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Highlights  Abstract  

▪ A remaining useful life (RUL) prediction 

model is proposed to better tackle the life 

evaluation problem in the slope degradation 

process. 

▪ The probability density function (PDF) of RUL 

is deduced by the least squares method (LSM) 

and the maximum likelihood estimation 

method (MLEM). 

▪ A linear model (M1) and two nonlinear models 

(M2 and M3) are estimated and compared 

using the measured displacement data of the 

slope. 

 A remaining useful life (RUL) prediction model based on the nonlinear 

Wiener process is proposed to better tackle the life evaluation problem 

in the slope degradation process. Taking the displacement of the slope as 

its performance degradation index, and the nonlinear Wiener process is 

used to establish the RUL prediction model of the slope. For this model, 

the least squares method (LSM) is used to estimate the drift coefficients, 

the maximum likelihood estimation method (MLEM) is used to estimate 

the diffusion parameters, and then the probability density function (PDF) 

of the RUL of the slope is deduced and the RUL is predicted. The 

proposed model is verified by slope engineering examples. The results 

demonstrated that the RUL of the degradation model based on the 

nonlinear Wiener process has a greater prediction accuracy than the 

linear Wiener process. Because the various nonlinear functions have 

varying slope adaptations, and it can predict the RUL of a slope more 

accurately, which can provide more reliable preventive maintenance 

decisions. 
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1. Introduction 

As one of the four major global geological hazards (earthquakes, 

floods, landslides and debris flows), landslides often destroy 

buildings, block traffic, damage rivers and cause casualties. It 

poses a serious hazard to human life and engineering 

construction[1-3]. Slope displacement monitoring is an 

important means and measure to grasp the status of slopes and 

ensure their safety[4,5]. As the most significant parameter to 

characterize slope changes, slope displacement can reflect the 

changing condition and development trend of slopes. Therefore, 

if the development trend of slope displacement can be 

accurately monitored and predicted[6,7], disaster mitigation and 

prevention measures can be taken as early as possible. 

Since the slope displacement monitoring data directly 

reflects the overall safety of the slope, the degradation process 

has received much attention[8,9]. He et al. established a slope 

displacement vector angle and displacement rate prediction 

criterion using the data from the slope monitoring point of Xin 

Tan, and the prediction results matched with the actual slope 

instability time and pattern[10]. Ma constructed a grey least 

squares support vector machine prediction model to predict 
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future slope displacements using the sequence of measured 

slope displacements[11]. Venkatesan et al. demonstrated the 

applicability of the improved Bayesian classification technique 

to landslide sensitivity early warning models on data 

mining[12]. Considering the displacement monitoring 

information, Cheng et al. proposed an analysis method to judge 

the stability of soil slopes, and a non-linear function relationship 

between the strength reduction coefficient and slope 

displacement is established[13]. Considering the displacement 

information fusion, Feng et al. proposed a dynamic early 

warning method for open pit slopes to carry out real-time zonal 

safety warnings of slopes and predict the stability of future 

excavation processes of slopes[14]. Chakraborty et al. used 

multiple linear regression (MLR) and artificial neural networks 

(ANN) to predict the slope stability and compared the finite 

element outputs with the developed prediction models to find 

the best prediction model[15]. Considering the particle 

migration and variation, Qi et al. proposed a particle swarm 

optimization algorithm to predict the slope excavation 

displacement and stability[16]. In recent years, some new 

models have been proposed to predict the slopes. Liu et al. 

proposed a Physics-informed Data Assimilation method for 

landslide displacement forecasting, which can enhance the 

prediction ability of the physical forecasting model and solve 

the problem of ignoring the physical significance of landslides 

in the mathematical prediction model[17]. Wang et al. proposed  

a new methodology for analyzing slope stability based on three 

techniques: interferometric synthetic aperture radar, unmanned 

aerial vehicle, and ground-based interferometric synthetic 

aperture radar [18]. Besides, Lin et al. proposed a combined 

neural network prediction model that combines a temporal 

convolutional neural network and a bidirectional long short-

term memory neural network to address the shortcomings of 

traditional recurrent neural networks in predicting 

displacement-fluctuation-type landslides[19]. All in all, the 

prediction work based on displacement monitoring data has 

achieved more achievements, but it can only predict the 

displacement value for a short period, and the remaining useful 

life prediction of slope can grasp the time of slope damage and 

can carry out better maintenance work. 

RUL prediction, as the basis for real-time mastering of 

system operation status and making predictive maintenance 

plans, has already gained interest in several domains[20-22], 

including slope engineering. RUL prediction methods are 

mainly divided into mechanistic model-based RUL prediction 

and degradation data-based RUL prediction. The former is 

accurate but very difficult to model the degradation process. The 

latter does not require prior knowledge of the product 

degradation mechanism and only requires real-time 

measurement of the product output parameters to reveal the 

internal and external influences on the bases of the measured 

parameters. The prediction of RUL based on degradation data 

has become a research hotspot in recent years. Wang et al. 

applied a one-dimensional linear Wiener process with drift to 

model and used the maximum likelihood estimation method 

(MLEM) to estimate the initial parameters, and the 

effectiveness of the Wiener process-based method for predicting 

the RUL of an aeronautical hydraulic axial piston pump is 

verified by the final experimental results[23]. Freitas et al. 

considered a linear degradation model with only the slope and 

assumed that the inverse of the slope obeys the Weibull 

distribution, and a Bayesian estimation method for the 

parameters as well as the product reliability is proposed[24]. 

Oliveira & Colosimo compared three methods (the pseudo-life 

approximation method, the analytical method and the 

simulation method) to estimate the failure distribution on the 

bases of the linear degradation model[25]. Zhu et al. established 

a Wiener process model on the bases of the performance 

degradation through battery degradation data, and its reliability 

function analysis can provide a scientific and accurate 

assessment of lithium batteries[26]. Based on a multi-stage 

Wiener process degradation model, Liu et al. proposed a method 

to predict the remaining life of an aero-engine and provide  

a basis for the formulation of aero-engine maintenance 

plans[27]. Based on a one-dimensional linear Wiener process, 

Li et al. established a bank slope degradation model to verify 

the remaining life prediction for bank slopes, which can provide 

technical support for early warning of bank slopes[28]. On this 

basis, Feng et al. constructed a random-effects Wiener process 

model for the slopes of water diversion projects and used 

Bayesian methods to achieve updating of parameters[29]. For 

upcoming measured displacements, a precise estimation of the 

slope's RUL may be made. However, current research on the 

RUL of slopes only stays in the linear degradation model. Due 
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to the complex and variable operating environment of slopes, 

only considering linear degradation does not adequately reflect 

the health state of slopes and may cause errors in the life 

prediction results, so it is necessary to study the feasibility of 

the non-linear degradation model for the health state assessment 

of slopes. 

In light of the aforementioned issues, based on a nonlinear 

Wiener process, a model is proposed to estimate the slopes' 

RUL. The slope displacement is used as its degradation index, 

the nonlinear Wiener process model is used to describe the 

displacement degradation of the slope, and the unknown 

parameters are obtained through two-step estimation. The 

proposed model can realize the prediction of the remaining 

useful life of the slope and provide a guiding basis for the later 

maintenance decision of the slope. 

2. Modeling 

2.1 Wiener process modeling 

The Wiener process can describe the non-monotonic 

performance degradation process and individual variability and 

has good computational power, so it is one of the widely used 

performance degradation models in the field of reliability[30]. 

If the Wiener process {𝐵(𝑡), 𝑡 > 0} satisfies the following three 

properties. 

(1) 𝐵(0) = 0 is certain to hold. 

(2) 𝐵(𝑡) is a smooth, independent increment. 

(3) The increment ∆𝐵(𝑡) = 𝐵(𝑡 + ∆𝑡) − 𝐵(𝑡); ∆𝑡 > 0 , 

follows a normal distribution with mean and variance of 0 and 

respectively. 

Then 𝐵(𝑡)  satisfying the above conditions is called the 

standard Wiener process and is used for modeling. Let 𝑋(𝑡) 

denote the amount of degradation of the slope at t. The equation 

for modeling the degradation of the slope is: 

𝑋(𝑡) = 𝑥(0) + 𝑎𝑡 + 𝜎𝐵𝐵(𝑡)   (1) 

Let 𝑥(0) denotes the displacement of the slope at the initial 

moment. It is usually considered that 𝑥(0) = 0  [31] in 

engineering applications, define 𝑋(𝑡) = 𝑋(𝑡) − 𝑥(0), then the 

constructed linear Wiener process can be expressed as: 

𝑋(𝑡) = 𝑎𝑡 + 𝜎𝐵𝐵(𝑡)   (2) 

where𝑎is the drift coefficient, and σB is the diffusion coefficient. 

The drift coefficient of the Wiener process in Eq. (2) is a 

linear function of time. However, with the change of external 

environment, the displacement of slope in the degradation 

process usually has non-linear characteristics, it is more 

applicable to build a displacement degradation model for 

nonlinear Wiener processes, which can be expressed as [32]: 

𝑋(𝑡) = 𝑥(0) + 𝑎 ∫ 𝜇(𝑏; 𝑡)
𝑡

0
d𝑡 + 𝜎𝐵𝐵(𝑡) (3) 

where 𝜇(𝑏; 𝑡)  and 𝐵(𝑡)  are mutually independent, and 

∫ 𝜇(𝑏; 𝑡)
𝑡

0
d𝑡 is a non-linear function parameterized by b, which 

is used to characterize the non-linear nature of slope 

displacement degradation.  

2.2 RUL prediction 

The RUL of a slope is the time at which the failure threshold is 

first reached by a random degradation process. If the time when 

the equipment first reaches the failure threshold is predicted at 

ti based on historical data, the RUL of the slope is obtained, the 

basic principle of which is shown in Fig. 1. 

 

Fig. 1. Sketch of the principle of RUL prediction. 

In Fig. 1, w is the set failure threshold and the RUL tf usually 

occurs at the maximum value of the PDF of RUL. During 

operation, the slope degrades continuously and its RUL 

decreases with time, when the quantity of degradation reaches 

the pre-set failure threshold w for the first time, the slope will 

suffer instability damage, at which point the RUL of the slope 

is zero. Therefore, the end of slope life is the time when the 

random degradation process X(t) first crosses the failure 

threshold w, the RUL of the slope tf can be defined as: 

𝑡𝑓 = inf{𝑡𝑓: 𝑋(𝑡𝑓 + 𝑡𝑖) ≥ 𝑤|𝑋(𝑡𝑖) < 𝑤}  (4) 

where tf is the RUL, ti is the current moment of the slope, and 

𝑋(𝑡𝑖) is the current moment of the slope displacement. 
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2.3 Life prediction models 

RUL prediction by linear Wiener process has been widely used 

in the fields of machinery, lithium batteries, etc., and the 

application results tend to be mature, among which the literature 

[28,29] has achieved good results in slope RUL prediction. 

However, different systems often exhibit different nonlinear 

characteristics during degradation, so it is necessary to choose 

a nonlinear function that is compatible with the degradation 

characteristics of the system, which helps to improve the 

prediction accuracy. In the field of slope engineering, there is 

less research on the selection of non-linear functions, the 

degradation model based on the nonlinear Wiener process has 

achieved good results in the fields of machinery and battery, etc.  

So this article builds on their degradation laws study experience 

with nonlinear function selection[6,33,34], and focuses on the 

analysis of two forms of nonlinear functions,  and 

in slope engineering.  

The nonlinear degenerate models derived by inserting a and 

b into Eq. (3) for the integration process are shown in Eqs. (5) 

and (6) and labeled M2 and M3, respectively, whereas the linear 

degenerate model described in Eq. (2) is labeled M1. 

M2: 𝑋(𝑡) = 𝑎𝑡𝑏 + 𝜎𝐵𝐵(𝑡)   (5) 

M3: 𝑋(𝑡) = 𝑎(𝑒𝑏𝑡 − 1) + 𝜎𝐵𝐵(𝑡)  (6) 

The constructed model demonstrates that M2 and M3 add 

nonlinear functions 𝜇(𝑏, 𝑡)  compared to M1, M1 is a special 

case of M2 when b=1. M2 and M3 are two different forms of 

nonlinear construction. M2 is the power function form and M3 

is the exponential form. 

In the process of calculating the RUL of a slope, the key is 

to calculate the PDF of the slope RUL. By the definition of the 

RUL, the first reach time in the Wiener process obeys the 

inverse Gaussian distribution. Since the PDF of RUL is explicit 

for linear Wiener processes and implicit for nonlinear Wiener 

processes, in order to make the PDF explicit, it is represented 

by the approximate expression. The PDFs[35] for each 

degradation model were obtained separately as follows: 

𝑓M1(𝑡) =
𝑤

√2𝜋𝜎𝐵
2𝑡3

exp (−
(𝑤−𝑎𝑡)2

2𝜎𝐵
2𝑡

)  (7) 

𝑓M2(𝑡) ≅
𝑤−𝑎𝑡𝑏(1−𝑏)

𝜎𝐵√2𝜋𝑡3
exp (−

(𝑤−𝑎𝑡𝑏)
2

2𝜎𝐵
2𝑡

)  (8) 

𝑓M3(𝑡) ≅
𝑤−𝑎𝛽(𝑡)

𝜎𝐵√2𝜋𝑡3
exp (−

(𝑤−𝑎𝛾(𝑡))
2

2𝜎𝐵
2𝑡

)  (9) 

𝛾(𝑡) and 𝛽(𝑡) in Eq. (9) can be presented as Eq. (10). 

{
𝛾(𝑡) = exp(𝑏𝑡) − 1

𝛽(𝑡) = (1 − 𝑏𝑡)exp(𝑏𝑡) − 1
}  (10) 

3. Parameter estimation 

The parameters in each model constructed were determined 

based on the characteristics of the monitoring data. The slope 

life PDF obtained in Eqs. (7)-(10), the M1 uses the MLE to 

estimate the parameters. Let 0 = 𝑡1 < 𝑡2 < 𝑡3 < ⋯ < 𝑡𝑛 = 𝑡 

denotes the monitoring moment of the slope during the period 

[0, t], corresponding to the amount of slope degradation 𝑋 =

{𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛1}. The likelihood function for the degradation 

of the slope displacement is: 

𝐿(𝑎, 𝜎𝐵) = ∏
1

√2𝜋𝜎𝐵
2∆𝑡𝑖

𝑛
𝑖=1 exp (−

(∆𝑥𝑖−𝑎∆𝑡𝑖)2

2𝜎𝐵
2∆𝑡𝑖

)   (11) 

ln𝐿(𝑎, 𝜎𝐵) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎𝐵

2) −
1

2𝜎𝐵
2 ∑

(∆𝑥𝑖−𝑎∆𝑡𝑖)2

∆𝑡𝑖

𝑛
𝑖=1 +

ln (∏
1

√∆𝑡𝑖

𝑛
𝑖=1 )               (12) 

Find the partial derivatives of a  and 𝜎𝐵
2  respectively, and 

make them equal to 0, i.e.:  

𝑎 =
∑ ∆𝑥𝑖

𝑛
𝑖=1

∑ ∆𝑡𝑖
𝑛
𝑖=1

    (13) 

𝜎𝐵
2 =

1

𝑛
∑

(∆𝑥𝑖−𝑎∆𝑡𝑖)2

∆𝑡𝑖

𝑛
𝑖=1    (14) 

Among others, ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, ∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1. 

The nonlinear degenerate models M2 and M3 have 

parameters 𝜃(𝑎, 𝑏, 𝜎𝑏), and the nonlinear least squares approach 

is used to estimate the unknown parameters 𝜃(𝑎, 𝑏) so that A in 

Eq. (15) is minimized. 

A = min ∑ (𝑋(𝑡) − 𝑎 ∫ 𝜇(𝑡; 𝑏)d𝑡21

0
)𝑛

𝑖=1   (15) 

Let 𝑍(𝑡) = 𝑋(𝑡) − 𝑎 ∫ 𝜇(𝑡; 𝑏)d𝑡
1

0
= 𝜎𝐵𝐵(𝑡) , 𝑍(𝑡)  can be 

viewed as a special case of a linear Wiener process with a drift 

coefficient equal to 0, and estimating parameters using the MLE. 

∆𝑍(𝑡) = 𝑍(𝑡 + 1) − 𝑍(𝑡), (𝑡 = 1, ⋯ , 𝑛)  represents the 

degradation increase at ∆𝑡 , the maximum likelihood function 

𝐿(𝜎𝐵
2) is: 

𝐿(𝜎𝐵
2) = ∏

1

𝜎𝐵√2𝜋∆𝑡

𝑛
𝑖=1 exp (−

(∆𝑍(𝑡))
2

2𝜎𝐵
2∆𝑡

)  (16) 

Derivation of Eq. (16): 

𝜕ln𝐿(𝜎𝐵
2)

𝜕𝜎𝐵
2 = −

𝑛

2𝜎𝐵
2 + ∑ (

(∆𝑍(𝑡))
2

2∆𝑡𝜎𝐵
4 )𝑛

𝑖=1 = 0  (17) 

( )expb bt 1tb −
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Then the maximum likelihood estimates for 𝜎𝐵
2 is: 

𝜎𝐵
2 =

1

𝑛
∑

(∆𝑍(𝑡))
2

∆𝑡

𝑛
𝑗=1    (18) 

4. Example analysis 

Using the amount of slope displacement degradation as the 

characteristic value, two slopes in China are used as examples 

for calculation using the model in the article to verify the 

adaptability of each model. 

4.1 Brief description of the case 

Case 1: The Xin Tan landslide, which occurred in June 1985, is 

located in Hubei Province, China, down 27km from the Three 

Gorges Dam Project. The elevation of the leading and trailing 

edges of the landslide is 70~900m, with a relative height 

difference of more than 800m. The total volume of the landslide 

is about 30 million m³. The back edge of the landslide and the 

western boundary is a steep wall of bedrock composed of 

Devonian Permian sandstone and limestone, while the eastern 

boundary is a fissured surface cut into the avalanche 

accumulation; the accumulation is generally 30~40m thick, 

dominated by gravel and clay; the underlying bedrock surface 

is Silurian sand and shale, and the form is relatively complex.  

Case 2: A water diversion channel project is located in 

Xinjiang Province, China. The geological conditions of the 

channel slope are complex, with the upper part of the slide being 

loess and the underlying bedrock of the sand and gravel being 

Tertiary mudstone. The slope has a history of landslides and is 

still in a creep-slip state. 

4.2 Degradation data and failure thresholds 

According to the slope displacement monitoring information, 

Case 1 takes the measured displacement data from May 1978 to 

September 1984 at the monitoring site, and Case 2 takes the 

measured displacement data from July 18th, 2011 to July 23th, 

2017 for Wiener process degradation modeling, and their 

performance degradation trends are shown in Fig. 2.

 

Fig. 2. Displacement degradation curve graph:(a) Case 1, (b) Case 2.

To determine the slope failure threshold, many scholars such 

as Lin et al.[36], Miao et al.[37], and Qian et al.[38] have made 

some progress in this field. To consider the important role of 

displacement monitoring information in slope prediction, He et 

al. used the monitoring information of slope creep-slip 

displacement and the correlation between damage variables and 

stability coefficients, in this way, a displacement warning 

criterion is constructed based on the safety factor and the slope's 

initial elastic deformation[39]. According to the literature[39], 

the slope threshold can be obtained from Eq. (19). 

𝑤 =
𝐹𝑐𝑟𝑆0

𝐹𝑐𝑟−1
    (19) 

Where 𝐹𝑐𝑟 is the critical safety factor for the slope, and 𝑆0 is the 

initial elastic deformation of the slope. 

According to Eq. (19) and the specification DLT5353-

2006[40], the displacement threshold of case 1 can be 

determined as 7150mm, and the displacement threshold of case 

2 is 814mm. 

(a) (b)
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4.3 RUL prediction results and analysis 

For the M1 model, the likelihood function is constructed using 

MLEM and displacement monitoring data as in Eq. (11), and 

the parameter values can be obtained separately by taking 

partial derivatives of the parameters through Eq. (12). For the 

M2 and M3 models, the drift coefficients in the Wiener process 

are first determined using nonlinear LSM, so that A is the 

minimum value in Eq. (15), and then the diffusion parameters 

are determined using MLEM in the same way as above, and the 

parameter values can be obtained as in Eq. (18). Then each 

parameter of M1-M3 model was estimated using the measured 

displacement data of the slope in case 1 of Fig. 2(a), and the 

estimated values of each model parameter are shown in Table 1 

below. 

Table 1. Estimated values of different model parameters. 

Based on the parameters of each model in Table 1, the PDFs 

of RUL under different degradation models are obtained, as 

shown in Fig. 3.  

 

Fig. 3. PDFs of RUL for each degradation model. 

Based on the modeling time of September 30, 1984 and the 

time of large-scale sliding of the Xin Tan landslide on June 12, 

1985, it is known that the real RUL of the slope is 8.3 months. 

It can be observed from Fig. 3 that the RUL predictions for M1-

M3 models are 11.5 months, 8.4 months, and 7.8 months, 

respectively, and the error rates for the M1-M3 models' RUL 

predictions are 38.5%, 1.22%, and 6.02%. This demonstrates 

that: 

(a) The nonlinear models M2 and M3 are clearly superior to 

the linear model M1.  

(b) M1 has a larger error in slopes with nonlinear 

degradation characteristics, whereas M2 and M3 better capture 

the nonlinear degradation characteristics of slopes.  

(c) The applicability of different nonlinear functions to 

different degradation data is different, resulting in different 

RUL prediction results. In case 1, model M2 is more applicable 

and has a stronger prediction impact than model M3. 

The predicted life of the M2 model at different moments was 

further calculated. Using October 1983 as the starting point for 

prediction, the remaining life was predicted every month for the 

displacement values at the next monitoring moment, and the 

model parameters were updated. The results of the predicted 

values of the remaining life of the slope for each monitoring 

moment of the M2 model and the comparison of the errors are 

shown in Fig. 4. 

 

 

Fig. 4. Comparison of the error between the predicted and real 

values of the M2 model: (a) M2 prediction results for different 

time, (b) M2 model RUL error. 

(a) (b)

(a) (b)

Models 𝑎 𝑏 𝜎𝐵 

M1 66.854 / 8.64*103 

M2 1.256 1.913 652.915 

M3 365.951 0.036 6.43*103 
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Fig. 4(a) depicts the RUL prediction results of each slope 

monitoring period, demonstrating that the M2 has a stronger 

prediction impact in Case 1. The RUL prediction errors for each 

period of the computational model are shown in Fig. 4(b), the 

results show that the average error of the M2 model is 0.59 

months, and as the monitoring period increases and more 

displacement monitoring data are obtained, the prediction error 

of the M2 model has a tendency to gradually decrease. The 

prediction results of M1 and M3 were also calculated for each 

period, and the average error of model prediction was 3.35 

months and 0.91 months respectively. The M1 model notably 

differs from the M2 model's prediction results, and the M3 

model's prediction accuracy is lower than that of the M2 model, 

which shows that the M2 has better applicability in this case. 

Identical calculations as in example 2 above, the degradation 

modeling of the Wiener process was performed with the 

measured displacement data from July 18, 2011 to January 29, 

2017, and the PDF of its RUL under the M1-M3 model was 

calculated, as shown in Fig. 5. The damage of the slope occurred 

in June 2019, and it is known that the RUL is 122 weeks, and 

the RUL prediction results of M1-M3 model are 112.2 weeks, 

125.2 weeks and 116.0 weeks, and the model prediction 

accuracy is M2 > M3 > M1, which shows that the M2 model is 

more consistent with the degradation characteristics of this 

slope. 

 

Fig. 5. PDFs of RUL for each degradation model. 

To further verify whether the M2 has better applicability 

compared with the other two models, using January 29th, 2017 

as the starting point to predict the RUL for the subsequent 20 

monitoring periods of displacement and updating the model 

parameters, the average error of prediction of M1-M3 is 9.45 

weeks, 2.98 weeks and 7.46 weeks respectively, and the average 

relative error is 8.59%, 2.71% and 6.78%. It can be seen that the 

M2 of Case 2 slope is better than M1 and M3, it can predict the 

RUL of the slope more effectively, and the M2 model in Case 2 

can predict the remaining service life of the slope more 

effectively and provide guidance for maintenance. 

5. Conclusion 

Concentrating on the RUL prediction issue in slope degradation, 

the displacement value is used to reflect the slope degradation 

characteristics as its performance degradation index. 

Considering that the slope displacement degradation usually 

presents nonlinear characteristics, the nonlinear Wiener process 

model is proposed to describe the slope displacement 

degradation based on monitoring data. The model parameters 

are determined by MLEM and LSM, and its PDF is derived and 

the RUL is predicted. According to the analysis of the examples, 

for Case 1, it is clear that the nonlinear degradation models M2 

and M3 are better than the linear model M1, and the M2 has 

better applicability and higher accuracy of RUL prediction. For 

Case 2, M2 is also better suited to the slopes' nonlinear 

degradation characteristics, as can be seen, M2 has a higher 

prediction accuracy in the engineering example. It is concluded 

that the nonlinear Wiener process RUL prediction model 

outperforms the linear Wiener process RUL prediction model in 

terms of prediction accuracy. Different nonlinear functions 

adapt to various slopes, and the model with strong adaptability 

can better predict slope RUL. The results can be used as the 

basis for the subsequent study of slope health management and 

provide technical guidance for slope de-risking and 

strengthening. 
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