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Highlights  Abstract  

▪ The probabilistic RUL prediction is obtained 

by using LSTM and VAE resampling. 

▪ A multi-equipment dynamic grouping 

maintenance model is established. 

▪ The gazelle optimization algorithm is used to 

solve the optimization model. 

▪ The effectiveness of the proposed method is 

verified by the numerical case with 6 wind 

turbines. 

 For multi-equipment maintenance of modern production equipment, the 

economic correlation and degradation uncertainty may lead to 

insufficient or excessive maintenance, increasing maintenance costs. 

This paper proposes a dynamic grouping maintenance method based on 

probabilistic remaining useful life (RUL) prediction for multiple 

equipment. Long short term memory (LSTM) is developed to predict the 

equipment probability RUL by the Variational Auto-Encoder (VAE) 

resampling. Then, the dynamic grouping maintenance model is 

constructed to minimize the maintenance cost rate under the known 

probabilistic RUL information. The gazelle optimization algorithm 

(GOA) is used to determine the optimal maintenance time for each 

equipment. To better verify the effectiveness of the proposed method, a 

numerical case with six wind turbines is introduced to analyse the 

performance of GOA. Moreover, the advantages of dynamic grouping 

maintenance is verified by comparing with independent maintenance, 

whose maintenance cost rate is reduced by 10.01%. 
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1. Introduction 

In industrial production, production systems consisting of 

multiple equipment that perform specific production tasks 

according to certain rules. However, due to the pursuit of 

production efficiency by production companies and the 

prolonged use of multiple production equipment, the problem 

of equipment failure leading to the increase in equipment 

maintenance costs is prominent [1]. The equipment 

maintenance cost can be effectively reduced by reasonably 

arranging the multi-equipment maintenance plan based on the 

equipment degradation information. At the same time, the 

equipment failure of the production process can be avoided as 

much as possible. 

Currently, researchers have done a lot of research on 

maintenance. There are many maintenance decision-making 

methods, including condition-based maintenance [2], 

maintenance based on degenerate models such as nonlinear 

Wiener process[3], Markov process [4], gamma process [5]. 

With the development of artificial intelligence technology, data-

based predictive maintenance is gradually maturing [6], which 

needs to predict the remaining useful life (RUL) of equipment 
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based on data processing and information analysis and to 

determine the maintenance strategy with the lowest cost within 

the maintenance window of opportunity. Predictive 

maintenance based on data needs to consider three aspects, 

remaining life prediction, maintenance model building, and 

optimization algorithm. 

For RUL prediction, most of the researchers only considers 

point prediction of the remaining useful life of equipment. Wu 

et al. [7] proposed a deep convolutional migration network with 

spatial pyramid pooling to improve the prediction accuracy of 

bearings. Jafari et al. [8] A particle filter-based RUL estimation 

technique for Li-ion batteries combining Kalman filter (KF) 

with particle filter (PF) for predicting the remaining useful life 

of the battery. Cui et al. [9] also all point to the prediction of the 

remaining life of equipment. Due to some uncertainty in the 

RUL predictions, some scholars have constructed a probabilistic 

RUL prediction framework to output an estimate of the 

probability density of the target RUL in recent years. Wang et 

al. [10] used least squares, non-informative distributions, and 

Markov Chain Monte Carlo methods (without dropout sampler) 

to predict and obtain the uncertainty of the RUL of the bearings. 

Nguyen et al. [11] proposed to predict the RUL distributions of 

components through a combination of probabilistic models and 

deep recurrent neural networks and then derive formulas for 

RUL uncertainty to enable the quantification of RUL 

uncertainty for multicomponent systems. 

For equipment maintenance modelling, many scholars have 

also done much research in the past. Many of which are based 

on physical models [3][5][12], and there have also been studies 

on data prediction-based maintenance schedules [2][13][14]. 

However, fewer researchers in the past have considered 

maintenance schedules that predict information uncertainty. 

Nguyen et al. [15] proposed a novel dynamic predictive 

maintenance (PdM) framework using Long Short-Term 

Memory (LSTM) networks for fault prediction, which provides 

the probability of system failure in different time scales to 

determine the moment of maintenance activities. Chen et al. [16] 

build on this foundation by proposing multivariate LSTM 

networks to obtain the degradation prediction distributions and 

to determine the optimal maintenance moment. Kim et al. [17] 

proposed a new method for determining future data 

measurement schedules by scheduling future component 

inspections after estimating the RUL uncertainty. So, 

probabilistic RUL predictions is a way forward for predictive 

maintenance. 

However, none of them considered multi-equipment 

maintenance. Lee et al. [18] proposed a Deep Reinforcement 

Learning (DRL) approach to planning predictive maintenance 

of aircraft engines by integrating data-driven probabilistic RUL 

predictions into a deep reinforcement learning model and then 

determining the engine replacement moment based on the trend 

of the RUL predictions. Mitici M et al. [19] proposed a data-

driven predictive maintenance framework for multiple 

components using Monte Carlo discard methods and 

convolutional neural networks to obtain probabilistic RUL 

predictions and develop a multi-component maintenance plan 

based on the predictions. They considered probabilistic RUL 

prediction for multi-equipment maintenance but ignored the 

effect of economic correlation between multi-equipment 

maintenance. In contrast, for the economic correlation of multi-

equipment, some scholars [20][21] developed dynamic 

grouping maintenance models to reduce the maintenance cost 

of multi-equipment systems. They all consider dynamic 

grouping maintenance to solve the problem of the economic 

correlation of multi-equipment, but they did not consider 

probabilistic RUL prediction. 

For optimization algorithms, some scholars have adopted 

classical solution algorithms such as using genetic algorithm 

(GA) [22] and particle swarm algorithm (PSO) [3]. However, it 

is easy to fall into the local optimal solution [23]. Some other 

scholars have adopted newly developed algorithms in recent 

years, such as the hybrid whale swarm algorithm [24] and the 

peacock algorithm [25]. However, there is less research on 

maintenance model solving using the gazelle optimization 

algorithm (GOA), which has strong search capability and can 

improve the solving accuracy. 

According to the existing research status, the research gap is 

summarized as follows. (1) Many researchers have focused on 

the RUL prediction, but it is essential to consider probabilistic 

RUL estimation by considering the prediction uncertainty. So, 

the probabilistic RUL prediction based on resampling and 

LSTM is proposed by considering the equipment degradation 

data. (2) Fewer researchers have considered the economic 

relevance of multi-equipment maintenance, so it is necessary to 
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the dynamic grouping maintenance for the system with multiple 

equipment. (3) Since classical optimization algorithms are 

prone to fall into local optimal solutions, the gazelle 

optimization algorithm (GOA) is introduced to strengthen the 

search ability of the global optimal solution of the model. 

Therefore, aiming at the uncertainty of equipment remaining 

useful life prediction and the economic correlation of multi-

equipment maintenance, this paper proposes a multi-equipment 

dynamic grouping maintenance decision-making method based 

on probabilistic remaining useful life (RUL) prediction.  

The innovations of this paper include the following. 

(1) Probabilistic RUL prediction of equipment is 

proposed by using the LSTM model after resampling 

the equipment degradation data using a Variational 

Auto-Encoder (VAE). 

(2) A dynamic grouping maintenance model for multiple 

equipment is established based on the probabilistic 

RUL prediction for determining the optimal 

maintenance time for maintenance equipment. 

(3) GOA is introduced to solve the maintenance decision 

model by considering the advantages of the robust 

search capability. 

The rest of this paper is structured as follows. Section 2 

establishes the dynamic maintenance model. The GOA 

procedure is introduced to optimize the model in Section 3. 

Section 4 implements the numerical experiments to verify the 

advantages of the proposed method. Finally, Section 5 

summarizes the important findings. 

2. Establishment of the model 

The model in this paper consists of two parts: one is  

a probabilistic RUL prediction model with resampling and 

LSTM, and the other is a multi- equipment dynamic grouping 

maintenance decision model.  

2.1. Probabilistic RUL prediction based on resampling 

and LSTM 

The collected data are first processed by the sliding average 

filtering method to reduce the invalid data and obtain the 

processed degraded data. Then, the VAE is used to resampling 

the degradation data of the equipment with the normal 

distribution as the prior distribution, and K groups of 

degradation data are obtained by K times resampling. Next, the 

LSTM prediction model is trained by using the equipment 

degradation data. Finally, to predict the probability RUL of the 

equipment, K groups of new data after K resampling are used 

as the input of the LSTM model to obtain K groups of output. 

The predicted results on day 𝑐𝑡  are taken from all K sets of 

outputs, and the probability distribution is obtained by statistical 

calculation through the frequency distribution method. This 

probability distribution represents the probability RUL 

prediction of the equipment on the 𝑐𝑡th day. The framework of 

probabilistic RUL prediction based on resampling and LSTM is 

shown below.

 

Fig. 1. The framework of probabilistic RUL prediction based on resampling and LSTM.
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Meanwhile, in order to ensure the validity of the data, this 

paper first uses the sliding average filtering method [26] to deal 

with the outliers of the data before resampling the degraded data 

by the VAE for improving the quality of data and avoiding the 

effects of invalid data. Sliding average filtering is a common 

signal processing technique, which can effectively reduce 

invalid data and preserve trend information. The core idea is to 

estimate the current value by the arithmetic mean of a set of 

recent data points. For each point in the dataset, the sliding 

average is calculated as follows: 

𝑚𝑎d =
𝑥d−𝑛+1+𝑥d−𝑛+2+⋯+𝑥d

n
   (1) 

Where the data sequence is x ∈{𝑥1 . ，𝑥2，…，𝑥𝑑  , the 

sliding average sequence is {𝑚𝑎1，𝑚𝑎2，…，𝑚𝑎𝑑  , the 

window size is n, and the total number of data in the dataset is 

𝑑. 

2.1.1. Resampling of Variational Auto-Encoder 

VAE [27] is an unsupervised learning generative model that 

combines the ideas of auto-encoder and variational inference, 

aiming to learn the latent distribution of the input data and 

generate new samples to complete the resampling of the 

degraded data. VAE can be implemented to map the input data 

𝑥 to an approximate distribution by establishing the relationship 

between the input variable 𝑥 and the latent variable z  through 

neural networks. 

The specific steps involved in the resampling process using 

VAE in this paper are summarized as follows.  

(1) Set the equipment degradation data as the input variable 

𝑥 of the VAE model;  

(2) Train the VAE model. Map it to the latent space (the 

latent space is assumed to obey a prior distribution, and  

a normal distribution is chosen in this paper) via the encoder 

𝑞∅(𝑧|𝑥), and compute the mean 𝜇𝑥 and the variance parameter 

𝜎𝑥
2 for the latent space of each input variable;  

(3) Resampling from the latent space randomly to generate 

the latent variable 𝑧𝑥; 

(4) The decoder reduces each latent variable to generate  

a new sample with an approximate prior distribution, which 

constitutes a set of resampled data;  

(5) Repeat Steps (3) and (4) for K times based on the 

reparameterization of the latent variable to generate K sets of 

the resampled data. 

The VAE workflow is shown in Fig. 2.
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Fig. 2. Working flow chart of VAE.

The optimization objective function formulation [27] for 

VAE is as follows: 

𝐿𝑥(∅, 𝜃) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐸𝑧~𝑞[𝑙𝑜𝑔(𝑝𝜃(𝑥|𝑧))] − 𝐷𝐾𝐿(𝑞∅(𝑧|𝑥)||𝑝𝜃(𝑧))}  (2) 

∅  and 𝜃 , respectively, the parameters of the encoder and 

decoder, model considering 𝑝𝜃(𝑧) and 𝑞∅(𝑧|𝑥) obey the normal 

distribution, namely 𝑝𝜃(𝑧)∈ N (0, 1), 𝑞∅(𝑧|𝑥)  ∈ N (𝜇𝑥 ,𝜎𝑥
2 ). 

𝜇𝑥 and 𝜎𝑥
2  represent the mean and variance generated by the 

encoder 𝑞∅(𝑧|𝑥), respectively. 

2.1.2. LSTM model construction 

LSTM is a particular Recurrent Neural Network (RNN) 

architecture for processing long sequence data [28] based on 

memory function. LSTM controls the transmission state 

through a particular gate structure, including an input gate,  
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a forgetting gate, and an output gate, which can capture the 

dependency of the long sequences in a better way. The 

prediction effect is improved when dealing with the time series 

prediction problem [29]. 

In this paper, equipment degradation data is brought into the 

LSTM model to complete the training and testing of the model. 

Finally, the LSTM model with completed training is obtained. 

The cell diagram of the LSTM model is shown in Fig. 3. 
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Fig. 3. Cell diagram of the LSTM model. 

The expression for the LSTM model is shown as follows. 

Input state: 

𝑧𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑧𝑥𝑐𝑡 + 𝑈𝑧ℎ𝑐𝑡−1 + 𝑏𝑧)  (3) 

Forget Gate: 

𝑓𝑐𝑡 = 𝜎(𝑊𝑓𝑥𝑐𝑡 + 𝑈𝑓ℎ𝑐𝑡−1 + 𝑏𝑓)  (4) 

Input gate: 

𝑖𝑝𝑐𝑡 = 𝜎(𝑊𝑖𝑝𝑥𝑐𝑡 + 𝑈𝑖𝑝ℎ𝑐𝑡−1 + 𝑏𝑖𝑝)  (5) 

Intermediate state: 

𝑜𝑐𝑡 = 𝜎(𝑊𝑜𝑥𝑐𝑡 + 𝑈𝑜ℎ𝑐𝑡−1 + 𝑏𝑜)  (6) 

Current state: 

𝑐𝑐𝑡 = 𝑓𝑐𝑡 ⋅ 𝑐𝑐𝑡−1 + 𝑖𝑝𝑐𝑡 ⋅ 𝑧𝑐𝑡    (7) 

Output gate: 

ℎ𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑐𝑡) ⊗ 𝑜𝑐𝑡    

 (8) 

Where 𝑊  and 𝑈  denote the weight matrix, 𝜎  denotes the 

sigmoid activation function, and 𝑏 denotes the model bias. 𝑥𝑐𝑡  

represents the input value of the current moment (the 𝑐𝑡 day), 

ℎ𝑐𝑡−1  denotes the output value of the previous moment, and 

𝑐𝑐𝑡−1 is the output state of the previous moment. 𝑐𝑐𝑡 represents 

the output state of the current moment, and ℎ𝑐𝑡 represents the 

output value of the current moment. 

2.1.3. Probabilistic RUL prediction 

In this paper, the LSTM model has been trained in Section 2.1.2 

to predict based on the resampled data in Section 2.1.1. The 

specific steps of probabilistic RUL prediction are as follows.  

(1) Take the K sets of resampled data of equipment 𝑖 as the 

input of the completed trained LSTM model, and get the K sets 

of outputs (RUL prediction);  

(2) Take all the RUL prediction values (ℎ𝑐𝑡) at the current 

moment (day 𝑐𝑡) as the total number of samples from the K sets 

of outputs of equipment 𝑖;  

(3) According to frequency distribution in statistics,  

a probability distribution can be obtained by the occurrence 

frequency of each value in the total number of samples. An 

observation group is obtained by remaining useful life at time 

point 𝑡 respectively, and the number of observations in which 

the value of ℎ𝑐𝑡 falls into each observation group is counted and 

denoted as 𝑛𝑖,𝑡; 

(4) The relative frequency of each observation group is 

calculated according to Equation (9), and the relative 

frequencies of all observation groups (all remaining useful life 

(𝑡) are formed into a probability distribution. It is used as the 

probabilistic RUL prediction result for this equipment 𝑖 at the 

current moment (day 𝑐𝑡). 

𝑃𝑖,𝑡 =
𝑛𝑖,𝑡

𝐾

𝑛𝑖,𝑡 = {The ℎ𝑐𝑡  value of equipment 𝑖 is the number of 𝑡}
       (9) 

Where  𝑃𝑖,𝑡  indicates that the relative frequency at which the 

RUL predicted value (ℎ𝑐𝑡 ) of equipment 𝑖  is equal to 𝑡 , 𝑛𝑖,𝑡 

denotes the number of samples at which the RUL prediction 

value (ℎ𝑐𝑡 ) of equipment 𝑖  is equal to 𝑡 , and 𝐾  is the total 

samples for equipment 𝑖 (total number of ℎ𝑐𝑡). 

In addition, in order to facilitate the maintenance of the 

decision model, the probabilistic RUL need to be converted into 

failure probabilities 𝜑𝑖,𝑗. The equipment probabilistic RUL can 

reflect the failure probability of equipment, so the failure 

probability 𝜑𝑖,𝑗 is denoted as: 

𝜑𝑖,𝑗 = 𝑃𝑖,𝑡   (10) 

Where 𝜑𝑖,𝑗  denotes the probability that equipment 𝑖 fails on day 

𝑗 based on the day 𝑐𝑡 prediction. The relationship between day 

𝑗 and the current moment 𝑐𝑡 is: 

𝑗 = 𝑡 + 𝑐𝑡   (11) 

2.2. Multi-equipment dynamic grouping maintenance 

decision model based on probability RUL prediction 

This paper arranges the maintenance plan for multi-equipment 

based on the probabilistic RUL prediction results of multi-
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equipment, which completes the maintenance decision-making 

model with dynamic grouping. Among them, the maintenance 

method adopts replacement maintenance, and the evaluation 

index is the maintenance cost rate. Determine the optimal 

maintenance time for each piece of equipment to minimize the 

maintenance cost rate of the maintenance decision model. 

2.2.1. Dynamic grouping maintenance policy 

Given the uncertainty of the remaining useful life prediction of 

multi-equipment and the economic correlation of multi-

equipment maintenance, this paper considers the cost-based 

dynamic grouping strategy for multi-equipment maintenance 

decisions. Dynamic grouping maintenance has good 

compatibility, and equipment can be divided into different 

groups according to different maintenance horizons [20] so that 

different maintenance arrangements can be made for different 

groups of equipment, which can avoid the limitations of 

equipment grouping by short-term vision and long-term vision. 

The multi-equipment dynamic grouping maintenance 

decision model determines the optimal maintenance time of 

each piece of equipment according to the evaluation index 

(maintenance cost rate) in the model. Because the grouping of 

equipment and the optimal maintenance time of each group of 

equipment will directly affect the maintenance cost rate for the 

maintenance decision model, in the maintenance model, the 

equipment with the same optimal maintenance time is regarded 

as a group, and the equipment with the optimal maintenance 

time alone can be regarded as a group. 

2.2.2. Multi-equipment dynamic grouping maintenance 

decision model 

A multi-equipment dynamic grouping maintenance model is 

established by considering essential maintenance cost, 

downtime loss cost, sudden failure and emergency maintenance 

cost, and depreciation loss cost. The symbols used in this model 

are defined in Table 1. Meanwhile, this paper makes the 

following assumptions: 

⚫ Multi-equipment can be maintained on the same 

day; 

⚫ Only replacement maintenance is considered in 

the maintenance mode; 

⚫ Assume that one spare part cost and one shutdown 

cost are spent for each equipment maintained, and 

only one entry and exit cost of maintenance tools 

is spent for multiple equipment in the same group; 

⚫ Describe sudden failure and emergency 

maintenance costs in the form of mathematical 

expectations;

Table 1. Symbol definition table. 

Symbol Explain Symbol Explain 

𝐶𝑟 
Maintenance cost rate for the maintenance 

decision model 

𝐶𝑖
𝑣 Downtime cost of equipment i  

𝐶𝑒 Cost of lost production per unit of time 

𝐶𝑤 Total cost of the maintenance decision model 𝑇𝑠 Maintenance equipment downtime 

𝑡𝑖 Optimal maintenance time for equipment 𝑖 
𝐶𝑠 Downtime costs for all equipment 

𝐶𝑝 
Sudden failure and emergency maintenance costs for 

all equipment M The number of equipment 

N Maximum maintenance days of the equipment 

𝐸𝑖
𝑛 

The mathematical expectation of a sudden failure of 

the equipment 𝑖 before the optimal maintenance time 

𝑡𝑖 𝐶𝑠𝑚 
Essential maintenance costs for a single 

equipment 

𝐶𝑓 Cost of labor 
𝐶𝑒𝑚 Emergency maintenance cost of single equipment 

𝐶𝑒𝑐 Maintenance tool input and output costs 

𝐶𝑎 
The cost of production accidents caused by 

equipment failure 𝐶𝑠𝑝 Spare parts cost 

𝐶𝑚 Essential maintenance costs for all equipment 𝜑𝑖,𝑗 Probability of sudden failure of equipment 𝑖 on day 𝑗 

G Number of equipment groups 
𝐶𝑖

𝑑 Depreciation expense of equipment 𝑖 
𝐺𝑗 Maintenance schedules for day 𝑗 

𝑋𝑖,𝑗 
Decision variable of whether equipment 𝑖 will be 

maintained on day 𝑗 

𝑇𝑑 Design life of spare parts 

𝐶𝑜 Depreciation costs incurred by all equipment 
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In the maintenance method, the objective function 

(evaluation index) is to minimize the maintenance cost rate 𝐶𝑟 

for the maintenance decision model. The maintenance cost rate 

can be obtained by determining the relationship between the 

total cost 𝐶𝑤  of the maintenance model and the sum of the 

accumulated running time of all equipment ( ∑ 𝑡𝑖
𝑀
𝑖=1  ). It 

represents the Single equipment maintenance cost per day, and 

the smaller the maintenance cost rate, the lower the maintenance 

cost. The maintenance cost rate of the maintenance model is 𝐶𝑟, 

it can be expressed as: 

𝐶𝑟 = 
Cw

∑ 𝑡𝑖
𝑀
𝑖=1

    (12) 

Among them, the total cost of maintenance model 𝐶𝑤 

includes essential maintenance cost 𝐶𝑚, downtime loss cost 𝐶𝑠, 

sudden failure and emergency maintenance cost 𝐶𝑝 , and 

depreciation loss cost 𝐶𝑜, 𝐶𝑤 can be expressed as: 

𝐶𝑤 = 𝐶𝑚 + 𝐶𝑠 + 𝐶𝑝 + 𝐶𝑜  (13) 

(1) Essential maintenance costs 

Essential maintenance cost Indicates the essential cost of 

maintaining the equipment. 

For a single equipment essential maintenance cost 𝐶𝑠𝑚 , it 

can be expressed as: 

𝐶𝑠𝑚 = 𝐶𝑓 + 𝐶𝑒𝑐 + 𝐶𝑠𝑝   (14) 

The essential maintenance cost for all equipment can be 

expressed as: 

𝐶𝑚 = (𝐶𝑓 + 𝐶𝑠𝑝) ⋅ 𝑀 + 𝐶𝑒𝑐 ⋅ 𝐺  (15) 

Where, determine whether there is equipment with  

a maintenance schedule on the day 𝑗. If there is, note 𝐺𝑗 equals 

1, and vice versa, note 𝐺𝑗  equals 0. The total number of 

equipment groups, denoted as 𝐺, is obtained by summing up the 

values of 𝐺𝑗 for all days. The number of equipment groups 𝐺 

can be denoted as: 

𝐺𝑗 = {
∑ 𝑋𝑖,𝑗 ≥ 1, 𝐺𝑗 = 1𝑀

𝑖=1

∑ 𝑋𝑖,𝑗
𝑀
𝑖=1 ＜1, 𝐺𝑗 = 0

  (16) 

𝐺 = ∑ 𝐺𝑗
𝑁
𝑗=1     (17) 

The decision variable 𝑋𝑖,𝑗  indicates whether or not 

replacement maintenance is performed for equipment 𝑖 on the 

day 𝑗, which can be expressed as: 

{
𝑋𝑖,𝑗 = 1,Replace and maintain equipment i on day j

𝑋𝑖,𝑗 = 0,No maintenance is performed on equipment i on day j
       (18) 

(2) Shutdown loss cost 

The downtime cost of a single equipment 𝐶𝑖
𝑣  can be 

expressed as: 

𝐶𝑖
𝑣 = 𝐶𝑒 ⋅ 𝑇𝑠    (19) 

The downtime cost 𝐶𝑠 of dynamic grouping maintenance of 

all equipment can be expressed as: 

𝐶𝑠 = 𝑀 ⋅ 𝐶𝑒 ⋅ 𝑇𝑠   (20) 

(3) Sudden failure and emergency maintenance costs 

The cost of sudden failures and emergency maintenance 

considers the losses caused by inadequate equipment 

maintenance. By considering the probabilistic RUL prediction 

results 𝜑𝑖,𝑗 for different equipment, costs of sudden failures and 

emergency maintenance of all equipment is 𝐶𝑝 , 𝐶𝑝  can be 

expressed as: 

𝐶𝑝 = ∑ (𝐸𝑖
𝑛 · (𝐶𝑒𝑚 + 𝐶𝑖

𝑣))𝑀
𝑖=1   (21) 

Among them, the emergency maintenance cost of single 

equipment 𝐶𝑒𝑚 can be expressed as: 

𝐶𝑒𝑚 = 𝐶𝑠𝑚 + 𝐶𝑎   (22) 

In addition, the mathematical expectation 𝐸𝑖
𝑛 for a sudden 

failure of the equipment 𝑖 before the optimal maintenance time 

𝑡𝑖 is expressed as: 

𝐸𝑖
𝑛  = ∑ 𝜑𝑖,𝑗

𝑡𝑖
𝑗=1    (23) 

Where 𝜑𝑖,𝑗   comes from the probabilistic RUL prediction of 

equipment 𝑖 in section 2.1.3, and the total probability value of 

occurrence of failure for each piece of equipment is 1, i.e., 

∑ 𝜑𝑖,𝑗 = 1𝑁
𝑗=1 . 

Therefore, the costs of sudden failures and emergency 

maintenance of all equipment is 𝐶𝑝, it can be expressed as: 

𝐶𝑝 = ∑ (𝐸𝑖
𝑛 · (𝐶𝑒𝑚 + 𝐶𝑖

𝑣))
𝑀

𝑖=1
 

= ∑ (∑ 𝜑𝑖,𝑗
𝑡𝑖
𝑗=1 · (𝐶𝑓 + 𝐶𝑒𝑐 + 𝐶𝑠𝑝 + 𝐶𝑎 + (𝐶𝑒 ⋅ 𝑇𝑠)))

𝑀
𝑖=1    (24) 

(4) Depreciation loss expense 

When determining the optimal time to maintain equipment, 

consider the cost of depreciation loss per equipment, which 

represents the loss due to excessive equipment maintenance. 

The depreciation cost of equipment 𝑖 is 𝐶𝑖
𝑑. It represents the 

wasted value of the replaced parts due to the maintenance of the 

equipment at the optimal maintenance time 𝑡𝑖, 𝐶𝑖
𝑑is expressed 

as: 

𝐶𝑖
𝑑 =

(𝑇𝑑−𝑡𝑖)

𝑇𝑑
⋅ 𝐶𝑠𝑝    (25) 

Where the optimal maintenance time 𝑡𝑖  for equipment 𝑖  is 

obtained from 𝑋𝑖,𝑗, and when a decision variable 𝑋𝑖,𝑗 exists with 
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a value of 1, then the optimal maintenance time 𝑡𝑖 for equipment 

𝑖 is 𝑗. The expression is: 

𝑡𝑖 = {
𝑋𝑖,𝑗 = 1, 𝑡𝑖 = 𝑗

𝑋𝑖,𝑗 ≠ 1,nonexecution
  (26) 

Therefore, the depreciation cost of all equipment 𝐶𝑜  is 

expressed as: 

𝐶𝑜 = ∑
(𝑇𝑑−𝑡𝑖)

𝑇𝑑
· 𝐶𝑠𝑝

𝑀
𝑖=1    (27) 

Finally, the total cost of the maintaining model is 𝐶𝑤, it can 

be expressed as: 

𝐶𝑤 = 𝐶𝑚+𝐶𝑠 + 𝐶𝑝 + 𝐶𝑜 

= (𝐶𝑓 + 𝐶𝑠𝑝 + (𝐶𝑒 · 𝑇𝑠)) · 𝑀 + 𝐺 · 𝐶𝑒𝑐 + ∑ (∑ 𝜑𝑖,𝑗
𝑡𝑖
𝑗=1 ·𝑀

𝑖=1

(𝐶𝑓 + 𝐶𝑠𝑝 + 𝐶𝑒𝑐 + 𝐶𝑎 + (𝐶𝑒 · 𝑇𝑠)) +
(𝑇𝑑−𝑡𝑖)

𝑇𝑑
· 𝐶𝑠𝑝) (28) 

The maintenance cost rate of the maintenance model is 𝐶𝑟, 

it can be expressed as: 

𝐶𝑟 =
Cw

∑ 𝑡𝑖
𝑀
𝑖=1

 

= (

 
 

(𝐶𝑓+𝐶𝑠𝑝+(𝐶𝑒⋅𝑇𝑠))·𝑀+𝐺⋅𝐶𝑒𝑐

+∑ (∑ 𝜑𝑖,𝑗
𝑡𝑖
𝑗=1 ·(𝐶𝑓+𝐶𝑠𝑝+𝐶𝑒𝑐+𝐶𝑎+(𝐶𝑒·𝑇𝑠))+

(𝑇𝑑−𝑡𝑖)

𝑇𝑑
·𝐶𝑠𝑝)𝑀

𝑖=1
)

 
 

∑ 𝑡𝑖
𝑀
𝑖=1

     (29) 

Note: The relationship between the decision variable 𝑋𝑖,𝑗 

and the optimal maintenance time 𝑡𝑖 is shown in Equation(26). 

In addition, the maintenance decision model takes into 

account the following main constraints: 

{

∑ 𝑋𝑖,𝑗 = 1𝑁
𝑗=1 ;

𝑋𝑖,𝑗 ∈ {0,1};

1 ≤ 𝑖 ≤ 𝑀; 1 ≤ 𝑗 ≤ 𝑁;

  (30) 

⚫ Consider choosing the optimal maintenance time, 

which means that within the maximum 

maintenance days 𝑁 for each piece of equipment 

𝑖 , only one day can be selected as the optimal 

maintenance time 𝑡𝑖. 

⚫ Consider the maintenance mode of each piece of 

equipment. The maintenance decision variable 

𝑋𝑖,𝑗 is 1 or 0. That is, the maintenance mode of the 

equipment is replacement maintenance or no 

maintenance. 

⚫ Consider the range of equipment 𝑖  and day 𝑗  in 

the decision variable 𝑋𝑖,𝑗 , where the number of 

equipment is 𝑀  and the maximum maintenance 

days of equipment is 𝑁; 

 

3. GOA procedures 

The Gazelle Optimization Algorithm (from now on referred to 

as GOA) is a meta-heuristic optimization algorithm proposed 

by Agushaka and Ezugwu et al. [30] in 2022. This algorithm 

simulates the behavior of gazelle to avoid predators and solves 

the problem by simulating the movement, foraging, and escape 

of antelopes. The gazelle optimization algorithm includes 

global search, local search, and gazelle escape. Compared with 

traditional algorithms such as Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO), which tend to fall into the 

problem of local optimal solutions [23], the GOA algorithm has 

robust searchability and can better find the optimal solution of 

the model so that the solution accuracy is higher. Therefore, this 

paper applies the Gazelle Optimization Algorithm (GOA) to 

solve the maintenance decision model. 

In this paper, the objective function (maintenance cost rate 

𝐶𝑟 is used as the fitness function to assess the fitness of gazelles 

in a particular location. Where the smaller 𝐶𝑟 is, the higher the 

fitness 𝑓 is, indicating the better solution at that location, and 

the fitness formula is: 

𝑓 =
1

𝐶𝑟
    (31) 

The basic steps of GOA optimization solution are as follows: 

(1) Random initialization of populations 

𝑋 =

[
 
 
 
𝑋1,1 𝑋1,2

𝑋2,1 𝑋2,2

⋯ 𝑋1,𝑁

⋯ 𝑋2,𝑁

⋮ ⋮
𝑋𝑀,1 𝑋𝑀,2

𝑋𝑖,𝑗 ⋮

⋯ 𝑋𝑀,𝑁]
 
 
 

𝑋𝑖,𝑗 ∈ {0,1}

   (32) 

𝑋 is a matrix of position vectors of a candidate population, 

and the position vector is the maintenance decision variable 𝑋𝑖,𝑗 

in Section 2.2.2, consisting of 0 or 1. 

(2) Construct an elite gazelle matrix 

By evaluating the fitness of all the gazelles (𝑋 ) in this 

generation, the gazelle with the highest fitness is selected as the 

top gazelle, and the position vector matrix of this gazelle is used 

as the elite matrix, which is used for searching and finding the 

gazelles in the next step. The elite matrix is: 
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𝐸𝑙𝑖𝑡𝑒 =

[
 
 
 
 
𝑋1,1

′ 𝑋1,2
′

𝑋2,1
′ 𝑋2,2

′

⋯ 𝑋1,𝑁
′

⋯ 𝑋2,𝑁
′

⋮ ⋮
𝑋𝑀,1

′ 𝑋𝑀,2
′

𝑋𝑖,𝑗
′ ⋮

⋯ 𝑋𝑀,𝑁
′ ]

 
 
 
 

𝑋𝑖,𝑗
′ ∈ {0,1}

  (33) 

(3) Global search 

At this stage, when gazelles are free to graze without 

predators or predators, they adopt the Brownian movement. 

Seemingly random motion when the displacement conforms to 

a standard (Gaussian) probability distribution function, where 

the average value and variance are 𝜇 = 0 and 𝜎2= 1, respectively. 

Its location is updated as follows: 

𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟+1 = 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟 + 𝑆 ⋅ 𝑅 ∗⋅ 𝑅𝐵 ∗⋅ (𝐸𝑙𝑖𝑡𝑒𝑖𝑡𝑒𝑟 − 𝑅𝐵 ∗⋅ 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟)(34) 

Where 𝑆  represents the moving speed of the gazelle, 𝑅𝐵 

represents a random vector based on Brownian motion, 𝑅 is a 

random number between 0 and 1, and 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟+1 is the next 

iteration of the current solution 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟. 

(4) Local search 

In this stage, the escape behavior of gazelles after finding 

predators is divided into two stages, and each stage constantly 

adopts two opposite directions of movement according to the 

parity of the number of iterations [30]. Stage 1: Take Levi's 

flight when spotting predators. The second stage: After the 

predator is spotted, the predator pursues the gazelle, it taking a 

Brownian motiona and later in Levi's flight. The local search 

phase is as follows: 

Stage 1: Gazelle When spotting a predator, the gazelle takes 

a Levi flight to escape: 

𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟+1 = 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟 + 𝑆 ⋅ 𝜇 ⋅ 𝑅 ∗⋅ 𝑅𝐿 ∗⋅ (𝐸𝑙𝑖𝑡𝑒𝑖𝑡𝑒𝑟 − 𝑅𝐿 ∗⋅ 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟)(35) 

Where 𝜇  is -1 or 1, indicating two directions of motion. 𝑅𝐿 

represents a random number vector based on a Levy distribution. 

Stage 2: The behavior of a predator chasing a gazelle after 

being spotted: 

𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟+1 = 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟 + 𝑆 ⋅ 𝜇 ⋅ 𝐶𝐹 ∗⋅ 𝑅𝐵 ∗⋅ (𝐸𝑙𝑖𝑡𝑒𝑖𝑡𝑒𝑟 − 𝑅𝐿 ∗⋅ 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟)(36) 

Where 𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

(2
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

 , 𝐶𝐹  represents the 

cumulative effect of predators. 

(5) Updating the elite gazelle matrix 

After completing the global and local searches, the top 

gazelle and elite gazelle matrices are updated if a higher fitness 

gazelle emerges. 

(6) Gazelle escape 

The gazelle has a specific survival rate when facing a 

predator, and the hunting success rate of the predator is 

represented by PSRs, which affects the gazelle's escape ability 

and prevents the algorithm from being trapped in a local 

minimum. The process can be expressed as follows: 

𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟+1 = {
𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟 + 𝐶𝐹[𝐿𝐵 + 𝑅 ∗⋅ (𝑈𝐵 − 𝐿𝐵)] ∗⋅ 𝑈, 𝑟 ≤ 𝑃𝑆𝑅𝑆

𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑖𝑡𝑒𝑟 + [𝑃𝑆𝑅𝑆(1 − 𝑟) + 𝑟](𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑟1 − 𝑔𝑎𝑧𝑒𝑙𝑙𝑒𝑟2), 𝑒𝑙𝑠𝑒

(37) 

𝑟 is a random number between 0 and 1. 

(7) Return the optimal value 

When the maximum number of iterations is reached, the 

gazelle position with the highest fitness is returned as the 

optimal solution of the optimized solution. 

The GOA algorithm's steps to solve this paper's model are 

shown in Fig. 4. 

GOA algorithm parameters 
are initialized(Equation 32)

Start

Gazelles update gazelle 
positions(multi-

equipment
maintenance time)  

using Brownian motion 
(Equation 34)

Current iterations Iter < 
Maximum iterations Max_iter

The fitness of the antelope was calculated 
successively(Equation 31), and the elite 
gazelle matrix was constructed(Equation 

33)

The gazelle first takes Levy flight to update 
the gazelle's position ( Equation 35 ). 
Subsequently, the predator chases the 

gazelle and updates the gazelle's position 
again ( Equation 36 ).

The random vector r < 0.5
Yes

No

Yes

No

Whether the current iteration 
number Iter is odd

μ=-1

Yes

No

μ=1

Update top gazelles and update elite gazelle 
matrix. 

Return to highest fit gazelle position 
(optimal maintenance time for multi-

equipment)

End

Global 
search

Local 
search

Update the 
Elite Gazelle 

Matrix

Constructing 
elite gazelle 

matrix

Population 
initialization

Gazelle 
escape

Return 
best 

solution

Apply hunting success PSRs to update 
gazelle locations (Equation 37)

 

Fig. 4. Flowchart of GOA algorithm. 
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4. Numerical case 

This paper considers six wind turbines of the same type as case 

objects for validation. Wind turbines are usually installed in 

remote and harsh environments, which is a major obstacle for 

equipment maintenance, resulting in relatively high 

maintenance costs for wind turbines. At the same time, since 

multiple wind motors are often installed in the same area, the 

economic relevance should be considered when scheduling 

maintenance work. Multiple equipment are repaired as much as 

possible in a single maintenance, and the maintenance strategy 

of dynamic grouping is consistent with this maintenance 

scenario. 

 

Fig. 5. Main bearing diagram of wind turbine. 

At present, the composition of the wind turbine includes 

eight significant systems, such as wind wheel, spindle, gearbox, 

and generator. Due to the critical and unique role of the main 

bearing [31], the damage to the main bearing can be regarded as 

damage to the whole wind turbine. Therefore, when assessing 

the health of a wind turbine, it can be simplified to assess the 

operational degradation of the main bearing [32]. The 

maintenance method in this paper only considers replacement 

maintenance and each maintenance piece of equipment 

consumes one spare part. According to the maintenance cost of 

a wind farm in northern China, this paper uses a multi-

equipment dynamic grouping maintenance decision model 

based on probabilistic remaining useful life (RUL) prediction to 

obtain the minimum maintenance cost rate. The main bearing of 

the wind turbine is shown in Fig.5. 

4.1. Data set description 

The Weibull distribution is a flexible distribution model, which 

accommodates a wide range of life distribution shapes. In the 

operation of electrical and mechanical equipment, the Weibull 

distribution can fully reflect the effects of operating time and 

conditions on the equipment's life [33]. The Weibull distribution 

is a powerful tool for describing various lifetime distributions 

[34]. It is very suitable for a life degradation model. 

This paper uses a simulation dataset to model the 

degradation of six main bearings for wind turbines (hereafter 

referred to as equipment). A degradation process with 8 Weibull 

distributions is used for each piece of equipment to simulate the 

eight degradation features of the equipment. Only one 

degradation value exists as an eigenvalue for each feature for 

each day of each equipment, and the number of samples for each 

feature represents the total number of days of life of that 

equipment. The labels of eight eigenvalues at the 𝑐𝑡 moment are 

the equipment's remaining useful life (RUL) at the 𝑐𝑡 moment. 

The parameters of different Weibull distributions are adjusted to 

describe the degradation of the six pieces of equipment through 

six diversified experiments to obtain the simulation dataset of 

the six pieces of equipment. The formula for the Weibull 

degradation distribution is as follows: 

𝑓(𝑐𝑡,𝑚𝑠, 𝜂𝑠) =
𝑚𝑠

𝜂𝑠
(

𝑐𝑡

𝜂𝑠
)

𝑚𝑠−1

⋅ 𝑒
−(

𝑐𝑡

𝜂𝑠
)
𝑚𝑠

  (38) 

Where 𝑐𝑡  denotes the current moment, 𝑚𝑠  is the shape 

parameter of feature s, 𝜂𝑠  is the scale parameter of feature s, 

𝑓(𝑐𝑡,𝑚𝑠, 𝜂𝑠) is the degenerate value of the feature s. Where s∈

{0,8  and 𝑚𝑠>0, 𝜂𝑠>0, 𝑡 >0. 

The degradation simulation parameters for each device have 

a range of 𝑚𝑠: 534.38~1234.38, a range of 𝜂𝑠: 1.8173~2.8173, 

and a range of 𝑐𝑡 (a range of number of samples): 947~989. The 

degradation process of the six equipment of the same type is 

shown in Fig. 6. The total life days of the six equipment are 

shown in Table 2. 

Table 2. The total life days of the 6 equipment. 

equipment Total life days 

A 974 

B 989 

C 968 

D 965 

E 965 

F 986 
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Fig. 6. Degradation process of 6 equipment.

4.2. Probabilistic RUL prediction of multi-equipment 

The following is the probabilistic RUL prediction process of the 

wind turbine (after this, referred to as the equipment). Firstly, 

outliers in the data are dealt with using a sliding average 

filtering method to reduce invalid data. Then, the LSTM 

prediction model was trained and tested on degraded data from 

one equipment (equipment A) using the LSTM. The first 60 % 

of the data set is used as the training set (only this part of the 

data is selected for training). In order to evaluate the 

performance of the prediction model on unknown data, the 

remaining 40 % is used as the test set to test the prediction effect. 

The results are shown in Fig. 7. Finally, this equipment's trained 

LSTM prediction model is obtained. 

 

Fig. 7. Continuous RUL prediction diagram for one piece of 

equipment. 

Then, VAE is used to resample the degradation data of this 

equipment 200 times, and 200 groups of reconstructed data of 

this equipment are obtained. At the current moment (day 584), 

we need to evaluate the probabilistic RUL prediction of 

equipment, so these reconstructed data are taken as the first 60% 

(first 583 days) of the data as the known data to be brought into 

the trained LSTM prediction model respectively, to get the 200 

sets of outputs for this equipment on day 584. All the predicted 

values on the 584th day were taken from 200 sets of outputs for 

statistical calculation to obtain the probability distribution. This 

probability distribution indicates uncertainty in the RUL 

prediction of this equipment on the 584th day, and the 

probability distribution diagram is shown in Fig. 8. 

 

Fig. 8. Probability distribution diagram of RUL prediction for 

one piece of equipment on the 584th day. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

For the equipment's training and test results in Fig. 7, the 

root mean square error (RMSE) value is 23.903. Among them, 

the remaining life at the current time (day 584) is predicted to 

be 382 days, and the actual remaining life is 390 days.  

In Fig. 8, the blue line represents the average predicted RUL 

value, and the red line represents the actual RUL value. 

To illustrate the accuracy of the prediction results, we 

compare the model prediction results (probabilistic RUL 

distribution) with the real data (real RUL values). Based on the 

probabilistic RUL prediction results in Fig. 8, this paper uses 

mean square error (MSE) and percentage error (PE) to evaluate 

the prediction accuracy between the probabilistic RUL 

distribution and the real RUL values. In this case, MSE is  

a measure of prediction accuracy by calculating the mean of the 

sum of squares of the differences between the predicted and real 

values, and PE is a measure of prediction accuracy by 

calculating the differences between the predicted and real 

values, which is expressed in the form of a percentage. 

According to the calculation, the MSE value of its 200 predicted 

values is 26.44 and the average PE value is 3.53 %. The smaller 

the RMSE, MSE, and PE values, the higher the prediction 

accuracy, indicating that the equipment probability RUL 

prediction has a certain reliability. 

Similarly, this paper considers probability RUL prediction 

for six equipment of the same type in a wind farm, and the 

prediction results are shown in Fig. 9:

 

Fig. 9. RUL probability distribution for six equipment.

Table 3 shows the MSE and PE values of the six equipment. 

The MSE values of the six equipment range from 18.32 to 26.44, 

with an average MSE value of 23.84. The PE values of the six 

equipment range from 2.92% to 4.14%, with an average PE 

value of 3.42%. According to the analysis in Table 3, it can be 

seen that the prediction accuracy of the six equipment is 

relatively good, and the probabilistic RUL prediction has some 

reliability. 

Table 3. MSE and PE values for six equipment. 

equipment MSE PE 

A 26.44 3.53% 

B 25.53 4.14% 

C 25.39 3.11% 

D 21.53 2.92% 

E 18.32 3.36% 

F 25.81 3.47% 
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4.3. Multi-equipment maintenance experiment design 

This is to prove the superiority of the multi-equipment dynamic 

grouping maintenance model in reducing maintenance costs and 

that the GOA algorithm has the advantage of solving accuracy 

when solving the model. This paper's two simulation 

experiments are designed: the algorithm comparison 

experiment and the maintenance strategy comparison 

experiment. 

Both simulation software uses MATLAB R2021b, and the 

hardware configuration is Intel (R) Core (TM) i5-13400F 

2.50GHz; 32GB.  

 (1) Algorithm performance analysis 

To demonstrate the advantages of the Gazelle Optimization 

Algorithm (GOA) in terms of solution accuracy, the algorithm 

comparison experiment compares the GOA, GA, and PSO 

algorithms. All three algorithms have the following initial 

settings. The population size is 200, the number of iterations is 

700, and the number of repeated experiments is 30. All three 

algorithms use the probabilistic RUL prediction results in Fig. 

9 and the maintenance model parameters in Table 4 to solve the 

multi-equipment dynamic grouping maintenance decision 

model. Finally, the box plot is used to show the solution results 

of the three algorithms, and the optimal value, average value, 

and median are used to analyze the algorithm's simulation 

results. 

Table 4. Table of maintenance model parameters. 

Parameter Value (units) 

M 6 (sets) 

N 1000 (days) 

𝐶𝑓 6000 (RMB/set) 

𝐶𝑠𝑝 150,000 (RMB/set) 

𝐶𝑒𝑐 35,000 (RMB/time) 

𝐶𝑒 400 (RMB/hour) 

𝑇𝑠 72 (hours) 

𝑇𝑑 1000 (days) 

𝐶𝑎 50000 (RMB/time) 

(2) Maintenance strategy comparison 

After proving the advantages of the GOA algorithm in 

solving the dynamic grouping maintenance model in terms of 

accuracy, in order to prove that the maintenance decision of  

a multi-equipment dynamic grouping has certain advantages in 

reducing maintenance costs, the maintenance strategy 

comparison experiment compares the dynamic grouping 

maintenance of multi-equipment with the independent 

maintenance of multi-equipment without considering the 

dynamic grouping. The maintenance strategy comparison 

simulation results are analyzed using three indicators: the 

maintenance cost rate, the total maintenance cost, and the 

number of days used by all equipment. The maintenance models 

for both strategies are solved using the GOA algorithm, both 

using the probabilistic RUL prediction results in 4.2 and the 

maintenance model parameters in Table 4. 

Independent maintenance of multiple equipment s means 

that the maintenance strategy is based on each equipment's 

probability RUL prediction results, the minimum maintenance 

cost rate of each independent equipment is the target, and the 

optimal maintenance time corresponding to each independent 

equipment is obtained. Finally, the optimal maintenance time of 

all independent equipment constitutes a multi-equipment 

independent maintenance decision. 

4.4. Multi-equipment maintenance experimental results  

(1) Results of algorithm performance 

The GOA, GA, and POS algorithms run the multi-

equipment dynamic grouping maintenance model 30 times, and 

the solution result box line diagram is shown in Fig. 10. The 

comparison of the three indicators of optimal value, average 

value, and median is shown in Table 5. 

 

Fig. 10. Boxplot comparison of GOA, GA, and PSO algorithm 

results. 
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Table 5 Index comparison of GOA, GA, and PSO algorithm 

results 

(Unit: yuan) GOA GA PSO 

Optimum (Min) 257.05 257.46 257.05 

Mean 257.26 259.62 259.29 

Median 257.23 258.57 257.80 

According to Fig. 10, it can be seen that the GOA algorithm 

is significantly higher than the GA and PSO algorithms in terms 

of solution accuracy. According to Table 5, the results of the 

GOA algorithm are better than those of the GA and PSO 

algorithms in terms of optimal value, average value, and median, 

indicating that the GOA algorithm has certain advantages over 

the classical algorithms GA and PSO in solving the dynamic 

grouping maintenance model. It is easier to obtain a lower 

maintenance cost rate. 

(2) Comparison results of two maintenance strategies 

We compare the results of multi-equipment dynamic 

grouping maintenance decisions with those of multi-equipment 

independent maintenance decisions. In order to show more 

intuitively, Fig.11 considers the first 583 days based on Fig. 9, 

shows the probability distribution of the total life of 6 

equipment, and shows the decision results of the two 

maintenance strategies. Fig.12 shows the maintenance plan of 

the two maintenance strategies. 

In Fig.11, the green line is the optimal maintenance time for 

each equipment of the dynamic grouping maintenance strategy, 

and the orange line is the optimal maintenance time for each 

equipment of the independent maintenance strategy. In Fig.12, 

the green 'stars' constitute the maintenance plan of the dynamic 

grouping strategy, and the orange 'stars' constitute the 

maintenance plan of the independent maintenance strategy. 

According to Fig.11 and Fig.12, six equipment are divided 

into two groups according to the dynamic grouping 

maintenance plan. Among them, the optimal maintenance time 

of wind power equipment A, C, D, and E is 936 days, and they 

are regarded as a group. The optimal maintenance time for wind 

power equipment B and F is 957 days for both, and they are 

regarded as a group. The essential maintenance cost of the 

maintenance plan (including cost of labor, spare parts cost, 

maintenance tool input and output costs) is 1006000 yuan, the 

cost of downtime loss is 172800 yuan, the mathematical 

expectation of sudden failure and emergency maintenance cost 

is 224600 yuan, and the cost of equipment depreciation loss is 

51300 yuan. Therefore, the total cost of the dynamic grouping 

maintenance plan is 1454700 yuan, the average running days of 

the six pieces of equipment is 943 days, and the maintenance 

cost rate (the average daily maintenance cost of each equipment) 

is 257.1 yuan. 

According to the independent maintenance plan, the optimal 

maintenance time from equipment A to equipment F is 943, 958, 

941, 940, 937, and 960 days, respectively. The essential 

maintenance cost of the maintenance plan is 1146000 yuan, the 

cost of downtime loss is 172800 yuan, the mathematical 

expectation of sudden failure and emergency maintenance cost 

is 255450 yuan, and the cost of equipment depreciation loss is 

48150 yuan. The total cost of the independent maintenance plan 

is 1622400 yuan, the average running days of the six pieces of 

equipment is 946.5 days, and the maintenance cost rate is 285.7 

yuan. 

The maintenance cost rate of the two maintenance methods, 

the total maintenance cost, and the average running days of the 

six equipment are shown in Table 6.
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Fig.11. Decision results of dynamic grouping maintenance and independent maintenance. 

 

Fig.12. Dynamic grouping maintenance plan and independent maintenance plan. 

Table 6. Comparison of results of dynamic grouping maintenance and independent maintenance. 

(Unit: yuan) 
Maintenance of dynamic 

grouping 

Independent 

maintenance 
difference between the two 

Maintenance cost rate 257.1 285.7 28.6 

Total maintenance cost 1454700 1622400 167700 

Average running days of 6 equipment 943 946.5 3.5 

According to Table 6, compared with independent 

maintenance, the average running days of dynamic grouping 

maintenance are 3.5 days less than those of independent 

maintenance. However, in terms of total cost, the former is 

167,700 yuan less than the latter, a decrease of 10.34 %. Finally, 

in terms of maintenance cost rate, the former is 28.6 yuan less 

than the latter, which is reduced by 10.01 %. 

4.5. Discussion 

According to the multi-equipment probability RUL prediction 

results, multiple new samples can be obtained due to the 

Variational Auto-Encoder's resampling of the equipment 

degradation data. LSTM is suitable for processing long 

sequence data. It can predict the degradation trend more 

accurately. Therefore, reliable equipment probability RUL 

prediction results can be obtained by resampling and LSTM. 
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According to the comparison results of the algorithm, since 

GOA can continuously jump out of the local optimal solution 

when solving the dynamic grouping maintenance model, GOA 

algorithm has certain advantages in solving accuracy compared 

with the classical algorithms GA and PSO. It is easier to obtain 

a lower maintenance cost rate. 

According to the comparison results of maintenance 

strategies, it can be seen that the independent maintenance of 

multi-equipment only determines the optimal maintenance time 

of each independent equipment based on the probability RUL 

prediction results of each equipment, which does not consider 

the cost reduction caused by the dynamic grouping maintenance 

of multi-equipment (such as the maintenance of the same group 

of equipment only costs the entry and exit costs of maintenance 

tools once). So, the maintenance cost rate and total maintenance 

cost are relatively high. Multi-equipment dynamic grouping 

maintenance reduces maintenance costs, reduces unnecessary 

waste, and improves the competitiveness of enterprises 

compared with multi-equipment independent maintenance. 

5. Conclusion 

This paper proposes a multi-equipment dynamic grouping 

maintenance decision-making method based on probabilistic 

RUL prediction considering the uncertainty of equipment 

remaining useful life prediction and the economic correlation in 

the multi-equipment maintenance process. Six wind turbines 

with the same type are used as case objects for experimental 

verification. The experiment summarizes some important 

findings as follows. 

(1) After resampling the degradation data of six devices, the 

average MSE value between the 200 predicted RUL values and 

the real RUL values at a specific time is 23.84, and the average 

PE value is 3.42 %, which can prove that the probability RUL 

prediction of the equipment has a certain reliability. 

(2) By comparing the algorithms, the Gazelle Optimization 

Algorithm (GOA) is better than the GA and POS algorithms, the 

optimal value of the solution is relatively better, and the solution 

accuracy is relatively higher. 

(3) Compared with multi-equipment independent 

maintenance, the maintenance cost rate of multi-equipment 

dynamic grouping maintenance is reduced by 10.01 %, and the 

total maintenance cost is reduced by 10.34 %. So, the multi-

equipment dynamic grouping maintenance in this paper 

considers the economic correlation and can effectively reduce 

the maintenance cost. 

In the future, we will consider more components to 

determine the remaining useful life of the equipment. At the 

same time, it is more than determining a maintenance plan only 

once. Over time, it can change the maintenance plan to adapt to 

new predictive information in time to reduce the maintenance 

cost.
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