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Highlights  Abstract  

▪ A new burn-in model of heterogeneous items 

with two-dimensional warranty is considered. 

▪ We screen the items according to the failure 

information of the items during burn-in. 

▪ A Bayesian method has been proposed to 

address the uncertainty of parameters in the 

model. 

 Various burn-in procedures have been greatly used to screen weak 

items and reduce warranty costs. This paper proposes a new burn-in 

model for heterogeneous items with non-renewing two-dimensional 

warranty. All failures within burn-in and warranty are assumed to be 

repaired through the minimal repair. Then we screen the items 

according to the failure information of the items during burn-in. We 

establish a cost-based model to optimize the mean total cost of each 

item put into the market. We demonstrate that the optimal burn-in time 

or usage rate should reach its upper bound under some conditions. In 

practice, the reliability and mean total cost of an item may be random 

due to the uncertainty of parameters in the model. Therefore, we also 

propose a Bayesian method to calculate the mean total cost and optimal 

burn-in policy of an item, which fully considers the uncertainty of 

parameters in the model. An example is also given to demonstrate the 

proposed burn-in model and Bayesian method. 
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1. Introduction 

In reality, the early failure (i.e., infant mortality) of items 

has greatly increased the cost of warranty services provided 

by manufacturers. Burn-in is a usual method for 

manufacturers to screen and reduce early failure. The burn-in 

procedure refers to letting the item operate in the burn-in 

environment for a period before putting it into the market. 

Jensen and Petersen (1982) and Kuo and Kuo (1983) 

introduced the common methods and the early literature on 

burn-in modeling.  

In the market, the items are usually sold with a warranty 

service, which may bring higher costs to manufacturers. The 

burn-in procedure can reduce the warranty cost of items 

through reducing the early failure of items, it has attracted 

extensive attention (Sheu and Chien 2005; Ye et al 2012). The 

warranty policies can be classified into two types: one-

dimensional (1D) warranty policy with only one variable 

constrained and two-dimensional (2D) warranty policy with 

two variables constrained. The burn-in models of items with 

1D warranty have been greatly studied (see, Mi, 1997; Yun et 

al., 2002; Sheu and Chien, 2005; Wu et al., 2007; Ye et al., 

2012; Shafiee et al., 2013; Chen et al., 2021; Hu et al., 2021). 

The burn-in models of items with 2D warranty have also 
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received attention recently. The 2D warranty policy is widely 

used for some complex or heavy items, e.g., vehicles, printers 

and aircraft. For example, new vehicles on the market usually 

have a 2D warranty with 3-years or 36,000-miles, whichever 

comes first (Wang and Xie, 2018). Recently, there has been 

much research on the hot topic of 2D warranty policy (Wang 

et al., 2018; Dong et al., 2018; Dai et al., 2021; Mitra, 2021; 

Zhang et al., 2022; Gupta and Bhattacharya, 2022). In practice, 

items with 2D warranty also experience early failure. Attardi 

et al. (2005), Rai and Singh (2006), and Majeske (2007) 

analyzed vehicles warranty data and found that early failures 

accounted for approximately 5.6% of total failures, these 

vehicles typically have a warranty of no less than three years 

or 60,000 kilometers. Saleh et al. (2019) analyzed helicopter 

failures in the U.S. civilian fleet and found that there was a 

maintenance error infant mortality rate, that is, a large number 

of failure accidents occurred within a short flight hour after 

maintenance. Of these accidents, 31% occurred within the 

first 10 flight hours. Li et al. (2019) provided an example of a 

civilian helicopter gearbox, which includes a warranty of no 

less than two years or 600 hours of operating time. Therefore, 

we should also consider the corresponding burn-in model to 

reduce 2D warranty cost of items. Ye et al. (2013) first 

developed and analyzed two new burn-in models for 

repairable items with normal and defect failure modes under 

2D warranty. Recently, Li et al. (2019) established a burn-in 

model for repairable items considering preventive 

maintenance, 2D warranty and extended warranty. Wei et al. 

(2022) considered a burn-in model for heterogeneous items 

with 2D combination warranty.  

All aforementioned literature only assumes that the model 

parameters are known or estimated by frequency statistics. 

This does not take into account the uncertainty of the 

parameters in the model. However, in reality, the parameters 

in the model are usually uncertain, so it is necessary to 

consider the uncertainty of these parameters. The uncertainty 

of related parameters is usually characterized through 

Bayesian statistics. Perlstein et al. (2001) proposed a Bayesian 

method to calculate the cost-based optimal burn-in policy for 

heterogeneous items, where the item comes from a 

heterogeneous population modeled by a mixed Exponential 

distribution. Kwon and Keats (2002) established a Bayesian 

burn-in model for limited failure population, where normal 

item does not fail within their technical life and defective item 

fails shortly after it starts running. Yuan and Kuo (2010) 

proposed a cost-based Bayesian burn-in model, where the 

item follows the Weibull-Exponential distribution. Ulusoy et 

al. (2011) considered a Bayesian burn-in model of 

heterogeneous items to jointly optimize item reliability and 

expected total cost, where the item follows the mixed Weibull 

distribution. Yuan et al. (2016) considered a new Bayesian 

burn-in model for degradation-based items, where the two-

phase degradation patterns of an item are described by a bi-

exponential model. 

However, the above literature only considered the 

Bayesian methodology of the burn-in model for 1D warranty 

items. There are many differences between the Bayesian 

method of the burn-in model for 2D warranty items and that 

for 1D warranty items, because the uncertainty of parameters 

in the distribution of customer random usage rate and the 

effect of the usage rate on item aging should be considered. 

Therefore, we developed a Bayesian method to solve the 

optimal burn-in policy of items with 2D warranty. 

Furthermore, items heterogeneity should not be ignored in 

reality, otherwise, it will lead to misleading in engineering 

(Finkelstein and Cha, 2013). Therefore, this paper considers 

that the items population consists of a mixture of two different 

subpopulations. In addition, many studies directly scrap or 

replace items that fail within burn-in procedure, regardless of 

their repairability. However, for some complex and expensive 

items, the entire item is not discarded by the failure in the 

burn-in procedure but can be repaired (Cha, 2000). This paper 

considers that all failures of item within burn-in and warranty 

periods are repaired by minimal repair. The burn-in model 

with minimal repair for item failures during burn-in is also 

considered in Finkelstein and Cha (2013), Ye et al. (2013), 

Cha and Badía (2016) and Li et al. (2019). The minimal repair 

will not change the attribute (strong or weak) and failure rate 

of the item, that is, the failed strong (weak) item is still a 

strong (weak) item after repair and its failure rate will not 

change. Then, we screen the items according to the failure 

information during burn-in procedure. If the number of 

failures for an item during burn-in exceeds the burn-in 

screening threshold, it will be scrapped and replaced with a 
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new one; otherwise, it will be put into the market. 

We summarize the contributions of this paper as follows. 

To the best of our knowledge, this paper is the first to study 

Bayesian burn-in method for items with 2D warranty, which is 

different from existing Bayesian burn-in method for items 

with 1D warranty. This method fully considers the uncertainty 

of item parameters and updates the parameters of the model 

by combining prior knowledge with observed data. And then 

we obtain a more accurate and reliable optimal burn-in policy. 

In addition, we also consider the minimal repair during the 

burn-in procedure based on the previous burn-in model under 

2D warranty. This is more applicable to the burn-in of some 

complete machines or modular subsystems, where 

components that fail during the burn-in period are repaired or 

replaced instead of directly discarding the entire machines or 

system. This can also better save costs and reserve greater 

profit margins for manufacturers. 

The rest of this paper is organized below. Section 2 

presents the burn-in model considered in this paper. Section 3 

establishes a burn-in model and analyzes its optimal burn-in 

policy. Section 4 develops a Bayesian method for mixed 

Weibull distribution. Section 5 gives a numerical example to 

illustrate the proposed model and method. Section 6 concludes 

this paper. 

2. Model Formulation 

For convenience, Table 1 lists the main notations to be used.

Table 1. Notations. 

Symbol Meaning 

𝜋 the proportion of strong items in the heterogeneous population. 

𝑋, 𝑋1, 𝑋2 the first failure time of items in heterogeneous population, strong subpopulation, and weak subpopulation. 

𝐹(⋅), 𝐹1(⋅), 𝐹2(⋅) the distribution functions of 𝑋, 𝑋1 and 𝑋2. 

𝑅 the random usage rate of the customer population. 

𝐺(𝑟) the distribution function of 𝑅. 

𝑟0 nominal usage rate. 

𝜉1, 𝜉2 the acceleration coefficients of strong and weak items. 

𝐹𝑖(𝑡|𝑟) the distribution functions of 𝑋𝑖 under the usage rate 𝑟. 

𝑓𝑖(𝑡|𝑟) the density functions of 𝑋𝑖 under the usage rate 𝑟. 

𝐹(𝑡|𝑟) the distribution functions of 𝑋 under the usage rate 𝑟. 

𝑡𝑏, 𝑟𝑏, 𝑛𝑏 the burn-in usage rate, the burn-in time, and the burn-in screening threshold. 

𝜆𝑖(𝑡|𝑟𝑏) the failure rate of 𝑋𝑖 during burn-in period. 

𝑁𝑖(𝑡|𝑟𝑏) the number of failures of 𝑋𝑖 under the usage rate 𝑟𝑏. 

𝑊,𝑈 the limits of age and usage for the 2D warranty policy. 

𝑇𝑟 the actual length of warranty time given 𝑅 = 𝑟. 

𝜋(𝑡𝑏, 𝑟𝑏 , 𝑛𝑏) the proportion of strong items in the population after burn-in screening. 

𝐹𝑖
𝑤(𝑡|𝑟, 𝑡𝑏, 𝑟𝑏) the distribution function of 𝑋𝑖 given 𝑅 = 𝑟 within warranty region, 𝑖 = 1,2. 

𝜆𝑖
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏) the failure rate of 𝑋𝑖 given 𝑅 = 𝑟 within warranty region, 𝑖 = 1,2. 

𝑁𝑖
𝑤(𝑡|𝑟, 𝑡𝑏, 𝑟𝑏) the number of failures of 𝑋𝑖 given 𝑅 = 𝑟 within warranty, 𝑖 = 1,2. 

𝑁𝑤(𝑇𝑟|𝑟, 𝑡𝑏 , 𝑟𝑏, 𝑛𝑏) the number of minimal repairs within warranty region given 𝑅 = 𝑟. 

𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏, 𝑛𝑏) the intensity function of 𝑁𝑤(𝑇𝑟|𝑟, 𝑡𝑏, 𝑟𝑏). 

𝑁𝑤(𝑡𝑏, 𝑟𝑏 , 𝑛𝑏) the number of minimal repairs within warranty region. 

𝑇𝑏 the operating time until the first item passes burn-in. 

𝑆𝑛 the occurrence time of the 𝑛th repair of an item during burn-in. 

𝐻𝑛(𝑡) the distribution function of 𝑆𝑛. 

𝑌1, … , 𝑌𝑛 
the independent and identically distributed random variables with the distribution function 𝐻𝑛𝑏+1(𝑡|𝑆𝑛𝑏+1 ≤ 𝑡𝑏), 𝑡 ≤

𝑡𝑏. 

𝑀 − 1 the random number of replacements until the first item passes burn-in. 

𝑐1(𝑟𝑏) the burn-in operation cost per unit time for each item. 

𝜉0 the shape parameter of 𝑐1(𝑟𝑏). 

 

𝑐0, 𝑐2, 𝑐3, 𝑐4 
the setup cost, the replacement cost per item during burn-in, the cost of each minimal repair during burn-in, and the 

minimal repair cost per failure within warranty region. 
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𝐸[𝐶(𝑡𝑏, 𝑟𝑏 , 𝑛𝑏)] the mean total cost per item. 

𝑡𝑏
∗, 𝑟𝑏

∗, 𝑛𝑏
∗  the optimal burn-in time, usage rate and screening threshold. 

 

 

2.1. Failures modelling  

This paper considers that all items are from a heterogeneous 

population consisting of strong and weak subpopulations, and 

that all failures of items are repaired by minimal repair. 

Suppose that the proportion of strong items in the 

heterogeneous population is 𝜋 . We use 𝑋 , 𝑋1  and 𝑋2  to 

represent the first failure time of items in heterogeneous 

population, strong subpopulation and weak subpopulation, 

respectively. Denote the distribution functions of 𝑋, 𝑋1 and 𝑋2 

by 𝐹(⋅), 𝐹1(⋅) and 𝐹2(⋅), respectively. In addition, we consider 

that the usage rate of different customers may be different, but 

the usage rate of each customer is constant. Let 𝑅  with 

distribution function 𝐺(𝑟)  be the random usage rate of the 

customer population, where 𝑟 ∈ ℛ. Manufacturers can obtain 

this distribution through some surveys or fitting actual data. 

Common usage rate distributions include Uniform distribution, 

Gamma distribution, Lognormal distribution, Weibull 

distribution, etc. 

The burn-in procedure is always carried out in an 

accelerated environment (Block and Savits 1997). The 

Accelerated Failure Time model is often used to describe the 

effect of usage rate and accelerated environment on item 

aging (Blischke et al., 2011; Zaharia, 2019; Lone and Panahi, 

2022). Therefore, we use the Accelerated Failure Time model 

to model the effect of usage rate on item operation. Let the 

item be designed for a nominal usage rate 𝑟0 and the virtual 

age of 𝑋𝑖  at time 𝑡  under usage rate 𝑟  be given by (𝑟/

𝑟0)
𝜉𝑖𝑡, 𝑖 = 1,2 . The notations 𝜉1  and 𝜉2  are the acceleration 

coefficients of strong and weak items respectively and they 

describe the effect of accelerated environment on item aging. 

Then the distribution functions of 𝑋𝑖  and 𝑋  under the usage 

rate 𝑟 are 

𝐹𝑖(𝑡|𝑟) = 𝐹𝑖((𝑟/𝑟0)
𝜉𝑖𝑡|𝑟0), 

and 

𝐹(𝑡|𝑟) = 𝜋𝐹1(𝑡|𝑟) + (1 − 𝜋)𝐹2(𝑡|𝑟). 

respectively, 𝑖 = 1,2 . Then the density function of 𝑋𝑖 

under the usage rate 𝑟 is 

𝑓𝑖(𝑡|𝑟) = (𝑟/𝑟0)
𝜉𝑖𝑓𝑖((𝑟/𝑟0)

𝜉𝑖𝑡|𝑟0), 𝑖 = 1,2. 

2.2. Failures during burn-in 

The burn-in should be carried out for a fixed length of time in  

a specific environment. Here we use the usage rate 𝑟𝑏 , the 

burn-in time 𝑡𝑏  and the burn-in screening threshold 𝑛𝑏  to 

characterize the burn-in environment, length of time and 

screening condition. We use 𝒯b , ℛb  and 𝒩b  to represent the 

value ranges of 𝑡𝑏 , 𝑟𝑏 and 𝑛𝑏, respectively.  

Note that the failure rate of 𝑋𝑖 during burn-in period is  

𝜆𝑖(𝑡|𝑟𝑏) =
𝑓𝑖(𝑡|𝑟𝑏)

1 − 𝐹𝑖(𝑡|𝑟𝑏)
       

= (
𝑟𝑏
𝑟0

)𝜉𝑖

𝑓𝑖((
𝑟𝑏
𝑟0

)𝜉𝑖𝑡|𝑟0)

1 − 𝐹𝑖((
𝑟𝑏
𝑟0

)𝜉𝑖𝑡|𝑟0)
                                            (2.1)

= (
𝑟𝑏
𝑟0

)𝜉𝑖𝜆𝑖((
𝑟𝑏
𝑟0

)𝜉𝑖𝑡|𝑟0), 𝑖 = 1,2 

Ascher and Feingold (1984) demonstrated that the number 

of minimal repairs can be modelled by a nonhomogeneous 

Poisson process (NHPP) in which the intensity function is the 

failure rate function of item. Therefore, the number of failures 

of 𝑋𝑖  under the usage rate 𝑟𝑏  follows the NHPP (denoted by 

𝑁𝑖(𝑡|𝑟𝑏) ) with the intensity function 𝜆𝑖(𝑡|𝑟𝑏), 𝑖 = 1,2 . For 

more literature on modeling the number of minimal repairs 

using NHPP, see Finkelstein and Cha (2013) and Cha and 

Finkelstein (2011).  

We screen the items according to their failure information, 

if the number of failures of an item exceeds the screening 

threshold 𝑛𝑏 within burn-in, it will be scrapped and replaced 

with a new one; otherwise, it will be put into the market. 

Therefore, the probability that the number of failures of 𝑋𝑖 is 

not greater than the screening threshold 𝑛𝑏 during the burn-in 

is 

𝑃{𝑁𝑖(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏} = ∑ 𝑃{𝑁𝑖(𝑡𝑏|𝑟𝑏)   = 𝑛}

𝑛𝑏

𝑛=0

         (2.2)

= ∑
[∫ 𝜆𝑖(𝑡|𝑟𝑏)

𝑡𝑏
0

𝑑𝑡]𝑛

𝑛!

𝑛𝑏

𝑛=0

 exp {−∫ 𝜆𝑖(𝑡|𝑟𝑏)
𝑡𝑏

0

 d𝑡} , 𝑖 = 1,2. 

Note that the minimal repair should not change the (strong 

or weak) attribute of the item. Then the probability of 𝑋 

passing the burn-in screening is  
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𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏} = 𝜋𝑃{𝑁1(𝑡𝑏|𝑟𝑏)

≤ 𝑛𝑏} + (1 − 𝜋)𝑃{𝑁2(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}. 

2.3. Failures during warranty period 

In this paper, we consider that the 2D warranty policy is 

limited by age 𝑊 and usage 𝑈, whichever comes first. Then 

the actual length of warranty time given 𝑅 = 𝑟 is  

𝑇𝑟 = {
𝑊, 𝑟 ≤ 𝑈/𝑊,

𝑈/𝑟, 𝑟 > 𝑈/𝑊.
 

Figure 1 gives the actual length of warranty time 𝑇𝑟 given 

𝑅 = 𝑟. 

Note that the proportion of strong items in the population 

after burn-in screening is 

𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏) =
𝜋𝑃{𝑁1(𝑡𝑏|𝑟𝑏)≤𝑛𝑏}

𝜋𝑃{𝑁1(𝑡𝑏|𝑟𝑏)≤𝑛𝑏}+(1−𝜋)𝑃{𝑁2(𝑡𝑏|𝑟𝑏)≤𝑛𝑏}
,      (2.3) 

and the distribution function of 𝑋𝑖  given 𝑅 = 𝑟  within 

warranty region is 

𝐹𝑖
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏) =

𝐹𝑖((𝑟/𝑟0)
𝜉𝑖𝑡 + (𝑟𝑏/𝑟0)

𝜉𝑖𝑡𝑏|𝑟0) − 𝐹𝑖((𝑟𝑏/𝑟0)
𝜉𝑖𝑡𝑏|𝑟0)

1 − 𝐹𝑖((𝑟𝑏/𝑟0)
𝜉𝑖𝑡𝑏|𝑟0)

, 𝑖 = 1,2. 

 

(a)                                                                    (b)  

Figure 1. The actual length of warranty time 𝑇𝑟 given 𝑅 = 𝑟.

Then, the failure rate of 𝑋𝑖  given 𝑅 = 𝑟  within warranty 

region is 

𝜆𝑖
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏) =

𝑑𝐹𝑖
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏)

𝑑𝑡
1 − 𝐹𝑖

𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏)
 

 = (
𝑟

𝑟0
)𝜉𝑖

𝑓𝑖((
𝑟𝑏
𝑟0

)𝜉𝑖𝑡𝑏 + (
𝑟
𝑟0

)𝜉𝑖𝑡|𝑟0)

1 − 𝐹𝑖((
𝑟𝑏
𝑟0

)𝜉𝑖𝑡𝑏 + (
𝑟
𝑟0

)𝜉𝑖𝑡|𝑟0)
                        (2.4) 

 = (
𝑟

𝑟0
)𝜉𝑖𝜆𝑖((

𝑟𝑏
𝑟0

)𝜉𝑖𝑡𝑏 + (
𝑟

𝑟0
)𝜉𝑖𝑡|𝑟0), 𝑖 = 1,2. 

Then the number of failures of 𝑋𝑖 given 𝑅 = 𝑟 follows the 

NHPP (denoted by 𝑁𝑖
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏)) with the intensity function 

𝜆𝑖
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏) , 𝑖 = 1,2 . Therefore, the mean number of 

minimal repairs within warranty region given 𝑅 = 𝑟 is given 

by 

𝐸[𝑁𝑤(𝑇𝑟|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)]

= 𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)𝐸[𝑁1
𝑤(𝑇𝑟|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)] + (1

− 𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏))𝐸[𝑁2
𝑤(𝑇𝑟|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)]

= 𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)∫ 𝜆1
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)

𝑇𝑟

0

𝑑𝑡 + (1

− 𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏))∫ 𝜆2
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)

𝑇𝑟

0

𝑑𝑡

= ∫ 𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)
𝑇𝑟

0

𝑑𝑡，                                                   (2.5) 

where 

𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏) = 𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)𝜆1
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏) + (1 −

𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏))𝜆2
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏).         (2.6) 

Hence, the mean number of warranty claims is 

𝐸[𝑁𝑤(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)] = ∫𝐸[𝑁𝑤(𝑇𝑟|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)]𝑑𝐺(𝑟)
ℜ

= ∫ ∫ 𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)
𝑇𝑟

0

𝑑𝑡𝑑𝐺(𝑟)
ℜ

. 

3. Model Analysis 

In practice, cost has always been a concern for manufacturers. 

The competitive advantage of items can be improved by 

reducing costs. Therefore, we wish to develop a cost-based 

burn-in model to obtain the optimal burn-in policy that 

/r U W /r U W
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minimizes the mean total cost per item sold. The mean total 

cost can also tell manufacturers how much money they need 

to set aside for burn-in and warranty. 

The total cost includes the burn-in cost and the warranty 

cost. The burn-in cost includes the fixed setup cost 𝑐0 , the 

burn-in operation cost, the replacement cost, and the cost of 

minimal repairs within burn-in. The burn-in operation cost 

should be proportional to the operating time 𝑇𝑏 . We use 𝑆𝑛 

with distribution function 𝐻𝑛(𝑡)  to express the occurrence 

time of the 𝑛th repair of an item during burn-in, that is 

𝐻𝑛(𝑡) = 𝑃{𝑆𝑛 ≤ 𝑡} = 𝑃{𝑁(𝑡|𝑟𝑏) > 𝑛 − 1}.  (3.1) 

The operating time of one item during burn-in is 𝑆𝑛𝑏+1 if 

𝑁(𝑡𝑏|𝑟𝑏) > 𝑛𝑏, and it is 𝑡𝑏 if 𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏. Let 𝑌1, … , 𝑌𝑛  be 

the independent and identically distributed random variables 

with the distribution function 𝐻𝑛𝑏+1(𝑡|𝑆𝑛𝑏+1 ≤ 𝑡𝑏), 𝑡 ≤ 𝑡𝑏 . 

Let 𝑀 − 1 be the random number of replacements until the 

first item passes burn-in screening. Then the total burn-in 

operating time to obtain an item that passes the burn-in 

screening is 

𝑇𝑏 = ∑ 𝑌𝑗 + 𝑡𝑏

𝑀−1

𝑗=1

. 

It is easy to see that 𝑀 follows the geometric distribution 

with mean 𝐸[𝑀] = 1/(1 − 𝐻𝑛𝑏+1(𝑡𝑏)). Therefore, 

𝐸[𝑇𝑏] = 𝐸 [∑ 𝑌𝑗 + 𝑡𝑏

𝑀−1

𝑗=1

] 

     = 𝐸[𝑀 − 1]𝐸[𝑌] + 𝑡𝑏 

     =
𝐻𝑛𝑏+1(𝑡𝑏)

1 − 𝐻𝑛𝑏+1(𝑡𝑏)

∫ 𝑥ℎ𝑛𝑏+1(𝑥)𝑑𝑥
𝑡𝑏
0

𝐻𝑛𝑏+1(𝑡𝑏)
+ 𝑡𝑏                      (3.2) 

     =
∫ 𝑥ℎ𝑛𝑏+1(𝑥)𝑑𝑥

𝑡𝑏
0

+ 𝑡𝑏[1 − 𝐻𝑛𝑏+1(𝑥)]

1 − 𝐻𝑛𝑏+1(𝑡𝑏)
 

     =
∫ 1 − 𝐻𝑛𝑏+1(𝑥)𝑑𝑥

𝑡𝑏
0

1 − 𝐻𝑛𝑏+1(𝑡𝑏)
, 

where ℎ𝑛𝑏+1(𝑥) = 𝐻𝑛𝑏+1
′ (𝑥). From (3.1) and (3.2), the mean 

operation cost is 

𝑐1(𝑟𝑏)
∫ 𝑃{𝑁(𝑡|𝑟𝑏)≤𝑛𝑏}
𝑡𝑏
0 d𝑡

𝑃{𝑁(𝑡𝑏|𝑟𝑏)≤𝑛𝑏}
,   (3.3) 

where 𝑐1(𝑟𝑏) is the burn-in operation cost per unit time for 

each item. Clearly, 𝑐1(𝑟𝑏)  should be increasing in 𝑟𝑏 . For 

example, when temperature and voltage are used as 

environmental stresses, higher usage rate usually means 

higher temperature and voltage, which can result in additional 

energy costs. Here we give the form of 𝑐1(𝑟𝑏) as 

𝑐1(𝑟𝑏) = 𝑎𝑟𝑏
𝜉0 , 

which is also used by Ye et al. (2013) and Li et al. (2019).  

It is easy to get that the mean replacement cost and the 

mean cost of minimal repairs within burn-in procedure are 

𝑐2

𝑃{𝑁(𝑡𝑏|𝑟𝑏) > 𝑛𝑏}

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
, 

and 

𝑐3𝑛𝑏

𝑃{𝑁(𝑡𝑏|𝑟𝑏) > 𝑛𝑏}

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
+ 𝑐3𝐸[𝑁(𝑡𝑏|𝑟𝑏)|𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏], 

respectively, where 𝑐2 is the replacement cost per item during 

burn-in, 𝑐3 is the cost of each minimal repair during burn-in, 

and 

  𝐸[𝑁(𝑡𝑏|𝑟𝑏)|𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏] 

= 𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)𝐸[𝑁1(𝑡𝑏|𝑟𝑏)|𝑁1(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏] + (1 −

𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏))𝐸[𝑁2(𝑡𝑏|𝑟𝑏)|𝑁2(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏]            (3.4) 

is the mean number of minimal repairs for an item passing 

burn-in. Denote 𝐶𝑏(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏) as the burn-in cost incurred for 

obtaining the item passing the burn-in. Then, the mean burn-in 

cost is 

𝐸[𝐶𝑏(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)] = 𝑐0 + 𝑎𝑟𝑏
𝜉0

∫ 𝑃{𝑁(𝑡|𝑟𝑏) ≤ 𝑛𝑏}
𝑡𝑏
0

𝑑𝑡

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}

+ 𝑐2

𝑃{𝑁(𝑡𝑏|𝑟𝑏) > 𝑛𝑏}

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}

+ 𝑐3𝑛𝑏

𝑃{𝑁(𝑡𝑏|𝑟𝑏) > 𝑛𝑏}

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
             

+ 𝑐3𝐸[𝑁(𝑡𝑏|𝑟𝑏)|𝑁(𝑡𝑏|𝑟𝑏)

≤ 𝑛𝑏].                                                            (3.5) 

The warranty cost is determined by the number and cost of 

minimal repairs for each item within warranty. Let 𝑐4 be the 

minimal repair cost per failure within warranty region. The 

failure during the warranty period not only leads to repair 

costs, but also incurs additional reputational losses, labor and 

scheduling costs. Therefore, the minimal repair cost for each 

failure in the warranty region should be higher than the 

minimal repair cost within burn-in period, that is 𝑐3 ≤ 𝑐4 . 

Then the mean warranty cost is 

𝐸[𝐶𝑤(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)] = 𝑐4𝐸[𝑁𝑤(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)]

= 𝑐4 ∫ ∫ 𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)
𝑇𝑟

0

𝑑𝑡𝑑𝐺(𝑟)
ℜ

. (3.6) 

Therefore, the mean total cost per item can be obtained 

from equations (3.5) and (3.6): 
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𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)]

= 𝑐0 + 𝑎𝑟𝑏
𝜉0

∫ 𝑃{𝑁(𝑡|𝑟𝑏) ≤ 𝑛𝑏}
𝑡𝑏
0

𝑑𝑡

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
+ 𝑐2

𝑃{𝑁(𝑡𝑏|𝑟𝑏) > 𝑛𝑏}

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}

+ 𝑐3𝑛𝑏

𝑃{𝑁(𝑡𝑏|𝑟𝑏) > 𝑛𝑏}

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
             + 𝑐3𝐸[𝑁(𝑡𝑏|𝑟𝑏)|𝑁(𝑡𝑏|𝑟𝑏)

≤ 𝑛𝑏] + 𝑐4 ∫ ∫ 𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)
𝑇𝑟

0

𝑑𝑡𝑑𝐺(𝑟)
ℜ

.                      (3.7) 

Then our burn-in model is denoted by 

[𝑡𝑏
∗ , 𝑟𝑏

∗, 𝑛𝑏
∗ ] = arg min

𝑡𝑏∈𝒯𝑏,𝑟𝑏∈ℛ𝑏,𝑛𝑏∈𝒩𝑏

 𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)],    (3.8) 

where 𝑡𝑏
∗, 𝑟𝑏

∗ and 𝑛𝑏
∗  represent the optimal burn-in time, usage 

rate and screening threshold, respectively. 

The following theorem provides the properties of the 

optimal burn-in policy. It shows that the optimal burn-in time 

or usage rate should reach its upper limit under some mild 

conditions. Its proof is given in Appendix I. 

Theorem 1. Suppose 𝜆1(𝑡|𝑟0)  increases with 𝑡  and 

𝜆1
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏) ≤ 𝜆2

𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏). 

(i) If 𝜉0 ≤ 𝜉1 ≤ 𝜉2, then 𝑟𝑏
∗ = 𝑟𝑏. 

(ii) If 𝜉0 ≥ 𝜉1 ≥ 𝜉2, then 𝑡𝑏
∗ = 𝑡𝑏. 

Remark 1. The result in Theorem 1 gives the 

characterizations for the optimal solution of (3.8), which can 

reduce the number of decision variables and then reduce the 

difficulty of solving. If the conditions of our result are not 

satisfied, we can also use some mature algorithms to calculate 

the optimal policy, such as pattern search, grid search or other 

derivative free optimization algorithms. 

4. Bayesian model for mixed Weibull distribution 

In Section 3, Theorem 1 explains the influence of parameters 

on the proposed burn-in model. In practice, it is difficult to 

obtain exact knowledge of these parameters, so their 

uncertainties shall be adequately quantified. Therefore, this 

section develops a Bayesian method to quantify the 

uncertainties of these related parameters. 

We consider mixed Weibull distribution as the distribution 

of the item lifetime, because Weibull distribution is widely 

used to characterize item lifetime owing to its flexibility 

(Almalki and Nadarajah 2014; Andrzejczak and Bukowski 

2021; Shuto and Amemiya 2022). Then 𝑋𝑖 follows the Weibull 

distribution with distribution function 

𝐹𝑖(𝑡) = 1 − 𝑒
−(

𝑡
𝛿𝑖

)
𝜂𝑖

, 𝑖 = 1,2, 

where 𝛿𝑖 > 0 and 𝜂𝑖 > 0 are the scale and shape parameters, 

respectively. Weibull distribution is related to many 

distributions, for example, when 𝜂𝑖 =1, it is an Exponential 

distribution; when 𝜂𝑖 = 2, it is a Rayleigh distribution. 

Other lifetime distributions can be similarly analyzed by 

using the Bayesian method developed. On the other hand, the 

Gamma distribution and Uniform distribution are widely used 

to describe the distribution of customer usage rate (Iskandar 

and Murthy 2003). Although the Uniform distribution has a 

simpler form and is easier for analysis, in reality, the usage 

rate often varies according to different customer habits, 

especially for durable goods. The Gamma distribution is more 

suitable for characterizing random variables supported by 

(0,∞) rather than finite intervals. Therefore, we assume that 

the usage rate follows the Beta distribution on (0, 𝑏), because 

it is an extension of the Uniform distribution, which can well 

describe the non-uniform distribution of random variables on 

a finite interval. Then the density function of 𝑅 is 

𝑔(𝑟) =
Γ(𝛾 + 𝜆)

Γ(𝛾)Γ(𝜆)

𝑟𝛾−1(𝑏 − 𝑟)𝜆−1

𝑏𝛾+𝜆−1
, 0 < 𝑟 < 𝑏, 𝜆 > 0, 𝛾 > 0. 

Therefore, the density function of 𝑋  is

𝑓(𝑡|𝜽) = ∫
Γ(𝛾 + 𝜆)

Γ(𝛾)Γ(𝜆)

𝑟𝛾−1(𝑏 − 𝑟)𝜆−1

𝑏𝛾+𝜆−1

𝑏

0

[𝜋
𝜂1

𝛿1

(
𝑟

𝑟0
)𝜂1𝜉1(

𝑡

𝛿1

)𝜂1−1𝑒
−(

𝑟
𝑟0

)𝜂1𝜉1(
𝑡
𝛿1

)𝜂1

+(1 − 𝜋)
𝜂2

𝛿2

(
𝑟

𝑟0
)

𝜂2𝜉2

(
𝑡

𝛿2

)
𝜂2−1

𝑒
−(

𝑟
𝑟0

)
𝜂2𝜉2

(
𝑡
𝛿2

)
𝜂2

]d𝑟,                             

 

where 𝜽 = (𝜋, 𝛾, 𝜆, 𝜉1, 𝜉2, 𝜂1, 𝜂2, 𝛿1, 𝛿2)  represents the 

parameter vector of the model. We consider quantifying the 

uncertainty of the model parameters through the joint prior 

distribution. For analysis, it is reasonable to assume that prior 

knowledge of different parameters is independent of each 

other. Since the mixture parameter 𝜋 ∈ (0,1) , a reasonable 

and general choice of its prior distribution is the Beta 

distribution with parameters 𝑝, 𝑞 ≥ 0 (Martz and Waller 1982), 

whose density function is 

𝑔(𝜋) =
Γ(𝑝 + 𝑞)

Γ(𝑝)Γ(𝑞)
𝜋𝑝−1(1 − 𝜋)𝑞−1. 
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Since the parameters 𝛾  and 𝜆 should be nonnegative, we 

use Gamma distribution to describe their prior distributions. 

The prior density functions of 𝛾 and 𝜆 are  

𝑔(𝛾) =
𝑘𝑧

Γ(𝑧)
𝛾𝑧−1𝑒−𝑘𝛾 , 

and 

𝑔(𝜆) =
𝑙𝑣

Γ(𝑣)
𝜆𝑣−1𝑒−𝑙𝜆 , 

respectively, where 𝑘 and 𝑙 are inverse scale parameters, 𝑧 and 

𝑣  are the shape parameters. If 𝑧 = 1, the distribution is an 

Exponential distribution; if 𝑧 = 𝑛/2  and 𝑘 = 1/2 , the 

distribution is a Chi-square distribution. 

In practice, the virtual age (𝑟/𝑟0)
𝜉𝑖𝑡 should be increasing 

in 𝑟 and 𝑡, that is, the parameters 𝜉𝑖  should be nonnegative, 

𝑖 = 1,2. Therefore, we use Gamma distribution to describe the 

prior distribution of 𝜉𝑖, whose density function is 

𝑔(𝜉𝑖) =
𝜎𝑖

𝜇𝑖

Γ(𝜇𝑖)
𝜉𝑖

𝜇𝑖−1
𝑒−𝜎𝑖𝜉𝑖 , 𝑖 = 1,2. 

As motivated in Ulusoy et al. (2011), the Beta distribution 

and the Gamma distribution are designated as prior 

distributions of 𝜂𝑖 and 𝛿𝑖, respectively, 𝑖 = 1,2. Then the prior 

density function of 𝜂𝑖 is 

𝑔(𝜂𝑖) =
Γ(𝑎𝑖 + 𝑏𝑖)

Γ(𝑎𝑖)Γ(𝑏𝑖)

𝜂𝑖
𝑎𝑖−1

(𝑑 − 𝜂𝑖)
𝑏𝑖−1

𝑑𝑎𝑖+𝑏𝑖−1
, 𝑖 = 1,2, 

and the prior density function of 𝛿𝑖 is 

𝑔(𝛿𝑖) =
𝛽𝑖

𝛼𝑖

Γ(𝛼𝑖)
𝛿𝑖

𝛼𝑖−1
𝑒−𝛽𝑖𝛿𝑖 , 𝑖 = 1,2. 

Due to the independence assumption between parameters, 

the joint prior density function of 𝜽 is 

𝑔(𝜽) = 𝑔(𝜋)𝑔(𝜂1)𝑔(𝜂2)𝑔(𝛿1)𝑔(𝛿2)𝑔(𝜉1)𝑔(𝜉2)𝑔(𝜆)𝑔(𝛾), 𝜽 ∈ 𝚯, 

where 𝚯 represents the parameter space of 𝜽. 

Assume that additional sample data can be obtained prior 

to the burn-in procedure from the field operation or some 

surveys. In practice, the sample data observed are usually 

censored. Let 𝐷 = (𝑡1, … , 𝑡𝑚, 𝑡∗, 𝑚, 𝜅)  denote the general 

form of the sample data, which represents that there are 𝑚 of 

𝑚 + 𝜅  items failed before the censoring time 𝑡∗  and the 

observed failure times are given by 𝑡1, … , 𝑡𝑚 . Then the 

likelihood is 

𝐿(𝐷|𝜽) = (1 − 𝐹(𝑡∗|𝜽))𝜅 ∏ 𝑓(𝑡𝑖|𝜽)

𝑚

𝑖=1

, 

where 𝐹(𝑡∗|𝜽) = ∫ 𝑓(𝑡|𝜽)
𝑡∗

0
d𝑡. By using Bayes' Theorem, the 

joint posterior distribution of 𝜽 ∈ 𝚯 given date 𝐷 is 

𝑔(𝜽|𝐷) =
𝑔(𝜽)𝐿(𝐷|𝜽)

∫ 𝑔(𝜽)𝐿(𝐷|𝜽)𝚯 d𝜽

∝ 𝑔(𝜽)𝐿(𝐷|𝜽).          
  (4.1) 

Then the posterior mean total cost per item is 

𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)|𝐷] = ∫ 𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)|𝜽]𝑔(𝜽|𝐷)
𝚯

d𝜽.(4.2) 

The marginal posterior densities of all parameters could be 

inferred from the joint posterior density, which would be used 

to calculate the posterior estimation of parameters. For 

instance, 

the marginal posterior density of 𝜋 is 

𝑔(𝜋|𝐷) = ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ 𝑔(𝜽|𝐷)𝑑𝛾𝑑𝜆𝑑𝜉1𝑑𝜉2𝑑𝛿1𝑑𝛿2𝑑𝜂1𝑑𝜂2
𝑑

0

𝑑

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0
.         (4.3) 

 

Then, we can substitute the posterior estimation of 

parameters into equation (3.7) to calculate the mean total cost 

per item of the model under the posterior estimation 

parameters. It can be seen that the posterior mean total cost 

per item 𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)|𝐷]  and the marginal posterior 

densities are obtained by multiple integrals. It is usually 

difficult to obtain an analytical form of multiple integrals, and 

sometimes it is even impossible to obtain numerical integrals 

directly. The Markov Chain Monte Carlo (MCMC) simulation 

is the most common method for obtaining reliable result 

without calculating integral (Yuan and Kuo, 2010). Therefore, 

we use OpenBUGS, a special software for MCMC, to 

calculate these integrals. Other software packages (e.g., RStan, 

WinBUGS, JAGS, etc.) can also be used to calculate them 

similarly. The following algorithm gives the steps of MCMC. 

Algorithm 1. The steps of MCMC simulation algorithm 

are as follows: 

(i) Simulate parameter vector samples 𝜽(1), 𝜽(2), … , 𝜽(𝑠) 

from posterior distribution 𝑔(𝜽|𝐷); 

(ii) For each 𝜽(𝑗) vector obtained in Step (i), calculate the 

corresponding mean total cost per item 

𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)|𝜽
(𝑗)], 𝑗 = 1,2, … , 𝑠; 

(iii) The posterior mean total cost per item 

𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)|𝐷] and the posterior estimation of parameters 
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can be approximated with the average value 

1

𝑠
Σ𝑗=1

𝑠 𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)|𝜽
(𝑗)] and 

1

𝑠
Σ𝑗=1

𝑠 𝜽(𝑗), respectively. 

5. Numerical Example 

This section illustrates the proposed burn-in model and 

Bayesian method with an example of the automotive 

gearboxes with 2D warranty. We obtain and compare the 

optimal burn-in policies for the models under the prior 

estimator, posterior estimator and actual parameters. For 

convenience, we assumed the actual parameters and generated 

the required data samples through simulation. Then, we give 

some sensitivity analysis on cost parameters to provide 

guidance for manufacturers to develop burn-in and warranty 

policy. Assume the warranty period for whole automobile 

shall not be less than 36 months or the mileage of 60,000 

kilometers, whichever comes first (Wang and Xie, 2018). In 

practice, all parameters and data samples can be obtained 

through the information on the operation of previous items or 

through surveys. The units of measurement for cost, time and 

usage are 104 dollars, month and 103 kilometers, respectively. 

5.1. Model structure and parameters 

 The 2D warranty is 𝑊 = 36 and 𝑈 = 60. 

 The value ranges of 𝑡𝑏 , 𝑟𝑏  and 𝑛𝑏  are 𝒯𝑏 = [0,2], ℛ𝑏 =

[0,20] and 𝒩𝑏 = [0,10], respectively. 

 The cost parameters are: 𝑐0 = 0.2 , 𝑐1 = 0.15𝑟𝑏
0.5, 𝑐2 =

20, 𝑐3 = 0.6 and 𝑐4 = 2. 

 The prior distribution of parameters are 𝜋 ∼

𝐵𝑒𝑡𝑎(13,2), 𝛾 ∼ 𝐺𝑎𝑚(9,5), 𝜆 ∼ 𝐺𝑎𝑚(70,3), 𝜉1 ∼

𝐺𝑎𝑚(2,7), 𝜉2 ∼ 𝐺𝑎𝑚(2,14), 𝜂1/6 ∼ 𝐵𝑒𝑡𝑎(2,10), 𝜂2/

6 ∼ 𝐵𝑒𝑡𝑎(2,10), 𝛿1 ∼ 𝐺𝑎𝑚(14,5), 𝛿2 ∼ 𝐺𝑎𝑚(2,13). 

 In order to obtain data samples, we simulated and 

generated failure data of 100 items within 10 months, 

where the actual parameters of the items are shown in 

Table 2. 

Table 2. Parameters. 

Parameter 𝜋 𝛾 𝜆 𝜂1 𝜂2 𝛿1 𝛿2 𝜉1 𝜉2 𝑟0 

Actual 0.80  2.00 23.00  1.20  1.20  3.00  0.20  0.25  0.15  20.00 

At the end of the test, we observed 88 failure times and 12 

items were still operable at the end of 10 months, where the 

data samples are given in the Table 3.

Table 3. Data samples. 

0.03 0.03 0.10 0.11 0.13 0.13 0.16 0.16 0.16 0.18 0.21 0.22 0.22 0.22 0.23 

0.28 0.29 0.29 0.32 0.33 0.34 0.39 0.44 0.45 0.47 0.53 0.57 0.58 0.64 0.72 

0.88 0.96 0.96 1.09 1.26 1.28 1.45 1.50 1.66 1.78 1.82 1.83 1.92 1.93 2.26 

2.40 2.42 2.43 2.57 2.84 2.95 3.08 3.09 3.15 3.27 3.27 3.42 3.54 3.64 4.16 

4.17 4.44 5.03 5.09 5.11 5.11 5.18 5.22 5.36 5.38 5.39 5.52 5.63 5.76 6.17 

6.38 6.46 6.67 6.80 6.86 7.12 7.32 7.55 7.57 7.80 7.81 8.76 9.93   

5.2 Bayesian calculation 

To calculate the mean total cost, we used OpenBUGS 

simulation to generate 12,000 realizations for each parameter 

and discarded the first 2,000 observations as warm-up 

calculations. Then, we can obtain the posterior density 

functions of all parameters, which are compared with the prior 

density functions of all parameters in Figure 2. 
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Figure 2. The density functions of prior and posterior parameters.

The posterior mean estimator (also known as posterior 

expectation estimator) is the most common Bayesian point 

estimator (Hamada et al. 2008). For convenience, we refer to 

posterior and prior mean estimators as posterior and prior 

estimators in this section. From the prior distribution of 

parameters, we can easily obtain the prior estimators of these 

parameters, which are given in the second row of Table 4. 

From the MCMC simulation algorithm, we can also obtain the 

posterior estimators of these parameters, which are given in 

the third row of Table 3. It shows that the posterior estimators 

of all parameters are closer to the actual values of the 

parameters than the prior estimators of all parameters, which 

means that the Bayesian calculation method proposed in this 

paper is effective. In addition, for parameters of the Table 3, 

we have 𝜉0 > 𝜉1 > 𝜉2 . Therefore, from Theorem 1 (ii), the 

optimal burn-in time should be taken as its upper bound 𝑡𝑏 =

2. 

 

 
         (a) The density functions of 𝛾                 (b) The density functions of 𝜆 

 
        (c) The density functions of 𝜂1 (𝜂2)             (d) The density functions of 𝜋 

 
         (e) The density functions of 𝛿1               (f) The density functions of 𝛿2 
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Table 4. prior and posterior parameters. 

Parameter 𝜋 𝛾 𝜆 𝜂1 𝜂2 𝛿1 𝛿2 𝜉1 𝜉2 

Prior 0.87 1.80 23.33 1.00 1.00 2.80 0.15 0.29 0.14 

Posterior 0.78 1.83 23.17 1.26 1.26 2.81 0.21 0.25 0.15 

The effects of burn-in usage rate and screening threshold 

on the mean total costs under prior, posterior and actual 

parameters are given in Figure 3. We can obtain that the 

optimal burn-in policies under prior, posterior and actual 

parameters are [𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ ] = [2,0.13,1] , [𝑡𝑏2

∗ , 𝑟𝑏2
∗ , 𝑛𝑏2

∗ ] =

[2,0.40,1]  and [𝑡𝑏3
∗ , 𝑟𝑏3

∗ , 𝑛𝑏3
∗ ] = [2,0.39,1] , respectively. The 

corresponding minimum mean total costs under prior, 

posterior and actual parameters are 𝐸[𝐶1(𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ )] =

14.3806 , 𝐸[𝐶2(𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ )] = 25.5603  and 

𝐸[𝐶3(𝑡𝑏3
∗ , 𝑟𝑏3

∗ , 𝑛𝑏3
∗ )] = 21.7980, respectively. We can also see 

that the optimal burn-in policy and the minimum mean total 

cost under posterior parameters are closer to the actual 

parameters than those under prior parameters. It means that 

the Bayesian calculation method proposed in this paper is 

reasonable. 

 

Figure 3. The mean total cost functions under prior, posterior 

and actual parameters. 

5.3. Benefit analysis 

5.3.1. The benefit of burn-in 

Table 5 gives the benefit of burn-in, where the benefit (the 

"Reduction" in the table) represents the reduction percentage 

of the mean total cost for the optimal burn-in policy under the 

posterior estimator compared with no burn-in. The result 

indicates that the proposed burn-in model can save up to 

74.83% of the cost compared to no burn-in, which 

demonstrates the rationality and importance of burn-in. 

Table 5. The benefit of burn-in. 

𝑡𝑏2
∗  𝑟𝑏2

∗  𝑛𝑏2
∗  

𝐸 

[𝐶3(𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ )] 

𝐸[𝐶3 

(0,0,0)] 
Reduction 

(%) 

2.00 0.40 1.00 21.80 115.70 81.16 

On the other hand, the burn-in can also significantly 

enhance the quality level (i.e., the proportion of strong items) 

of items delivered by manufacturers. This index will seriously 

affect the item's competitiveness and public. Figure 4 gives 

the change of this index with burn-in. It shows that the quality 

level of items is improved significantly with the burn-in 

procedure, and finally tends to be flat (𝜋 = 1). This is because 

the weak item fails more often, and then most of the weak 

items will be screened out due to their high number of failures 

during burn-in period. 

 

Figure 4. The proportion of strong item. 

5.3.2. The benefit of Bayesian calculation 

The benefit of Bayesian calculation is given in Table 6, where 

the benefit (the "Reduction" in the table) of Bayesian 

calculation represents the reduction percentage of the mean 

total cost per item for optimal burn-in policy under the 

posterior estimator compared with that under the prior 

estimator. The result indicates that the mean total cost of the 

optimal burn-in policy under the posterior estimator is lower 

than that under the prior estimator, which illustrates the 

necessity of Bayesian calculation. 

Table 6. The benefit of Bayesian calculation. 

𝑡𝑏1
∗  𝑟𝑏1

∗  𝑛𝑏1
∗  𝑡𝑏1

∗  𝑟𝑏2
∗  𝑛𝑏2

∗  𝐸[𝐶3(𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ )] 𝐸[𝐶3(𝑡𝑏2

∗ , 𝑟𝑏2
∗ , 𝑛𝑏2

∗ )] Reduction(%) 

2.00 0.13 1.00 2.00 0.40 1.00 22.40 21.80 2.68 
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5.4. Comparison with other model 

Wei et al. (2022) considered the burn-in model without repairs 

during burn-in procedure. We consider to compare the model 

proposed in this paper with the model in Wei et al. (2022). 

Under the same setup, the optimal burn-in policy for the 

model of Wei et al. (2022) is [𝑡𝑏
∗ , 𝑟𝑏

∗, 𝑛𝑏
∗ ] = [2,0.04,0], and the 

corresponding minimum mean total cost is 23.45. Obviously, 

our model saves 7.04% of the cost compared to the model of 

Wei et al. (2022), which indicates that the proposed model can 

better save costs for manufacturers. 

5.5. Sensitivity analysis 

In the following, we conduct sensitivity analysis on the main 

cost parameters to give more guidance for the manufacturer, 

where the benefit (the "Reduction" in the table) represents the 

reduction percentage of the mean total cost for optimal burn-

in policy under the prior or posterior estimator compared with 

no burn-in. 

Table 7 provides the sensitivity analysis on 𝑐1(𝑟𝑏) . It 

shows that the actual mean total cost for optimal burn-in 

policy under posterior estimator is always less than that under 

prior estimator, and both of them increase with 𝑐1(𝑟𝑏). It also 

shows that the optimal burn-in usage rates under posterior 

estimator and prior estimator are decreasing in 𝑐1(𝑟𝑏). We can 

also see that the benefit of burn-in is decreasing in 𝑐1(𝑟𝑏) due 

to the fact that the mean burn-in cost is increasing in 𝑐1(𝑟𝑏). 

Table 7. Sensitivity analysis on 𝑐1(𝑟𝑏). 

Estimator 𝑐1(𝑟𝑏) 0.05𝑟𝑏
0.5 0.10𝑟𝑏

0.5 0.15𝑟𝑏
0.5 0.20𝑟𝑏

0.5 0.25𝑟𝑏
0.5 

 

Prior 

[𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ ] [2.0,0.14,1.0] [2.0,0.13,1.0] [2.0,0.13,1.0] [2.0,0.12,1.0] [2.0,0.11,1.0] 

𝐸[𝐶3(𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ )] 22.23 22.36 22.40 22.53 22.68 

Reduction(%) 80.79 80.67 80.64 80.53 80.40 

 

Posterior 

[𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ ] [2.0,0.43,1.0] [2.0,0.42,1.0] [2.0,0.40,1.0] [2.0,0.39,1.0] [2.0,0.38,1.0] 

𝐸[𝐶3(𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ )] 21.66 21.73 21.80 21.87 21.93 

Reduction(%) 81.28 81.22 81.16 81.10 81.05 

Table 8 provides the sensitivity analysis on 𝑐2 . It shows 

that the actual mean total cost for optimal burn-in policy 

under posterior estimator is always less than that under prior 

estimator, and both of them increase with 𝑐2 . It also shows 

that for the models under posterior estimator and prior 

estimator, the higher the 𝑐2 , the smaller the optimal burn-in 

usage rate or the larger the optimal burn-in screening 

threshold. We can also see that the benefit of burn-in is 

decreasing in 𝑐2 due to the fact that the mean burn-in cost is 

increasing in 𝑐2. 

Table 8. Sensitivity analysis on 𝑐2. 

Estimator 𝑐2 0.05𝑟𝑏
0.5 0.10𝑟𝑏

0.5 0.15𝑟𝑏
0.5 0.20𝑟𝑏

0.5 0.25𝑟𝑏
0.5 

 

Prior 

[𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ ] [2.0,0.02,0.0] [2.0,0.14,1.0] [2.0,0.13,1.0] [2.0,0.11,1.0] [2.0,0.10,1.0] 

𝐸[𝐶3(𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ )] 18.28 21.03 22.40 23.89 25.29 

Reduction(%) 84.20 81.82 80.64 79.35 78.14 

 

Posterior 

[𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ ] [2.0,0.09,0.0] [2.0,0.43,1.0] [2.0,0.40,1.0] [2.0,0.38,1.0] [2.0,0.36,1.0] 

𝐸[𝐶3(𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ )] 17.74 20.45 21.80 23.14 24.48 

Reduction(%) 84.67 82.32 81.16 80.00 78.84 

Table 9 provides the sensitivity analysis on 𝑐3 . It shows 

that the actual mean total cost for optimal burn-in policy 

under posterior estimator is always less than that under prior 

estimator, and both of them increase with 𝑐3 . It also shows 

that the optimal burn-in usage rates under posterior estimator 

and prior estimator are decreasing in 𝑐3. We can also see that 

the benefit of burn-in is decreasing in 𝑐3 due to the fact that 

the mean burn-in cost is increasing in 𝑐3. 

Table 9. Sensitivity analysis on 𝑐3. 

Estimator 𝑐3 0.05𝑟𝑏
0.5 0.10𝑟𝑏

0.5 0.15𝑟𝑏
0.5 0.20𝑟𝑏

0.5 0.25𝑟𝑏
0.5 

 

Prior 

[𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ ] [2.0,0.13,1.0] [2.0,0.13,1.0] [2.0,0.13,1.0] [2.0,0.12,1.0] [2.0,0.11,1.0] 

𝐸[𝐶3(𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ )] 22.21 22.28 22.40 22.64 22.95 

Reduction(%) 80.80 80.74 80.64 80.43 80.16 

 

Posterior 

[𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ ] [2.0,0.41,1.0] [2.0,0.41,1.0] [2.0,0.40,1.0] [2.0,0.39,1.0] [2.0,0.38,1.0] 

𝐸[𝐶3(𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ )] 21.58 21.67 21.80 21.97 22.18 

Reduction(%) 81.35 81.27 81.16 81.01 80.83 
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Table 10 provides the sensitivity analysis on 𝑐4. It shows 

that the actual mean total cost for optimal burn-in policy 

under posterior estimator is always less than that under prior 

estimator, and both of them increase with 𝑐4 . It also shows 

that the optimal burn-in usage rates under posterior estimator 

and prior estimator are increasing in 𝑐4. We can also see that 

the benefit of burn-in is increasing in 𝑐4  due to burn-in can 

improve item reliability and then reduce the fact that the mean 

warranty cost proportional to 𝑐4. 

Table 10. Sensitivity analysis on 𝑐4. 

Estimator 𝑐4 0.05𝑟𝑏
0.5 0.10𝑟𝑏

0.5 0.15𝑟𝑏
0.5 0.20𝑟𝑏

0.5 0.25𝑟𝑏
0.5 

 

Prior 

[𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ ] [2.0,0.07,1.0] [2.0,0.10,1.0] [2.0,0.13,1.0] [2.0,0.15,1.0] [2.0,0.17,1.0] 

𝐸[𝐶3(𝑡𝑏1
∗ , 𝑟𝑏1

∗ , 𝑛𝑏1
∗ )] 14.46 18.47 22.40 26.37 30.31 

Reduction(%) 75.00 78.72 80.64 81.77 82.54 

 

Posterior 

[𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ ] [2.0,0.29,1.0] [2.0,0.36,1.0] [2.0,0.40,1.0] [2.0,0.44,1.0] [2.0,0.47,1.0] 

𝐸[𝐶3(𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ )] 13.88 17.85 21.80 25.73 29.66 

Reduction(%) 76.01 79.43 81.16 82.21 82.91 

These sensitivity analyses indicate that benefit of burn-in 

increases as the repair cost within warranty increases. 

Therefore, burn-in should be performed in the case that the 

repair cost within warranty is high. Furthermore, the benefit 

of burn-in procedure is decreasing in the burn-in related costs. 

Therefore, manufacturers should try to find ways to reduce the 

costs related to burn-in. In addition, the changes in 𝑐2 and 𝑐4 

have a greater impact on mean total costs and benefit than the 

changes in 𝑐1(𝑟𝑏)  and 𝑐3 . Therefore, manufacturers should 

pay more attention to 𝑐2 and 𝑐4. 

On the other hand, the selection of prior distributions has  

a certain degree of subjectivity and can sometimes have an 

impact on the model. Table 11 presents the sensitivity analysis 

on the assumptions of prior distribution, where “U( . , . )” 

and “TN( . , . )” represent the Uniform distribution and 

Truncated Normal distribution, respectively. The results 

indicate that the choice of following prior distribution has no 

significant impact on the the optimal burn-in policy and 

minimum posterior mean total cost of the model. Therefore, in 

practice, manufacturers do not need to be too fixated on the 

selection of prior distributions. 

Table 11. Sensitivity analysis on prior distribution. 

𝜋 𝜉1 𝜉2 𝛿1 𝛿2 𝜂/6 [𝑡𝑏2
∗ , 𝑟𝑏2

∗ , 𝑛𝑏2
∗ ] 𝐸[𝐶3(𝑡𝑏2

∗ , 𝑟𝑏2
∗ , 𝑛𝑏2

∗ )] 

𝐵𝑒𝑡𝑎(13,2) 𝐺𝑎𝑚(2,7) 𝐺𝑎𝑚(2,14) 𝐺𝑎𝑚(14,5) 𝐺𝑎𝑚(2,13) 𝐵𝑒𝑡𝑎(2,10) [2.0,0.40,1.0] 21.80 

𝑈(0.73,1) 𝐺𝑎𝑚(2,7) 𝐺𝑎𝑚(2,14) 𝐺𝑎𝑚(14,5) 𝐺𝑎𝑚(2,13) 𝐵𝑒𝑡𝑎(2,10) [2.0,0.33,1.0] 21.81 

𝐵𝑒𝑡𝑎(13,2) 𝐵𝑒𝑡𝑎(1.14, 2.86) 𝐵𝑒𝑡𝑎(1.57, 9.434) 𝐺𝑎𝑚(14,5) 𝐺𝑎𝑚(2,13) 𝐵𝑒𝑡𝑎(2,10) [2.0,0.40,1.0] 21.80 

𝐵𝑒𝑡𝑎(13,2) 𝐺𝑎𝑚(2,7) 𝐺𝑎𝑚(2,14) 𝑇𝑁(2.8, 0.9) 𝑇𝑁(0.1, 0.15) 𝐵𝑒𝑡𝑎(2,10) [2.0,0.46,1.0] 21.81 

𝐵𝑒𝑡𝑎(13,2) 𝐺𝑎𝑚(2,7) 𝐺𝑎𝑚(2,14) 𝐺𝑎𝑚(14,5) 𝐺𝑎𝑚(2,13) 𝐺𝑎𝑚(0.17, 15.6) [2.0,0.44,1.0] 21.80 

6. Conclusion 

This paper establishes a cost-based burn-in model for 

heterogeneous items under non-renewing 2D warranty, where 

all failures during the burn-in procedure and warranty period 

are repaired by the minimal repair at subpopulations level. 

The failure information of the item during burn-in procedure 

is used for burn-in screening. Firstly, we show that the optimal 

burn-in time or optimal usage rate should reach its upper 

bound under some conditions. Secondly, we propose  

a Bayesian method to calculate the optimal burn-in policy, 

which fully considers the uncertainty of parameters in the 

model. Finally, we give an example to illustrate our results 

and the effectiveness of Bayesian methods. The sensitivity 

analyses of the important cost parameters and prior 

distribution are also elaborated. These results can offer some 

informative advice to manufacturers for actual production. In 

addition, we also provide the comparison of the proposed 

model with the existing burn-in model under 2D warranty to 

verify that the proposed model can save cost better. The burn-

in model with 1D warranty based on age (usage) can be easily 

obtained by setting the usage limit U (age limit W) to infinite. 

For arbitrary number of subpopulations, similar results can be 

conducted by setting the items in the first m subpopulations as 

strong items and the items in other subpopulations as weak 

items. This paper considers the items sold with a non-

renewing free 2D warranty, the renewing warranty or other 
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more general warranty policies can also be considered in the 

future research. It is also interesting to consider maintenance 

measures during the warranty period. 
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Appendix. 

Before proceeding, we review some definitions of stochastic 

orders that need to be used in the proof (see, Shaked and 

Shanthikumar, 2007). For two discrete random variables, 𝑍1 is 

said to be smaller than 𝑍2  in the usual stochastic order 

(written as 𝑍1 ≤st 𝑍2) if 𝑃{𝑍1 ≤ 𝑛} ≥ 𝑃{𝑍2 ≤ 𝑛} for all 𝑛; 𝑍1 

is said to be smaller than 𝑍2 in the likelihood order (written as 

𝑍1 ≤lr 𝑍2) if 𝑃{𝑍1 = 𝑛}/𝑃{𝑍2 = 𝑛} is decreasing in 𝑛. They 

satisfy the relationship: 𝑍1 ≤lr 𝑍2 ⇒ 𝑍1 ≤st 𝑍2 ⇒ 𝐸[𝑍1] ≤

𝐸[𝑍2]. 

Proof of Theorem 1. (i) For any policy [𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏], let 𝑡𝑏
″ =

(
𝑟𝑏

𝑟𝑏
)𝜉2𝑡𝑏. Then 

(
𝑟𝑏

𝑟0
)𝜉1𝑡𝑏 ≥ (

𝑟𝑏

𝑟0
)𝜉1𝑡𝑏

″    and    (
𝑟𝑏

𝑟0
)𝜉2𝑡𝑏 = (

𝑟𝑏

𝑟0
)𝜉2𝑡𝑏

″.     (6.1) 

From equation (2.1), we have  

∫ 𝜆𝑖(𝑡|𝑟𝑏)
𝑡𝑏

0

d𝑡 = ∫ 𝜆𝑖(𝑡|𝑟0)
(𝑟𝑏/𝑟0)𝜉𝑖𝑡𝑏

0

d𝑡, 𝑖 = 1,2. 

Then,

𝑃{𝑁𝑖(𝑡𝑏
″|𝑟𝑏) = 𝑛}

𝑃{𝑁𝑖(𝑡𝑏|𝑟𝑏) = 𝑛}
= [

∫ 𝜆𝑖(𝑡|𝑟𝑏)
𝑡𝑏
″

0
d𝑡

∫ 𝜆𝑖(𝑡|𝑟𝑏)
𝑡𝑏
0

d𝑡
]𝑛exp {∫ 𝜆𝑖(𝑡|𝑟𝑏)

𝑡𝑏

0

d𝑡 − ∫ 𝜆𝑖(𝑡|𝑟𝑏)
𝑡𝑏
″

0

d𝑡}

=
sgn

[
∫ 𝜆𝑖(𝑡|𝑟0)

(𝑟𝑏/𝑟0)𝜉𝑖𝑡𝑏
″

0
d𝑡

∫ 𝜆𝑖(𝑡|𝑟0)
(𝑟𝑏/𝑟0)𝜉𝑖𝑡𝑏
0

d𝑡
]𝑛, 𝑖 = 1,2.                                         

 

Therefore, 
𝑃{𝑁2(𝑡𝑏

″|𝑟𝑏)=𝑛}

𝑃{𝑁2(𝑡𝑏|𝑟𝑏)=𝑛}
= 1  and 

𝑃{𝑁1(𝑡𝑏
″|𝑟𝑏)=𝑛}

𝑃{𝑁1(𝑡𝑏|𝑟𝑏)=𝑛}
  is decreasing 

in 𝑛 , that is, 𝑁2(𝑡𝑏|𝑟𝑏) =
st

𝑁2(𝑡𝑏
″|𝑟𝑏)  and 

𝑁1(𝑡𝑏
″ |�̄�𝑏) ≤lr 𝑁1(𝑡𝑏|𝑟𝑏), hence 

𝑁2(𝑡𝑏|𝑟𝑏) =
st

𝑁2(𝑡𝑏
″|𝑟𝑏)    and      𝑁1(𝑡𝑏

″|𝑟𝑏) ≤st 𝑁1(𝑡𝑏|𝑟𝑏).(6.2) 

Then, 

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏} = 𝜋𝑃{𝑁1(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏} + (1 −

𝜋)𝑃{𝑁2(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏 ≤ 𝜋𝑃{𝑁1(𝑡𝑏
″|�̄�𝑏) ≤ 𝑛𝑏} + (1 −

𝜋)𝑃{𝑁2(𝑡𝑏
″|�̄�𝑏) ≤ 𝑛𝑏} = 𝑃{𝑁(𝑡𝑏

″|�̄�𝑏) ≤ 𝑛𝑏}.            (6.3) 

Note that for 𝑛 ≤ 𝑛𝑏, 

  
𝑃{𝑁𝑖(𝑡𝑏

″|�̄�𝑏) = 𝑛|𝑁𝑖(𝑡𝑏
″|�̄�𝑏) ≤ 𝑛𝑏}

𝑃{𝑁𝑖(𝑡𝑏|𝑟𝑏) = 𝑛|𝑁𝑖(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
 

=
𝑃{𝑁𝑖(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}

𝑃{𝑁𝑖(𝑡𝑏
″|�̄�𝑏) ≤ 𝑛𝑏}

[
∫ 𝜆𝑖(𝑡|�̄�𝑏)𝑑𝑡

𝑡𝑏
″

0

∫ 𝜆𝑖(𝑡|𝑟𝑏)𝑑𝑡
𝑡𝑏
0

]

𝑛

𝑒𝑥𝑝{∫ 𝜆𝑖(𝑡|𝑟𝑏)𝑑𝑡
𝑡𝑏

0

− ∫ 𝜆𝑖(𝑡|�̄�𝑏)𝑑𝑡
𝑡𝑏
″

0

} =
𝑠𝑔𝑛

[
 
 
 ∫ 𝜆𝑖(𝑡|𝑟0)𝑑𝑡

(
�̄�𝑏
𝑟0

)𝜉𝑖𝑡𝑏
″

0

∫ 𝜆𝑖(𝑡|𝑟𝑏)𝑑𝑡
(
𝑟𝑏
𝑟0

)𝜉𝑖𝑡𝑏

0 ]
 
 
 
𝑛

, 𝑖 = 1,2. 

Therefore, 
𝑃{𝑁2(𝑡𝑏

″|𝑟𝑏)=𝑛|𝑁2(𝑡𝑏
″|𝑟𝑏)≤𝑛𝑏}

𝑃{𝑁2(𝑡𝑏|𝑟𝑏)=𝑛|𝑁2(𝑡𝑏|𝑟𝑏)≤𝑛𝑏}
= 1  and 

𝑃{𝑁1(𝑡𝑏
″|𝑟𝑏)=𝑛|𝑁1(𝑡𝑏

″|𝑟𝑏)≤𝑛𝑏}

𝑃{𝑁1(𝑡𝑏|𝑟𝑏)=𝑛|𝑁1(𝑡𝑏|𝑟𝑏)≤𝑛𝑏}
 is decreasing in 𝑛 . That is, 

(𝑁2(𝑡𝑏
″ |�̄�𝑏)|𝑁2(𝑡𝑏

″ |�̄�𝑏) ≤ 𝑛𝑏) =st (𝑁2(𝑡𝑏|𝑟𝑏)|𝑁2(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏)  

and  (𝑁1(𝑡𝑏
″ |�̄�𝑏)|𝑁1(𝑡𝑏

″ |�̄�𝑏) ≤ 𝑛𝑏) ≤lr (𝑁1(𝑡𝑏|𝑟𝑏)|𝑁1(𝑡𝑏|𝑟𝑏) ≤

𝑛𝑏).  

Then 𝐸[𝑁2(𝑡𝑏
″ |�̄�𝑏)|𝑁2(𝑡𝑏

″ |�̄�𝑏) ≤ 𝑛𝑏]=E[𝑁2(𝑡𝑏|𝑟𝑏)|𝑁2(𝑡𝑏|𝑟𝑏) ≤

𝑛𝑏]  and 𝐸[𝑁1(𝑡𝑏
″ |�̄�𝑏)|𝑁1(𝑡𝑏

″ |�̄�𝑏) ≤ 𝑛𝑏] ≤

𝐸[𝑁1(𝑡𝑏|𝑟𝑏)|𝑁1(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏]. From equations (2.3) and (6.2), 

we have 
( , , )b b bt r n ( , , )b b bt r n  .  Combined with equation 

(3.4), we have 

𝐸[𝑁(𝑡𝑏
″|�̄�𝑏)|𝑁(𝑡𝑏

″|�̄�𝑏) ≤ 𝑛𝑏]

≤ 𝐸[𝑁(𝑡𝑏|𝑟𝑏)|𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏].                                                      (6.4) 

Note that 

  𝑎𝑟𝑏
𝜉0

∫ 𝑃{𝑁(𝑡|𝑟𝑏) ≤ 𝑛𝑏}𝑑𝑡
𝑡𝑏
0

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
 

= 𝑎𝜋𝑟𝑏
𝜉0

∫ 𝑃{𝑁1((𝑟𝑏/𝑟0)
𝜉1𝑡|𝑟0) ≤ 𝑛𝑏}𝑑𝑡

𝑡𝑏
0

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
+ 𝑎(1

− 𝜋)𝑟𝑏
𝜉0

∫ 𝑃{𝑁2((𝑟𝑏/𝑟0)
𝜉2𝑡|𝑟0) ≤ 𝑛𝑏}𝑑𝑡

𝑡𝑏
0

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
 

= 𝑎𝜋𝑟𝑏
𝜉0 (

𝑟𝑏
𝑟0

)
−𝜉1 ∫ 𝑃{𝑁1(𝑡|𝑟0) ≤ 𝑛𝑏}𝑑𝑡

(
𝑟𝑏
𝑟0

)𝜉1𝑡𝑏

0

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
+ 𝑎(1

− 𝜋)𝑟𝑏
𝜉0 (

𝑟𝑏
𝑟0

)
−𝜉2 ∫ 𝑃{𝑁2(𝑡|𝑟0) ≤ 𝑛𝑏}𝑑𝑡

(
𝑟𝑏
𝑟0

)𝜉2𝑡𝑏

0

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
. 

From equations (6.1) and (6.3), we have 
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∫ 𝑃{𝑁1(𝑡|𝑟0) ≤ 𝑛𝑏}
(
𝑟𝑏
𝑟0

)𝜉1𝑡𝑏
″

0
d𝑡

𝑃{𝑁(𝑡𝑏
″|𝑟𝑏) ≤ 𝑛𝑏}

≤
∫ 𝑃{𝑁1(𝑡|𝑟0) ≤ 𝑛𝑏}

(
𝑟𝑏
𝑟0

)𝜉1𝑡𝑏

0
d𝑡

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}

 

and 

∫ 𝑃{𝑁2(𝑡|𝑟0) ≤ 𝑛𝑏}
(
𝑟𝑏
𝑟0

)𝜉2𝑡𝑏
″

0
d𝑡

𝑃{𝑁(𝑡𝑏
″|𝑟𝑏) ≤ 𝑛𝑏}

≤
∫ 𝑃{𝑁2(𝑡|𝑟0) ≤ 𝑛𝑏}

(
𝑟𝑏
𝑟0

)𝜉2𝑡𝑏

0
d𝑡

𝑃{𝑁(𝑡𝑏|𝑟𝑏) ≤ 𝑛𝑏}
.
 

Since 𝜉0 ≤ 𝜉1 ≤ 𝜉2, 𝑟𝑏
𝜉0(

𝑟𝑏

𝑟0
)−𝜉𝑖 ≤ 𝑟𝑏

𝜉0(
𝑟𝑏

𝑟0
)−𝜉𝑖 , 𝑖 = 1,2, 

𝑎𝑟𝑏
𝜉0 ∫ 𝑃{𝑁(𝑡|𝑟𝑏)≤𝑛𝑏}

𝑡𝑏
″

0 d𝑡

𝑃{𝑁(𝑡𝑏
″|𝑟𝑏)≤𝑛𝑏}

≤ 𝑎𝑟𝑏
𝜉0 ∫ 𝑃{𝑁(𝑡|𝑟𝑏)≤𝑛𝑏}

𝑡𝑏
0 d𝑡

𝑃{𝑁(𝑡𝑏|𝑟𝑏)≤𝑛𝑏}
.       (6.5) 

Since 𝜆1(𝑡|𝑟0) is increasing in 𝑡, from equations (2.4) and 

(6.1), we have 𝜆1
𝑤(𝑡|𝑟, 𝑡𝑏

″ , �̄�𝑏) ≤ 𝜆1
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏)  and 

𝜆2
𝑤(𝑡|𝑟, 𝑡𝑏

″ , �̄�) ≤ 𝜆2
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏) . Since 𝜆1

𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏) ≤ 

𝜆2
𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏)  and 𝜋(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏) ≤ 𝜋(𝑡𝑏

″ , �̄�𝑏 , 𝑛𝑏) , combined 

with equation (2.6), we have 𝜆𝑤(𝑡|𝑟, 𝑡𝑏
″ , �̄�𝑏 , 𝑛𝑏) ≤ 

𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏).  

Hence 

∫ ∫ 𝜆𝑤(𝑡|𝑟, 𝑡𝑏
″, �̄�𝑏 , 𝑛𝑏)

𝑇𝑟

0ℜ

𝑑𝑡𝑑𝐺(𝑟)

≤ ∫ ∫ 𝜆𝑤(𝑡|𝑟, 𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)
𝑇𝑟

0ℜ

𝑑𝑡𝑑𝐺(𝑟). (6.6) 

From equations (3.7), (6.3), (6.4), (6.5) and (6.6), we have 

𝐸[𝐶(𝑡𝑏
″ , �̄�𝑏 , 𝑛𝑏)] ≤ 𝐸[𝐶(𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏)] . That is for any policy 

[𝑡𝑏 , 𝑟𝑏 , 𝑛𝑏], policy [𝑡𝑏
″, 𝑟𝑏 , 𝑛𝑏] is better than it. Therefore, 𝑟𝑏

∗ =

𝑟𝑏. 

(ii) The proof is very similar to the proof of (i) and 

therefore is omitted. 
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