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Highlights  Abstract  

▪ Combine BWM and HFS to avoid the influence 

of expert subjectivity in β-factor model. 

▪ The interval theory is introduced to deal with 

the uncertainty parameters. 

▪ A framework for reliability evaluation of 

dynamic fault tree with CCF based on CTBN 

is proposed. 

▪ The calculation time of proposed method is 

shorter than that of DTBN-based method. 

 Traditional fault tree analysis often assumes that the basic events are 

independent and the failure parameters are known. Therefore, it is 

powerless to deal with the correlation among basic events and the 

uncertainty of failure parameters due to the small failure data. Therefore, 

a framework based on continuous-time Bayesian network is proposed to 

evaluate the reliability of fault tree with common cause failures (CCF) 

and uncertainty parameters. Firstly, the best-worst method (BWM) and 

hesitant fuzzy set (HFS) are introduced to address the issue of β-factor 

being influenced by experts’ subjectivity. Then, the interval theory is 

introduced to deal with the uncertainty parameters. Based on continuous-

time Bayesian network, the conditional probability functions of logic 

gates (i.e. AND gate, OR gate, spare gate, priority AND gate) with CCF 

are derived, and the upper and lower bounds of failure probability of top 

event can be solved. Finally, the fault trees of CPU system and brake 

signal transmission subsystem are given to verify the effectiveness of the 

proposed framework. 
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1. Introduction 

Fault Tree Analysis (FTA) is a graphical deductive method 

based on Boolean algebra, which is widely used in industrial 

fields, such as aerospace [1], automotive [2], and transportation 

[3]. The fault tree can be divided into static and dynamic fault 

trees, according to whether it is related to the sequence of events. 

Logic gates (such as AND gate and OR gate) are commonly 

employed in static fault trees, and it is generally assumed that 

the basic events are independent. There are mature theories for 

achieving qualitative and quantitative analysis of static fault 

trees [4,5]. Dugan [6] proposed a dynamic fault tree analysis 

approach by incorporating time-related logic gates, such as 

priority AND gates and spare gates. 

With the increasing complexity of engineering systems, the 

correlations between failures are also becoming increasing 

apparent. The correlation of failures may degrade the system 

reliability in many cases. Additionally, common cause failure 

(CCF) is an important reason for failure correlation. CCF is 

defined as the simultaneous failure of several components due 

to common influencing factors, such as extreme environmental 

conditions, design defects, or human factors [7]. Over the past 
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few decades, some CCF models are conducted [8-10], including 

the α-factor model, β-factor model, binomial failure rate model, 

etc. Among them, the β-factor model is the most commonly 

used model because of its concise failure division. An inherent 

drawback of the β-factor model is that the β-factor may be 

affected by experts’ subjectivity. 

Traditional FTA method could accurately deduce the failure 

probability of top event but with low-efficiency. In order to 

accelerate the analysis efficiency, fault trees can be mapped to 

other models, such as Bayesian network (BN) [11], Markov 

chain [12], Petri net [13], etc. Bayesian network can estimate 

and update the probabilities of variables based on failure data, 

while avoiding the combinatorial explosion problem [14]. 

Bayesian network encodes the causal relationships among a set 

of variables by using a graphical model. Jun [15] carried out 

Bayesian network for fault analysis and developed the 

corresponding fault identification, fault reasoning, and 

sensitivity analysis. Guo [16] and Zhang [17] proposed discrete-

time Bayesian network to achieve reliability assessment of fault 

trees with CCF and irrepairable multi-state system respectively. 

Discrete-time Bayesian network (DTBN) is capable of 

accurately modelling dynamic failure systems. However, the 

improving of precision of DTBN is directly accompanied by the 

refinement of time intervals. As the number of time intervals 

increases, the size of conditional probability table of BN will 

significantly increase, resulting in a significant increase in the 

amount of computation. In addition, DTBN can only calculate 

the failure probability at integer multiples of the time interval. 

Therefore, Boudali [18] proposed a continuous-time Bayesian 

network (CTBN) model to solve the transformation and solution 

of dynamic fault tree. CTBN does not need to discretize time, 

so it can calculate the failure probability at any time. Yang [19] 

conducted reliability analysis for wireless communication 

networks based on CTBN. Wang [20] conducted reliability 

modeling and evaluation for rectifier feedback system based on 

CTBN. Dui [21] conducted reliability and service life analysis 

of airbag systems based on CTBN. Sturlaugson [22] conducted 

sensitivity analysis on CTBN as applied specifically to 

reliability models. Liu [23] proposed hybrid time Bayesian 

networks by combining CTBN and DTBN, which allows us to 

more naturally model dynamic systems with regular and 

irregularly changing variables. CTBN was also used for fault 

diagnosis and prognostic. Schupbach [24] proposed a health 

management method for risk prognosis based on CTBN. 

Perreault [25] constructed a continuous time Bayesian network 

from a D-matrix, a common matrix representation of  diagnostic 

model. Bai [26] conducted position loss risk analysis of 

dynamic positioning systems of semi-submersible drilling units 

based on CTBN. CTBN can achieve reliability evaluation while 

the failure distribution type and parameters are known. 

However, due to the complexity of failure and the cognitive 

limitation of failure mechanisms, as well as the lack of failure 

data, there is inevitable uncertainty in the failure distribution. Li 

[27] proposed CTBN combined with triangular fuzzy numbers 

for dynamic fault tree analysis. Sturlaugson [28] defined and 

extended inference to reason under uncertainty in CTBN. 

However, none of the above researches based on CTBN 

modeled CCF, that would lead to correlation of failures.  

In response to the above mentioned issues, the best-worst 

method (BWM) and hesitant fuzzy set (HFS) are combined to 

determine the β-factor to mitigate the influence of expert 

subjectivity in the β-factor model. Binary interval numbers are 

introduced to account for the uncertainty in failure parameters. 

Subsequently, the CTBN is constructed for dynamic logic gates, 

and the conditional probability density functions for the 

corresponding gate outputs are derived. The reliability 

evaluation of dynamic fault tree’s top event can be achieved 

finally. 

The main contribution of this paper is: a systematic 

reliability evaluation framework for fault tree with CCF and 

interval uncertainty parameters based on CTBN is proposed. 

Compared with DTBN-based reliability evaluation, the 

advantages of proposed framework are: the proposed 

framework does not need to discretize the time, enabling the 

calculation of failure probability at any time; the calculation 

time of the proposed framework is significantly shorter than that 

of DTBN-based framework. In addition, the influence of expert 

subjectivity in the β-factor model is properly reduced and the 

interval theory is introduced to deal with the uncertainty 

parameters. 

The remainder of this paper is structured as follows: Section 

2 presents the framework for reliability evaluation of dynamic 

fault tree based on CTBN. Section 3 provides two case studies 

of a CPU system and a brake signal transmission subsystem 
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based on the proposed method. Section 4 summarizes the 

conclusions of this research. 

2. Framework for reliability evaluation of dynamic fault 

tree 

The flowchart of proposed framework is depicted in Fig. 1. 

Initially, BWM is used to determine the weight of each expert. 

Subsequently, the 𝛽  -factor is obtained by fusing the experts’ 

evaluations. After that, the fault tree and the corresponding 

CTBN model will be obtained. Finally, the cumulative 

distribution function of top event can be derivated obtained 

according to CTBN’ rules. 

 

Fig. 1. Flowchart of proposed framework.  

2.1. 𝜷 -factor model based on BWM and HFS 

2.1.1. 𝜷 -factor model 

The 𝛽 -factor model divides the failure of basic event into two 

independent parts: an individual failure and a failure caused by 

CCF [29]. The failure probability of the basic event can be 

divided as follows, 

𝑃𝐴
tot = 𝑃𝐴 + 𝑃𝐶𝐶    (1) 

where 𝑃𝐴
tot is the total failure probability of event A, 𝑃𝐴 is the 

individual failure probability, and 𝑃𝐶𝐶  is the failure probability 

caused by CCF. 

The 𝛽 -factor 𝛽𝐴 =
𝑃𝐶𝐶

𝑃𝐴
tot, means the proportion of the failure 

probability caused by CCF to the total failure probability. 

Usually, 𝛽 -factors are determined by experts. Therefore, 𝛽 

-factors are susceptible to experts’ subjectivity, resulting in 

biased reliability evaluations. In order to obtain more objective 

and comprehensive reliability evaluations, group decision-

making is used instead of individual decision-making. In group 

decision-making, it is necessary to obtain the weight of each 

expert to integrate all experts’ perspectives on the decision issue. 

Best-worst method (BWM) is introduced to determine the 

weight of each expert. Simultaneously, experts may hesitate 

during evaluations. Hesitant fuzzy set (HFS) is introduced to 

prevent information loss caused by single-value evaluations. 

2.1.2. Best-worst method 

BWM is a pairwise comparison-based method for multi-

objective decision-making problems [30]. Compared with 

analytic hierarchy process (AHP), BWM can effectively reduce 

the number of comparisons. When there are n criteria, AHP 

requires 
𝑛(𝑛−1)

2
  comparisons, whereas BWM requires 2𝑛 − 3 

comparisons (i.e. all criteria compared with the best criterion 

and worst criterion respectively) [30]. 

The process of BWM is as follows: 

(1) Determine the best criterion 𝑐𝐵 and the worst criterion 

𝑐𝑊  from the decision criteria 𝒄 = {𝑐1, 𝑐2, … 𝑐𝑛}  that affect 

expert weights. 

(2) Determine the preferences of the best criterion over all 

the other criteria 𝑨𝐵
𝑐 = {𝐴𝐵1

𝑐 , 𝐴𝐵2
𝑐 , … , 𝐴𝐵𝑛

𝑐 } , where 𝐴𝐵𝑖
𝑐   is  

a number among 1 to 9, and 𝐴𝐵𝐵
𝑐 = 1.  

(3) Determine the preferences of all the other criteria over 

the worst criterion 𝑨𝑊
𝑐 = {𝐴1𝑊

𝑐 , 𝐴2𝑊
𝑐 , … , 𝐴𝑛𝑊

𝑐 } , where 𝐴𝑗𝑊
𝑐   is  

a number from 1 to 9, and 𝐴𝑊𝑊
𝑐 = 1. 

(4) Obtain the optimal weight of each criterion. 

The solution should be found to minimize the maximum 

absolute difference between |
𝜔𝐵
𝑐

𝜔𝑖
𝑐 − 𝐴𝐵𝑖

𝑐 |  and |
𝜔𝑖
𝑐

𝜔𝑊
𝑐 − 𝐴𝑖𝑊

𝑐 | . The 

corresponding linear optimization model is 

𝑚𝑖𝑛  𝜉, 𝑠. 𝑡.

{
 

 
|𝜔𝐵

𝑐 − 𝐴𝐵𝑖
𝑐 ⋅ 𝜔𝑖

𝑐| ≤ 𝜉

|𝜔𝑖
𝑐 − 𝐴𝑖𝑊

𝑐 ⋅ 𝜔𝑊
𝑐 | ≤ 𝜉

∑ 𝜔𝑖
𝑐 = 1𝑛

𝑖=1

𝜔𝑖
𝑐 ≥ 0, 𝑖 = 1,2, … , 𝑛

       (2) 

Solving model (2), the optimal weights {𝜔1
𝑐 , 𝜔2

𝑐 , … , 𝜔𝑛
𝑐} and 

optimal solution 𝜉∗ are obtained. And then it is necessary to do 
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the consistency test of the preferences 𝑨𝐵
𝑐   and 𝑨𝑊

𝑐  . The 

consistency ratio (CR) is proposed, 

𝐶𝑅 =
𝜉∗

𝐶𝐼
   (3) 

where CI is the consistency index, which can be obtained 

according to the preference of the best criterion over the worst 

criterion 𝐴𝐵𝑊
𝑐 , as shown in Table 1. If 𝐶𝑅 < 0.1, it is considered 

that the preferences meet the consistency requirement, thus the 

obtained optimal weights are reliable. 

Table 1. Consistency index (CI) table. 

𝐴𝐵𝑊
𝑐  1 2 3 4 5 6 7 8 9 

CI 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

(5) Determine the best expert 𝑒𝐵  and the worst expert 𝑒𝑊 

among all experts 𝒆 = {𝑒1, 𝑒2, … , 𝑒𝑚}. 

(6) Determine the preferences of the best expert over all the 

other experts 𝑨𝐵
𝑒 = {𝐴𝐵1

𝑒 , 𝐴𝐵2
𝑒 , … , 𝐴𝐵𝑚

𝑒 }, where 𝐴𝐵𝑖
𝑒  is a number 

from 1 to 9, and 𝐴𝐵𝐵
𝑒 = 1. 

(7) Determine the preferences of the preference of all the 

other experts over the worst expert 𝑨𝑊
𝑒 = {𝐴1𝑊

𝑒 , 𝐴2𝑊
𝑒 , … , 𝐴𝑚𝑊

𝑒 }, 

where 𝐴𝑗𝑊
𝑒  is a number among 1 to 9, and 𝐴𝑊𝑊

𝑒 = 1. 

(8) Obtain the weight of each expert. 

An optimization model similar to equation (1) is used to find 

the optimal weights of each expert {𝜔1
𝑒 , 𝜔2

𝑒 , … , 𝜔𝑚
𝑒 }. 

2.1.3. Hesitant fuzzy set 

Sometimes, experts might hesitate while evaluating the 𝛽  -

factor, hesitant fuzzy set might be employed to describe the 

hesitancy. If the jth expert 𝑒𝑗(𝑗 = 1,2, … ,𝑚)  hesitates to 

evaluate the 𝑙𝑗 possible values of 𝛽 -factor, then his evaluations 

can be represented by hesitant fuzzy element 𝒉𝑗 =

{ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑙𝑗(𝑥)}. 

Hesitant fuzzy weighted averaging (HFWA) operator [31] is 

used to fuse the evaluations of all experts. 

𝐻𝐹𝑊𝐴(ℎ1, ℎ2, … , ℎ𝑚) =

𝑚

⊕
𝑗 = 1

(𝜔𝑗
𝑒𝒉𝑗)  (4) 

where ⊕  represents additive operation among hesitant fuzzy 

elements [31]. Further, the average of 𝐻𝑊𝐹𝐴(ℎ1, ℎ2, … , ℎ𝑚) is 

used to obtain the 𝛽 -factor, 

𝛽 =
sum(𝐻𝐹𝑊𝐴(ℎ1,ℎ2,…,ℎ𝑚))

length(𝐻𝐹𝑊𝐴(ℎ1,ℎ2,…,ℎ𝑚))
   (5) 

where 𝑠𝑢𝑚(𝐻𝐹𝑊𝐴)  and length (𝐻𝐹𝑊𝐴)  represent the 

summation and length of 𝐻𝑊𝐹𝐴 respectively. 

2.2. Interval theory 

In fault tree analysis, it is often assumed that the failure 

distribution types and parameters of basic events are known. 

However, small failure data poses a challenge in acquiring 

precise failure parameters in practice. Interval number is 

commonly used to describe parameter uncertainty due to its 

ability to utilise minimal data information.  

Interval number 𝜆̃𝐴 = [𝜆𝐴
−, 𝜆𝐴

+] represents the failure rate of 

the basic event A. In which, 𝜆̃𝐴 means the failure rate of A, 𝜆𝐴
+ 

and 𝜆𝐴
−  represent the upper and lower bounds of failure rate 

respectively. If 𝜆𝐴
+ = 𝜆𝐴

− , 𝜆̃𝐴  will degrade into a deterministic 

failure rate. 

Moreover, when making a comparison between two interval 

numbers, the possibility degree is frequently used. Assuming 

𝐴̃ = [𝐴−, 𝐴+], 𝐵̃ = [𝐵−, 𝐵+], then the possibility degree 𝑃(𝐴̃ ≤

𝐵̃) is 

𝑃(𝐴̃ ≤ 𝐵̃) =

{
 
 
 
 

 
 
 
 

0,                                                 𝐴− ≥ 𝐵+

0.5 ⋅
𝐵+−𝐴−

𝐴+−𝐴−
⋅
𝐵+−𝐴−

𝐵+−𝐵−
,                    𝐵− ≤ 𝐴− < 𝐵+ ≤ 𝐴+

0.5𝐵−−𝐴−+0.5𝐵+

𝐴+−𝐴−
,                            𝐴− < 𝐵− < 𝐵+ ≤ 𝐴+

𝐵−−𝐴−

𝐴+−𝐴−
+

𝐴+−𝐵−

𝐴+−𝐴−
⋅
𝐵+−0.5𝐴+−0.5𝐵−

𝐵+−𝐵−
, 𝐴− < 𝐵− ≤ 𝐴+ < 𝐵+

𝐵+−0.5𝐴+−0.5𝐴−

𝐵+−𝐵−
,                            𝐵− ≤ 𝐴− < 𝐴+ < 𝐵+

1,                                                𝐴+ < 𝐵−

 (6) 

There are six position relationships between 𝐴̃ and 𝐵̃, shown in 

Fig. 2. It was considered that 𝐴̃  is superior to 𝐵̃  when 𝑃(𝐴̃ ≤

𝐵̃) < 0.5 , denoted by 𝐴̃ ≻ 𝐵̃ ; it was considered that 𝐴̃  is 

indifferent to 𝐵̃ when 𝑃(𝐴̃ ≤ 𝐵̃) = 0.5, denoted by 𝐴̃~𝐵̃; it was 

considered that 𝐴̃  is inferior to 𝐵̃  when 𝑃(𝐴̃ ≤ 𝐵̃) > 0.5 , 

denoted by 𝐴̃ ≺ 𝐵̃ [33,34].

   
(a) A B− +   (b) B A B A− − + +     (c) A B B A− − + +     

   
(d) A B A B− − + +     (e) B A A B− − + +     (f) A B+ −   

Fig. 2. Six position relationships between interval numbers.
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One issue with interval number operations is that interval 

extension occurs when an interval number is encountered 

multiple times during the operation [35]. For example, 𝐴̃ =

[0,1],𝐵̃ = 𝐴̃𝑒−𝐴. According to the rules of interval operation, 

𝐵̃ = [0,1] × [
1

𝑒
, 1] = [0,1] . However, when 𝐴̃ = [0,1] , the 

derivative 
𝜕𝐴𝑒−𝐴̃

𝜕𝐴
  is nonnegative, which means 𝐵̃ = [0,

1

𝑒
] ⊂

[0,1] . To solve this problem, it is necessary to simplify the 

calculation as much as possible. If interval numbers occur 

multiple times in the calculation, the calculation can be 

transformed into an optimization problem. 

2.3. Bayesian network for fault tree with CCF 

The CTBN can be used to analyse the reliability of dynamic 

fault trees. The unit step function is used to describe the failure 

sequence of logic gate’s input events. And the impulse function 

is used to describe the conditional probability density function 

of logic gate’s output. 

Take a simple Bayesian network, shown in Fig. 3, as an 

example. 𝑡𝐴 and 𝑡𝐵 are the failure times of A and B respectively. 

According to the characteristics of the unit step function 𝑢(𝑥), 

𝑢(𝑡𝐴 − 𝑡𝐵) indicates that event A fails earlier than B. Similarly, 

𝑢(𝑡𝐵 − 𝑡𝐴)  means that A fails later than B. For the output, 

according to the sieving property of the pulse function 𝛿 , 

𝑝𝛿(𝑡 − 𝜏) indicates that the probability of C failing at time 𝜏 is 

p. 

 

Fig. 3. A simple Bayesian network. 

For the fault tree with CCF, it needs to be transformed into 

Bayesian network, and then the conditional probability density 

function can be derived. The conditional probability density 

functions of AND gate, OR gate, spare gates, and priority AND 

gate with CCF are derived as follows. 

2.3.1. AND gate fault tree with CCF. 

For AND gate fault tree with CCF, the corresponding BN is 

shown in Fig. 4.

  
 

(a)Fault tree (b) Equivalent fault tree (c)BN 

Fig. 4. AND gate fault tree with CCF and the corresponding BN.

The failure of basic event can be divided into two parts: an 

individual failure and a failure caused by CCF. 𝐴tot is divided 

into A and CC, 𝐵tot is divided into B and CC. If CC fails or both 

events A and B fail, the top event will fail. In Fig. 4 (b) and (c), 

AND denotes the top event failure resulting from individual 

failure of A and B. 

Assuming that failures follow exponential distribution, the 

probability density function and cumulative distribution 

function of A, B and CC are as follows, 

𝑓𝐴(𝑡) = 𝜆̃𝐴𝑒
−𝜆𝐴𝑡 , 𝐹̃𝐴(𝑡) = 1 − 𝑒

−𝜆𝐴𝑡 , (𝑡 > 0) (7) 

𝑓𝐵(𝑡) = 𝜆̃𝐵𝑒
−𝜆𝐵𝑡 , 𝐹̃𝐵(𝑡) = 1 − 𝑒−𝜆𝐵𝑡 , (𝑡 > 0) (8) 

𝑓𝐶𝐶(𝑡) = 𝜆̃𝐶𝐶𝑒
−𝜆𝐶𝐶𝑡 , 𝐹̃𝐶𝐶(𝑡) = 1 − 𝑒

−𝜆𝐶𝐶𝑡 , (𝑡 > 0)      (9) 

where 𝜆̃𝐴 , 𝜆̃𝐵 , 𝜆̃𝐶𝐶  represent the failure rates of A, B, CC 

respectively, and they are expressed by interval numbers. If 𝜆̃𝐴
tot, 

𝜆̃𝐵
tot, and 𝛽𝐴 (or 𝛽𝐵) are known, 𝜆̃𝐴, 𝜆̃𝐵and 𝜆̃𝐶𝐶  will be obtained. 

Given the value of 𝛽𝐴, the calculation proceeds as follows, 

𝜆̃𝐴 = (1 − 𝛽𝐴)𝜆̃𝐴
tot   (10) 

𝜆̃𝐶𝐶 = 𝛽𝐴𝜆̃𝐴
tot    (11) 

𝜆̃𝐵 = 𝜆̃𝐵
tot − 𝜆̃𝐶𝐶    (12) 

Assume that A and B fail at time 𝑡𝐴 , 𝑡𝐵  respectively. 

According to the principle of AND gate, the conditional 

probability density function of AND gate’s output is 

𝑓𝐴𝑁𝐷|𝐴,𝐵(𝑡|𝑡𝐴, 𝑡𝐵) = 𝑢(𝑡𝐵 − 𝑡𝐴)𝛿(𝑡 − 𝑡𝐵) 

+𝑢(𝑡𝐴 − 𝑡𝐵)𝛿(𝑡 − 𝑡𝐴)             (13) 

Thus, the joint density function is 

𝑓𝐴𝑁𝐷,𝐴,𝐵(𝑡, 𝑡𝐴, 𝑡𝐵) = 𝑓𝐴𝑁𝐷|𝐴,𝐵(𝑡|𝑡𝐴, 𝑡𝐵)𝑓𝐴(𝑡𝐴)𝑓𝐵(𝑡𝐵)    (14) 
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Integrate the joint density function to get the marginal 

probability density function of AND, 

𝑓𝐴𝑁𝐷(𝑡) = ∫  
∞

0

∫  
∞

0

[𝑢(𝑡𝐵 − 𝑡𝐴)𝛿(𝑡 − 𝑡𝐵) 

+𝑢(𝑡𝐴 − 𝑡𝐵)𝛿(𝑡 − 𝑡𝐴)]𝑓𝐴(𝑡𝐴)𝑓𝐵(𝑡𝐵)d𝑡𝐴d𝑡𝐵 

= ∫ 𝛿(𝑡 − 𝑡𝐵)𝑓𝐵(𝑡𝐵)

∞

0

∫ 𝑓𝐴(𝑡𝐴)

𝑡𝐵

0

d𝑡𝐴d𝑡𝐵 

+∫ 𝛿(𝑡 − 𝑡𝐴)𝑓𝐴(𝑡𝐴)

∞

0

∫ 𝑓𝐵(𝑡𝐵)

𝑡𝐴

0

d𝑡𝐵d𝑡𝐴 

= 𝑓𝐵(𝑡)𝐹̃𝐴(𝑡) + 𝑓𝐴(𝑡)𝐹̃𝐵(𝑡) = [𝐹̃𝐴(𝑡)𝐹̃𝐵(𝑡)]
′ 

(15) 

If either AND or CC fails, the top event will fail. Therefore, 

the conditional probability density function of top event is 

𝑓𝑇𝑜𝑝|𝐴𝑁𝐷,𝐶𝐶(𝑡|𝑡𝐴𝑁𝐷 , 𝑡𝐶𝐶) = 𝑢(𝑡𝐴𝑁𝐷 − 𝑡𝐶𝐶)𝛿(𝑡 − 𝑡𝐶𝐶) 

+𝑢(𝑡𝐶𝐶 − 𝑡𝐴𝑁𝐷)𝛿(𝑡 − 𝑡𝐴𝑁𝐷) 

  (16) 

Thus, the joint density function is  

𝑓𝑇𝑜𝑝,𝐴𝑁𝐷,𝐶𝐶(𝑡, 𝑡𝐴𝑁𝐷 , 𝑡𝐶𝐶) = 𝑓𝑇𝑜𝑝|𝐴𝑁𝐷,𝐶𝐶(𝑡|𝑡𝐴𝑁𝐷 , 𝑡𝐶𝐶) 

                                                             𝑓𝐴𝑁𝐷(𝑡𝐴𝑁𝐷)𝑓𝐶𝐶(𝑡𝐶𝐶)           (17) 

By integrating the joint density function, the marginal 

probability density function of top event is 

 

𝑓𝑇𝑜𝑝(𝑡) = ∫  
∞

0

∫  
∞

0

[𝑢(𝑡𝐴𝑁𝐷 − 𝑡𝐶𝐶)𝛿(𝑡 − 𝑡𝐶𝐶) 

+𝑢(𝑡𝐶𝐶 − 𝑡𝐴𝑁𝐷)𝛿(𝑡 − 𝑡𝐴𝑁𝐷)] 

               𝑓𝐴𝑁𝐷(𝑡𝐴𝑁𝐷)𝑓𝐶𝐶(𝑡𝐶𝐶)d𝑡𝐴𝑁𝐷d𝑡𝐶𝐶  

= 𝑓𝐶𝐶(𝑡) (1 − 𝐹̃𝐴𝑁𝐷(𝑡)) + 𝑓𝐴𝑁𝐷(𝑡) (1 − 𝐹̃𝐶𝐶(𝑡)) 

= 𝑓𝐴𝑁𝐷(𝑡) + 𝑓𝐶𝐶(𝑡) − [𝐹̃𝐴𝑁𝐷(𝑡)𝐹̃𝐶𝐶(𝑡)]
′ 

(18) 

Integrate Eq. (18) to get the cumulative distribution function 

of top event as 

𝐹̃𝑇𝑜𝑝(𝑡) = 𝑃(𝜏 < 𝑡) = ∫ 𝑓𝑇𝑜𝑝(𝜏)
𝑡

0

d𝜏 

= 𝐹̃𝐴(𝑡)𝐹̃𝐵(𝑡) + 𝐹̃𝐶𝐶(𝑡) − 𝐹̃𝐴(𝑡)𝐹̃𝐵(𝑡)𝐹̃𝐶𝐶(𝑡) 

 (19) 

Eq. (19) enables the calculation of failure probability of top 

event of AND gate fault tree with CCF at any given time. 

2.3.1. OR gate fault tree with CCF 

The OR gate fault tree with CCF and the corresponding BN are 

shown in Fig. 5, where OR in Fig. 5(b) and (c) denotes the top 

event failure resulting from individual failure of A and B. 

 

  

 

(a) Fault tree (b) Equivalent fault tree (c) BN 

Fig. 5. OR gate fault tree with CCF and the corresponding BN. 

 

The probability density functions of A, B, and CC are the 

same as those in Section 2.3.1. The marginal probability density 

function of OR is 

𝑓𝑂𝑅(𝑡) = 𝑓𝐴(𝑡) + 𝑓𝐵(𝑡) − [𝐹̃𝐴(𝑡)𝐹̃𝐵(𝑡)]
′  (20) 

If either the OR or CC fails, the top event will fail. Therefore, 

the marginal probability density function of top event is 

𝑓𝑇𝑜𝑝(𝑡) = 𝑓𝑂𝑟(𝑡) + 𝑓𝐶𝐶(𝑡) − [𝐹̃𝑂𝑟(𝑡)𝐹̃𝐶𝐶(𝑡)]
′ (21) 

Integrate Eq. (21) to get the cumulative distribution function 

of top event as 

 

 

𝐹̃𝑇𝑜𝑝(𝑡) = 𝑃(𝜏 < 𝑡) = ∫ 𝑓𝑇𝑜𝑝(𝜏)
𝑡

0

d𝜏 

= [𝐹̃𝐴(𝑡) + 𝐹̃𝐵(𝑡) − 𝐹̃𝐴(𝑡)𝐹̃𝐵(𝑡)] (1 − 𝐹̃𝐶𝐶(𝑡)) 

+𝐹̃𝐶𝐶(𝑡) 

 (22) 

Eq. (22) enables the calculation of the failure probability of 

top event of OR gate fault tree with CCF at any given time. 

2.3.3 Cold spare (CSP) gate fault tree with CCF 

The CSP gate fault tree with CCF and the corresponding BN are 
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shown in Fig. 6, where OR in Fig. 6 (b) and (c) denotes the top event failure resulting from individual failure of A and B.

  

 

(a) Fault tree (b) Equivalent fault tree (c) BN 

Fig. 6. CSP gate fault tree with CCF and the corresponding BN.

The probability density functions of A, B, and CC are the 

same as those in Section 2.3.1. According to the principle of 

CSP gate, B will only work after A fails. Therefore, the 

conditional failure rate of B in the CSP gate is 

𝜆̃𝐵_𝐶𝑆𝑃|𝐴(𝑡|𝑡𝐴) = 𝑢(𝑡 − 𝑡𝐴)𝜆̃𝐵   (23) 

Hence, the conditional probability density function of B is 

𝑓𝐵_𝐶𝑆𝑃|𝐴(𝑡|𝑡𝐴) = 𝜆̃𝐵_𝐶𝑆𝑃|𝐴(𝑡|𝑡𝐴)𝑒
−∫ 𝜆𝐵_𝐶𝑆𝑃|𝐴(𝜏|𝑡𝐴)d𝜏

𝑡
0  

= 𝑢(𝑡 − 𝑡𝐴)𝑓𝐵(𝑡 − 𝑡𝐴) 

    (24) 

Integrate Eq. (24) to get the marginal probability density 

function of B in CSP gate as 

𝑓𝐵𝐶𝑆𝑃(𝑡) = ∫ 𝑓𝐵_𝐶𝑆𝑃|𝐴(𝑡|𝑡𝐴)𝑓𝐴(𝑡𝐴)
∞

0

d𝑡𝐴 

= ∫ 𝜆̃𝐵𝑒
−𝜆̃𝐵(𝑡−𝑡𝐴)𝜆𝐴𝑒

−𝜆̃𝐴𝑡𝐴

𝑡

0

d𝑡𝐴 

= {

𝜆̃𝐴𝜆̃𝐵

𝜆̃𝐵 − 𝜆̃𝐴
(𝑒−𝜆̃𝐴𝑡 − 𝑒−𝜆̃𝐵𝑡), 𝜆̃𝐴 ≠ 𝜆̃𝐵

𝜆̃𝐴
2
𝑒−𝜆̃𝐴𝑡𝑡,                         𝜆̃𝐴 = 𝜆̃𝐵

 

(25) 

Integrate Eq. (25) to get the cumulative distribution function 

of B in CSP gate as 

𝐹̃𝐵_𝐶𝑆𝑃(𝑡) = {
1 −

𝜆𝐴𝑒
−𝜆̃𝐵𝑡−𝜆𝐵𝑒

−𝜆̃𝐴𝑡

𝜆𝐴−𝜆𝐵
,    𝜆̃𝐴 ≠ 𝜆̃𝐵

1 − 𝑒−𝜆𝐴𝑡 − 𝜆̃𝐴𝑡𝑒
−𝜆𝐴𝑡 , 𝜆̃𝐴 = 𝜆̃𝐵

   (26) 

If B fails, then CSP will fail immediately. Therefore, the 

conditional probability density function of CSP is 

𝑓𝐶𝑆𝑃|𝐵_𝐶𝑆𝑃(𝑡|𝑡𝐵) = 𝛿(𝑡 − 𝑡𝐵)   (27) 

Thus, the joint density function is  

𝑓𝐶𝑆𝑃,𝐵_𝐶𝑆𝑃(𝑡, 𝑡𝐵) = 𝑓𝐶𝑆𝑃|𝐵_𝐶𝑆𝑃(𝑡|𝑡𝐵)𝑓𝐵_𝐶𝑆𝑃(𝑡𝐵) (28) 

By integrating the joint density function, the marginal 

probability density function of CSP is 

𝑓𝐶𝑆𝑃(𝑡) = ∫ 𝑓𝐶𝑆𝑃|𝐵_𝐶𝑆𝑃(𝑡|𝑡𝐵)𝑓𝐵_𝐶𝑆𝑃(𝑡𝐵)

∞

0

d𝑡𝐵 

= ∫ 𝛿(𝑡 − 𝑡𝐵)𝑓𝐵_𝐶𝑆𝑃(𝑡𝐵)

∞

0

d𝑡𝐵 = 𝑓𝐵_𝐶𝑆𝑃(𝑡) 

                  (29) 

So it is clear that 𝐹̃𝐶𝑆𝑃(𝑡) = 𝐹̃𝐵_𝐶𝑆𝑃(𝑡) 

If either CSP or CC fails, the top event will fail. Therefore, 

the marginal probability density function of top event is 

𝑓𝑇𝑜𝑝(𝑡) = 𝑓𝐶𝑆𝑃(𝑡) + 𝑓𝐶𝐶(𝑡) − [𝐹̃𝐶𝑆𝑃(𝑡)𝐹̃𝐶𝐶(𝑡)]
′ (30) 

Integrate Eq. (30) to get the cumulative distribution function 

of top event as 

𝐹̃𝑇𝑜𝑝(𝑡) = 𝑃(𝜏 < 𝑡) = ∫ 𝑓𝑇(𝜏)
𝑡

0

d𝜏 

= {
1−

𝜆̃𝐴𝑒
−𝜆𝐵𝑡 − 𝜆̃𝐵𝑒

−𝜆𝐴𝑡

𝜆̃𝐴 − 𝜆̃𝐵
𝑒−𝜆𝐶𝐶𝑡 , 𝜆̃𝐴 ≠ 𝜆̃𝐵

1− (1+ 𝜆̃𝐴𝑡)𝑒
−(𝜆𝐴+𝜆𝐶𝐶)𝑡 ,         𝜆̃𝐴 = 𝜆̃𝐵

 

                      (31) 

Eq. (31) enables the calculation of the failure probability of 

top event of CSP gate fault tree with CCF at any given time. 

2.3.4. Warm spare (WSP) gate fault tree with CCF 

The WSP gate fault tree with CCF and the corresponding BN 

are shown in Fig. 7, where WSP in Fig. 7 (b) and (c) denotes the 

top event failure resulting from individual failure of A and B.
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(a) Fault tree (b) Equivalent fault tree (c) BN 

Fig. 7. WSP gate fault tree with CCF and the corresponding BN.

The probability density functions of A, B, and CC are the 

same as those in Section 2.3.1. According to the principle of 

WSP gate, when A is working, the failure rate of B is   times 

the failure rate of normal operation. Hot spare (HSP) gates can 

be considered as special WSP, where the value of   is 1. when 

A fails, the failure rate of B is the failure rate of normal operation. 

Therefore, the conditional failure rate of B in the WSP gate is 

𝜆̃𝐵_𝑊𝑆𝑃|𝐴(𝑡|𝑡𝐴) = 𝑢(𝑡𝐴 − 𝑡)𝛼𝜆̃𝐵 + 𝑢(𝑡 − 𝑡𝐴)𝜆̃𝐵      (32) 

Hence, the conditional probability density function of B is 

𝑓𝐵_𝑊𝑆𝑃|𝐴(𝑡|𝑡𝐴) = 𝜆̃𝐵_𝑊𝑆𝑃|𝐴(𝑡|𝑡𝐴)𝑒
−∫ 𝜆𝐵_𝑊𝑆𝑃|𝐴(𝜏|𝑡𝐴)d𝜏

𝑡

0  

= 𝑢(𝑡𝐴 − 𝑡)𝛼𝑓𝐵(𝑡)[1− 𝐹𝐵(𝑡)]
𝛼−1 

+𝑢(𝑡 − 𝑡𝐴)𝑓𝐵(𝑡)[1 − 𝐹𝐵(𝑡𝐴)]
𝛼−1 

                        (33) 

According to the principle of WSP gate, if both A and B fail, 

WSP will fail, so the conditional probability density function of 

WSP is 

𝑓𝑊𝑆𝑃|𝐴,𝐵_𝑊𝑆𝑃(𝑡|𝑡𝐴, 𝑡𝐵) = 𝑢(𝑡𝐴 − 𝑡𝐵)𝛿(𝑡 − 𝑡𝐴) 

+𝑢(𝑡𝐵 − 𝑡𝐴)𝛿(𝑡 − 𝑡𝐵) 

(34) 

Thus, the joint density function is  

𝑓𝑊𝑆𝑃,𝐴,𝐵_𝑊𝑆𝑃(𝑡, 𝑡𝐴, 𝑡𝐵) = 𝑓𝑊𝑆𝑃|𝐴,𝐵_𝑊𝑆𝑃(𝑡|𝑡𝐴, 𝑡𝐵) 

                                                𝑓𝐵_𝑊𝑆𝑃|𝐴(𝑡𝐵|𝑡𝐴)𝑓𝐴(𝑡𝐴)     (35) 

By integrating the joint density function, the marginal 

probability density function of WSP is 

𝑓𝑊𝑆𝑃(𝑡) = ∫ ∫ 𝑓𝑊𝑆𝑃|𝐴,𝐵_𝑊𝑆𝑃(𝑡|𝑡𝐴, 𝑡𝐵)𝑓𝐵_𝑊𝑆𝑃|𝐴(𝑡𝐵|𝑡𝐴)𝑓𝐴(𝑡𝐴)d𝑡𝐴d𝑡𝐵

∞

0

∞

0

 

=

{
 
 

 
 (1 − 𝑒−𝜆̃𝐵𝛼𝑡)𝛼𝜆̃𝐴𝑒

−𝜆̃𝐴𝑡 +
(1 − 𝑒−[𝜆̃𝐴+(𝛼−1)𝜆̃𝐵]𝑡)𝜆̃𝐴𝜆̃𝐵𝑒

−𝜆̃𝐵𝑡

𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵
,

                                                                       𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵 ≠ 0

(1 − 𝑒−𝜆̃𝐵𝛼𝑡)𝛼𝜆̃𝐴𝑒
−𝜆̃𝐴𝑡 + 𝜆̃𝐴𝜆̃𝐵𝑡𝑒

−𝜆̃𝐵𝑡,                                       

                                                                      𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵 = 0

 

(36) 

Integrate Eq. (36) to get the cumulative distribution function 

of WSP as 

𝐹̃𝑊𝑆𝑃(𝑡) = 

{
 
 
 
 

 
 
 
 𝛼(1 − 𝑒−𝜆̃𝐴𝑡) + (𝑒−(𝜆̃𝐴+𝛼𝜆̃𝐵)𝑡 − 1)(

𝛼𝜆̃𝐴

𝜆̃𝐴 + 𝛼𝜆̃𝐵
+

𝜆̃𝐴𝜆̃𝐵

(𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵)(𝜆̃𝐴 + 𝛼𝜆̃𝐵)
)

+
𝜆̃𝐴(1 − 𝑒

−𝜆̃𝐵𝑡)

𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵
,                                                                           𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵 ≠ 0

𝛼(1 − 𝑒−𝜆̃𝐴𝑡) + (𝑒−(𝜆̃𝐴+𝛼𝜆̃𝐵)𝑡 − 1)
𝛼𝜆̃𝐴

𝜆̃𝐴 + 𝛼𝜆̃𝐵
+
𝜆̃𝐴

𝜆̃𝐵
−
𝜆̃𝐴

𝜆̃𝐵
𝑒−𝜆̃𝐵𝑡 − 𝜆̃𝐴𝑡𝑒

−𝜆̃𝐵𝑡,

                                                                                                                𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵 = 0

 

(37) 

If either WSP or CC fails, the top event will fail. Therefore, 

the marginal probability density function of top event is 

𝑓𝑇𝑜𝑝(𝑡) = 𝑓𝑊𝑆𝑃(𝑡) + 𝑓𝐶𝐶(𝑡) − [𝐹̃𝑊𝑆𝑃(𝑡)𝐹̃𝐶𝐶(𝑡)]
′     (38) 

Integrate Eq. (38) to get the cumulative distribution function 

of top event as 

𝐹̃𝑇𝑜𝑝(𝑡) = 𝑃(𝜏 < 𝑡) = ∫𝑓𝑇𝑜𝑝(𝜏)

𝑡

0

𝑑𝜏 

=

{
 
 
 
 
 

 
 
 
 
 1 + 𝑒−𝜆̃𝐶𝐶𝑡[𝛼(1 − 𝑒−𝜆̃𝐴𝑡) + (𝑒−(𝜆̃𝐴+𝛼𝜆̃𝐵)𝑡 − 1)(

𝛼𝜆̃𝐴

𝜆̃𝐴 + 𝛼𝜆̃𝐵
+

𝜆̃𝐴𝜆̃𝐵

(𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵)(𝜆̃𝐴 + 𝛼𝜆̃𝐵)
) +

𝜆̃𝐴(1 − 𝑒
−𝜆̃𝐵𝑡)

𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵
− 1],

                                                               𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵 ≠ 0

1 + 𝑒−𝜆̃𝐶𝐶𝑡[𝛼(1 − 𝑒−𝜆̃𝐴𝑡) + (𝑒−(𝜆̃𝐴+𝛼𝜆̃𝐵)𝑡 − 1)
𝛼𝜆̃𝐴

𝜆̃𝐴 + 𝛼𝜆̃𝐵

+
𝜆̃𝐴

𝜆̃𝐵
−
𝜆̃𝐴

𝜆̃𝐵
𝑒−𝜆̃𝐵𝑡 − 𝜆̃𝐴𝑡𝑒

−𝜆̃𝐵𝑡 − 1], 𝜆̃𝐴 + (𝛼 − 1)𝜆̃𝐵 = 0

 

(39) 

Eq. (39) enables the calculation of the failure probability of 

top event of CSP gate fault tree with CCF at any given time. 

2.3.5. Priority AND (PAND) gate fault tree with CCF 

The PAND gate fault tree with CCF and the corresponding BN 

are shown in Fig. 8. 
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(a) Fault tree (b) Equivalent fault tree (c) BN 

Fig. 8. PAND gate fault tree with CCF and the corresponding BN.

The probability density functions of A, B, and CC are the 

same as those in Section 2.3.1. According to the principle of 

PAND gate, top event will fail if and only if A fails earlier than 

B. CCF will cause 𝐴tot and 𝐵tot simultaneously failure and the 

top event will not fail, so the conditional probability density 

function of top event is 

𝑓𝑇𝑜𝑝|𝐴,𝐵(𝑡|𝑡𝐴, 𝑡𝐵) = 𝑢(𝑡𝐵 − 𝑡𝐴)𝛿(𝑡 − 𝑡𝐵) + 𝑢(𝑡𝐴 − 𝑡𝐵)𝛿(𝑡 − ∞)(40) 

Thus, the joint density function is  

𝑓𝑇𝑜𝑝,𝐴,𝐵(𝑡, 𝑡𝐴, 𝑡𝐵) = 𝑓𝑇𝑜𝑝|𝐴,𝐵(𝑡|𝑡𝐴, 𝑡𝐵)𝑓𝐴(𝑡𝐴)𝑓𝐵(𝑡𝐵) (41) 

By integrating the joint density function, the marginal 

probability density function of top event is 

𝑓𝑇𝑜𝑝(𝑡) = 𝐹̃𝐴(𝑡)𝑓𝐵(𝑡)   (42) 

Integrate Eq. (42) to get the cumulative distribution function 

of top event as 

𝐹̃𝑇𝑜𝑝(𝑡) = ∫ 𝑓𝑇𝑜𝑝(𝜏)d𝜏
𝑡

0
=

𝜆𝐴−(𝜆𝐴+𝜆𝐵)𝑒
−𝜆̃𝐵𝑡+𝜆𝐵𝑒

−(𝜆̃𝐴+𝜆̃𝐵)𝑡

𝜆𝐴+𝜆𝐵
(43) 

The Eq. (43) enables the calculation of the failure 

probability of top event of PAND gate fault tree with CCF at 

any given time. 

3. Dynamic fault tree case 

Case 1: 

This case is specific case studies adapted from the reference 

[16]. The digital safety-level distributed control system is the 

control mechanism for nuclear reactor devices, which plays an 

important role in ensuring the stable operation of nuclear power 

plants. As an important part of the distributed control system, 

the emergency shutdown system is generally designed to be 

multi-channel redundant to increase its reliability. The structure 

of the emergency shutdown system is a 2oo3 structure (two 

CPU systems out of three are required for the system to work). 

The CPU system is modelled to analyse reliability. A CPU 

system consists of two components A and C, and both A and C 

have a spare part, named B and D respectively. When A fails, B 

starts to work; when C fails, D starts to work. If A, B, C and D 

fail, the system will fail. A and B have a common cause CC. 

When CC fails, A and B fail immediately. According to failure 

statistic data, the total failure rate of A and B is set as 𝜆̃𝐴
tot =

𝜆̃𝐵
tot = [5 × 10−5, 6 × 10−5]h−1, and the total failure rate of C 

and D is set as 𝜆̃𝐶
tot = 𝜆̃𝐷

tot = [5 × 10−5, 5.2 × 10−5]h−1   The 

evaluations of 𝛽𝐴  evaluated by three experts are: ℎ1 =

{0.1,0.15}, ℎ2 = 0.1, ℎ3 = {0.1,0.2}  respectively. The CPU 

system fault tree and corresponding Bayesian network with 

CCF are shown in Fig. 9.

  
 

(a) Fault tree (b) Equivalent fault tree (c) BN 

Fig. 9. CPU system fault tree with CCF and the corresponding BN.

The steps of dynamic FTA based on CTBN are as follows: Step 1: Determine the weight of all criteria. 
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Assume that there are three criteria that affect the weights of 

experts: education level 𝑐1 , length of service 𝑐2  and 

professional title 𝑐3. The obtained optimal weights are shown in 

Table 2. 

Table 2. The weights of the criteria table. 

 𝑐1 𝑐2 𝑐3 

𝐴𝐵
𝑐  (𝑐3) 2 6 1 

𝐴𝑊
𝑐  (𝑐2) 3 1 6 

𝜔𝑐 0.3 0.1 0.6 

The result of consistency test: 

𝐶𝑅 =
𝜉∗

𝐶𝐼
=

0.0046

3
= 0.01533 < 0.1  (44) 

Therefore, the preferences meet the consistency requirement 

and the obtained weights are reliable. 

Step 2: Determine the weights of all experts. 

Determine the best expert, the worst expert and preferences. 

The obtained optimal weights of three experts 𝑒1, 𝑒2, 𝑒3  are 

shown in Table 3. 

Table 3. The weights of experts table. 

 𝑒1 𝑒2 𝑒3 

𝐴𝐵
𝑒  (𝑒1) 1 2 4 

𝐴𝑊
𝑒  (𝑒3) 4 2 1 

𝜔𝑒 0.5715 0.2856 0.1429 

The result of consistency test: 

𝐶𝑅 =
𝜉∗

𝐶𝐼
=

0.0044

1.63
= 0.0027 < 0.1  (45) 

Therefore, the preferences meet the consistency requirement 

and the obtained weights are reliable. 

Step 3: Fuse the experts’ evaluation results and calculate 𝛽𝐴. 

According to the information provided in Table 3, the 

weights of the three experts are 𝝎𝑒 = {0.5715,0.2856,0.1429}. 

The weighted average is calculated, 

𝐻𝐹𝑊𝐴(ℎ1, ℎ2, ℎ3) = (0.1000,0.1150,0.1289,0.1435)    (46) 

The estimated 𝛽𝐴 = 0.12185. 

Step 4: Derive the cumulative distribution function of top 

event. 

𝜆̃𝐴， 𝜆̃𝐵， 𝜆̃𝐶𝐶  can be deduced from Eqs. (10)-(12), 𝜆̃𝐴 =

[4.39075 × 10−5, 5.2689 × 10−5]h−1 , 𝜆̃𝐵 = [4.39075 ×

10−5, 5.2689 × 10−5]h−1 , 𝜆̃𝐶𝐶 = [6.0925 × 10−6, 7.311 ×

10−6]h−1 respectively. 

The cumulative distribution function of OR is obtained as 

𝐹̃𝑂𝑅(𝑡) = 𝐹̃𝐶𝑆𝑃1(𝑡) + 𝐹̃𝐶𝐶(𝑡) − 𝐹̃𝐶𝑆𝑃1(𝑡)𝐹̃𝐶𝐶(𝑡) = 1 − (1 + 𝜆̃𝐴𝑡)𝑒
−(𝜆̃𝐴+𝜆̃𝐶𝐶)𝑡(47) 

The cumulative distribution function of 𝐶𝑆𝑃2 is obtained as 

𝐹̃𝐶𝑆𝑃2(𝑡) = 1 − 𝑒
−𝜆𝐶

tot𝑡 − 𝜆̃𝐶
tot𝑡𝑒−𝜆𝐶

tot𝑡  (48) 

Then the cumulative distribution function of top event is 

𝐹̃𝑇𝑜𝑝(𝑡) = [1 − (1 + 𝜆̃𝐴𝑡)𝑒
−(𝜆̃𝐴+𝜆̃𝐶𝐶)𝑡](1 − 𝑒−𝜆̃𝐶

tot𝑡 − 𝜆̃𝐶
tot𝑡𝑒−𝜆̃𝐶

tot𝑡)(49) 

It can be found that 𝜆̃𝐴, 𝜆̃𝐶
tot occurs more than once, resulting 

in interval extension. Thinking 𝜆̃𝐴, 𝜆̃𝐶
tot, 𝜆̃𝐶𝐶   are variables, the 

derivative 
𝜕𝐹̃𝑇𝑜𝑝(𝜆𝐴,𝜆𝐶

tot,𝜆̃𝐶𝐶,𝑡)

𝜕𝜆𝐴
 , 

𝜕𝐹̃𝑇𝑜𝑝(𝜆𝐴,𝜆𝐶
tot,𝜆𝐶𝐶,𝑡)

𝜕𝜆𝐶𝐶
 , 

𝜕𝐹̃𝑇𝑜𝑝(𝜆𝐴,𝜆𝐶
tot,𝜆𝐶𝐶,𝑡)

𝜕𝜆𝐶
tot  are nonnegative. Therefore, the upper bound 

and the lower bound of 𝐹̃𝑇𝑜𝑝(𝑡) are obtained when 𝜆̃𝐴, 𝜆̃𝐶
𝑡𝑜𝑡 , 𝜆̃𝐶𝐶 

take the upper bounds and the lower bounds respectively. 

The failure probabilities of top event obtained based on 

proposed method and DTBN-based method are shown in Fig. 

10, where the number of time intervals of DTBN-based method 

is set as 100. 

 

Fig. 10. Failure probability of top event. 

At fixed time t, the failure probability of top event is an 

interval number. The probability 𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹  of fault tree with CCF 

and 𝑃̃𝑇𝑜𝑝  of fault tree without CCF are shown in Fig. 10. 

Comparing 𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹(𝑡) and 𝑃̃𝑇𝑜𝑝(𝑡), the possibility degrees are 

shown in Fig. 11. 
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Fig. 11. The possibility degree of 𝑃̃𝑇𝑜𝑝𝐶𝐶𝐹(𝑡) ≤ 𝑃̃𝑇𝑜𝑝(𝑡). 

The calculation times of the methods based on CTBN and 

DTBN is shown in Table 4. The simulation environment: AMD 

Ryzen 7 6800H CPU @ 3.20 GHz and NVIDIA GeForce RTX 

3060 Laptop GPU. 

Table 4. The calculation time of the methods. 

Method Calculation time (s) 

CTBN-based 
58.4690 10−  

DTBN-based 0.6982 

From Fig. 10, it can be found that the failure probability of 

the top event gradually rises in both scenarios with CCF and 

without CCF. In addition, it can be found that the failure 

probability of the top event is in a wider range when interval 

extensions are not be addressed. So, it is important to address 

the interval extensions to avoid getting the result in a wider 

range. It can be found that the possibility degree 

𝑃(𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹(𝑡) ≤ 𝑃̃𝑇𝑜𝑝(𝑡)) is significantly lower than 0.5 at any 

time, shown from Fig. 11. That is, 𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹 ≻ 𝑃̃𝑇𝑜𝑝 , which 

illustrates the necessity of considering CCF in reliability 

evaluation of dynamic fault tree. From Table 4, it can be found 

that the calculation time of CTBN-based method is significantly 

shorter than that of DTBN-based method. 

Case 2: 

The working principle of Electric Multiple Units brake control 

system is as follows: The electrical signal generated by the 

brake control device is transmitted to the brake control device 

of other vehicles through the information control device; The 

electronic brake control unit sends out the brake command, 

analyzes the braking force to be provided, and then transmits it 

to the brake control unit by electrical signal; After receiving the 

electrical signal from the electronic brake control unit, the brake 

control unit converts it into the corresponding pre-controlled 

pressure signal to the relay valve, and then uses the air braking 

force to complete the braking operation. 

The brake control system consists of three subsystems: 

brake control subsystem, brake signal transmission subsystem 

and brake signal generation subsystem. The brake signal 

transmission subsystem is analyzed below. The brake signal 

transmission subsystem fault tree and corresponding Bayesian 

network with CCF are shown in Fig. 12. The failure rates of the 

basic events are from Reference [36]. The meanings and failure 

rates of the basic events and intermediate event are shown in 

Table 5. 𝑥1 and 𝑥2 have a common cause CC. The evaluations 

of 𝛽𝑥1   evaluated by four experts are: ℎ1 = {0.05,0.08}, ℎ2 =

{0.05,0.1}, ℎ3 = 0.1, ℎ4 = {0.08,0.1} respectively.

  

 

(a) Fault tree (b) Equivalent fault tree (c) BN 

Fig. 12. Brake signal transmission subsystem fault tree with CCF and the corresponding BN.
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Table 5. The meanings and failure rates of the basic events. 

Event Meaning Failure rate (10−6h−1) 

𝑥1 Transmission fault of optical fiber [2.187,2.673] 

𝑥2 
Transmission fault of standby 

optical fiber 
[1.458,1.782] 

𝑥3 Fault of the optical connector [2.187,2.673] 

𝑥4 
Fault of the terminal interface 

board 
[4.365,5.335] 

𝐻𝑆𝑃 Transmission fault  

The steps of dynamic FTA based on CTBN are as follows: 

Step 1: Determine the weight of all criteria. 

Assume that there are three criteria that affect the weights of 

experts: education level 𝑐1 , length of service 𝑐2  and 

professional title 𝑐3. The obtained optimal weights are shown in 

Table 6. 

Table 6. The weights of the criteria table. 

 𝑐1 𝑐2 𝑐3 

𝐴𝐵
𝑐  (𝑐3) 2 6 1 

𝐴𝑊
𝑐  (𝑐2) 3 1 6 

𝜔𝑐 0.3 0.1 0.6 

The result of consistency test: 

𝐶𝑅 =
𝜉∗

𝐶𝐼
=

0.0046

3
= 0.01533 < 0.1  (50) 

Therefore, the preferences meet the consistency requirement 

and the obtained weights are reliable. 

Step 2: Determine the weights of all experts. 

Determine the best expert, the worst expert and preferences. 

The obtained optimal weights of four experts 𝑒1, 𝑒2, 𝑒3, 𝑒4  are 

shown in Table 7. 

Table 7. The weights of experts table. 

 𝑒1 𝑒2 𝑒3 𝑒4 

𝐴𝐵
𝑒  (𝑒1) 1 2 3 6 

𝐴𝑊
𝑒  (𝑒4) 6 3 2 1 

𝜔𝑒 0.5000 0.2500 0.1667 0.0833 

The result of consistency test: 

𝐶𝑅 =
𝜉∗

𝐶𝐼
=

0.1380

3
= 0.046 < 0.1  (51) 

Therefore, the preferences meet the consistency requirement 

and the obtained weights are reliable. 

Step 3: Fuse the experts’ evaluation results and calculate 𝛽𝑥1 . 

According to the information provided in Table 6, the 

weights of the four experts are 𝝎𝑒 =

{0.5000,0.2500,0.1667,0.0833} . The weighted average is 

calculated, 

𝐻𝐹𝑊𝐴(ℎ1, ℎ2, ℎ3, ℎ4) = (0.0610,0.0628,0.0736,0.0753, 

                                                          0.0760,0.0777,0.0884,0.0901)  (52) 

The estimated 𝛽𝑥1 = 0.0756. 

Step 4: Derive the cumulative distribution function of top 

event. 

𝜆̃𝑥1，𝜆̃𝑥2，𝜆̃𝐶𝐶 can be deduced from Eqs. (10)-(12), 𝜆̃𝑥1 =

[2.0216628 × 10−6, 2.4709212 × 10−6]h−1 , 𝜆̃𝑥2 =

[1.2926628 × 10−6, 1.5799212 × 10−6]h−1 , 𝜆̃𝐶𝐶 =

[1.653372 × 10−7, 2.020788 × 10−7]h−1 respectively. 

The cumulative distribution function of OR is obtained as 

𝐹̃𝑂𝑅(𝑡) = 𝐹̃𝐻𝑆𝑃1
(𝑡) + 𝐹̃𝐶𝐶(𝑡) − 𝐹̃𝐻𝑆𝑃1

(𝑡)𝐹̃𝐶𝐶(𝑡) 

= 𝐹̃𝑥1
(𝑡)𝐹̃𝑥2

(𝑡) + 𝐹̃𝐶𝐶(𝑡) − 𝐹̃𝑥1
(𝑡)𝐹̃𝑥2

(𝑡)𝐹̃𝐶𝐶(𝑡) 

            (53) 

Then the cumulative distribution function of top event is 

𝐹̃𝑇𝑜𝑝(𝑡) = 1 − (1 − 𝐹̃𝑥1(𝑡)𝐹̃𝑥2(𝑡)) (1 − 𝐹̃𝐶𝐶(𝑡)) (1 − 𝐹̃𝑥3(𝑡)) (1 − 𝐹̃𝑥4(𝑡)) 

= 1 − (1 − (1 − 𝑒−𝜆̃𝑥1𝑡)(1 − 𝑒−𝜆̃𝑥2𝑡)) 𝑒−(𝜆̃𝐶𝐶+𝜆̃𝑥3
tot+𝜆̃𝑥4

tot)𝑡 

 (54) 

It is clear that 𝜆̃𝑥1 , 𝜆̃𝑥2 , 𝜆̃𝐶𝐶 , 𝜆̃𝑥3
tot, 𝜆̃𝑥4

tot appear only once in the 

Eq. (54). Therefore, the interval extension will not happen. The 

failure probabilities of top event obtained based on proposed 

method and DTBN-based method are shown in Fig. 13, where 

the number of time intervals of DTBN-based method is set as 

20. 

 

Fig. 13. Failure probability of top event. 

At fixed time t, the failure probability of top event is an 

interval number. Comparing 𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹(𝑡)  and 𝑃̃𝑇𝑜𝑝(𝑡) , the 

possibility degrees are shown in Fig. 14. 
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Fig. 14. The possibility degree of 𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹(𝑡) ≤ 𝑃̃𝑇𝑜𝑝(𝑡). 

The calculation times of the methods based on CTBN and 

DTBN is shown in Table 8. The simulation environment is the 

same as that in case 1. 

Table 8. The calculation time of the methods. 

Method Calculation time (s) 

CTBN-based 
54.698 10−  

DTBN-based 0.1582 

From Fig. 13, it can be found that the failure probability of 

the top event gradually rises in both scenarios with CCF and 

without CCF. It can be found that the possibility degree 

𝑃(𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹(𝑡) ≤ 𝑃̃𝑇𝑜𝑝(𝑡)) is significantly lower than 0.5 at any 

time, shown from Fig. 14. That is, 𝑃̃𝑇𝑜𝑝_𝐶𝐶𝐹 ≻ 𝑃̃𝑇𝑜𝑝 , which 

illustrates the necessity of considering CCF in reliability 

evaluation of dynamic fault tree. From Table 8, it can be found 

that the calculation time of CTBN-based method is significantly 

shorter than that of DTBN-based method. 

4. Conclusions 

The framework based on CTBN is constructed to evaluate the 

reliability of dynamic fault tree with CCF and interval 

uncertainty parameters. BWM is employed to determine the 

weights of all criteria and experts. 𝛽-factors should be evaluated 

by using hesitant fuzzy set. CTBN is used to derived the 

probability density functions of dynamic logic gates. The result 

of two cases verified that CCF will result in a higher failure 

probability of top event. Therefore, it is necessary to consider 

CCF in the system. Compared with DTBN-based reliability 

evaluation framework, the proposed framework does not need 

to discretize the time, so the failure probability at any time can 

be calculated. In addition, the calculation time of proposed 

framework is significantly shorter than that of DTBN-based 

framework. 

In the reliability evaluation of complex systems, the 

derivation of the conditional probability density function of top 

event will become extremely complicated. It’s my future 

research on developing simplified or approximated methods. 

Furthermore, all the failure distributions are assumed to be 

exponential in this work. It is needed to research on the 

application of the presented framework for other failure 

distributions. 

Acronyms 

AHP analytic hierarchy process 

BN Bayesian network 

BWM best-worst method 

CCF common cause failure 

CI consistency index 

CR consistency ratio 

CSP cold spare 

CTBN continuous-time Bayesian network 

DTBN discrete-time Bayesian network 

FTA fault tree analysis 

HFS hesitant fuzzy set 

HFWA hesitant fuzzy weighted averaging 

HSP hot spare 

PAND priority AND 

WSP warm spare 
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Notation 

𝛽 𝛽 -factor 

𝑐𝐵 best criterion 

𝑐𝑊 worst criterion 

𝑨𝐵
𝑐  preferences of the best criterion over all the other criteria 

𝑨𝑊
𝑐  preferences of all the other criteria over the worst criterion 

𝐴𝐵𝑊
𝑐  preference of the best criterion over the worst criterion 

𝑒𝐵 best expert 

𝑒𝑊 worst expert 

𝑨𝐵
𝑒  preferences of the best expert over all the other experts 

𝑨𝑊
𝑒  preferences of all the other experts over the worst expert 

𝐴𝐵𝑊
𝑒  preference of the best expert over the worst expert 

𝐴̃,𝐵̃ interval numbers 

≻ superior 

~ indifferent 

≺ inferior 

𝑢(𝑥) unit step function 

𝛿 pulse function 

𝜆 failure rate 

𝑓(𝑡) probability density function 

𝐹(𝑡) cumulative distribution function 
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