for the qth 

replicate trial of the pth treatment. The experiment aims to 

identify the optimal processing parameters (𝑥1
∗, 𝑥2

∗, ⋯ , 𝑥𝑣
∗)  to 

maximize processing performance and minimize deviation from 

the target value. 

Table1. Experimental Design Framework. 

Run (𝑥1, 𝑥2, ⋯ , 𝑥𝑣) 
Number of 

replications 
Mean 

Standard 

deviation 

1 𝑥11 𝑥12 ⋯ 𝑥1𝑣 𝑦11, 𝑦12, ⋯ , 𝑦1𝑚 �̄�1 𝑠1 

2 𝑥21 𝑥22 ⋯ 𝑥2𝑣 𝑦21, 𝑦22, ⋯ , 𝑦2𝑚 �̄�2 𝑠2 

     

n 𝑥𝑛1 𝑥𝑛2 . 𝑥𝑛𝑣 𝑦𝑛1, 𝑦𝑛2, ⋯ , 𝑦𝑛𝑚 �̄�𝑛 𝑠𝑛 

During the pth treatment (𝑝 = 1,2,⋯ , 𝑛), the estimates of 

the mean and standard deviation are given by Equations (1) and 

(2), respectively: 

�̄�𝑝 =
∑ 𝑦𝑝𝑞

𝑚
𝑞=1

𝑚
    (1) 

𝜎𝑝 = √
∑ (𝑦𝑝𝑞−�̄�𝑝)2𝑚

𝑞=1

𝑚−1
   (2) 

The regression model is expressed as: 𝒀 = 𝑿𝜽 + 𝜺, where 𝒀 

denotes a set of vectors of response values, 𝑿 is an 𝑛 × 𝑘 model 

matrix, 𝜽  is a 𝑘 × 1  model parameter, 𝜺  is an 𝑛 × 1  vector of 

random errors, and 𝑘 − 1 is the number of predictor variables 

of the model. Ignoring the uncertainty of model parameters, the 

unknown model parameters can be estimated from the acquired 

experimental data using the least squares method: 

�̂� = (�̂�0, �̂�1, ⋯ , �̂�k-1) = (𝐗′𝐗）
−1

𝐗′𝐘  (3) 

where, 𝑿 =

[
 
 
 
1 𝑋11 ⋯ 𝑋1,k-1

1 𝑋21 ⋯ 𝑋2,𝑘−2

⋮ ⋮ ⋱ ⋮
1 𝑋𝑛1 ⋯ 𝑋𝑛,𝑘−1]

 
 
 
, 𝒀 = [

𝑌1

𝑌2

⋮
𝑌𝑛

]. 

In practice, the complexity of the process, experimental 

errors and other factors lead to uncertainty in the estimated 

model parameters 𝜽, which makes the constructed polynomial 

model unable to accurately estimate the real process output 

value at a certain design point. At this point, the uncertainty in 

the model parameters can be quantified using interval 

estimation methods. Since the model parameter vector �̂� 

estimated by least squares is a linear combination of the 

response y, �̂�  obeys a normal distribution 𝑁(𝜽, 𝜎2(𝑿′𝑿)−1) . 

Based on the distribution of the model parameter vector, 

denoted as �̂�~𝑁(𝜽, 𝜎2(𝑿′𝑿)−1), the 1 − 𝛼 confidence interval 

for 𝜽(𝑗)(𝑗 = 1,2, . . . , 𝑘) can be obtained: 

[𝛉𝐿(𝑗), 𝛉𝑈(𝑗)] = [�̂�(𝑗) − 𝑡𝛼

2
,𝑛−𝑘√�̂�2(𝐗′𝐗)−1，�̂�(𝑗) +

𝑡𝛼

2
,𝑛−𝑘√�̂�2(𝐗′𝐗)−1]                             (4) 

where, k represents the number of model parameters to be 
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estimated in the model, 𝑡𝛼

2
,𝑛−𝑘 is the t distribution quantile at the 

significance level of 
𝛼

2
 and degrees of freedom of 𝑛 − 𝑘, where 

n is the number of experiments. 

The mean and standard deviation responses are modelled 

using response surface methodology as follows: 

𝜇(𝑥) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑣
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖

2 + ∑ ∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑣
𝑖<𝑗

𝑣
𝑖=1 + 𝜀𝜇(5) 

𝜎(𝑥) = 𝛾0 + ∑ 𝑟𝑖𝑥𝑖
𝑟
𝑖=1 + ∑ 𝑟𝑖𝑖𝑥𝑖

2 + ∑ ∑𝑟𝑖𝑗𝑥𝑖𝑥𝑗
𝑣
𝑖<𝑗

𝑣
𝑖=1 + 𝜀𝑠(6) 

where 𝛽𝜇 = (𝛽0, 𝛽1, … , 𝛽𝑣 , 𝛽11, … , 𝛽𝑣𝑣 , 𝛽12
, … , 𝛽𝑣−1,𝑣

)
𝑇

 , 𝛽𝜎 =

(𝛾0, 𝛾1, … , 𝛾𝑣, 𝛾11, … ,𝛾𝑣𝑣 , 

𝛾12
, … , 𝛾𝑣−1,𝑣

)
𝑇

 , 𝜀𝜇  and 𝜀𝑠  are the random error terms, 

respectively; and 𝜀𝜇~𝑁(0, 𝜎𝜇
2), 𝜀𝑠~𝑁(0, 𝜎𝑠

2). 

By employing the least squares method, a fitted response 

model concerning the mean 𝜇  and standard deviation 𝜎 

(containing 𝑘 − 1 predictive variables) can be obtained: 

�̂�(𝑥) = 𝐗�̂�𝜇    (7) 

�̂�(𝑥) = 𝐗�̂�𝜎    (8) 

where, model parameter  

�̂�𝜇 = [�̂�0, �̂�1, … , �̂�𝑣 , �̂�11, … , �̂�𝑣−1,𝑣]
𝑇
 , �̂�𝜎 = [𝛾0, 𝛾1, … , 𝛾𝑣 , 𝛾11, 

… , 𝛾𝑣−1,𝑣]
𝑇
. 

Based on Equation (4), the 1 − 𝛼  confidence intervals for 

the model parameters of the mean response and variance 

response can be obtained respectively: 

CI�̂�𝜇
= [�̂�𝜇(𝑗) − 𝑡𝛼

2
,𝑛−𝑘√�̂�1

2(𝐗′𝐗)−1，�̂�𝜇(𝑗) + 𝑡𝛼

2
,𝑛−𝑘√�̂�1

2(𝐗′𝐗)−1]       (9) 

CI�̂�𝜎
= [�̂�𝜎(𝑗) − 𝑡𝛼

2
,𝑛−𝑘√�̂�2

2(𝐗′𝐗)−1，�̂�𝜎(𝑗) + 𝑡𝛼

2
,𝑛−𝑘√�̂�2

2(𝐗′𝐗)−1]   (10) 

where, �̂�𝜇(𝑗) and �̂�𝜎(𝑗), �̂�1
2 and �̂�2

2 are the mean response and 

variance response j th model parameter and variance, 

respectively. 

3. Optimization method considering the confidence 

intervals of model parameters 

3.1 Analysis of total cost structure considering model 

parameters uncertainty 

For economic reasons, it is necessary to reduce the costs for 

both customers and manufacturers in the micro-manufacturing 

process. Therefore, production economics and product quality 

should be simultaneously incorporated into the optimization 

process. The process of implementing continuous quality 

improvement includes two economic issues. One is the 

manufacturing cost incurred before the product is sold to the 

customer, and the other is the warranty cost after the product is 

sold to the customer. Warranty costs typically encompass 

manufacturer liabilities, repair or replacement inconveniences 

and time wasted for customers, loss of future sales, and market 

share decline, etc.[8]. In the literature of manufacturing and 

quality engineering, manufacturing costs are commonly 

modeled as a function of the natural process tolerance of 

product quality characteristics. The smaller the tolerance, the 

more robust the product quality characteristics. However, this 

requires more precise machining equipment and more skilled 

operators, thus resulting in higher manufacturing costs. 

3.1.1 manufacturing cost 

Tolerance costs associated with manufacturing costs aid 

enterprises in assessing and optimizing product quality control 

strategies. The manufacturing expense Cm of a product is related 

to the magnitude of the product's quality characteristic values, 

which in turn are related to the tolerance of the design function. 

The tolerance of the design function can be calculated using the 

standard deviation of the product quality characteristics, with 

the formula as follows: 

C𝑚 = d0 +
𝑑1

Δ𝑦
   (11) 

Δ𝑦 = 3𝜎𝑦    (12) 

where, 𝑑0  and 𝑑1  are the coefficients of the tolerance cost 

model; 𝛥𝑦  represents the width of the specification limit for 

quality characteristic y; and 𝜎𝑦 is the standard deviation of the 

design function y. 

Many studies define manufacturing costs solely as  

a function related to the tolerance of the design function. Other 

studies make it more comprehensive by introducing an 

independent internal failure cost item into the manufacturing 

cost relationship, namely scrap and rework costs. These studies 

consider that these costs are influenced not only by the tolerance 

of the design function but also by the means of production. If 

the product's main quality characteristic mean is near the design 

tolerance midpoint, internal failure costs can be modeled as 

directly related to this tolerance and included in the earlier 

mentioned cost relationship. 

In the production process, when the quality characteristics 

of a product do not meet the predetermined specification limits, 
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additional costs are incurred. These costs may include the extra 

labor costs for reworking products, the material and service 

costs for scrapped products, or the cost of additional material 

purchases. For those products that do not meet specification 

limits, products that qualify for rework are reprocessed, 

otherwise, they are scrapped. The extent of rework and scrap 

costs depends on the type of quality characteristic observed and 

the predefined specification limits. The rework and scrap costs 

are represented as follows: 

E(Rework Cost) = Crework(𝑃[𝑦 ≤ 𝐿𝑆𝐿]=Crework ∫ 𝑓(y)𝑑𝑦
𝐿𝑆𝐿

−∞
(13) 

E(Scrap Cost) = Cscrap(𝑃[𝑦 ≥ 𝑈𝑆𝐿]=Cscrap ∫ 𝑓(y)𝑑𝑦
∞

𝑈𝑆𝐿
(14) 

where, 𝐶𝑟𝑒𝑤𝑜𝑟𝑘  represents the unit cost of rework; 𝐶scrap 

represents the unit cost of scrap；𝑓(𝑦) is the probability density 

function of the quality characteristic Y. LSL is the lower 

specification limit of the product, referring to the minimum 

allowable value or lower limit of the range accepted for the 

product or process. USL represents the upper specification limit 

of the product, referring to the maximum allowable value 

accepted for the product or process.  

Based on the mean and standard deviation estimated by the 

design of experiments, the probability density function of the 

quality characteristic Y is as follows: 

𝑓(𝑦) =
1

√2𝜋�̂�2
𝑒𝑥𝑝 {−

1

2
[
(𝑦−�̂�)2

�̂�2 ]}  (15) 

3.1.2. Warranty cost 

Due to the complexity and repair costs of products such as 

construction machinery, customers increasingly prioritize 

warranty policies for complex items to mitigate losses from 

uncertain product quality[32]. The formulation of warranty 

policies involves many processes, including product design, 

manufacturing, marketing, and after-sales service. However, 

departments within a company often operate independently, 

lacking coordination and cooperation. This results in an 

inability to systematically design and optimize quality 

assurance policies from a product lifecycle perspective. The 

lack of systematic decision-making can lead to numerous 

problems. For example, a mismatch between warranty policies 

and product reliability can damage a company's profits. When 

the design reliability of a product is not high, the sales 

department may establish aggressive quality assurance policies 

to boost product sales. This leads to a significant number of 

product claims during the after-sales service phase due to low 

product reliability in the field, causing excessively high 

warranty costs for the manufacturer. 

The warranty cost of a product refers to the expenses 

incurred for quality assurance activities carried out to guarantee 

product quality and meet customer needs within a specified 

period. The warranty can be limited or lifetime, allowing 

consumers to request repairs, replacements, or a one-time rebate 

from the manufacturer. In addition to formulating the warranty 

policies provided to customers, manufacturers must also decide 

on the duration of the warranty period and calculate the 

warranty costs. 

Warranty costs can be calculated using different formulas, 

but the basic approach is to evaluate the total cost of warranty 

activities based on the probability density function or the 

cumulative probability distribution function. This paper 

considers only a simple warranty model, namely the minimal 

cost warranty model. This model emphasizes minor repairs, 

suggesting that a repair either maintains the product's failure 

rate, restores it to its original state, or replaces a small 

component within a larger system. Because of the degradation 

of other components, the system's reliability essentially remains 

unchanged. The minimal warranty cost model is as follows[33]: 

𝑀(𝑤) = ∫ ℎ(𝜏)
𝑤

0
𝑑𝜏 = − 𝑙𝑛 𝑅 (𝑤)  (16) 

𝑊𝐶 = 𝐶𝑟𝑀(𝑤) = −𝐶𝑟 𝑙𝑛 𝑅 (𝑤)  (17) 

where, w represents the failure time, ℎ(𝜏)  is the probability 

density function of the product failing within time 𝜏, WC is the 

total warranty loss cost, 𝑅(𝑤) is the reliability at the end of the 

warranty period, 𝐶𝑟 is the cost required for repairing each good 

or item during the warranty period. 

Leemis[34] provides a formal definition of reliability, which 

is stated as: 'The reliability of an item refers to the probability 

that it can successfully perform its intended function under 

specified environmental conditions over a specific period of 

time.' Therefore, based on this definition, it can be inferred that 

the primary random variable in traditional reliability models is 

the failure time 𝜏 . However, reliability models can also 

encompass other random variables or parameters, resulting in 

reliability models that incorporate covariates. The studies by 

Deleveaux[35], Blue[36], and Hassan[8] attempted to correlate the 

mean and variance of the main quality characteristics of 

products with warranty costs by adopting reliability models 

with covariates. The reliability models for target-is-best RN(w) 
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and smaller-the-better RS(w) product characteristics addressed 

in this paper were proposed by Blue[36] and Hassan[8]: 

𝑅𝑁(𝑤) =
1

√1+2𝑏𝜎2𝑤𝑐
𝑒𝑥𝑝 [− (𝑎 +

𝑏(𝜇−𝑇)2

1+2𝑏𝜎2𝑤𝑐)𝑤𝑐] (18) 

𝑅𝑆(𝑤) =
1

√1+2𝑏𝜎2𝑤𝑐
𝑒𝑥𝑝 [− (𝑎 +

𝑏𝜇2

1+2𝑏𝜎2𝑤𝑐)𝑤𝑐]        (19) 

where, 𝜇 and 𝜎2 are respectively the mean and variance of the 

product quality characteristics; 𝑎, 𝑏 and 𝑐 are parameters of the 

reliability model; T is the target value of the product quality 

characteristic. 

3.2. Constructing total cost optimization model 

In summary, from both the manufacturer's and customer's 

perspectives, the quality assessment of micro-holes is closely 

related to tolerance costs, rework costs, scrap costs, and 

warranty costs. The purpose of this paper is to obtain high-

quality products at the lowest cost during the micro-

manufacturing process. Therefore, the proposed method aims to 

simultaneously minimize tolerance, rework, scrap, and 

warranty costs to find the optimal processing parameter settings. 

To consider the impact of model parameter estimation errors 

on the total cost optimization model, this paper adopts interval 

estimation for model parameters. Based on robust design 

principles, it constructs an optimization model to enhance 

solution robustness. Considering economic factors such as 

manufacturing and warranty costs, an optimization model for 

the economical design of laser micro-drilling process 

parameters has been established: 

𝑚𝑖𝑛
𝒙,𝜽𝜇,𝜽𝜎

𝐸(𝑇𝐶) = 𝜆 ∗ (𝑑0 +
𝑑1

3�̂�𝑦
+ 𝐶𝑟𝑒𝑤𝑜𝑟𝑘𝑃(𝑦 ≤ 𝐿𝑆𝐿) +

𝐶𝑠𝑐𝑟𝑎𝑝𝑃(𝑦 ≥ 𝑈𝑆𝐿)) + (1 − 𝜆) ∗ (−𝐶𝑟 𝑙𝑛[𝑅(𝑤)]). 

s.t.  𝑓(𝑦) =
1

√2𝜋�̂�2
𝑒𝑥𝑝 {−

1

2
[
(𝑦−�̂�)2

�̂�2 ]}, 

 �̂�(𝑥) = 𝑿�̂�𝜇, �̂�(𝑥) = 𝑿�̂�𝜎, 

𝐶𝐼�̂�𝜇
= [�̂�𝜇(𝑗) − 𝑡𝛼

2
,𝑛−𝑘√�̂�1

2(𝑿′𝑿)−1，�̂�𝜇(𝑗) +

𝑡𝛼

2
,𝑛−𝑘√�̂�1

2(𝑿′𝑿)−1] , 𝐶𝐼�̂�𝜎
= [�̂�𝜎(𝑗) − 𝑡𝛼

2
,𝑛−𝑘√�̂�2

2(𝑿′𝑿)−1，

�̂�𝜎(𝑗) + 𝑡𝛼

2
,𝑛−𝑘√�̂�2

2(𝑿′𝑿)−1], 

𝑅(𝑤) =
1

√1+2𝑏𝜎2𝑤𝑐
𝑒𝑥𝑝 [− (𝑎 +

𝑏(𝜇−𝑇)2

1+2𝑏𝜎2𝑤𝑐)𝑤𝑐]       (20) 

0 ≤ 𝜆 ≤ 1, 

where, λ represents the manufacturer's emphasis on internal 

costs, that is, the weight assigned to internal costs. λ∈[0,1]. 

When λ=0, it suggests the manufacturer prioritizes external cost 

reduction over internal costs, favoring a low-margin, high-

volume marketing strategy. When λ is 0.5, it implies that the 

manufacturer places equal importance on both internal and 

external costs. When λ=1, it indicates the manufacturer opts for 

a high-margin, low-volume strategy, focusing significantly on 

reducing its internal costs with less emphasis on external costs. 

4. Case Study 

This paper employs a micro-drilling example to test the 

effectiveness of the proposed method. The micro-drilling 

experiment is derived from literature[37], focusing on the 

parameter design issue of the micro-drilling process. The output 

response of this process is the radius of the micro-hole y with  

a target-is-best characteristic, with the upper and lower 

specification limits set at 39.8μm and 40.2μm, respectively. The 

closer the value is to the target value T=40μm, the higher the 

quality of the hole produced. If the radius of the micro-hole 

exceeds the upper limit, it will be scrapped, incurring scrap 

costs; if the radius of the micro-hole is less than the lower limit, 

it will be reworked, incurring rework costs. Assume the unit 

rework cost is 10, and the scrap cost is 200. Experimental data 

were collected using a four-axis CNC femtosecond laser micro-

machining center and a 33 full factorial design. Three processing 

parameters were identified as significant controllable factors: 

average power (x1), Q-switch frequency (x2), and cutting speed 

(x3). The actual values of each parameter and their 

corresponding coded values are shown in Table 2, and the 

experimental results are presented in Table 3. 

Table 2. Actual and encoded values of parameters. 

Parameters 
level 

-1 0 1 

x1: average power/mW 50 100 150 

x2: Q-switch frequency/Hz 500 650 800 

x3: cutting speed /(0.01mm/s) 4 6 8 
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Table 3. Experimental results. 

x1 x2 x3 y �̅� σ 

-1 1 1 26.806  22.300  22.454 23.853 2.558 

-1 0 0 27.200  22.406  34.043 27.883 5.849 

-1 -1 -1 27.462  23.507  44.908 31.959 11.387 

-1 0 1 29.698  26.800  26.800 27.766 1.673 

-1 0 0 43.460  41.287  44.908 43.218 1.823 

-1 0 -1 58.671  60.843  52.946 57.487 4.079 

-1 -1 1 23.179  21.730  23.403 22.770 0.908 

-1 0 0 36.941  35.492  40.562 37.665 2.611 

-1 1 -1 49.530  55.773  52.152 52.485 3.135 

0 1 0 36.216  31.319  35.492 34.342 2.643 

0 0 0 52.152  61.568  57.222 56.980 4.713 

0 -1 0 57.946  59.395  65.189 60.843 3.833 

0 0 0 29.698  30.422  26.800 28.973 1.916 

0 0 0 42.011  39.838  42.735 41.528 1.508 

0 0 0 57.222  53.998  55.049 55.423 1.644 

0 -1 0 25.800  24.300  29.698 26.599 2.786 

0 0 0 38.389  35.165  38.389 37.314 1.861 

0 1 0 52.876  59.395  55.773 56.014 3.266 

1 1 -1 33.319  34.043  34.043 33.802 0.418 

1 0 0 52.152  55.049  57.946 55.049 2.897 

1 -1 1 60.119  57.222  55.773 57.705 2.213 

1 0 -1 26.698  27.525  28.973 27.732 1.152 

1 0 0 44.908  48.530  46.357 46.598 1.823 

1 0 1 62.292  66.638  59.395 62.775 3.646 

1 -1 -1 26.800  28.249  27.525 27.524 0.724 

1 0 0 36.216  39.838  40.562 38.872 2.328 

1 1 1 54.325  49.254  59.395 54.324 5.070 

The Kolmogorov-Smirnov test verified the response 

distribution. MATLAB's lillietest confirmed hypothesis validity 

with P>0.5. This outcome indicates that the response variable 

follows a normal distribution. Assume in the warranty cost 

model, the parameters are w=12, a=0.001, b=0.025, c=0.8, 

Cr=50. Referring to Hassain[18], the tolerance cost model 

coefficients are assumed to be d0=10, d1=3. Based on the 

process parameters for micro-drilling in Table 2, along with the 

sample mean and standard deviation of the micro-hole radius, 

confidence intervals for the model parameters �̂�𝜇  and �̂�𝜎  for 

mean and standard deviation responses can be derived from 

Equations (9) and (10), respectively. Subsequently, the response 

surface models for the mean and standard deviation are fitted 

using Equations (7) and (8), respectively. 

4.1. Optimization results for different methods 

Manufacturers with different marketing strategies place varying 

levels of importance on internal and external costs. The 

structure of differential loss costs can somewhat influence the 

determination of laser micro-hole processing parameter levels. 

Therefore, by choosing the value of λ appropriately according 

to their own type, manufacturers can obtain the optimal 

processing parameter levels that match their type. 

This section compares the proposed method with other 

approaches for analyzing the total lifecycle costs of researched 

products. Table 4 presents the response means, standard 

deviations, and various component costs associated with these 

methods. Hassan[18]developed a comprehensive cost model that 

included tolerance costs, rework costs, scrap costs, and 

manufacturing costs. However, the entire lifecycle cost model 
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developed in Hassan's work uses constant parameters for the 

mean and variance models, thus failing to consider the 

uncertainty of model parameters. Lv et al.[38] utilized the multi-

objective optimization algorithm "gamultiobj" to minimize the 

product lifecycle costs and achieve the Pareto frontier. 

Subsequently, the optimal solution was selected using the grey 

relational analysis technique based on criteria importance 

through intercriteria correlation approach. Although this 

method does not consider the uncertainty in model parameters, 

it accounts for the uncertainty in predicted response losses 

caused by fluctuations in predicted values. To demonstrate the 

superiority of the method proposed in this paper, under the 

condition of λ=0.5, a comparative analysis of the optimization 

results is conducted. 

Based on the conditions and objective function given by 

Equation (20), the Fmincon function in MATLAB optimization 

tools is utilized to find a feasible solution. Given the need to set 

an initial point in the function, Fmincon is susceptible to being 

trapped in local optima. To obtain a global optimum, this study 

selected 1000 initial sample points within the feasible region, 

which tend to be stable points or boundary points. The 

convergence criterion is to ensure the ratio of change in 

response values is less than 10-6. The optimization results are 

shown in Table 4.

Table 4. Comparison table of optimization results for different methods. 

Method μ σ Tolerance Rework Scrap Warranty 
Expected total 

cost 

Proposed method 40.1393 1.6750 10.5970 4.8554 83.9490 18.0810 58.7412 

Hassain(2012) 40.2010 2.4548 10.4074 5.0016 87.0251 29.5556 65.9948 

Lv et al.(2023) 39.8344 1.4416 10.6937 3.9990 98.0958 14.6202 63.7043 

As shown in Table 3, for the proposed method, the level of 

the controllable factor is 𝑥∗ = (−0.0034,0.0002, − 0.0001) , 

resulting in a total cost of 58.7412. The optimal level of 

processing parameters 𝑥∗ = (−0.0820,0.1144, − 1.0000) and 

a total cost of 65.9948 of Hassain’ (2012) approach. The optimal 

level of processing parameters and total cost for Lv et al.’(2023) 

method are 𝑥∗ = (0.0999, 0.0267, 0.0984) and 63.7043, 

respectively. It is evident that the proposed method incurs the 

lowest cost (58.7412), while the cost associated with Hassan's 

(2012) method is the highest (65.9948), with Lv et al.'s (2023) 

cost falling in between (63.7043). The expected total cost,  

a composite indicator that considers various cost factors, 

reflects the economic efficiency of the entire production process. 

From this perspective, the proposed method demonstrates 

superior performance in cost control. 

The mean of the proposed method is very close to the target 

value of 40. This indicates that the process parameters are set 

with high precision, allowing for stability and consistency in 

outputs despite uncertainties. In micro-manufacturing, precise 

setting and execution of these parameters are critical for 

achieving high-quality outputs. The standard deviation 

measures the dispersion of data. The proposed method has  

a standard deviation of 1.6750, compared to 2.4548 for Hassan 

(2012) and 1.4416 for Lv et al.(2023). The smallest standard 

deviation, seen in Lv et al.'s (2023) method, results from 

effectively managing fluctuations in predicted responses by 

dynamically adjusting production parameters to minimize 

output variability. Hassan's (2012) process exhibits the greatest 

variability, and due to its association with tolerance costs related 

to fluctuations in product quality characteristics, it incurs the 

lowest tolerance costs. 

The Lv et al. (2023) method minimizes rework through 

stringent quality control and the application of predictive 

models. However, a potential side effect of this method is an 

elevated scrap rate, particularly notable in industries where 

extremely high product quality is pursued. The proposed 

method balances economic benefits with resource efficiency by 

optimizing costs throughout the product lifecycle, creating  

a more cost-effective production model. Warranty costs refer to 

the additional expenses incurred due to product quality issues. 

Hassan (2012) had the highest warranty costs at 29.5556, 

followed by the proposed method at 18.0810, while Lv et al. 

(2023) had the lowest at 14.6202. This indicates that Lv et al.'s 

(2023) method effectively maintains product quality, resulting 

in lower warranty costs. 

The analysis above indicates that the proposed method 
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offers distinct advantages in robustness and cost-efficiency, 

particularly from a cost-benefit perspective. For production 

environments aiming to optimize costs while maintaining 

product quality, the proposed method is a superior choice. 

Economically, the proposed method reduces total costs by 10.99% 

and 7.79% compared to two other methods, offering significant 

economic advantages. 

When the confidence level 1-α is 0, Equation (20)'s model 

parameters degenerate to constants, resembling traditional 

robust optimization models that overlook parameter uncertainty. 

Thus, these traditional methods are a specific case of our 

proposed approach. 

Based on the above results, two interesting findings can be 

observed: 

1) The optimization method that incorporates model 

parameter uncertainty yields processing parameters whose 

response mean is closest to the 40μm target and results in  

a smaller standard deviation, thereby minimizing fluctuations in 

predicted response values. Consequently, accounting for model 

parameter uncertainty not only enhances predictive accuracy 

but also leads to improved optimization outcomes. 

2) When estimating model parameters amid uncertainty, the 

proposed method ensures optimal processing parameters 

maintain quality and control costs, even in the worst-case 

scenarios. Therefore, considering model parameter uncertainty 

makes the economic efficiency and robustness of the 

optimization results more balanced and reasonable, ultimately 

resulting in the lowest internal and external total costs. 

4.2. Sensitivity analysis 

When 𝜆 =0.5, in order to understand the impact of some model 

assumptions on the optimal solution, sensitivity analysis is 

conducted on different warranty periods and unit scrap costs. 

4.2.1. Sensitivity analysis for warranty period w 

When conducting sensitivity analysis on the warranty period w, 

the values of unit scrap cost, rework cost, and other model 

assumptions are held constant. The value of w is varied from 6 

to 12, with an increment of 6, and the optimization results are 

shown in Table 5.

Table 5. Effect of different values of w on optimization results. 

w x1  x2  x3 Tolerance Rework Scrap Warranty Expected total cost 

6 0.0006  -0.0033  0.0136 10.6024 4.7867 85.1305 11.6517 56.0856 

12 -0.0034  0.0002  -0.0001 10.5970 4.8554 83.9490 18.0810 58.7412 

18 0.0167  0.0001  0.0190 10.6110 4.8404 83.8066 21.9894 60.6236 

24 0.0920  -0.0050   0.0020 10.6417 4.8318 83.0156 24.0872 61.2882 

30 0.0751  0.0081   0.0226 10.6423 4.7950 83.7169 26.9649 63.0596 

From Table 6, it can be observed that both warranty costs 

and expected total costs increase with the lengthening of the 

warranty period. Since tolerance, rework, and scrap costs relate 

to specification limits and fluctuations in micro-hole quality, 

their changes are not significant as the warranty period 

lengthens. Therefore, as the warranty period for micro-

manufacturing products lengthens, the total cost of the product 

increases. This is because extending the warranty period 

typically involves more after-sales service, maintenance costs, 

and potential warranty liabilities. For merchants, trade-offs and 

considerations should be made in order to develop an 

appropriate warranty strategy. In developing warranty strategies, 

businesses must consider market demand, cost factors, and 

product quality to ensure the warranty period meets customer 

expectations and promotes corporate sustainability.

Table 6. Effect of different values of Cscrap on optimization results. 

Cscrap μ σ Tolerance Rework Scrap Warranty Expected total cost 

80 40.1297 1.6656 10.6004 4.8317 33.7230 17.9274 33.5413 

90 40.0921 1.5038 10.6649 4.7162 38.0509 15.4557 34.4439 

100 40.1192 1.6566 10.6036 4.8054 42.3615 17.7799 37.7752 

110 40.1053 1.5459 10.6469 4.7557 46.3896 16.0987 38.9455 

120 40.1178 1.5351 10.6514 4.7868 50.1558 15.9499 40.7720 
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Cscrap μ σ Tolerance Rework Scrap Warranty Expected total cost 

130 40.1126 1.5524 10.6441 4.7755 54.6270 16.2047 43.1257 

140 40.1420 1.5614 10.6405 4.8547 57.8250 16.3770 44.8486 

150 40.0660 1.5226 10.6568 4.6494 64.5982 15.7147 47.8095 

160 40.0671 1.5093 10.6626 4.6491 68.7646 15.5161 49.7962 

170 40.1313 1.5475 10.6462 4.8242 70.5703 16.1528 51.0968 

180 40.1727 1.6051 10.6230 4.9336 73.4498 17.0788 53.0426 

190 40.1446 1.5423 10.6484 4.8567 78.2042 16.0917 54.9005 

200 40.1393 1.6750 10.5970 4.8554 83.9490 18.0810 58.7412 

210 40.1027 1.5608 10.6407 4.7515 88.8528 16.3203 60.2826 

220 40.1015 1.5483 10.6459 4.7476 92.9909 16.1319 62.2581 

Table 6 reflects the overall impact of changes in unit scrap 

cost on various costs, as well as the optimal process mean and 

variance. When other unit costs and warranty model parameters 

remain constant, an increase in unit scrap cost leads to higher 

scrap costs and expected total costs. Meanwhile, there are slight 

variations in the mean and standard deviation under different 

rework cost coefficients, indicating some fluctuations in the 

production process, but overall differences are not significant. 

Variations are minimal, likely due to modeling that accounted 

for model parameter uncertainty, leading to optimized 

processing parameters and notably stable production, with 

fluctuations limited to a narrow range. 

When the unit scrap costs are 210 and 220 respectively, an 

increase in unit scrap cost leads to stricter control over micro-

holes quality, resulting in higher tolerance costs to ensure 

compliance with better quality standards. Higher tolerance costs 

indicate a more stable micro-hole manufacturing process, 

requiring less additional work for repair or adjustment. This can 

reduce subsequent maintenance and warranty costs associated 

with micro-holes. 

4.2.2. Sensitivity analysis for different cost weights λ 

Due to the varying marketing strategies that manufacturers may 

employ at different stages, there is also a differential emphasis 

on internal and external costs. Therefore, based on equation (20), 

an analysis of the values of internal costs, external costs, and 

total costs under different cost weights is conducted. Fifteen 

points are uniformly selected from 0 to 1 for optimization, and 

the optimization results are presented in Figure 1. 

 

Fig.1. The impact of different values of λ on the optimization 

results. 

Figure 1 illustrates the variation trends of expected loss costs 

under 15 different values of λ. When λ=0, there is a significant 

gap between the sum of internal costs and external costs. The 

sum of internal costs (comprising tolerance and scrap costs) 

amounts to 120.5276, while the warranty cost reaches its 

minimum at 13.5308. This is because, at λ=0, the company 

completely disregards internal costs and focuses on external 

costs. When the gap between internal and external costs reaches 

its maximum, the company can consider a low-margin, high-

volume marketing strategy. It can adjust the tolerance levels 

within a certain range to achieve cost optimization. As λ changes 

from 0 to 0.5, the manufacturer's marketing strategy begins to 

shift towards a low-margin, high-volume approach. At this stage, 

to enhance brand recognition, establish market credibility, and 

prestige, the company pays significant attention to losses caused 

by customer dissatisfaction after product use. As λ gradually 

increases from 0.5 to 1, manufacturers may gradually move 
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away from the low-margin, high-volume strategy and start to 

pay more attention to internal costs, with scrap costs showing  

a downward trend. When λ=1, the company completely 

disregards external costs and focuses on internal costs. 

Tolerance and scrap costs are minimized, and warranty costs 

increase, suggesting that the company may need to strengthen 

the monitoring and management of external quality of micro-

holes to reduce warranty costs. With lower internal costs for 

micro-holes and higher per-unit profits, the company can opt for 

a high-margin, low-volume marketing strategy. 

The aforementioned results are merely the outcomes of 

sensitivity analysis on a subset of model assumptions and 

parameters. Other parameters can be investigated in a similar 

manner as described above. This paper aims to demonstrate 

sensitivity analysis methods for selected parameters and their 

notable findings, thus not encompassing all parameter results. 

4.3. Numerical Case Study: Revisiting the Micro-Drilling 

Process 

To verify the economic and robustness of the proposed 

modeling technique, Monte Carlo simulations were used to 

study process variations of different degrees in the micro-

drilling process.  

In the Monte Carlo simulation, the original micro-drilling 

process data forms the basis for generating a full factorial design 

with three repetitions at each design point for every simulation 

run, facilitating data collection from simulated experiments. 

The first scenario involves high variability design, where the 

mean and standard deviation of the original samples at each 

design point are used to generate normal random samples. The 

second scenario involves low variability design, which is 

achieved by multiplying the original sample standard deviation 

by 0.25 to generate normal random variables with reduced 

variability by 75%, while other methods are created in a similar 

manner[39]. Subsequently, three samples are randomly drawn 

from the normal random samples to form the data for simulated 

experiments, with the specific experimental structure detailed in 

Table 7. This process is repeated 500 times to generate 500 sets 

of experimental data.

Table 7. Experimental framework for numerical cases 

x1 x2 x3 �̅� σ Simulation data 

-1 1 1 23.853 2.558 y1,1  y1,2  y1,3 

-1 0 0 27.883 5.849 y2,1  y2,2  y2,3 

-1 -1 -1 31.959 11.387 y3,1  y3,2  y3,3 

-1 0 1 27.766 1.673 y4,1  y4,2  y4,3 

-1 0 0 43.218 1.823 y5,1  y5,2  y5,3 

-1 0 -1 57.487 4.079 y6,1  y6,2  y6,3 

-1 -1 1 22.770 0.908 y7,1  y7,2  y7,3 

-1 0 0 37.665 2.611 y8,1  y8,2  y8,3 

-1 1 -1 52.485 3.135 y9,1  y9,2  y9,3 

0 1 0 34.342 2.643 y10,1  y10,2  y10,3 

0 0 0 56.980 4.713 y11,1  y11,2  y11,3 

0 -1 0 60.843 3.833 y12,1  y12,2  y12,3 

0 0 0 28.973 1.916 y13,1  y13,2  y13,3 

0 0 0 41.528 1.508 y14,1  y14,2  y14,3 

0 0 0 55.423 1.644 y15,1  y15,2  y15,3 

0 -1 0 26.599 2.786 y16,1  y16,2  y16,3 

0 0 0 37.314 1.861 y17,1  y17,2  y17,3 

0 1 0 56.014 3.266 y18,1  y18,2  y18,3 

1 1 -1 33.802 0.418 y19,1  y19,2,  y19,3 

1 0 0 55.049 2.897 y 20,1  y20,2  y20,3 

1 -1 1 57.705 2.213 y21,1  y21,2  y21,3 

1 0 -1 27.732 1.152 y22,1  y22,2  y22,3 

1 0 0 46.598 1.823 y23,1  y23,2  y23,3 

1 0 1 62.775 3.646 y24,1  y24,2  y24,3 

1 -1 -1 27.524 0.724 y25,1  y25,2  y25,3 

1 0 0 38.872 2.328 y26,1  y26,2  y26,3 
1 1 1 54.324 5.070 y27,1  y27,2  y27,3 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

Based on the mean and variance of each set from the initial 

micro-drilling experiment, 500 sets of experimental data are 

generated through Monte Carlo simulation. Subsequently, the 

mean and standard deviation of each set of experimental data 

are calculated. Different modeling techniques were employed to 

establish dual-response surface models, considering model 

parameter uncertainty (E(TC)) and not considering model 

parameter uncertainty (E(NTC)). Through equation (20), 

optimal processing parameters for Monte Carlo simulation 

(N=500) were obtained. Based on the optimal processing 

parameters, the mean, standard deviation, internal and external 

costs, as well as total costs can be calculated, with the results 

presented in Table 8.

Table 8. Optimization results for different variation scenarios. 

Variability level Model μ σ Tolerance Rework Scrap Warranty Expected total cost 

Low variability 
E(TC) 40.1695 0.4211 12.3749 4.7113 38.0208 2.1790 28.6430 

E(NTC) 40.2000 0.5952 11.6802 5.0000 50.1543 3.7283 35.2814 

High variability 
E(TC) 40.1485 1.5257 10.6554 4.8653 81.9343 15.8495 56.6522 

E(NTC) 40.2000 2.3922 10.4180 5.0000 86.7204 28.6780 65.4082 

From Table 7 simulation results, it can be observed that the 

optimization results of the proposed modeling method E(TC), 

are comparatively superior to those of the method E(NTC). In 

the low volatility scenario, the optimization results of the 

proposed method are better in terms of mean, standard deviation, 

rework costs, scrap costs, warranty costs, and total costs 

compared to the optimization method that does not consider 

model parameter uncertainty. The optimal processing 

parameters are set to (0.0385, -0.0022, -0.0015). Compared to 

the E(NTC) method, which does not consider model parameter 

uncertainty and has optimal processing parameters set at  

(-0.0943, 0.1334, -1.0000), improvements of 5.77%, 24.19%, 

41.56%, and 18.82% are achieved in rework costs, scrap costs, 

warranty costs, and total costs, respectively. In the same way, in 

the high volatility scenario, the optimal processing parameters 

obtained under the E(TC) method are set to (0.1033, 0.0003, 

0.0101), which correspond to a closer match to the target mean 

and a smaller standard deviation. In the pursuit of minimizing 

production fluctuations, the implementation of strict quality 

control measures and advanced manufacturing technologies 

will lead to an increase in tolerance costs. Ultimately, the 

proposed method reduces the total cost while maintaining 

product quality by balancing internal and external costs. 

Compared to the E(NTC) method with optimal processing 

parameters set at (-0.1060, 0.1328, -1.0000), improvements of 

5.52%, 44.73%, and 13.39% are realized in scrap costs, 

warranty costs, and total costs, respectively. This indicates that 

the presence of uncertainty in model parameter estimation 

affects the optimization solutions. The optimization method that 

considers model parameter uncertainty can ensure that the 

optimization results remain reliable even in the worst-case 

scenarios. The optimization methods that do not consider 

uncertainty factors result in optimized solutions that are 

sensitive to these uncertainties. With greater uncertainty, the 

differences between the worst-case scenarios of the two 

methods also become more pronounced. In conclusion, the 

proposed method outperforms models that neglect model 

parameter uncertainty. It achieves optimal processing 

parameters by balancing manufacturing and quality assurance 

costs. 

From case studies and simulation analyses, it has been found 

that the selection of processing parameters significantly impacts 

the quality, variability, and total cost of micro-holes. Compared 

to the E(NTC) method, the E(TC) method suggests that higher 

average power and cutting speed, along with a lower Q-switch 

frequency, can improve micro-hole quality while reducing 

variability and total costs. In terms of average power, a higher 

average power provides more energy, which is crucial for 

material removal and micro-hole formation in micro-

manufacturing processes. Simultaneously, higher power usually 

means stronger cutting capabilities, allowing for more effective 

overcoming of material strength and hardness, thus more easily 

achieving the desired micro-hole shapes and sizes. Regarding 

cutting speed, a higher cutting speed helps reduce the heat 

generated during cutting, which aids in lowering material 

deformation and surface roughness. At the same time, high 
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cutting speeds can shorten the machining cycle, enhance 

production efficiency, and to some extent, reduce machining 

costs. As for the Q-switch frequency, a lower Q-switch 

frequency implies longer pulse duration and lower average 

power density. This can diminish local thermal effects and 

thermal damage to the material. Additionally, a lower Q-switch 

frequency typically results in a smoother machining surface, as 

longer pulse durations provide more time for the material 

surface to cool. Lowering the Q-switch frequency can lengthen 

processing time, but also reduce damage rates and enhance 

micro-hole precision, thus diminishing scrap rates and 

processing variability. 

5. Conclusions 

Given that businesses adopt differentiated marketing strategies, 

their levels of concern for internal and external costs vary. 

Furthermore, engineering systems face many uncertainties, like 

environmental variations and measurement errors. Under cost 

constraints, using limited data for response surface models may 

lead to parameter deviations, compromising optimization 

robustness. Based on this, this paper proposes a cost-quality 

design model that considers the internal and external costs of 

micro- manufacturing. From the perspective of interval 

estimation of model parameters prediction，this paper 

combines the idea of robust optimization design to address the 

economic quality design problem amid model parameter 

uncertainty. The analysis results indicate: 

(1) Firms with different marketing strategies assign varying 

weights to internal and external costs, leading to varied 

outcomes. Manufacturers can choose the appropriate λ value for 

their type to identify the optimal processing parameters. 

(2) Considering the uncertainty of model parameters during 

modeling can reduce variation in the micro-manufacturing 

process, significantly enhancing the robustness and reliability 

of the optimal processing parameters. 

(3) The proposed method helps engineers make an optimal 

trade-off between manufacturing cost and warranty cost in 

micro-manufacturing, thereby reducing the total lifecycle cost 

of complex products. 

The contribution of this paper lies in the proposed method, 

which integrates product quality characteristics and reliability 

from an economic perspective. It explores how to conduct 

economical parameter design amid model parameter uncertainty, 

constrained by limited experimental resources and 

manufacturing costs. Additionally, the paper expands the 

parameter design model by constructing a joint optimization 

model that encompasses manufacturing costs, warranty costs, 

and sales strategies, considering the product's entire lifecycle. 

Furthermore, it offers different marketing strategies based on 

the weights of internal and external costs. 

It should be highlighted that these results may be influenced 

by experimental conditions and specific material characteristics. 

Therefore, in practice, adjusting design variables based on 

specific scenarios and validating paper conclusions with 

experimental and simulation data is essential. Moreover, to 

ensure micro-hole quality and processing stability, quality 

management experts should pay close attention to various 

parameters during the machining process and promptly adjust 

and optimize processing conditions. 

It is important to note that external costs affecting the 

product also include factors such as pricing models, market 

structure types, customer demand, and competitor behavior. 

How to link these factors to product quality requires further in-

depth research. Additionally, in the development and design of 

products, there are usually many processing parameters that 

affect the quality characteristics of the product. When 

experimental resources are limited (many factors to test, few 

tests possible), researchers prefer to choose fractional factorial 

designs to reduce the number of experiments and lower the costs. 

When the number of processing parameters reaches 100, they 

face the "curse of dimensionality." Techniques such as factor 

screening[40,41], principal component analysis (PCA)[42], and  

t-distributed stochastic neighbor embedding (t-SNE)[43] are used 

to reduce the dimensionality of processing parameters, focusing 

on key parameters and minimizing information loss. Therefore, 

further study is required to determine how to conduct cost-

effective quality design in micro-manufacturing with high-

dimensional processing parameters.
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