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Highlights  Abstract  

▪ A two-stage RUL prediction method based on 

the Wiener Process with multi-feature fusion 

and stage division is proposed. 

▪ A linear feature fusion method is introduced for 

the CHI construction. 

▪ A Z-score outlier detection strategy is 

introduced to address the issue of stage division 

in the degradation modeling. 

▪ The proposed method is explained and the 

feasibility is proved by three analysis results of 

bearings. 

 Remaining life prediction (RUL) is a critical link of maintenance 

decision-making, the accurate RUL prediction is an important means to 

monitor the operating status and achieve the safe operation of 

equipment. However, existing studies rarely considered the multi-stage 

characteristics of indicator fusion in the degradation process, and 

directly used the Wiener process to establish degradation model, which 

results in significant errors in RUL prediction results. Therefore, to solve 

above issues, a two-stage RUL prediction method based on the Wiener 

process model with multi-feature fusion and stage division is proposed 

in the paper. Firstly, the concept of multi-feature fusion is introduced to 

construct a comprehensive health indicator (CHI) that considers 

indicator performance. After that, a two-stage RUL prediction model 

based on the CHI is developed, and a method for detecting changing 

points and dividing stages is proposed. Finally, the effectiveness and 

predictability of the proposed method and CHI are demonstrated based 

on the bearing test datasets. 
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1. Introduction 

Remaining useful life (RUL) plays a crucial role in the 

development of prognostics and health management (PHM), 

and the RUL prediction is the foundation and core of PHM. RUL 

prediction with the purpose of estimating the effective time 

interval from the current moment to failure [3,4]. In engineering, 

the accuracy of the RUL prediction has a significant impact on 

the safety, reliability, and maintenance costs of the equipment 

[5,6]. For example, the bearings are the key elements of rotating 

machinery, such as, the aero-engine, bogie, and wind turbine 

units. If the failure probability can be accurately predicted in a 

period, it will help engineers detect the components that may fail 

in advance, perform timely maintenance or replacement, reduce 

maintenance costs, and ensure the safety operation of the 

equipment. RUL prediction methods are generally divided into 

the physical model-based method, data-driven method, and 

fusion method [7]. Data-driven RUL prediction plays a pivotal 
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role in the maintenance of the equipment. However, the 

individual health indicator (HI) cannot accurately describe the 

degradation process of the equipment, which leads to prediction 

errors. It is necessary to study the reasonable RUL prediction 

method to achieve the accurate prediction result. 

HI is generally collected as the input for prognostics and 

predictive models, i.e. the condition monitoring and RUL 

prediction [8,9]. It contains the degradation information in the 

entire lifecycle of equipment. Most existing studies employed 

the individual performance indicator to depict the degradation 

characteristics. For example, the peak and kurtosis of bearing 

vibration signals. In engineering, the equipment has complex 

operating conditions, such as temperature, speed, and variable 

operating loads. Therefore, it is difficult to precisely describe the 

multi-variate degradation processes. It can lead to the issue of 

inaccurate RUL prediction due to ignoring the influence of other 

performance indicators. The study considering data fusion is 

designed to fuse multiple performance indicators (MPI) into a 

comprehensive health indicator (CHI). The main advantage of 

CHI is that it can comprehensively assess the current 

degradation state of the equipment, and it aims to improve the 

accuracy of RUL prediction [10]. 

Currently, there are two widely used HI: physical HI and 

virtual HI [11]. Physical HI is extracted through the simple 

analysis and processing of the original signals. For example, the 

existing literature commonly used individual time-domain 

feature to describe the degradation state of bearings, such as the 

average root mean square [12], root mean square [13], and peak 

[14]. Virtual HI is usually constructed by dimensionality 

reduction techniques and MPI fusion [15]. For instance, Widodo 

et al. [16] used principal component analysis (PCA) to perform 

the dimensionality reduction, further calculated the deviation 

between the unknown state and health state, which is used as 

CHI. Similarly, Liu et al. [17] employed PCA to reduce the 

dimension of the multiple features and constructed the CHI. 

Furthermore, Benkedjouh et al. [18] put forward a combination 

method of PCA and established isometric feature mapping for 

virtual HI construction. 

In the existing studies, the data-driven RUL prediction 

method based on the one-dimensional degradation data has 

received considerable attention, whose data originates from the 

MPI fusion. For example, Liu et al. [19] made use of HI 

functions to describe the link between HI and signal features for 

the CHI construction. Besides, a reliability prediction method 

based on artificial neural network support was proposed to 

realize the RUL prediction. In the statistical data-driven RUL 

prediction method, Aye and Heyns [20] proposed a fused 

Gaussian process regression method by studying the signals of 

low-speed bearings, and the result showed that it has good 

performance in RUL prediction with time-varying operating 

conditions. Song and Liu [21] utilized quantile regression to 

calculate the optimal fusion coefficient and constructed a data 

fusion model, which elevated the performance of RUL 

prediction. Li et al. [22] developed a novel nonlinear multi-

feature method with the consideration of monotonicity, which 

improved the predictability in RUL prediction. Furthermore, Liu 

et al. [23] introduced the particle filtering to fuse the multi-

sensor signals and achieved RUL prediction. Wu et al. [24] 

reformed the distributed Kalman filtering algorithm and 

completed RUL prediction with the fusion of the monitoring 

information. Chen et al. [25] completed HI construction by the 

feature fusion and constrained optimization, and accomplished 

the online RUL prediction based on the Wiener process. Liu et 

al. [26] fused the temperature data by PCA for CHI construction, 

and the RUL prediction based on the nonlinear Wiener model 

was carried out. 

Even though the data-driven RUL prediction method based 

on the multi-feature fusion has achieved some good results, such 

as reduction of redundant information and improvement of 

prediction accuracy. However, there are several questions of the 

RUL prediction based on the multi-feature fusion still remain. 

On the one hand, some studies directly use multi-feature fusion 

methods to construct CHI, and rarely consider the impact of 

indicator performance such as the monotonicity (Mon), 

correlation (Corr), and robustness (Rob) on the prediction 

results. On the other hand, the existing studies rarely considered 

the multi-stage characteristics of fusion indicators during the 

degradation process, which leads to prediction biases in the 

single stage prediction, thereby effect the accuracy of RUL 

prediction. 

In this paper, a two-stage RUL prediction method based on 

the Wiener Process with multi-feature fusion and stage division 

is proposed to solve the above-mentioned issues. The main 

contributions of the thesis are concluded as follows: (1) A linear 
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feature fusion method is introduced for the CHI construction. 

The various time-domain features that contain degradation 

information are selected considering Mon, Corr, and Rob. The 

PCA is applied to fuse the selected features, and the CHI is 

constructed to characterize the degradation process. (2) A Z-

score outlier detection strategy is proposed to address the issue 

of stage division in degradation modeling. Besides, the 

quantitative standards are set for the stage division. The 

degradation path model is employed to fit the actual degradation 

path, and it is used to validate the rationality of health state 

division. (3) A two-stage RUL prediction method based on CHI 

is proposed. The degradation states that characterized by the 

CHI are distinct because of the different degradation stages of 

the equipment. Therefore, a staged RUL prediction model based 

on the first predicting time or fault occurrence time is developed, 

which can accurately match the corresponding changing time of 

each stage. (4) Three analysis results of bearings are provided. 

The proposed method based on CHI is compared with the 

prediction results based on the individual HI, which explicates 

the effectiveness and applicability of the proposed method. 

The calculation framework of the proposed method is 

illustrated in Figure 1. The rest of this paper is organized as 

follows: Section 2 presents the process of CHI construction and 

evaluation. The stage division method and RUL prediction 

method based on CHI are discussed in Section 3. Section 4 

provides the case study to demonstrate the applicability and 

effectiveness of the proposed method. The conclusion and future 

work are summarized in Section 5. 

 

Fig. 1. Calculation framework of the proposed method. 

2. Comprehensive health indicator construction 

To overcome the shortcomings of CHI construction, it is 

necessary to consider the monotonicity (Mon), correlation 

(Corr), and robustness (Rob) of the performance indicators 

before degradation modeling. This section mainly introduces the 

CHI construction to achieve the above purpose. Firstly, the data 

preprocessing includes traditional time-domain feature (TTF) 

extraction, selection, and smoothing. After that, the MPI is 

linearly fused based on the PCA. The performance of the CHI is 

evaluated in the end. 

2.1. Data preprocessing 

Firstly, the TTF is extracted from the original vibration signals. 

The commonly used formulas of TTFs are given in Table 1.
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Then, the appropriate TTF is selected to effectively depict 

the performance changes of the components in the entire 

lifecycle. The commonly used performance evaluation 

indicators mainly contain Mon, Corr and Rob [27-30]. To ensure 

the effectiveness of the selected TTF, the TTF should be 

removed if the Corr and Rob are less than 0.5 [31]. The feature 

goodness metrics of the Mon, Corr, and Rob are defined as 

follows 

𝑀𝑜𝑛(𝑋) = |𝑀1 − 𝑀2|/(𝑛 − 1) (1) 

𝐶𝑜𝑟𝑟(𝑋, 𝑇) =
|∑ (𝑥𝑘 − �̄�)(𝑡𝑘 − �̄�)𝑛

𝑘=1 |

√∑ (𝑥𝑘 − �̄�)2 ∑ (𝑡𝑘 − �̄�)2𝑛
𝑘=1

𝑛
𝑘=1

 
(2) 

𝑅𝑜𝑏(𝑋) =
1

𝑛
∑ 𝑒𝑥𝑝 (− |

𝑥𝑘 − 𝑥𝑘
𝑠𝑚𝑜

𝑥𝑘

|)

𝑛

𝑘=1

 
 

(3) 

where 𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] is the feature sequences of the entire 

life cycle. 𝑥𝑘 represents the HI at time 𝑡𝑘. n is the total number 

of HI values. 𝑀1  and 𝑀2  is the number of positive and 

negative deviations, respectively. �̄� is the mean of HI values. 

�̄� is the mean of all operating cycles. 𝑥𝑘
𝑠𝑚𝑜 is the average trend 

of HI at time 𝑡𝑘 , generally, it is calculated by smoothing 

methods. 

Finally, the moving average filtering (MAF) method is used 

to smooth the selected TTF sequence. It is expressed by 

𝑥𝑘
𝑠𝑚𝑜 =

𝑥𝑘 + 𝑥𝑘−1 +⋅⋅⋅ +𝑥𝑘−𝑀+1

𝑀
 (4) 

where M is the length of the sliding window in the MAF method. 

2.2 Multi-feature fusion based on the PCA 

The individual TTF just characterizes a certain aspect of the 

degradation for the component, and the impacts of other TTFs 

are usually neglected. Despite the TTFs with poor Corr and Rob 

are eliminated, some duplicate or useless information still exists 

and affects the subsequent RUL prediction. Therefore, for the 

objective of applying the multivariate indicators to RUL 

prediction, a dimensionality reduction method is introduced to 

construct the CHI that can comprehensively describe the health 

status of equipment, which takes into account the Mon, Corr, 

and Rob of the indicators. 

The CHI is constructed to provide a comprehensive and 

detailed description of the degradation state of the equipment. 

As one of the dimensionality reduction methods, the PCA 

method is a linear transformation for the original data sequence 

[32]. It can not only reduce the dimensionality of multiple TTFs 

but also concentrate the advantages of each TTF. The flow chart 

of PCA is shown in Figure 2.  

 

Fig. 2. The flow chart of PCA. 

Firstly, the TTF sequence to be dimensionally reduced is 

constructed as an n×mth matrix, and it is denoted as X. It is 

represented as 

𝐗 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑚

𝑥21 𝑥22 ⋯ 𝑥2𝑚

⋮ ⋮ ⋮ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

] (5) 

The main content of PCA includes standardization of the 

original indicator sequence, calculation of the correlation 

coefficient matrix, calculation of the eigenvalue and 

corresponding eigenvector, computation of the contribution rate 

and accumulative contribution rate in each component, and 

computation of the CHI.  

Through the above steps, the principal component score is 

obtained by substituting each feature indicator sequence into the 

principal component expression. The calculation formula of k 

principal component models is given as 

{
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 (6) 

where [𝑎1, 𝑎2, ⋯ , 𝑎𝑚] is the unit eigenvector of the correlation 

coefficient matrix. 

Finally, the fusion indicator F is achieved by PCA, which is 

namely CHI. It is represented by 
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𝐅 = ∑ 𝑏𝑗𝐅𝑗

𝑘

𝑗=1

/ ∑ 𝑏𝑗

𝑘

𝑗=1

 (7) 

where 𝑏𝑖 is the contribution rate. 

2.3. CHI evaluation 

It is necessary to evaluate the performance of the CHI to verify 

its superiority. The individual evaluation indicator just describes 

part characteristics of the HI, which results in deviations or 

errors. Therefore, three performance evaluation indicators, that 

is, Mon, Corr, and Rob need to be considered comprehensively 

for the CHI evaluation. A weighted linear combination of the 

above metrics as the CHI evaluation criteria is introduced. The 

definition of the comprehensive evaluation metric (CEM) is 

given by 

𝐽𝑠𝑐 = 𝜔1𝑀𝑜𝑛 + 𝜔2𝐶𝑜𝑟𝑟 + 𝜔3𝑅𝑜𝑏 

𝑠. 𝑡. {

𝜔𝑖 > 0

∑ 𝜔𝑖 = 1,  𝑖 = 1,2,3

3

𝑖

 
(8) 

where 𝐽𝑠𝑐 is the comprehensive evaluation indicator, 𝜔𝑖 is the 

weight of the individual metric. 

The overall degradation trend of the equipment is required 

to be focused for RUL prediction, and the performance indicator 

should be provided with the monotonic trend. Thus, the weight 

of the Mon ought to be greater [27,28,31]. Take comprehensive 

consideration of different weights and the related reference [27], 

the weight of Mon, Corr, and Rob is set as 0.4, 0.3, and 0.3, 

respectively. 

It can be observed that the CEM is both linearly and 

positively correlated with the individual metric. Furthermore, its 

value is limited to the range of [0, 1]. Therefore, it is also 

positively correlated with the predictive performance of CHI. It 

implies that the higher the CEM the RUL estimation is more 

effective. In addition, the CEM of the selected TTF should be 

higher for RUL prediction. The CEM can also be employed to 

prove the validity of feature selection. 

3. RUL prediction based on CHI considering stage 

division 

There are few studies introduced the CHI into the stage division, 

which ignored the impact of MPI on the degradation process and 

prediction results. It can improve the accuracy and reliability of 

RUL prediction by dividing the stages of CHI. The section 

mainly introduces how to divide stages and predict RUL based 

on CHI to achieve the above objectives. The stage division is 

discussed first. Then, the staged RUL prediction method based 

on CHI is introduced. 

3.1. Stage division 

In practice, generally, the equipment will not suddenly 

transit from a normal state to failure. Therefore, it is more 

realistic to divide the degradation state into multiple stages for 

the equipment. The predictive model that conforms to the 

degradation trend is built for different stages of components. 

To provide a more explicit description of the degradation 

process, the degradation state is divided into the health stage, 

minor damage stage, severe damage stage, and failure stage. The 

four stages correspond to three changing time, which are defined 

as the first predicting time (FPT), fault occurrence time (FOT), 

and failure time (FT). The schematic diagram of stage division 

is given in Figure 3.  

 

Fig. 3. The schematic diagram of stage division. 

From Figure 3, the degradation state is divided into four 

stages. Health stage: the performance indicators of the 

equipment remain in the optimal state. Minor damage stage: the 

status of the equipment begins to degenerate as operating time 

increases, and the degradation state of the stage is not severe. It 

still is functioning normally. Severe damage stage: the 

equipment begins to accelerate degradation with continuous 

operation. The fault warning is supposed to be provided in the 

stage. Failure stage: the equipment steps into further 

deterioration and operates extremely unstable. The failure will 

occur if the the equipment continues to run, and the failure alarm 

should be informed. 

The Z-score method is employed to resolve the issue of 

outlier detection. It can classify the degradation state exactly. 
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Shakya et al. [33] developed a novel methodology for online 

detection of degradation state. The paper is distinct from the 

above method, it divides degradation state by detecting the 

amplitude of CHI changes (i.e., degradation rate). Furthermore, 

in engineering, the degradation degree of the equipment is more 

intuitively characterized by the amplitude changes. 

𝐹𝑅 is denoted as quantification criteria for the degradation 

state division. Firstly, 𝐹𝑅 of each stage in the entire lifecycle is 

determined by sample data. Then, the Z-score method is utilized 

to detect the amplitude of CHI changes.𝑍-score𝑖 is the standard 

score. It is defined as 

𝑍-score𝑖 =
𝑅𝑖 − 𝜇𝑅

𝜎𝑅

≥ 𝐹𝑅  (9) 

where 𝑅𝑖 is the degradation rate at time 𝑡𝑖, which is calculated 

by taking the first-order derivative of the CHI. 𝜇𝑅 is the mean 

of degradation rate. 𝜇𝑅  is the standard deviation of the 

degradation rate. 𝜎𝑅  is the standard deviation of the 

degradation rate. 

In addition, for the verification of the rationality and 

applicability in stage division, the degradation path model is 

introduced to fit the degradation trajectories at each stage. The 

degradation process of the equipment is described using the 

deterministic function, which is represented by 

𝑌(𝑡) = 𝑓(𝑡; 𝜂, 𝜆) (10) 

where 𝑓(𝑡; 𝜂, 𝜆) is the function of time. 𝜂 is the deterministic 

parameter vector. 𝜆 is the random vector. 

3.2. Two-staged RUL prediction modeling based on CHI 

The construction, evaluation, and stage division of the CHI have 

been discussed. The CHI of the equipment is effectively divided 

into four stages through the above steps. It provides a good 

foundation for establishing an accurate degradation model. In 

the subsection, the staged RUL prediction based on CHI is 

introduced. 

It is necessary to solve the issue of changing time detection 

to achieve the staged RUL prediction. The proposed method is 

different from Guan’s method [34]. The changing time detection 

is transformed into the issue of stage division, which realizes 

accurate matching of the corresponding changing time in each 

stage. The FPT, FOT, and FT are acquired once the health stages 

of the equipment are divided. The FPT and FOT are utilized as 

the corresponding changing time of each stage in RUL 

prediction, and then the RUL prediction based on the Wiener 

process is carried out. 

Firstly, the health monitoring data represented by the CHI is 

denoted as Y. Let Y(t) represent the degradation process of the 

equipment. The two-stage degradation model based on the 

Wiener process with measurement errors can be represented as 

𝑌(𝑡) = {
𝑦0 + 𝜆1𝑡 + 𝜎1𝐵(𝑡) + 𝜀1,                   𝑡 ≤ 𝜏
𝑦𝜏 + 𝜆2(𝑡 − 𝜏) + 𝜎2𝐵(𝑡 − 𝜏) + 𝜀2, 𝑡 > 𝜏

 (11) 

where 𝑦0 and 𝑦𝜏 are the initial states of the first and second 

stages, respectively. 𝜆1 , 𝜎1  and 𝜀1  are the drift coefficient, 

diffusion coefficient, and measurement error of the first stage, 

respectively. 𝐵(𝑡)  is the standard Wiener process. 𝜏  is the 

changing time (the time of the changing point). 𝜆2, 𝜎2 and 𝜀2 

are the drift coefficient, diffusion coefficient, and measurement 

error of the second stage, respectively. It is generally assumed 

that the measurement errors of two stages are 𝜀1  and 𝜀2 , 

𝜀1~𝑁(0, 𝜎𝜀1
2 ) and 𝜀2~𝑁(0, 𝜎𝜀2

2 ). It is worth noting that if the 

monitoring data is log linearized before degradation modeling, 

the model in equation (11) is consistent with Guan’s model [34]. 

After that, the first hitting time (FHT) [35] is introduced to 

define the lifetime of the equipment. It is defined by 

𝑇 = inf{𝑡: 𝑌(𝑡) ≥ ω|𝑌(0) ≤ 𝜔} (12) 

where 𝜔 is the failure threshold. 𝑌(𝑡𝑘) is the observations at 

the current time 𝑡𝑘 , 𝑦𝑘 = 𝑌(𝑡𝑘) . The RUL at time 𝑡𝑘  is 

defined based on the FHT 𝐿 = inf{𝑙: 𝑌(𝑡𝑘 + 𝑙) ≥ 𝜔|𝑌(𝑡𝑘) ≤

𝜔}. 

Considering the randomness of the degradation state at 

changing time and the random model parameters, if 

𝜆1~𝑁(�̂�1, 𝑃1) , 𝜆2~𝑁(�̂�2, 𝑃2) , the probability density function 

(PDF) of the two-stage RUL at time 𝑡𝑘 are as follows 

Case 1: The current time 𝑡𝑘 is less than 𝜏, then the PDF of 

RUL is given by 

𝑓𝐿(𝑙𝑘)

= {

(𝜔 − 𝑦𝑘)(𝜎1
2 + 𝑃1𝑙𝑘) + 𝑃1𝜏2�̂�1

√2𝜋(𝑃1𝑙𝑘
2 + 𝜎1

2𝑙𝑘 + 𝑃1𝜏2)3
exp [−

(𝜔 − 𝑦𝑘 − �̂�1𝑙𝑘)2

2(𝑃1𝑙𝑘
2 + 𝜎1

2𝑙𝑘 + 𝑃1𝜏2)
] , 𝑙 + 𝑡𝑘 ≤ 𝜏

𝐴 − 𝐵,                                                                                                         𝑙 + 𝑡𝑘 > 𝜏  

 
(13) 

where 

𝐴 =
𝑃2𝑙𝑘 + 𝜎2

2

√2𝜋𝑃𝑎
2(𝑃𝑎 + 𝑃𝑏)

exp [−
(𝑎 − 𝑏)2

2(𝑃𝑎 + 𝑃𝑏)
]   

× {
𝑏𝑃𝑎 + 𝑎𝑃𝑏

𝑃𝑎 + 𝑃𝑏

𝛷 (
𝑏𝑃𝑎 + 𝑎𝑃𝑏

√𝑃𝑎𝑃𝑏(𝑃𝑎 + 𝑃𝑏)
) +

√𝑃𝑎𝑃𝑏

√𝑃𝑎 + 𝑃𝑏

ϕ (
𝑏𝑃𝑎 + 𝑎𝑃𝑏

√𝑃𝑎𝑃𝑏(𝑃𝑎 + 𝑃𝑏)
)}    

+
�̂�2𝜎𝜀2

2

√2𝜋𝑃𝑎
2(𝑃𝑎 + 𝑃𝑏4

)
exp [−

(𝑎 − 𝑏)2

2(𝑃𝑎 + 𝑃𝑏)
] {1 − Φ (−

𝑏𝑃𝑎 + 𝑎𝑃𝑏

√𝑃𝑎𝑃𝑏(𝑃𝑎 + 𝑃𝑏)
)} 
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𝐵 =
𝑃2𝑙𝑘 + 𝜎2

2

√2𝜋𝑃𝑎
2(𝑃𝑎 + 𝑃𝑏)

exp [
2�̂�1(𝜔 − 𝑦𝑘)(𝜏 − 𝑡𝑘)

𝜎1
2(𝜏 − 𝑡𝑘) + 𝜎𝜀1

2
+

2(𝜔 − 𝑦𝑘)2𝑃1𝜏2

(𝜎1
2(𝜏 − 𝑡𝑘) + 𝜎𝜀1

2 )2
] 

× exp [−
(𝑎 − 𝑐)2

2(𝑃𝑎 + 𝑃𝑏)
] 

× {
𝑐𝑃𝑎 + 𝑎𝑃𝑏

𝑃𝑎 + 𝑃𝑏

𝛷 (
𝑐𝑃𝑎 + 𝑎𝑃𝑏

√𝑃𝑎𝑃𝑏(𝑃𝑎 + 𝑃𝑏)
) +

√𝑃𝑎𝑃𝑏

√𝑃𝑎 + 𝑃𝑏

𝜙 (
𝑐𝑃𝑎 + 𝑎𝑃𝑏

√𝑃𝑎𝑃𝑏(𝑃𝑎 + 𝑃𝑏)
)}    

+
�̂�2𝜎𝜀2

2

√2𝜋𝑃𝑎
2(𝑃𝑎 + 𝑃𝑏)

exp [
2�̂�1(𝜔 − 𝑦𝑘)(𝜏 − 𝑡𝑘)

𝜎1
2(𝜏 − 𝑡𝑘) + 𝜎𝜀1

2
+

2(𝜔 − 𝑦𝑘)2𝑃1𝜏2

(𝜎1
2(𝜏 − 𝑡𝑘) + 𝜎𝜀1

2 )2
] 

× exp [−
(𝑎 − 𝑐)2

2(𝑃𝑎 + 𝑃𝑏)
] {1 − Φ (−

𝑏𝑃𝑎 + 𝑎𝑃𝑏

√𝑃𝑎𝑃𝑏(𝑃𝑎 + 𝑃𝑏)
)} 

𝑎 = �̂�2(𝑙𝑘 − 𝜏 + 𝑡𝑘), 𝑏 = 𝜔 − 𝑦𝑘 − �̂�1(𝜏 − 𝑡𝑘),  

𝑐 = −𝜔 + 𝑦𝑘 − �̂�1(𝜏 − 𝑡𝑘) − 𝑃1(𝜏 − 𝑡𝑘)2/[𝜎1
2(𝜏 − 𝑡𝑘) + 𝜎𝜀1

2 ], 

𝑃𝑎 = 𝑃2(𝑙𝑘 − 𝜏 + 𝑡𝑘)2 + 𝜎2
2(𝑙𝑘 − 𝜏 + 𝑡𝑘) + 𝜎𝜀2

2 , 

𝑃𝑏 = 𝑃1(𝜏 − 𝑡𝑘)2 + 𝜎1
2(𝜏 − 𝑡𝑘) + 𝜎𝜀1

2 . 

Case 2: The current time 𝑡𝑘 is greater than 𝜏, then the PDF 

of RUL is given by 

𝑓𝐿(𝑙𝑘)

=
(𝜔 − 𝑦𝑘)(𝜎2

2 + 𝑃2𝑙𝑘) + �̂�2𝜎𝜀2

2

√2𝜋(𝑃2𝑙𝑘
2 + 𝜎2

2𝑙𝑘 + 𝜎𝜀2

2 )3

exp [−
(𝜔 − 𝑦𝑘 − �̂�2𝑙𝑘)2

2(𝑃2𝑙𝑘
2 + 𝜎2

2𝑙𝑘 + 𝜎𝜀2

2 )
] (14) 

Finally, the estimated RUL is computed through the 

definition of mathematical expectation, and the model 

parameters are updated and estimated by the expectation 

maximization (EM) algorithm [34,36]. 

4. Case study 

In this section, the case study is conducted by the XJTU-SY 

bearing datasets [37]. To verify the predictability and superiority 

of CHI in RUL prediction, the proposed method is compared 

with Guan’s method [34] and Si’s method [38]. The degradation 

data of the bearing has an exponential trend. For the fair 

comparison, the data need to be log-linearized in degradation 

modeling. Furthermore, the RUL prediction based on CHI and 

peak is conducted, respectively. 

4.1. Data description 

The XJTU-SY bearing datasets have been widely used in the 

study of data-driven RUL prediction because of the complete 

entire lifecycle data and good mathematical characteristics. The 

peak is selected as the individual indicator owing to its changing 

character is evident and profit for calculation.  

Firstly, the vibration signal of the bearing is preprocessed. 

Then, the CHI is constructed based on the selected multivariate 

TTFs, and the health state is divided. Finally, the RUL prediction 

based on CHI is conducted and the prediction results are 

compared with the results based on the peak. The selected 

samples are shown in Table 2. 

Table 2. The selected samples. 

Datasets Actual RUL (min) Time interval (min) 

Bearing 1_1 123 1 

Bearing 1_3 158 1 

Bearing 2_5 339 1 

4.2. RUL prediction of Bearing 1_3 

4.2.1. Extraction and selection 

The TTFs of Bearing1_3 are selected based on Mon, Corr, and 

Rob. Sixteen TTFs of the bearing are extracted, and the 

extracted TTFs are displayed in Figure 4. 

 

(a) The dimensional TTF values 

 

(b) The dimensionless TTF values 

Fig. 4. The extracted TTF. 

The evaluation results of the above sixteen TTFs are 

presented in Figure 5. As shown in Figure 5, the Mon of each 

TTF is not high. The Corr and Rob of the TTFs are less than 0.5 

which are difficult for RUL prediction effectively and efficiently. 

Therefore, nine TTFs, including AM, Max, Min, Peak, PP, RMS, 

Var, SD, and SRM are selected as the multivariate performance 
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indicators for CHI construction. Furthermore, the MAF method 

is applied for smoothing. 

 

 

 

 

Fig. 5. The performance evaluation results of the TTF.

4.2.2. CHI construction and evaluation 

Next, PCA is employed to process the selected TTFs. There are 

158 observations in every TTF, and the TTF sequence of 

Bearing 1_3 is 158×9th order matrix. The CHI of the sample is 

F=F1. The CHI of Bearing 1_3 is given in Figure 6. 

The evaluation results of the CHI are compared with the 

original nine TTFs. The comparison results of indicators are 

given in Table 3. From the Table 3, it is very apparent that the 

Mon, Corr, Rob, and the CEM of CHI are superior to the 

individual TTFs. Therefore, the applicability and validity of 

CHI are better than the individual indicators. 

 

Fig. 6. The CHI.of Bearing 1_3 

 

Table 3. The comparison results of indicators. 

Indicator Mon Corr Rob CEM Indicator Mon Corr Rob CEM 

AM 0.3248 0.7283 0.9789 0.6421 RMS 0.3248 0.7293 0.9800 0.6427 

Max 0.0828 0.7364 0.9362 0.5349 Var 0.3248 0.5469 0.9600 0.5820 

Min 0.0573 0.7333 0.9407 0.5251 SD 0.3248 0.7293 0.9800 0.6427 

Peak 0.1465 0.7399 0.9388 0.5622 SRM 0.3121 0.7269 0.9782 0.6364 

PP 0.0828 0.7373 0.9494 0.5391 CHI 0.4650 0.7105 0.9844 0.6945 

4.2.3. Stage division and validation 

It is assumed that the corresponding quantification criteria of 

each stage are 0.5, 1, and 3, respectively. The outlier detection 

is performed based on Equation (9) and CHI. The degradation 

state of the sample is divided into four stages: health stage (|Z-

score|≤0.5), minor damage stage (0.5<|Z-score|≤1), severe 

damage stage (1<|Z-score|≤3), and failure stage (|Z-score|>3). 

The outlier detection result of the Z-score method is visualized 

in Figure 7. 

From Figure 7, it can be observed that there are several outlier 
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detection points in each stage. The first anomaly occurrence 

time is defined as the initial time of the stage. The FPT 𝜏1 

=112min, FOT 𝜏2 =134min, and FT 𝜏3 =149min. 

 

Fig. 7. The outlier detection result of Z-score method. 

The stage division result of the sample is shown in Figure 8. 

It depicts that the degradation state of the sample is divided into 

four stages. Health stage: 0<|Z-score|≤0.5. The degradation 

rate of bearing is in the normal range. The fluctuation of the 

degradation rate tends to zero, which indicates that it is a 

constant. Minor damage stage: 0.5<|Z-score| ≤ 1. The 

degradation rate is without abnormal values. However, the 

degradation rate begins to suffer from fluctuations, which are 

caused by the abnormal vibrations. Severe damage stage: 1<|Z-

score|≤3. The degradation rate exists in abnormal values. The 

fluctuation of the degradation rate becomes larger and more 

evident with time increasing. Further, the bearing starts to 

accelerate the degeneration. Failure stage: |Z-score|>3. The 

degradation rate has a high degree of abnormal values. Most 

fluctuations in the degradation rate are very large and obvious. 

The failure occurs in the stage. 

 

Fig. 8. The stage division result of Bearing 1_3. 

The commonly used single exponential function is applied 

to describe the degradation process of bearing, which is 

employed to verify the rationality of the stage division. The 

exponential degradation model is described by 

𝑌(𝑡) = 𝑎 exp( 𝑏𝑡) + 𝑐 (15) 

where a, b, and c are the coefficients, which are estimated by the 

least squares method. 

The fitted degradation path after time 𝑡𝑘  is calculated by 

Equation (15). The fitting results of the degradation path in each 

stage are demonstrated in Figure 9. 

 

Fig. 9 The fitting results of the degradation path in each stage. 

As shown in Figure 9, the fitting result of the CHI is 𝑦1 =

0.04837𝑡 + 2.985  in the first stage. The degradation rate is 

approximately 0.04837. The stage is the health stage and 

consistent with the stage division results. The fitting result of the 

second stage is 𝑦2 = 0.3098𝑒0.02812𝑡 + 3.429. The prediction 

deviation at 𝜏1 =112min is large, which indicates that the 

degradation rate has changed and the bearing enters the minor 

damage stage. The result is consistent with the stage division. In 

the third stage, the fitting result is 𝑦3 = 0.2082𝑒0.03166𝑡 +

3.534. Compared with the prediction result at 𝜏2=134min, the 

bearing begins to deteriorate, which indicates that the warning 

should be provided. It agrees with stage division result. The 

prediction result after 𝜏3=149min is extremely high. It indicates 

that the performance of the bearing is rapidly decreasing in the 

fourth stage. The stage has the risk of failure and the failure 

alarm is supposed to be notified, which is in accord with the 

stage division. The above results adequately explain that the 

proposed stage division method is reasonable and applicable. 

4.2.4. RUL prediction and analysis 

The failure threshold is set as 65.5 based on the degradation 

trend. 𝜏1 =112min is defined as the changing time in the 

subsequent two-stage RUL prediction, which is set according to 
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the stage division results.  

Furthermore, the model parameters of the two stages are 

represented by 𝚯1 = [𝑎1,0, 𝑃1,0, 𝑄1, 𝜎1
2, 𝜎𝜀1

2 ]T and 𝚯2 =

[𝑎2,0,  𝑃2,0, 𝑄2, 𝜎2
2, 𝜎𝜀2

2 ]T , respectively. Correspondingly, the 

initial values of the model parameters are set as 𝚯1 =

[0.001, 1 × 10−10, 0.01, 1 × 10−4, 1 × 10−4]T  and 𝚯2 =

[0.031, 2 × 10−4, 0.001, 0.001, 0.15]T.  

Considering the random model parameters, the EM 

algorithm is applied to estimate the model parameters. The 

estimation results of model parameter are shown in Figure 10.

  

(a) Parameter estimation of the first stage 

 

(b) Parameter estimation of the second stage 

Fig. 10. The estimation results of model parameter.

As shown in Figure 10, the model parameters of the two 

stages gradually converge with the accumulation of the 

monitoring time, which indicates the feasibility and stability of 

the proposed method. Furthermore, it can be seen that there are 

obvious differences in the drift coefficient, diffusion coefficient, 

and measurement error between the first and second stage. It 

further confirms that the degradation process characterized by 

the CHI has the two-stage characteristics, which is consistent 

with the hypothesis. Therefore, it is necessary and reasonable to 

conduct the two-stage degradation modeling for the degradation 

process. 

According to the above estimation results, the PDF of RUL 

in each stage is calculated by the Equation (13) and Equation 

(14). And then, the RUL prediction results is estimated by the 

definition of mathematical expectations, which are compare 

with the Guan’s method [34]. In addition, the RUL prediction 

results based on CHI and peak are compared with each other for 

the verification of the CHI performance. The RUL prediction 

results at each monitoring time are given in Figure 11. As 

described in Figure 11, it is apparent that the RUL prediction 

based on CHI fits the actual RUL very well. For example, the 

actual RUL is 46min at the changing time t=112min. The 

estimated RUL of the proposed method is 45.13min with 

relative error (RE) of 0.0189. The estimation result of Guan’s 

method is 43.62min, and the RE is 0.0518. The prediction 

accuracy of the proposed method is improved by 3.29%. It 
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indicates that the better RUL prediction result is acquired by the 

CHI construction in degradation modeling, that is, considering 

the fusion of multi-feature fusion. 

 

Fig. 11. The RUL prediction results at each monitoring time. 

The RE is computed to intuitively describe the predictive 

performance of the proposed method. The RE at each 

monitoring time is visualized shown in Figure 12.  

 

Fig. 12. The RE at each monitoring time. 

Figure 12 reveals that the RE of the proposed method is 

below 0.08 in the monitoring intervals [18,58] and [133,143]. 

The average RE of Guan’s method and Si’s method based on 

peak are 0.1135 and 0.2665, respectively. The average RE of the 

proposed method and Si’s method based on CHI are 0.0696 and 

0.1298, respectively. Specifically, the average prediction 

accuracy of the proposed method and Si’s method based on CHI 

are improved by 4.39% and 13.67%, respectively. It indicates 

that the accuracy of RUL prediction is significantly improved 

by integrating the CHI into the degradation modeling. The 

results are consistent with the showed results in Figure 11, 

which demonstrates that the proposed method can realize better 

RUL prediction. 

4.3. RUL prediction of other experimental data 

Further, to validate the applicability and superiority of the 

proposed method, the RUL prediction results of Bearing 1_ 1 

and Bearing 2_ 5 are used for comparative study. 

4.3.1. CHI construction and stage division 

Firstly, the PCA is applied for the CHI construction. The CHI of 

Bearing 1_1 and Bearing 2_5 are given in Figure 13. 

 

(a) The CHI of Bearing 1_1 

 

(b) The CHI of Bearing 2_5 

Fig. 13. The CHI of Bearing 1_1 and Bearing 2_5 

Then, the outlier detection results of the Z-score method for 

Bearing 1_1 and Bearing 2_5 are shown in Figure 14. Figure 14 

reveals that the first outlier detection of each stage is taken as 

the initial time of the stage. The FPT, FOT, and FT of Bearing 

1_ 1 are 𝜏1=42min、𝜏2=78min, and 𝜏3=122min, respectively. 

For Bearing 2_5, the FPT 𝜏1 =187min, FOT 𝜏2 =237min, and 

FT 𝜏3=325min. 
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(a) The outlier detection result of Bearing 1_1 (b) The outlier detection result of Bearing 2_5 

Fig. 14 The outlier detection result of Z-score method for Bearing 1_1 and Bearing 2_5.

The stage division results of the samples are given in Figure 

15. It is cleared that the degradation state of Bearing1-3 and 

Bearing2-5 are divided into the health stage, minor damage 

stage, severe damage stage, and failure stage. The online 

monitoring of the equipment should be strengthened in the 

severe damage stage and failure stage to avoid unnecessary 

losses. 

 

  
(a) The classification results of Bearing 1_1 (b) The classification results of Bearing 2_5 

Fig. 15. The stage division results of Bearing 1_1 and Bearing 2_5.

4.3.2. RUL prediction and comparison 

The RUL prediction results based on CHI and peak are 

conducted for comparison. The RUL prediction results of 

Bearing 1_1 and Bearing 2_5 are shown in Figure 16.

  
(a) The prediction results of Bearing 1_1 (b) The prediction results of Bearing 2_5 

Fig. 16. The RUL prediction results of Bearing 1_1 and Bearing 2_5.

From Figure 16, it can be concluded that the RUL 

estimations of the proposed method are closer to the actual RUL 

than other methods. For instance, in Figure 16(a), the actual 

RUL of Bearing 1_1 is 11min at time t=112min. The RUL 

prediction of the proposed method is 10.70min with RE 0.0270, 

which indicates that the estimation results of the proposed 
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method match the actual RUL well. For Bearing 2_5, in Figure 

16(b), the actual RUL is 119min at time t=220min. The 

estimated RUL of the proposed method is 117.8 min and the 

corresponding RE is 0.0101. The estimation of Guan’s method 

is 128.35min, and the RE is 0.0786. The results show that the 

RUL prediction of the proposed method is optimal, and the 

better RUL prediction results are achieved by considering the 

multi-feature fusion. 

The RE of each method is calculated for the intuitive 

description of the predictive performance of the proposed 

method. Specifically, the average RE of each method is given in 

Table 4. In Table 4, the average RE of the proposed method is 

the minimum compared with the corresponding RUL prediction 

method based on peak. For Bearing 1_1, compared to Guan’s 

method and Si’s method based on peak, it should be noted that 

the average RE of the proposed method and Si’s method based 

on CHI decreased by 4.64% and 11.01%, respectively. Similarly, 

the average RE of the RUL prediction based on CHI for Bearing 

2_5 decreased by 10.68% and 3.45%, respectively. The case 

analysis results of the two samples further validate the 

applicability and superiority of RUL prediction based on the 

multi-feature fusion and stage division.

Table 4. The average RE of each method. 

Quantitative indicators Datasets Si’s method based on peak Si’s method based on CHI Guan’s method The proposed method 

Average RE 

Bearing 1-3 0.2665 0.1298 0.1135 0.0696 

Bearing 1-1 0.3277 0.2176 0.1855 0.1391 

Bearing 2-5 0.2122 0.1777 0.1704 0.0636 

5. Conclusions 

A two-stage RUL prediction method with multi-feature fusion is 

proposed for the issue of MPI fusion. PCA is introduced to 

analyze the various degradation information of the equipment 

by linear fusion. The dimension reduction fusion is 

accomplished and the CHI is constructed. The comprehensive 

evaluation of the performance is conducted based on Mon, Corr, 

and Rob. Furthermore, the Z-score method is applied to solve 

the issue of identifying the changing time of each degradation 

stage, and the quantification criteria are set to achieve stage 

division. The degradation state is divided into the health stage, 

minor damage stage, severe damage stage, and failure stage. The 

degradation path model is used to fit the degradation path of 

each stage, which verifies the rationality and applicability of the 

stage division. A two-staged RUL prediction model based on 

CHI is proposed. Finally, the comparative analysis is conducted 

on the RUL prediction based on CHI and peak by three samples 

of the XJTU-SY bearing datasets. The results indicate that the 

CHI has superiority in RUL prediction, and the proposed 

method contributes to improving the accuracy of RUL 

prediction. 

However, despite the encouraging prediction results, there 

are still some issues that need further study. The linear 

correlation between the MPI is taken into consideration in 

degradation modeling. In practical engineering, for the 

equipment, the correlation relationship of the performance 

indicators is more complicated. Therefore, as a direction for 

future study, it is suggested to consider the complex nonlinear 

correlation of the MPI in RUL prediction. In addition, the multi-

stage RUL prediction will be another direction worth studying 

in the future.
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