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Highlights  Abstract  

▪ Running reliability is proposed for assessing 

extreme value distribution in time domain. 

▪ Cycle sequence load is proposed for fatigue life 

prediction. 

▪ Fatigue reliability is numerically assessed from 

experimental data. 

▪ Running reliability has the capability of failure 

monitoring. 

 This aim of this paper is to characterise the strain-based fatigue life data 

in time-domain using the newly modelled running-reliability technique 

that considers the load sequence effect. Current established conventional 

strain life models do not consider dependence for fatigue life of low or 

high amplitudes, on which with occur first in the load history. Finite 

element analysis is carried out to ensure the strain signals are captured 

at the most critical region during road test at various conditions. Fatigue 

life of 2.74 × 104 to 6.07 × 105 cycle/block with mean cycle to failure of 

4.32 × 106 to 7.00 × 106 cycle/block is predicted based on the cycle 

sequence effect using cycle-counting method. The newly modelled 

running-reliability technique is formulated to extract the features of high 

amplitude excitation obtained from the strain signals for characterising 

the fatigue reliability features under load sequence effect. Hence, the 

reliability-hazard relationship for fatigue reliability characterisation of 

strain-based approach in time-domain using running-

reliability technique. 
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1. Introduction 

 In the automotive industry, fatigue reliability assessment is 

important as it is related to fatigue life data assessment under 

random load condition for failure prediction of components or 

structures [1]. For example, the leaf spring is an important 

component that experiences random loads in terms of 

compression-tension based on its operating conditions [2]. The 

laminated leaf spring is placed between the vehicle axle and 

wheel where one of the eyes of the leaf spring is a fixed end 

while the other eye is a movable end. The effects of bending 

acting on the leaf spring is produced by absorbing a vibration or 

shock when travelling a pothole or bump on road profiles. This 

effect contributes to a comfortable and safe ride [3]. The study 

of finite element analysis is needed in monitoring purposes for 

failure occurred on a component or structure. Recent study 

involved identifying the stiffness condition on a structure, 

investigating a polygonal finite element on a steady fluid 

problem, and predicting a hardness for low carbon steel of  

a component [4-6]. In addition to that, analysis of finite 
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element-based is implemented in predicting a crack propagation 

of quasi-brittle material and optimising a buckling of porous 

microplates material [7, 8]. 

The fatigue life data characteristics is an important 

technique for assessing the components or structures life when 

subjected to cyclic loading. The mean stress effects in every 

load cycle resulted a fatigue failure for the suspension system 

under cyclic loading especially on a coil spring [9], antiroll bar 

[10], shackle bracket [11], and leaf spring [12] due to cyclic 

flexural. The influence of mean stress is needed in predicting 

fatigue life by applying the traditional strain-life models, i.e. 

Morrow and Smith-Watson-Topper models. In addition, the 

strain-life models excluded the sequence of load cycle effect in 

assessing the fatigue life of components and structures [13]. The 

advantage of using the load cycle sequence effect-based model, 

namely effective strain damage (ESD), is to predict fatigue life 

in various materials associated with a variety of loading data. 

The ESD model is able in predicting fatigue life in a large 

selection of materials in numerous types of load conditions and 

also considers the mean stress effect [14]. 

Fatigue failure based on random loads has been closely 

related to the statistics and probabilistic approaches for 

identifying the properties of the strain signals [15]. In addition, 

fatigue damage uses the probabilistic technique for 

characterising low cycle fatigue using the Gumbel distribution 

to predict crack growth on nodular cast-irons [16, 17]. The use 

of various distributions such as Gaussian and Gumbel 

distribution was proposed by Gong [18] in order to characterise 

the reliability of a hull girder at different times based on 

corrosion growth copulas. Additionally, Long [19] identified the 

uncertainties of propagation through fatigue crack growth by 

observing a function plots of probability density and cumulative 

distribution associated with random loads.  

Reliability assessment is a stochastic approach that uses 

probabilistic models for the purpose of predicted the failure 

which can be modelled through the extreme value distribution. 

Fernández-Canteli [20] monitored the probability of failure 

using the generalised extreme value to characterise fatigue and 

fracture. In addition, the extreme value distribution was 

proposed by [21, 22] to identify the fatigue indicator of crack 

growth of microstructures and model the reliability-based 

method to statistically define a detection of damage for beam 

structure in real and simulated data in the time and frequency 

domains [23]. Zheng et al. [24] used extreme value theory based 

on a multi-axial load spectrum in fatigue analysis on special 

vehicle component. Wang et al. [25] also Gumbel distribution 

to calculate fatigue damage of vehicle components, and 

resulting has a best fit for extreme loads. 

This study aims to propose the newly modelled running-

reliability technique for the assessment of fatigue reliability 

under time-domain based on strain-based road load conditions. 

The established strain-life model and cycle sequence effect 

model were applied to predict fatigue life data from various road 

load profiles on a suspension component. The strain-life model 

was chosen in the fatigue damage calculation due to leaf spring 

is having a tension and compression conditions that contributes 

to a fatigue life on automotive component. In addition, the 

reliability assessment fatigue-based that subjected to a fatigue 

life data was used to predict risk based on the features of high 

amplitude excitation. The high amplitude excitation features 

were extracted to model running-reliability based on the 

captured strain-based loads for risk monitoring that involves the 

effects of the cycle sequence. This newly proposed running-

reliability technique is important as it defines the reliability rate 

of the damage segment in time domain that has the capability to 

be applied for risk monitoring of a fatigue failure. 

2. Methodology framework for running-reliability 

technique 

This study proposes a newly modelled running-reliability 

technique in time-domain using a strain-based fatigue life data 

in characterising a probability of failure for an automotive leaf 

spring. Fig. 1 illustrates the process flow for fatigue reliability 

characteristics in modelling a running-reliability technique 

under random strain loads. The framework of fatigue reliability 

assessment methodological for running-reliability technique 

under strain-based loads is illustrated in Fig. 2. The framework 

is divided into three phases: 

(1) Phase 1: Finite element analysis and data collection 

based on captured strain loads. 

(2) Phase 2: Fatigue life characterisation based on time-

domain for various road load conditions. 

(3) Phase 3: Running-reliability for fatigue failure risk 

monitoring under random strain loads. 
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Fig. 1. Process flow for fatigue reliability assessment in modelling a running-reliability technique under random strain loads. 

Start 

Finite element analysis 

Experimental set up 

Road load data acquisition 

Statistical analysis 

Power spectral density 

Rainflow cycle count 

Fatigue life prediction 

Fatigue reliability assessment 

Running damage 

Running reliability 

Critical reliability condition for high damage segment 

Reliability-hazard relationship 

Gumbel probability plot 

End 

Phase 1 

Phase 2 

Phase 3 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

 

Fig. 2. Methodological framework for running-reliability technique using strain-based loads. 

2.1. Phase 1: Finite element analysis and data collection 
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suspension to the various strain load data of the strain gauge 

from the data acquisition system. The conventional techniques 

for FEA are geometry, mesh, material and properties, load 

applied as well as boundary condition. The model of leaf spring 

geometry is modelled with a 2mm mesh size 3,923,712 nodes 

and 5,925,096 elements of three-dimensional (3D) with 

isoparametric tetrahedron mesh elements. Fig. 3 presented a leaf 

spring geometry with a fine mesh size of 2 mm. The 2 mm mesh 

size was selected as the best mesh size in this study with 

subjected to a mesh convergence analysis, as shown in Fig. 4(a). 

Fig. 4(b) shows the percentages of error between 2 mm to 10 

mm mesh size, where the minimum of error is 2%.  For the 

boundary condition, force was set in z-axis at the centre of the 

leaf spring as displayed in Fig. 3. In this assessment, the leaf 

spring is considered as a whole structure that assumes friction 

coefficient is zero. This is because the purpose for finite element 

analysis is to determine the critical region in order to determine 

hotspot to put strain gauge to capture strain data under 

maximum deformation and von-Mises stress. The force applied 

was set as a on the leaf spring geometry is equivalent to a quarter 

of the total weight mass of a vehicle. The total weight of a bus 

is 10,570 kg. The one eye was set as a fixed rotated constraint, 

while the movable constraint was set on the other eye at x-axis. 

The SAE 5160 carbon steel material was utilised in FEA as  

a leaf spring is commonly made a carbon steel of SAE 5160 [26]. 

The mechanical properties for SAE5160 carbon steel are as 

follows: the ultimate tensile strength, Su of 1584 MPa, a yield 

strength, Sy is 1487 MPa, a modulus of elasticity, E is 207 GPa, 

and Poisson ratio is 0.27. 

 

Fig. 3. Leaf spring geometry with 2 mm mesh size. 

 

(a) 

 

(b) 

Fig. 4. (a) Mesh convergence analysis; (b) percentage of error. 

2.2 Road load data collection for fatigue life evaluation 

The leaf spring component for an express bus was used to 

collect the random strain loading at various road conditions as 

displayed in Fig. 5(a). The strain gauge is fixed on a master leaf 

spring at the critical region according to the results collected 

from the FE analysis (Fig. 5(b)). A critical region from the FE 

model was used to capture the strain data as this provides the 

maximum von-Mises stress dan maximum deformation.  This is 

also mentioned by Kong et al. [26] when assessing the fatigue 

life prediction of parabolic leaf spring under various road 

conditions. The data acquisition system of Somat eDAQ was 

then connected from a strain gauge and linked to a laptop to 

collect and display the signal extraction, as shown in Fig 5(c). 

A sampling data was set to 500 Hz which was satisfactory to 

obtain all the information needed in the data extraction for 

automotive components [27]. The maximum bandwidth must 

below than 500 Hz to ensure a quality control is not affected 

[28].  

To extract various random loads, the vehicle travelled on 

three types of road profiles: a highway with a smooth condition, 
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rural road with potholes features, and a campus route in 

Universiti Kebangsaan Malaysia that involved a bumps profile. 

The standard of ISO8608 was fulfilled as for the road surface of 

rough level for a road test [29]. The bus was driven at a speed 

range of 70 – 80 km/h on the highway route, 50 – 60 km/h on 

the rural route, and 30 – 40 km/h on the campus route. As for  

a speed range for vehicle on Malaysian roads was subjected to 

the National Speed Limit Order 1989 [30]. The routes for the 

road test were at a distance ranging from 3.7 to 8.1 km (Fig. 

5(d)).

 

Fig. 5. Experimental set up for random strain data collection.
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2.3 Statistical characterisation based on the captured road 

load signal 

The statistical approach has been used to generally associate 

fatigue failure of a component or structure, particularly in 

characterising damage behaviour and damage monitoring [31] 

under the variable amplitude loadings. Parameter of global 

statistical such as mean, standard deviations (SD), root-mean-

square (rms) and kurtosis are typically can be applied to 

characterise structural damage. The general probability plots 

namely as probability density function (PDF) and cumulative 

density function (CDF) also been implemented in identifying 

the failure occurred [32]. The PDF defines the probability 

behaviour towards time, and CDF determines the failure 

probability in a specified time interval. For a series of variable 

amplitude X(t), a PDF (PX) of Gaussian distribution is expressed 

as: 

𝑃𝑋 =
1

𝑆𝐷√2𝜋
𝑒

(𝑋−�̄�)2

2(𝑆𝐷)2    (1) 

where �̅� is a mean value and SD is a standard deviation value. 

In a normal distribution, the mean is the central value of a 

bell curve in a distributed data. For the n sample of data, the 

parameter of mean is stated as: 

�̄� =
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1     (2) 

The amount of dispersion value of a set data is defined as 

the standard deviation (SD). Thus, the SD is stated as: 

𝑆𝐷 = {
1

𝑛
∑ (𝑥𝑗 − �̄�)

2𝑛
𝑗=1 }

1

2
  (3) 

In the time-domain, the energy distributed in a signal can be 

described using a root-mean-square (rms) parameter [12]. For 

the rms of n data size is stated as: 

𝑟𝑚𝑠 = {
1

𝑛
∑ 𝑥𝑗

2𝑛
𝑗=1 }

1

2
   (4) 

To determine that a sample data is a stationary or non-

stationary time series, the kurtosis parameter is calculated based 

on the peak in a sample data. If a value of kurtosis is exceeding 

3.0 in Gaussian distribution, the data is considered as a non-

stationary because of the excitation peaks involvement in a time 

series data. It also may refer to damage occurred for  

a component or structure [33]. 

𝐾 =
1

𝑛(𝑟𝑚𝑠)4
∑ (𝑥𝑗 − �̄�)

4𝑛
𝑗=1   (5) 

Subjected to frequency domain, the vibration of a random 

loading in repeated times collected by the acquisition system is 

non-stationary data [34]. In a random vibration analysis,  

a common method to determine a signal in frequency domain is 

named as power spectral density or PSD. In fatigue analysis, it 

defined an energy content in a signal that led to fatigue damage 

appeared. The PSD indicated as an essential PSD for a signal, 

S(fk) and the frequency of harmonic, fk, is given by: 

𝐴𝑘 = √2Δ𝑓 ⋅ 𝑆(𝑓𝑘)   (6) 

The Δf denotes as a frequency resolution, which explains the 

spacing between data points in frequency domain. 

The PSD defines the frequency trend of high and low in an 

energy unit per frequency, µ2/Hz, which describes the energy 

intensity that distributed in a signal [35]. There are two methods 

in obtaining the PSD result: the fast Fourier transform approach 

and the computed autocorrelation function conversion. These 

approaches are acceptable to determine the PSD, particularly for 

random amplitude loading.  

2.4 Fatigue life approaches using common strain-life and 

load cycle sequence models 

As for fatigue life assessment, the common strain-life method is 

normally applied in calculating a fatigue life by involving  

a plastic deformation that appears in fatigue cyclic loading [36]. 

The rainflow counting algorithm is utilised in predicting fatigue 

life as for defining an equivalent number of cycles. A fatigue 

cyclic loads is a loading and unloading in time series as shown 

in Fig. 6(a). In each cycle, the maxima and minima are 

significant in calculating fatigue life. The average data point 

where not significant between maxima and minima will be 

removed in fatigue life calculation, that been demonstrated in 

Fig. 6(b) and (c) [37]. 
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Fig. 6. Rainflow counting method from random loading on the leaf spring.

The Coffin-Manson approach generally proposed for  

a number of cycles prediction in low cycle fatigue and strain 

amplitude in uniaxial [38]. This model excluded the mean stress 

effect for certain alloys and metals that consider in the fatigue 

life. The Coffin-Manson model proposed the elastic and plastic 

forms was included in equation below:  

𝜀𝑎 =
𝜎′𝑓

𝐸
(2𝑁𝑓)𝑏 + 𝜀′𝑓(2𝑁𝑓)𝑐    (7) 

where ɛa is the total sum of strain amplitude, E is modulus of 

elasticity, ’f is the coefficient of fatigue strength, ’f is the 

coefficient of fatigue ductility, b is the exponent of fatigue 

strength, c is the exponent of fatigue ductility, and Nf is the 

fatigue life.  

With subjected to a compression and tension loads during 

operating condition, the effect of mean stress was included as 

proposed in Morrow as well as Smith-Watson-Topper (SWT) 

approach. The mean stress, σm is calculated by the mean of 

minimum and maximum peak under tensile and compressive 

stresses, resulting to a significant effect on fatigue behaviour 

and deformation. For the SWT model, the effect of mean stress 

is calculated as the tensile stress of maximum, σmax and strain 

amplitude [39]. The Morrow and SWT models are addressed in 

Eq. (8) and (9), respectively, as:  

𝜀𝑎 =
(𝜎′𝑓−𝜎𝑚)(2𝑁𝑓)𝑏

𝐸
+ 𝜀′𝑓(2𝑁𝑓)𝑐  (8) 

𝜎𝑎
(𝜎′𝑓)

2

𝐸 𝑓

𝑏

𝑓𝑓𝑓

𝑐

𝑚𝑎𝑥

   (9) 

The extensive model of strain-life fatigue damage considers 

the load cycle sequence effect called effective strain damage 

(ESD), which was developed by Abdullah, and it was suggested 

a better enhancement [14]. The method in acquiring the cause 

for crack growth and crack closure has functioned properly for 

several materials, geometries of component, mean-strain effects, 

load spectra, and magnitudes of strain. As assumption in this 

model, the parameter of fatigue damage as the described as 

follows: 

𝐸Δ𝜀∗ = 𝐴(𝑁𝑓)𝐵   (10) 

The ɛ* is the size of total effective strain for a closed 

hysteresis loop connected to crack growth of fatigue. A and B 

are the constants of material. The size of Eɛ* defined as a 

particular cycle is a function of opening crack stress, Sop level, 

and this point is a previous to a stress and strain size within the 

load history. The previous calculation is improved as given: 

𝐸Δ𝜀∗ = 𝐸(𝜀𝑚𝑎𝑥 − 𝜀𝑜𝑝) − 𝐸𝜀𝑖  (11) 

where, ɛmax is a maximum strain and ɛop is an opening crack 

strain of a particular cycle, while ɛi is the strain range of intrinsic 

fatigue limit according to variable amplitude loading. With 

consideration the sequence of cycle impacts, a parameter of 

decay, m, is utilised in ensuring the modification in stress of 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

opening crack in two adjoining cycles. Sop is addressed as 

given: 

Δ𝑆𝑜𝑝 = 𝑚(𝑆𝑠𝑠 − 𝑆𝑐𝑢)   (12) 

where Scu is the opening stress of current, that indicated as 

the Sop value of the previous cycle. Sss is the opening stress of 

steady-state. The parameter of m can be obtained in a data series 

of failure tests [40]. Sss is addressed as given: 

Δ𝑆𝑠𝑠 = 𝛼𝑆 (1 − (
𝑆𝑚𝑎𝑥

𝑆𝑦
()) ()𝑚𝑖𝑛)

𝑚𝑎𝑥

 (13) 

where  and  are the constants of material, Smax is the stress of 

maximum from an earlier higher cycle, Smin is the stress of 

minimum from an earlier higher cycle, and Sy is the yield stress 

of cyclic [14].  

As for fatigue life (Ni), the particular cycle is given as: 

𝑁𝑖 = (𝐸Δ𝜀 ∗/𝐴)
1

𝐵   (14) 

2.5 Linear Damage Assessment  

In variable loading, the linear damage rule can be used in 

calculating a fatigue damage. The Palmgren-Miner (PM) 

technique calculates the amount of fatigue damage dividing 

with entire cycles included. Thus, the fatigue damage or D is 

measured as given: 

𝐷 = ∑
𝑛

𝑁𝑓
= 1  (15) 

where n is the total of cycle calculated in an individual range of 

mean and strain. The PM rule normally utilised by referring to 

the easy method and accurate which can be implemented in the 

rainflow cycle counting method, especially involving a random 

loading data [41]. Subjected to a sequence of load cycle method, 

the effects are included in fatigue life evaluation since the 

parameter of crack closing depicted a stress decay rate 

overloading. Therefore, the rule of PM possible to be assessed 

by using the evaluated sum damage for the ESD model [42]. 

2.6 Fatigue reliability characterisation for the random 

road load test  

In probabilistic, the Akaike Information Criterion (AIC) is  

a method to determine the suitable distribution to be used on an 

analysed dataset. [43]. The smallest value of AIC is said to be 

the best distribution selected. AIC method is calculating by 

selecting a minimum negative likelihood value with subjected 

to the number of parameter, as given as: 

AIC = − 2 (Log−likelihood) + 2k  (16) 

where k is the number of parameters for distribution model. This 

technique is useful in measuring a suitable distribution under 

random dataset. Additional method used in defining the best 

distribution is a normality test. Commonly, the Anderson-

Darling test is utilised to measure the goodness of fit, where  

a p-value closer to 1 means the fit is better. If the p-value is 

lower or equal to 0.05, the fit is not accepted [44-45].  

In this study, fatigue reliability is based on the Gumbel 

distribution which lead to the features of high amplitude 

excitation obtained from the time-domain strain signals. This 

feature contributes to a failure of the component or structure 

[46]. Fixed sequences of data set are accumulated in a form data 

series and repeatedly in multiple times, where the maxima value 

in each sequence obeys the Gumbel distribution for the number 

of cycles to failure with CDF, (F(Nf)), and is given by the 

following: 

𝐹(𝑁𝑓) = 𝑒−𝑒
−(𝑁𝑓−𝜆)/𝛿

   (17) 

where λ and δ is the parameters of location and scale, 

respectively [47]. The Gumbel distribution parameters are given 

by the location of -∞ < λ < ∞ and scale δ > 0. 

The mean of Gumbel distribution, also has been referred as 

the MTTF or mean time to failure is expressed as follows: 

𝑀𝑒𝑎𝑛 = 𝜆 − 𝛾𝛿   (18) 

where γ is 0.5776, as the constant of Euler’s.  

PDF for the Gumbel distribution, (f(Nf)) is given by the 

following: 

𝐹(𝑁𝑓) =
1

𝛿
𝑒

(
𝑁𝑓−𝜆

𝛿
+𝑒

−(
𝑁𝑓−𝜆

𝛿
)

)

  (19) 

The hazard function, h(Nf) is specified in the Gumbel 

distribution as follows: 

ℎ(𝑁𝑓) =
1

𝛿
𝑒

−(
𝑁𝑓−𝜆

𝛿
)
   (20) 

The reliability, R(Nf) is given in the Gumbel distribution by 

the following: 

𝑅(𝑁𝑓) =
1

𝛿
𝑒

−(𝑒
−(

𝑁𝑓−𝜆

𝛿
)

)

  (21) 

The mean time between failure (MTBF) of a component is 

calculated from the total simulation time and expected number 
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of failures. Hence, the MTBF is expressed as: 

𝑀𝑇𝐵𝐹 =
1

ℎ(𝑁𝑓)
   (22) 

The probabilistic approach using the Gumbel distribution is 

widely applied to the of extreme data model such as random or 

big data set, which concentrates on the application of severe 

values in engineering issues. For this reason, the Gumbel 

distribution is beneficial to estimate the possibility of extreme 

challenges that might appear [48]. 

2.7 Running-reliability for risk monitoring for random 

road loads 

In a fatigue reliability assessment, the reliability distribution is 

determined in terms of time series. This technique is called 

time-reliability histories where the accumulated reliability is 

distributed through time. Hence, time-reliability data to 

represent the reliability for each cycle can be implemented for 

the strain load data. This technique is the running-reliability 

based on the reliability history for risk monitoring in time-

domain [49]. 

The reliability was computed for each peak-valley cycle. In 

order to determine the running-reliability, Eq. (22) was derived 

in a time series based on the method of PM linear damage rule:  

𝑅 = ∑
𝑅𝑖

𝑅𝑁𝑓

𝑖=𝑛
𝑖=1     (23) 

where Ri is the reliability a in every cycle and 𝑅𝑁𝑓
  is the 

reliability for number of cycles to failure. The rate of reliability 

will increase if fatigue damage is on high value. Thus, the 

reliability is at a good rate when fatigue life is at a lower value. 

3. Results and discussion 

3.1 Finite element analysis under static load 

FEA was conducted to determine a hotspot or critical contour 

on a model of automotive component. The load applied for 

vehicle specifically on the FE model was 25.914 kN, where 

converted from a total weight of the vehicle being 10,570 kg. In 

order to apply the load on a leaf spring, the total mass was 

divided by 4. The maximum deformation was shown at 22.83 

mm at the U-bolt area as displayed in Fig. 7(a). However, the 

von-Mises stress concentration achieved 613.57 MPa at the 

critical contour, as illustrated in Fig. 7(b). This result was used 

to determine the location to fixed a strain gauge. The maximum 

von-Mises was obtained at 920.36 MPa, where it was found to 

be lesser than the ultimate tensile strength of 1584 MPa. As  

a result, this is applicable to determine the hotspot or critical 

region. 

 

(a) 

 

(b) 

Fig. 7. (a) leaf spring deformation and (b) von-Mises stress. 

3.2 Statistical features characterisation of the road loads 

in time-frequency domain 

The entire strain road loads include various road condition were 

extracted in 300 s at a 500 Hz rate of sampling, capturing 

150,000 discrete data points. Fig. 8 displayed a time history and 

PDF plot for entire road load condition which involves highway, 

rural dan campus data, with a duration of 100 s for each road 

types over a total of 300s for entire time histories. As for various 

strain road loads in duration of 100 s that obtained 50,000 

discrete data points. Fig. 9 illustrates the time histories and PDF 

plot for highway (smooth), rural (potholes), and campus 

(bumpy) road conditions. The time histories plot showed the 

campus route data included many high excitations amplitude in 

contrast with the rural and highway route data. This was due to 

uneven and bumpy surfaces that contributed to high amplitude 

excitations, and it was considered as heavily non-stationary data 

that were subjected to high amplitude events as circled (black) 

in Fig. 9(b) and 9(c). In contrast, the highway data showed 
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mildly nonstationary behaviour due to the smoother highway 

surface and less braking condition. The highest amplitude range 

for highway, rural, and campus was 462.9 to -1235.9 µɛ, 578.6 

to -965.85 µɛ, and 1186.9 to -1180 µɛ, respectively. 

 

Fig. 8. Time history and PDF for entire road load conditions. 

   
(a) 

   
(b) 

   
(c) 

Fig. 9. Time histories and PDF for (a) highway; (b) rural; and (c) campus.

Statistically, the PDF and global statistical parameters were 

implemented to characterise the random data behaviour. The 

PDF plot highway data presented a narrow curve bell shape as 

compared to the rural data. In contrast, the campus data 

presented the broadest curve bell shape. The shape of the bell 

curve was determined by the standard deviation. The highway, 

rural, and campus data produced an SD value of 193 µɛ2, 208 

µɛ2, and 267 µɛ2, respectively. The high amplitude excitations 

might influence the SD values. The value of mean locates the 

peak of PDF curve where the results exhibited the mean values 

are -320 µɛ, -142 µɛ and 180 µɛ for highway, rural, and campus, 

respectively. As for entire data, the SD and mean values are 306 

µɛ2 and -94 µɛ, respectively. The positive and negative mean 

values are described as the automotive spring under tension and 

compression conditions according to vibration loading [50].  

Subjected to kurtosis value, the highway data obtained  

a kurtosis value of 3.59, rural data at 3.53, and campus data at 

4.31. The kurtosis value from the campus data was the highest 

among others, describing the spikiness of the data. Therefore, 

the campus significant data result included mostly high 

  1 

Kurtosis = 3.08 

RMS = 320 

Highway 

Rural 

Campus 

Kurtosis = 3.59 

RMS = 374 

Kurtosis = 3.53 

RMS = 252 

Kurtosis = 4.31 

RMS = 322 

potholes 

bumps 
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amplitude excitations by comparison with the rural and highway 

data. The kurtosis from the rural data was lesser than the 

highway data, and it might cause high amplitude excitations:  

a leaf spring experienced less absorbed vibrations due to a few 

conditions related to braking or a vehicle moving at low speed. 

The rms value showed the highway, rural, and campus data 

produced 374 µɛ, 252 µɛ, and 322 µɛ, respectively, indicating 

the contained vibration energy of highway data achieved the 

highest rms value. This is due to the amplitude excitation in a 

medium-range that constantly contributed to a higher vibration 

energy in the random data, whereby it explains the range of 

minimum to maximum strain amplitudes from highway is 

higher than values from rural. 

Subjected to domain of frequency, the PSD was applied in 

determining an internal vibration energy in the data distribution 

of a random strain loads. Fig. 10 illustrates the PSD for different 

road condition data. As a result, a campus data produced to be 

the higher energy of vibration by obtaining 2.01 × 104 µ2/Hz, 

as compared to the highway data (1.62 × 104 µ2/Hz) and rural 

data (1.2 × 104 µ2/Hz). This PSD responses defined a campus 

data included many high excitation amplitudes that caused 

fatigue damage. The distributed vibration energy for a leaf 

spring was around 5 Hz, which indicates the damage occurred 

at a range of low frequency. By referring to frequency analysis, 

an automotive suspension component can be achieved a high 

amplitude of PSD which the frequency bandwidth is below than 

10 Hz [51]. 

 

Fig. 10. Power spectral density for different road conditions. 

3.3 Assessing the Rainflow cycle counting from the strain 

signal 

The method of rainflow cycle counting was exploited to define 

fatigue life for the purpose in minimizing a various strains 

spectrum to the reversal set of strains in terms of time domain. 

Fig. 11 exhibits a rainflow counting method for various road 

data. The campus data provided the highest cycle count of 704 

cycles, followed by rural (669 cycles) and highway data (489 

cycles). The campus data also exhibited a blue contour that was 

scattered at the highest range against to the rural and highway 

data that lead to the high amplitude excitations influencing the 

peak and valley estimation. The strain cycle was scattered in 

negative and positive mean regions, explaining that a leaf spring 

is under tension and compression conditions along operating 

service. 

 

(a) 

 

(b) 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

 

(c) 

Fig. 11. Rainflow counting for (a) highway; (b) rural; and (c) 

campus. 

3.4 Fatigue life prediction from the various road load test 

The fatigue life was evaluated according to the model of strain-

life including Coffin-Manson, Morrow and SWT, as well as the 

ESD model load cycle sequence based. The used of ESD model 

was to calculate the fatigue life assessment according to the 

cycle sequence effect which could also be used for random 

loading [11]. Fig. 12 illustrates the evaluated fatigue life for 

various strain-life models. It presents the rural data achieved the 

higher fatigue life, as against the highway and campus data for 

strain-life models. Regarding to entire road data, a fatigue life 

is the lowest, and this is due to high range of minimum and 

maximum strain amplitude in the entire data. With respected to 

the model of strain-life, the SWT model obtained the higher 

fatigue life data for the highway and rural data while the campus 

data had the lower fatigue life. The leaf spring under 

compression and tension conditions contributed the fatigue life 

span during operating condition. In contrast, the ESD model 

displayed the highway data produced the higher fatigue life, as 

against the rural and campus data. The predicted fatigue life 

might differ from each model because the Morrow model 

involved the effects of mean stress of the compression, likewise 

the SWT models involved the mean stress effect of maximum 

tensile stress and strain amplitude, while the ESD model 

according to the effect of cycle loading sequence. This is due to 

the ESD model more concerned to cycle load sequence effect 

compared to conventional strain-life models. On the other hand, 

a campus data obtained the lower fatigue life which was 

expected lead to the high amplitude excitations that caused  

a shorter life span. 

 

Fig. 12. Fatigue life predicted for various strain-life models.

3.5. Fatigue reliability assessment under extreme value 

distribution 

In defining be approximate distribution to be used in reliability 

assessment, the AIC need to be assessed priorly based on Eq. 

(16). Table 1 tabulated the log-likelihood, AIC, and Anderson-

Darling (AD) test value for fatigue life based under various road 

load condition. In this study, the distribution of Normal, Gumbel 

and Weibull were used to determine the minimum value for AIC 

method. It shows the Gumbel distribution produces lowest log-

likelihood values, while the Weibull achieved the lowest value 

for AIC. For AD test result, the p-value for a highway and 

campus data provides the highest value for Weibull distribution, 

while a rural data presents a p-value of Gumbel distribution is 
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highest compared to Normal and Weibull. By considering the 

fatigue strain-based data under an extreme data, the Gumbel 

distribution is selected as suitable distribution in reliability 

assessment. This is due to the Gumbel distribution also has been 

used in modelling a failure [43] and predicting fatigue failure 

[52]. 

Table 1. Probabilistic model estimation based on Akaike information criterion and Anderson-Darling test for various road conditions. 

Data Distribution Log-likelihood AIC AD p-value 

Highway 

Gumbel -63.32 131 0.475 0.100 

Normal -62.75 129 0.584 0.098 

Weibull -61.14 126 0.303 > 0.250 

Rural 

Gumbel -63.15 130 0.263 0.475 

Normal -62.75 129 0.377 > 0.250 

Weibull -61.78 128 0.196 > 0.250 

Campus 

Gumbel -42.05 88 0.745 0.013 

Normal -41.42 87 0.804 0.024 

Weibull -40.90 86 0.763 0.033 

In assessing the reliability analysis, the PDF and CDF were 

analysed to estimate the probability of failure on a leaf spring 

based on a curved shape. To describe the probability of failure 

on a leaf spring, the campus data was used as an extreme load 

data. Fig. 13 illustrates the PDF plot for strain-based fatigue life 

in time domain. The PDF plot illustrated the narrower bell shape 

due to fatigue life data that influenced by bumps condition on 

campus roads. Fig. 14 illustrates the CDF plot for strain-based 

fatigue life in time domain, in determining the probability of 

failure for a component or structure. It shows a leaf spring 

exposed in failure faster due to high amplitude range in campus 

road under operating condition. It also, the fatigue life 

prediction involving ESD model achieved the slowest damage 

that possibly due to the cycle sequence loading effect in 

identifying the peak and valley in the damage-time history. 

 

Fig. 13. Probability density function for average fatigue life. 

 

Fig. 14. Cumulative distribution function for average fatigue 

life. 

The reliability was analysed to determine a reliable rate of  

a leaf spring referring to Eq. (21). Fig. 15 illustrates the 

reliability plots for strain-based fatigue life in time domain for 

campus data. Fig. 16 represents the hazard rate for strain-based 

fatigue life was determined based on Eq. (20). The average 

fatigue life for campus road revealed that the reliability rate 

rapidly decreased. In the hazard rate plot, the curve also 

exhibited the same behaviour where a hazard rate increased 

rapidly. This is due to a SWT model achieved the lower rate of 

reliability and hazard, which could be due to the mean stress 

effect as well as conditions of tension and compression that 

affected the rates of the leaf spring. On the other hand, the cycle 

sequence effect of ESD model obtained the failure, which 

appeared at a higher fatigue life in the reliability and hazard rate.  
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Fig. 15. Reliability for average fatigue life. 

 

Fig. 16. Hazard rate for average fatigue life. 

3.6. Mean cycle to failure, mean cycle between failure and 

Gumbel probability plot for strain-based fatigue life data 

The assessment of fatigue reliability was computed subjected to 

the fatigue life predicted data using the Gumbel distribution. 

The mean cycle to failure (McTF) is equivalent to the value of 

mean for Gumbel distribution based on Eq. (18). Since the 

fatigue life calculates in cycles unit, thus, this parameter was 

substituted as a mean cycle to failure [48]. The McTF value for 

average fatigue life is 2.28 × 104 cycle/block. It estimated that 

failure could occur before McTF was achieved. In this study, the 

McTF was calculated to predict the mean cycle of the 

component that was exposed to failure [53].  

The mean cycle between failure (McBF) is represented by 

the mean time between failure (MTBF) value as the fatigue life 

is measured in cycles unit [51]. The McBF is used to predict the 

average cycle between failure of a mechanical component 

during the in-service period. By using Eq. (22), the McBF plot 

is portrayed in Fig. 17. The ESD model obtained the highest 

McBF values compared with the established strain-life models. 

This may be due to the ESD model which contains detailed 

information in the load cycle sequence that influences fatigue 

failure.  

 

Fig. 17. Mean cycle between failure for average fatigue life. 

3.7. Running-reliability for characterisation of fatigue 

reliability  

The technique to monitor the reliability fatigue based in terms 

of time-domain, the newly model to propose running-reliability 

based on Eq. (23). To determine the running-reliability, the 

fatigue damage distribution is defined in time-domain. This 

newly modelled method is proposed to monitor the risk of 

failure that might occur on the leaf spring. Figs. 18, 19 and 20 

represents the time history, running damage in time-domain, 

and running-reliability in time-domain for various durability 

models for the highway, rural and campus data, respectively. As 

for running damage results, it shows that at a high amplitude, 

the excitation exhibited the high damage that occurred. The 

campus data produced the highest damage, and it was 

significant to the campus data that included many amplitudes of 

higher range as compared to the highway and rural data. The 

ESD model showed that the running damage was more detailed 

where this model rearranged the cycles of rainflow in strain 

histories based on the time start. The purpose of this 

rearrangement was to keep the sequence of load cycle effect, 

which was included into the fatigue life evaluation. As for an 

established strain-life model, the sequence of load cycle effect 
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was excluded in their method [14].  

The running-reliability technique is modelled by extracting 

the features of high amplitude excitation obtained from the 

time-domain strain signals. This is to observe the high damage 

regions which contributed towards high risk based on the signal 

features obtained from the road test. The ESD model showed 

the fatigue life data in time-domain as this model was calculated 

based on the cycle loading sequence effect where every cycle 

that had significant fatigue damage was switched to a fatigue 

life. It was shown that the reliability decreased due to fatigue 

damage while fatigue life significantly increased. This 

characteristic can be illustrated in Fig. 21 to define the critical 

reliability condition for a high damage segment. The ESD 

model shows the lowest reliability rates of 0.31 which gives the 

highest fatigue life predicted at 1.15 × 1013 cycles/block. 

Furthermore, the ESD model tabulates the highest reliability 

rates of 0.96 at the fatigue life predicted of 1.63 × 1012 

cycles/block. The ESD model showed detailed information 

required in monitoring fatigue failure in time-domain. Thus, the 

running-reliability technique is suitable to be used in monitoring 

the risk purpose of a leaf spring failure.

 

Fig. 18. Assessing the running damage and running-reliability techniques for highway strain loads data. 

 

Fig. 19. Assessing the running damage and running-reliability techniques for rural strain loads data. 
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Fig. 20. Assessing the running damage and running-reliability techniques for campus strain loads data.

 

Fig. 21. Critical reliability condition for high damage segment. 

3.8. Reliability-hazard relationship under extreme 

condition for risk monitoring 

The reliability-hazard relationship was proposed to determine 

the risk of a component based on different road loads associated 

with durability features referring to a failure number of cycles. 

The rates of reliability and hazard with subjected to cyclic 

loading that considering the influences of mean stress and 

sequence of load cycle was represented according to Coffin-

Manson, Morrow, SWT as well as ESD models for a campus 

data as portrayed in Figs. 22 to 25, respectively. The campus 

data could be represented as extreme data because the data 

contained mostly high amplitude excitations that described high 

damage. Fig. 26 illustrates the reliability-hazard relationship 

concentration. As a result, the fatigue life data were clustered 

within the 0.70 to 0.90 region. This result was utilised to 

identify the cycle of life obtained on reliability zone against the 

failure number of cycles based on the hazard rate extrapolated 

by using a data of fatigue life. Thus, this method is applicable 

to identify the concentrated zone of clustering in monitoring  

a risk to failure. 

 

Fig. 22. Relationship of reliability-hazard rate for the Coffin-

Manson model. 
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Fig. 23. Relationship of reliability-hazard rate for the Morrow 

model. 

 

Fig. 24. Relationship of reliability-hazard rate for the SWT 

model. 

 

Fig. 25. Relationship of reliability-hazard rate for the ESD 

model. 

 

Fig. 26. Reliability-hazard rate concentration. 

3.9. Validation of the strain-life model 

The distribution of Gumbel has been used in fatigue reliability 

assessment strain-based to predict the probability of fatigue 

failure. For this reason, the Gumbel probability plot is required 

to be done in determining using fatigue life data. Fig. 27 

displays the Gumbel probability plot for different strain-life 

models. The result shows the fatigue life data for the Coffin-

Manson model is in a boundary line of 95% confidence level. 

This is due to the model of Coffin-Manson excluded the effect 

of mean stress, where a leaf spring experienced compression 

and tension loads during operating condition. By comparing 

with each strain-life models, the fatigue life data of a leaf spring 

is acceptable to use Gumbel distribution because most fatigue 

life data is within the 95% confidence level. 
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(a) (b) 

  

(c) (d) 

Fig. 27. Gumbel probability plot for: (a) Coffin-Manson, (b) Morrow, (c) SWT, and (d) ESD models.

4. Conclusion 

The main purpose of this paper is to use operational reliability 

technology to monitor the risk of fatigue failure of plate springs 

to better understand and predict their performance under 

different road conditions. This study proposed a risk monitoring 

of fatigue failure on a leaf spring using the running-reliability 

technique to characterise fatigue reliability assessment 

subjected to various road loads data strain-based. The FE 

analysis was implemented on a carbon steel leaf spring 

geometry to determine the hotspot region for strain gauge 

installation. In mesh convergence analysis, a percentage of 

minimum error between mesh size of 2 mm to 10 mm is 2 %.  

The data collection of a random strain load was subjected to 

three road profiles where the campus data included numerous 

high amplitude excitations compared to the rural and highway 

data because bumps and uneven road surfaces influenced the 

data behaviour. This characteristic was consistent with the 

statistical parameter of kurtosis where a data of campus 

produced the higher kurtosis value at 4.31. The fatigue life 

assessment is defined according to an established strain-life 

models of Coffin-Manson, Morrow and SWT including ESD 

model which considered cycle sequence effect. The ESD model 

gave the highest range of fatigue life at 2.74 × 104 to 6.07 × 105 

cycle/block. The difference between ESD model with 

conventional strain-life model are around 6 to 13%. The cycle 

load sequence effect and tension-compression conditions could 

influence the fatigue life assessment. This study not involving 

an uncertainty in fatigue analysis; however, it can be considered 

in future work. 

In the reliability assessment, the ESD model revealed that 

the reliability rate rapidly decreased and it was significant to 

strain-life models. In consequence to that, the ESD model 

presented the failure, which appeared at a higher fatigue life in 

the reliability and hazard rate. The McTF exhibited the range 

value of 4.32 × 106 to 7.00 × 106 cycle/block. As for McBF, the 

ESD model presented the highest McBF values compared with 

established strain-life models. The running-reliability technique 

showed that high damage occurred at high amplitude excitation, 

resulting in the decrease of reliability. The reliability indicates  
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a low rate of 0.31, resulting in a high fatigue life of 1.15 × 1013 

cycle/block. On the other hand, this method can be used to 

monitor the risk of failure for reliability in the time-domain. The 

reliability-hazard relationship indicated that the fatigue life data 

are clustered within the 0.70 to 0.90 region. Hence, the running-

reliability technique is proposed as a suitable method to monitor 

the risk of failure in time domain for reliability fatigue-based of 

a leaf spring in terms of random road strain loads.
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