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 This study focuses on an innovative life distribution category known as 

the 'New Better than Renewal used in Moment Generating Function' 

(NBRUmgf) class. It explores the relationships between this particular 

aging model and established aging categories, and its applicability 

within a shock model. Moreover, it investigates the consistency of this 

aging concept through specific reliability operations, which are pivotal 

tools in reliability engineering. The research involves computing 

Pitman's asymptotic efficiencies for this testing method and compares 

them with alternative approaches. Additionally, the study presents an 

extensive table of percentiles for the test statistic associated with this 

proposed technique. To underscore the significance of the study's 

findings, various real-world datasets are employed, demonstrating the 

efficacy of our test methodology across diverse types of actual data. 
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1. Introduction 

Classes of life distributions encompass various categories or 

types of probability distributions utilized to model lifetimes, 

durations, or intervals between occurrences across diverse fields 

like actuarial science, survival analysis, and reliability 

engineering. These distributions aid in comprehending and 

forecasting the lifespan or duration of entities or events. They 

establish a unified scientific framework, facilitating 

collaboration among scientists engaged in aging studies across 

different disciplines. As a result, statisticians have organized life 

distributions into distinct classes, delineating aging 

characteristics. These classes find widespread application in 

multiple domains, including medicine, engineering, industry, 

agriculture, among others. 

There are several classes of life distributions commonly 

used to model such phenomena. Some of the key classes include: 

Increasing Failure Rate (IFR) and its extensions, (IFRA),  New 
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Better than Used (NBU) and its extensions, (NBUC),  (NBUE), 

(HNBUE), (NBUL), NBRU, NBRUmgf, among many others, 

for more information, see Klefsjo [1], Ahmed [2], Deshpand et 

al. [3], Al-Ruzaiza et al. [4], Barlow and Proschan [5], Ahmed 

[6], Ahsanullah et al. [7], Mahmoud et al. [8], Ghosh and Mitra 

[9], and EL-Arishy et al.[10] and references therein. These 

classifications help establish a common ground for discussing 

and analyzing aging-related phenomena across different 

scientific domains. Many researchers have explored the 

connection between age-smooth distributions and distributions 

with sub-exponential tails, extensively utilized in infinite 

divisibility and queuing theory. Through multiple comparisons 

among random variables, diverse age classes have been 

formulated. In this context, we study a concept of aging derived 

from the arrangement of the moment generating function. 

However, before delving into specifics, let's briefly recap some 

standard notions of stochastic orderings and aging concepts that 

are under consideration in this paper. 

Another significant ordering method extensively utilized in 

life and reliability testing is as follows: 

a) Moment generating function order (denoted 

by 𝑋 ≤𝑚𝑔𝑓  𝑌), if 

∫ 𝑒𝑠𝑥dF(x)
∞

0

≥ ∫ 𝑒𝑠𝑥dG(x)
∞

0

, 𝑠 ≥ 0,                      (1) 

which can be written as: 

∫ 𝑒𝑠𝑥F̅(x)
∞

0

dx ≤ ∫ 𝑒𝑠𝑥G̅(x)
∞

0

dx.                             (2) 

The mentioned ordering involves comparing the ratios of 

survival functions, ensuring that this ratio either increases or 

remains constant as the variable 'x' increases. This comparison 

indicates the superiority of one distribution over the other in 

terms of reliability properties. For further details regarding 

multiple classes and their testing, please refer to works by 

Gadallah et al. [11], Mahmoud et al. [12], Abu-Youssef et al. 

[13], Navarro and Pellerey [14], Bakr [15], Alqifari et. al. [16], 

Mahmoud El-Morshedy [17], EL-Sagheer et al. [18], and 

Atallah et al. [19]. 

Fortunately, the previously mentioned orderings have been 

utilized in the analysis of lifespan distributions, providing new 

definitions and descriptions of aging classes. When discussing 

aging, we refer to the statistical phenomenon where an older 

system typically exhibits a comparatively shorter remaining 

lifetime than a younger one. 

In this research, we explore a new aging concept known as 

"new better than renewal used in moment generating function 

ordering" (NBRUmgf), which originates from moment 

generating function ordering. Section 2 provides an in-depth 

definition and explores various relationships associated with 

this concept. Section 3 delves into crucial reliability properties, 

closure attributes, convolution, and the establishment of  

a coherent system within the (NBRUmgf) class. Furthermore, it 

discusses practical applications of this aging concept within  

a shock model. Additionally, in section 4, we introduce the 

development of our testing methodology using the U-statistic 

and PARE by employing the Mathematica 13.3 program. 

Through Monte Carlo simulations, we derive critical values for 

the null distribution. Finally, in section 5, we present several 

examples illustrating the practical application of the proposed 

statistical test, demonstrating the relevance of the study's 

conclusions. 

2. Definitions and Preliminaries 

Join us on this journey as we navigate the terrain of renewal 

classes, revealing their role in shaping the reliability landscape. 

From defining the core concepts to exploring their applications 

in diverse fields, this article is your compass through the 

captivating  

The renewal survival function is provided by 𝑊̅(𝑡) =
1

𝜇
∫ 𝐹̅(𝑢)𝑑𝑢.

∞

𝑡
 where 𝑋 is the lifetime of a device with a finite 

mean 𝜇 = ∫ 𝐹̅(𝑢)𝑑𝑢
∞

0
. 

Definition (1): X is new better than renewal used (NBRU) 

if 

W̅𝐹(𝑡)𝐹̅(𝑥) ≥ W̅𝐹(𝑥 + 𝑡);  𝑡, 𝑥 > 0.                       (3) 

Definition (2):   X is renewal new is better than used (RNBU) 

if  

W̅𝐹(𝑥)𝐹̅(𝑡) ≥ F̅(𝑥 + 𝑡);   𝑡, 𝑥 > 0.                         (4) 

Definition (3): X is new better than renewal used in 

expectation (NBRUE) if  

𝜇 W̅𝐹(𝑡) ≥ ∫  W̅̅̅̅𝐹(𝑥 + 𝑡)𝑑𝑥
∞

0

;  𝑡, 𝑥 > 0.               (5) 

From the previously stated definitions, a new interpretation 

of "new better than renewal used" within the context of the 

moment generating function order can be derived, see 

Mahmoud El-Morshedy [17], EL-Sagheer et al. [18], and 

Hassan and Said [20]. 
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Definition (4): The distribution function 𝐹 is said to be new 

better than renewal used in moment generating function order 

(NBRUmgf) if, 

W̅𝐹(𝑡) ∫ 𝑒𝑠𝑥𝐹̅(𝑥)
∞

0

d𝑥 ≥ ∫ 𝑒𝑠𝑥W̅𝐹(𝑥 + 𝑡)
∞

0

d𝑥, 

 for all 𝑥, 𝑡 ≥ 0, s ≥ 0,                              (6) 

It's clear that equation (6) is synonymous with, 

∫ ∫ 𝑒𝑠𝑥F(𝑥)F(𝑦)
∞

𝑡

𝑑𝑦𝑑𝑥
∞

0

≥ ∫ ∫ 𝑒𝑠𝑥F(𝑥 + 𝑦)
∞

𝑡

𝑑𝑦𝑑𝑥
∞

0

 

Then, we have the following implication: 

NBRU ⊂ NBRUmgf ⊂ NBRUE 

3. Preservation results 

An effective approach for leveraging reliability class properties 

in systems analysis involves conducting a RAMS analysis. By 

employing the attributes inherent in reliability classes, it 

becomes possible to assess the evolution of a system's failure 

rate over time and comprehend its impact on availability and 

maintainability. 

The processes of convolution, blending, and constructing 

cohesive systems within a specific category of life distributions 

are often highly regarded as essential reliability measures. 

Studies have shown the closure of NBRUmgf under these 

operations.  

a) Convolution 

The convolution property within reliability classes asserts 

that a system exhibiting a specific reliability class, such as 

NBRUmgf, will maintain that class when convolved with other 

systems sharing the same reliability class. 

Theorem 1: 

The convolution operation maintains closure within the 

NBRUmgf class of life distributions. 

Proof:  If 𝐹1 and 𝐹2 belong to the NBRUmgf class, then we 

obtain the following : 

∫ ∫ 𝑒𝑠𝑥F(𝑥 + 𝑢)
∞

𝑡

𝑑𝑢𝑑𝑥
∞

0

= ∫ 𝑒𝑠𝑥 ∫ ∫ F1(𝑥 + 𝑢 − 𝑧)
∞

0

∞

𝑡

∞

0

 𝑑F2(𝑧) 𝑑𝑢 𝑑𝑥

= ∫ ∫ ∫ 𝑒𝑠𝑥  F1(𝑥 + 𝑢 − 𝑧)
∞

0

∞

𝑡

∞

0

 𝑑𝑢 𝑑𝑥 𝑑F2(𝑧)  

≤ ∫ ∫ ∫ 𝑒𝑠𝑥 F1(𝑥)F1(𝑢 − 𝑧) 𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

∞

0

 𝑑F2(𝑧) 

= ∫ 𝑒𝑠𝑥  F1(𝑥) ∫ ∫ F1(𝑢 − 𝑧)
∞

0

∞

𝑡

∞

0

 𝑑F2(𝑧) 𝑑𝑢 𝑑𝑥 

                 = ∫ 𝑒𝑠𝑥  F1(𝑥) ∫ F(𝑢)
∞

𝑡

∞

0

 𝑑𝑢 𝑑𝑥 

This demonstration illustrates that the NBRUmgf does not 

maintain closure under the convolution property. 

b) Mixture of NWRUmgf: 

A system characterized as a mixture comprises diverse 

components selected randomly based on a specified probability 

distribution. Reliability classes serve as a means to articulate 

changes in a system's failure rate over time. An application of 

the mixture attribute within reliability classes is in the analysis 

of systems comprising varied components, each with distinct 

lifetimes and failure rates. The mixing property of reliability 

classes asserts that a system with a specific reliability class, such 

as NWRUmgf will retain that classification when formed by any 

combination of systems sharing the same reliability class. 

∫ ∫ 𝑒𝑠𝑥F(𝑥 + 𝑢)
∞

𝑡

𝑑𝑢𝑑𝑥
∞

0

= ∫ 𝑒𝑠𝑥 ∫ ∫ 𝑒𝑠𝑥 F𝛼(𝛼
∞

0

∞

𝑡

∞

0

+ 𝑢)  𝑑G2(𝑧) 𝑑𝑢 𝑑𝑥

= ∫ ∫ ∫ 𝑒𝑠𝑥 F𝛼(𝛼 + 𝑢) 𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

∞

0

 𝑑G(𝛼) 

Since F𝛼 is NWRUmgf, then 

∫ ∫ ∫ 𝑒𝑠𝑥  F𝛼(𝛼 + 𝑢) 𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

∞

0

 𝑑G(𝛼)

≥ ∫ ∫ ∫ 𝑒𝑠𝑥 F𝛼(𝑥)F𝛼(𝑢) 𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

∞

0

 𝑑G(𝑧). 

Using Chebyshev's inequality 

∫ ∫ ∫ 𝑒𝑠𝑥  F𝛼(𝑥)F𝛼(𝑢) 𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

∞

0

 𝑑G(𝑧) 

= ∫ ∫ 𝑒𝑠𝑥  F𝛼(𝑥)
∞

0

𝑑𝐺(𝛼)𝑑𝑥
∞

0

 . ∫ ∫ 𝑒𝑠𝑥  F𝛼(𝑢)
∞

0

𝑑𝐺(𝛼)𝑑𝑢
∞

𝑡

 

= ∫ 𝑒𝑠𝑥 F(𝑥)𝑑𝑥
∞

0
 . ∫ F(𝑢) 𝑑𝑢

∞

𝑡
= ∫ ∫ 𝑒𝑠𝑥F(𝑥)F(𝑢)

∞

𝑡
𝑑𝑢𝑑𝑥

∞

0
. 

Then we conclude that the NWRUmgf class is preserved 

under mixture. 

c) Mixing 

It is clear that the NBRUmgf class is not preserved under 

mixing. 

d) Building coherent systems: 

When every element within the system holds importance 

and the structural function, indicating the system's performance 
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concerning each element's function, is on the rise, the system is 

identified as coherent. Engineers in design prioritize the 

establishment of coherent systems. 

For more insights on coherent systems, refer to (Barlow and 

Proschan [5]). 

The theorem below establishes the closure property of the 

NBRUmgf class under employing the operation to construct  

a coherent system. 

Theorem 2: An NBRUmgf series, composed of n 

independent components belonging to new better than renewal 

used in moment generating function order (NBRUmgf) class, 

collectively constitutes an NBRUmgf. 

Proof:  Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent NBRUmgf then we 

have  

∫ ∫ esy
p(min(X1, … , Xn) ≥ y + t)

p(min(X1, … , Xn) ≥ t)

∞

𝑡

∞

0

dydt

= ∫ ∫ ∏ esy
p(Xi ≥ y + t)

p(Xi ≥ t)

n

i=1

∞

𝑡

∞

0

dydt

= ∫ ∫ ∏ esy

n

i=1

∞

𝑡

F̅i(y + t)

F̅i(t)

∞

0

dydt 

Since Fi is NBRUmgf class of life distribution, then we obtain  

∫ ∫ ∏ esy

n

i=1

∞

𝑡

F̅i(y + t)

F̅i(t)

∞

0

dydt ≤ ∫ ∫ ∏ esy

n

i=1

∞

𝑡

F̅i(y)

∞

0

dydt.   

The proof is now concluded. 

e) Applications: Shock model application 

The stochastic model known as the homogeneous Poisson 

shock model delineates system failures resulting from random 

shocks conforming to the homogeneous Poisson process. This 

process involves counting independent events occurring at  

a constant rate within a specified time period. In the shock 

model, each event induces damage to the system, and system 

failure ensues when the cumulative damage surpasses  

a predetermined threshold. Applications of Poisson 

homogeneous shock models extend to various domains, 

including modeling phenomena such as insurance claims, health 

deterioration, machinery breakdowns, or automobile accidents 

arising from random mechanical failures occurring consistently 

over time. Consider a device subjected to shocks, where N(t) 

represents the count of shocks occurring within the time interval 

(0, 𝑡 ]. The arrival of the 𝑘𝑡ℎ shock is denoted by the time 𝑇𝑘. 

Let 𝑋𝑘  =  𝑇𝑘+1 − 𝑇𝑘  denote the time be the time between the 

𝑘𝑡ℎ  and (𝑘 + 𝑙)𝑠𝑡  shocks. We consider that 𝑋1, 𝑋2, …  are iid 

distributed according to 𝐹.  

Let    

𝑎𝑘(𝑡) = 𝑝(𝑁(𝑡) = 𝑘),      𝑘 = 1, 2, … 

and define𝑃̅𝑘 as the device's chance of surviving 𝑘 shocks. 

Subsequently, the system's survival probability up to time 𝑡 is 

𝐻(𝑡) = ∑  𝑎𝑘(𝑡)𝑃̅𝑘

∞

𝑘=0

   .  

Theorem 3: 𝐹 is NBRUmgf implies H is NBRUmgf. 

Proof: Note that  𝐻(𝑡) can be expressed as 

𝐻(𝑡) = ∑ 𝐹̅𝑘(𝑡) 𝑝𝑘

∞

𝑘=1

 

Where  𝑝𝑘 = 𝑃̅𝑘−1 − 𝑃̅𝑘 , 𝑘 = 1, 23, …  and 𝐹𝑘 is the 

distribution function of 

𝑇𝑘, and 

∫ ∫ 𝑒𝑠𝑥𝐻̅(𝑥 + 𝑢) 𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

 

= ∫ ∫ 𝑒𝑠𝑥 ∑ 𝑃̅𝑛

∞

𝑛=0

𝜆𝑛(𝑥 + 𝑢)𝑛

𝑛!
𝑒−𝜆(𝑥+𝑢) 𝑑𝑢 𝑑𝑥

∞

𝑡

∞

0

 

= ∫ 𝑒𝑠𝑥𝑒−𝜆𝑥 ∫ ∑ 𝑃̅𝑛

∞

𝑛=0

𝜆𝑛

𝑛!
∑ (

𝑛

𝑚
)

𝑛

𝑚=0

𝛼𝑛−𝑚𝑢𝑚𝑒−𝜆𝑢  𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

 

= ∫ 𝑒−𝑥(𝜆−𝑠) ∑ ∑ 𝑃̅𝑛

𝑛

𝑚=0

∞

𝑛=0

(𝜆𝑥)𝑛−𝑚

𝑚! (𝑛 − 𝑚)!
∫ (𝜆𝑢)𝑚𝑒−𝜆𝑢  𝑑𝑢 𝑑𝑥

∞

𝑡

∞

0

 

= ∑ ∑ 𝑃̅𝑚

∞

𝑛=𝑚

∞

𝑛=0

 
𝑒−𝜆𝑡

𝜆 (𝜆 − 𝑠)𝑚!
 

𝜆𝑛−𝑚

(𝜆 − 𝑠)𝑛−𝑚 ∑
𝑚! (𝜆𝑡)𝑙

 𝑙!

𝑚

𝑙=0

 

= ∑ ∑ ∑ 𝑃̅𝑚

𝑚

𝑙=0

∞

𝑛=𝑚

∞

𝑛=0

𝑒−𝜆𝑡

𝜆 (𝜆 − 𝑠)
 (

𝜆

𝜆 (𝜆 − 𝑠)
)

𝑛−𝑚

 
(𝜆𝑡)𝑙

 𝑙!
 

Let i=n-m  

= ∑ ∑ ∑ 𝑃̅𝑖+𝑚

𝑚

𝑙=0

∞

𝑚=0

∞

𝑖=0

𝑒−𝜆𝑡

𝜆 (𝜆 − 𝑠)
 (

𝜆

𝜆 (𝜆 − 𝑠)
)

𝑖

 
(𝜆𝑡)𝑙

 𝑙!
 

= ∑ ∑ ∑ 𝑃̅𝑖+𝑚

∞

𝑚=𝑙

∞

𝑙=0

∞

𝑖=0

𝑒−𝜆𝑡

𝜆 (𝜆 − 𝑠)
 (

𝜆 − 𝑠

𝜆
)

−𝑖

 
(𝜆𝑡)𝑙

 𝑙!
 

Since 𝐹 is NBRUmgf 

                ≤ ∑ ∑ ∑ 𝑃̅𝑖

∞

𝑚=𝑙

∞

𝑙=0

∞

𝑖=0

𝑃̅𝑚 (
𝜆 − 𝑠

𝜆
)

−𝑖 𝑒−𝜆𝑡

𝜆 (𝜆 − 𝑠)
  

(𝜆𝑡)𝑙

 𝑙!
 

                = ∑ ∑ ∑ 𝑃̅𝑖

𝑚

𝑙=0

∞

𝑚=0

∞

𝑖=0

𝑃̅𝑚 (
𝜆 − 𝑠

𝜆
)

−𝑖 𝑒−𝜆𝑡

𝜆 (𝜆 − 𝑠)
  

(𝜆𝑡)𝑙

 𝑙!
 

                = ∑ ∑ ∑ 𝑃̅𝑖

∞

𝑙=0

∞

𝑚=0

∞

𝑖=0

𝑃̅𝑚

(𝜆𝑡)𝑙

 𝑙!

𝑒−𝜆𝑡

𝜆 (𝜆 − 𝑠)
(

𝜆

𝜆 − 𝑠
)

𝑛−𝑚
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= ∫ 𝑒𝑠𝑥 ∑ 𝑃̅𝑖

∞

𝑖=0

(𝜆𝑥)𝑛−𝑚

 (𝑛 − 𝑚)!
𝑒−𝜆𝑥𝑑𝑥 ∫ ∑ 𝑃̅𝑚

∞

𝑚=0

(𝜆𝑢)𝑚

 𝑚!
𝑒−𝜆𝑢𝑑𝑢

∞

𝑡

∞

0

 

= ∫ 𝑒𝑠𝑥 ∑ 𝑃̅𝑖

∞

𝑖=0

(𝜆𝑥)𝑖

 𝑖!
𝑒−𝜆𝑥𝑑𝑥 ∫ ∑ 𝑃̅𝑚

∞

𝑚=0

(𝜆𝑢)𝑚

 𝑚!
𝑒−𝜆𝑢𝑑𝑢

∞

𝑡

∞

0

 

= ∫ 𝑒𝑠𝑥𝐻̅(𝑥)𝑑𝑥 ∫ 𝐻̅(𝑢)𝑑𝑢
∞

𝑡

∞

0

 

➔ 

∫ ∫ 𝑒𝑠𝑥𝐻̅(𝑥)𝐻̅(𝑢) 𝑑𝑢 𝑑𝑥
∞

𝑡

≥
∞

0

∫ ∫ 𝑒𝑠𝑥𝐻̅(𝑥 + 𝑢) 𝑑𝑢 𝑑𝑥
∞

𝑡

∞

0

 

The proof is now concluded . 

4. Non-parametric hypothesis testing 

Many researchers use non-parametric tests to assess data 

exponentiality against many classes of life distributions using 

various techniques, for example, Abu-Youssef and El-Toony 

[20], Mahmoud et al, [21], Etman et al, [22], Ghosh and Mitra 

[23], Navarro [24], and Belzunce [25], among others. Now, we 

develop an exponential departure measure towards the 

NBRUmgf class. 

4.1 Testing exponentiality 

In order to construct our testing exponentiality, we will integrate 

both sides of Eq. (6) as defined in definition (4) concerning t 

across the interval [0, ∞), 

∫ ∫ 𝑒𝑠𝑥W̅𝐹(𝑥 + 𝑡)
∞

0

d𝑥 𝑑𝑡
∞

0

≤ ∫ W̅𝐹(𝑡)𝑑𝑡 ∫ 𝑒𝑠𝑥𝐹̅(𝑥)
∞

0

d𝑥
∞

0

 

Following several computations, we obtain 

1

𝑠3
(𝜑(𝑠) − 1) −

1

𝑠2
𝜇 ≤

𝜇2

2𝑠
𝜑(𝑠),        𝜑(𝑠) = 𝐸(𝑒𝑠𝑥).  

The test that follows is predicated on a sample 𝑋1, 𝑋2, … , 𝑋𝑛 

from a population with distribution F, we test  

𝐻0 ∶  𝐹  is exponential distribution versus  𝐻1 ∶  𝐹  is 

𝑁𝐵𝑅𝑈𝑚𝑔𝑓 .  

 Using Δ(𝑠)  as a deviation measure from 𝐻0 yields, 

Δ(𝑠) = (
𝜇2

2𝑠
−

1

𝑠3
) 𝜑(𝑠) +

1

𝑠2
𝜇 +

1

𝑠3
,                     (7) 

Take note that whereas Δ(𝑠) > 0 under 𝐻1 and 0 under 𝐻0, 

we use the following to guarantee the scale invariance of the test 

Δ̂(𝑠) =
Δ(𝑠)

𝑋
2 .                                         (8) 

As stated in Eq. (8), the empirical estimate of Δ̂(𝑠)  is 

Δ̂𝑛(𝑠) =
1

𝑛2𝑠3 𝑋
2 ∑ ∑ [(

𝑠2

2
𝑋𝑖

2 − 1) 𝑒𝑠 𝑋𝑗 + 𝑠 𝑋𝑖 + 1]

𝑛

𝑗=1

𝑛

𝑖=1

,   (9) 

Let, 

ω(𝑋1, 𝑋2) = (
𝑠2

2
𝑋1

2 − 1) 𝑒𝑠 𝑋2 + 𝑠 𝑋1 + 1,             (10) 

and define the symmetric kernel as 

𝜑(𝑋1, 𝑋2) =
1

2!
∑ ω(𝑋1, 𝑋2).

𝑅

 

Where the total includes all of 𝑋𝑖 and 𝑋𝑗 arrangements. This 

demonstrates that the  𝑈𝑛  -statistic provided by Δ̂𝑛(𝑠)  is 

identical to 

𝑈𝑛  =
1

(𝑛
2

)
∑ 𝜑(𝑋1, 𝑋2).

𝑅

 

This theorem encapsulates Δ̂𝑛(𝑠) asymptotic normality. 

Theorem: As 𝑛 → ∞, √𝑛 (Δ̂𝑛(𝑠) − Δ(𝑠)) is asymptotically 

normal with mean 0 and variance 𝜎2 given as in Eq. (11). Under 

𝐻0 , the variance  𝜎2 reduces to Eq. (12) 

Proof:  Using Eq. (10) then, let 

𝛽1(𝑋1) = 𝐸(ω(𝑋1, 𝑋2)|𝑋1) =
1

𝑠2(𝑠 − 1)
+

1

𝑠2
𝑋1 −

𝑋1
2

2𝑠(𝑠 − 1)
 

And, 

𝛽2(𝑋2) = 𝐸(ω(𝑋1, 𝑋2)|𝑋2) =
(𝑠2 − 1)

𝑠3
𝑒𝑠 𝑋2 +

1 + 𝑠

𝑠3
 

Considering, 

𝛽(𝑋) = 𝛽1(𝑋1) + 𝛽2(𝑋2)

=
(𝑠2 − 1)

𝑠3
𝑒𝑠 𝑋 −

𝑋2

2𝑠(𝑠 − 1)
+

1

𝑠2
𝑋

+
(𝑠2 + 𝑠 − 1)

𝑠3(𝑠 − 1)
. 

Then the variance is, 

𝜎2 = 𝑉𝑎𝑟 [
(𝑠2 − 1)

𝑠3
𝑒𝑠 𝑋 −

𝑋2

2𝑠(𝑠 − 1)
+

1

𝑠2
𝑋

+
(𝑠2 + 𝑠 − 1)

𝑠3(𝑠 − 1)
].                                          (11) 

Under  𝐻0 it is easy to prove that 𝜇0 = 𝐸(𝛽(𝑋)) = 0 , and 

the variance  𝜎2 reduces to 

𝜎2 =
5 − 𝑠

(𝑠 − 1)3(2𝑠 − 1)
, 𝑠 ≠ 1,

1

2
.                           (12) 

The proof is now concluded . 

4.2 The Pitman Asymptotic Efficiencies (PAE's) of 𝜹(𝒔) 

The Pitman asymptotic efficiencies (PAEs) for the Makeham, 

Weibull, and Linear failure rate families (LFR) are calculated in 

this section. 
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𝑃𝐴𝐸(Δ(𝑆)) =
1

𝜎0

|
𝑑

𝑑𝜃
Δ(𝑠)|

𝜃→𝜃0

, 

where,  

𝑑

𝑑𝜃
Δ(𝑠) =

1

𝑠3
[
𝑠2

2
(∫ 𝑒𝑠 𝑥

∞

0

𝑑𝐹𝜃(𝑥)) . (∫ 𝑥2
∞

0

𝑑𝐹𝜃̀(𝑥))

+ (
𝑠2

2
∫ 𝑥2

∞

0

𝑑𝐹𝜃(𝑥) − 1) ∫ 𝑒𝑠 𝑥
∞

0

𝑑𝐹̀𝜃(𝑥)

+ 𝑠 ∫ 𝑥
∞

0

𝑑𝐹𝜃̀(𝑥)].  

In this case we obtain, 

𝑃𝐴𝐸(Δ(𝑠), 𝐿𝐹𝑅) =
1

𝜎0

|
2

(𝑠 − 1)2
|. 

𝑃𝐴𝐸(Δ(𝑠), 𝑀𝑎𝑘𝑒ℎ𝑎𝑚) =
1

𝜎0

|
𝑠2 + 6𝑠 − 4

4𝑠2(𝑠 − 1)(𝑠 − 2)
|. 

𝑃𝐴𝐸(Δ(𝑠), 𝑊𝑒𝑖𝑏𝑢𝑙𝑙) =
1

𝜎0

|
𝑠 + (1 + 𝑠)𝑙𝑜𝑔(1 − 𝑠)

𝑠2(𝑠 − 1)
|. 

𝑃𝐴𝐸(Δ(𝑠), 𝐿𝐹𝑅) =
1

𝜎0

|
−𝑠(2 + 𝑠) + 2(𝑠2 − 1) log(1 − 𝑠)

2𝑠3(𝑠 − 1)
|. 

Table 1. Includes the asymptotic efficiencies of Δ(𝑠) at different values of s. 

𝑆 = 0.3 𝑆 = 0.2 𝑆 = 0.1 𝑆 = 0.05 𝑆 = 0.04 𝑆 = 0.01 Distribution 

0.697368 0.7905694 0.851835 0.874957 0.8791185 0.89079 LFR 

0.841514 3.0305160 17.0984 78.8050 126.4316 2182.49 Makeham 

0.443891 0.5357867 0.609357 0.641354 0.647437 0.665112 Wiebull 

0.184648 0.2285611 0.265679 0.282408 0.285630 0.295069 Gamma 

Table 1 shows that the PAE’s of Δ(s) decrease as s increases, 

and that the Makeham distribution has higher PAE’s than the 

LFR, Weibull, and Gamma distributions. 

Contrasting this values with others that could be relevant to 

this issue. Here, tests 𝛿̂(𝑠)  which represented by Hassan and 

Said [26], at 𝑠 = 0.04 , 0.2, is our choice.  

Table 2. The asymptotic relative efficiencies at 𝑠 = 0.04 , 0.2. 

(Δ(𝑠), 𝛿̂(𝑠)  )
𝑠=0.2

 (Δ(𝑠), 𝛿̂(𝑠)  )
𝑠=0.04

 Distribution 

0.174398 0.105897 LFR 

2.049196 43.5343 Makeham 

1.868284 0.293054 Wiebull 

As evident from Table 2, the proposed test demonstrates 

relatively high efficiency compared to some nonparametric 

hypothesis tests for certain other classes. This certainly provides 

a positive impression regarding the proposed test for this class. 

4.3 Monte Carlo Null Distribution Critical Points 

In this section, we calculate the lower and upper percentiles of 

Δ̂𝑛(𝑠) given in Eq. (9) based on 10000 simulated samples of 

size  n = 5(50)5, as in Tables 3 and 4.

Table 3. Critical values of statistic Δ̂𝑛(𝑠) at 𝑠 = 0.01. 

0.99 0.95 0.90 0.1 0.05 0.01 N 

0.893734 0.650733 0.551491 0.068469 -0.030835 -0.375824 5 

0.660711 0.515587 0.445400 -0.075279 -0.308111 -1.129950 10 

0.549449 0.448736 0.395854 -0.155317 -0.415991 -1.374750 15 

0.508138 0.412356 0.362855 -0.196224 -0.457097 -1.367950 20 

0.465291 0.383692 0.341043 -0.232127 -0.499651 -1.382270 25 

0.443570 0.362719 0.323280 -0.249057 -0.504211 -1.272850 30 

0.415424 0.349686 0.311543 -0.237370 -0.510378 -1.356820 35 

0.395044 0.333519 0.300121 -0.249273 -0.523181 -1.442650 40 

0.384358 0.322209 0.290136 -0.269296 -0.499169 -1.289410 45 

0.371146 0.315020 0.281686 -0.256345 -0.466088 -1.142050 50 

Table 4. Critical values of statistic Δ̂𝑛(𝑠) at 𝑠 = 0.05 

0.99 0.95 0.90 0.1 0.05 0.01 n 

0.818009 0.597123 0.502602 0.0502313 -0.060054 -0.407104 5 

0.591903 0.473638 0.406543 -0.103944 -0.328200 -1.112520 10 

0.509395 0.415446 0.365368 -0.182174 -0.427818 -1.257930 15 
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0.99 0.95 0.90 0.1 0.05 0.01 n 

0.462578 0.374662 0.336037 -0.194242 -0.467233 -1.339420 20 

0.418497 0.354454 0.314295 -0.220472 -0.464453 -1.168680 25 

0.397601 0.335915 0.301222 -0.221505 -0.444027 -1.156760 30 

0.384477 0.324503 0.291506 -0.248571 -0.509019 -1.222870 35 

0.363083 0.309309 0.278267 -0.244659 -0.484394 -1.112590 40 

0.355678 0.298926 0.268368 -0.226628 -0.427151 -1.072240 45 

0.349944 0.293162 0.260921 -0.239529 -0.433660 -1.002410 50 

 

Fig.1. at s = 0.01. 

 

Fig.2. at s = 0.05.
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Upon examining Tables 2 and 3, as well as Figures 1 and 2, 

it's noticeable that the behavior of critical values tends to 

approach a normal distribution as the sample size increases. 

1. Applications 

In order to showcase the relevance of the study's conclusions, 

we utilize distinct real-world datasets at 95% confidence level. 

The following results illustrate the effectiveness of our test 

across various types of real data. 

Data-set #1. Take into consideration the data set in Murthy 

et al. [27], which represents the time takes for thirty repairable 

components to fail (see Figure 3). We obtain Δ̂𝑛(𝑠) = 0.46555 

at 𝑠 = 0.1   and Δ̂𝑛(𝑠) = 1.06107  at 𝑠 = 0.05  in this instance. 

These results fall in the reject region of 𝐻0. Then, we can reject 

the exponential property of this data, at 𝛼 = 0.05. 

 

Fig. 3.

Data-set #2. Consider the data set given in Almetwally et 

al.[28], this data set shows a 36-day period of COVID-19 data 

that belongs to Canada, from April 10 to May 15, 2020, (see 

Figure 4). The drought death rate was the basis for this data. It 

is easily to show that Δ̂𝑛(𝑠) = 1.3572  at 𝑠 = 0.1 and Δ̂𝑛(𝑠) =

0.8076 at 𝑠 = 0.05, which are greater than the critical value of 

Tables 2, 3. Then, we can reject the exponential property of this 

data, and conclude that, the data have 𝑁𝐵𝑅𝑈𝑚𝑔𝑓 property. 

 

Fig. 4.
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Data-set #3. Examining the data provided in Kochar [29], 

goldfish exposed to varying doses of methyl mercury were used 

in an experiment at Florida State University to determine the 

impact of methyl mercury poisoning on fish life spans. The 

prescribed times to death each day at a single dosage level (see 

Figure 5). It is evident that the test statistic values Δ̂𝑛(𝑠) =

7153.72  at 𝑠 = 0.1 and Δ̂𝑛(𝑠) = 285.07  at 𝑠 = 0.05   exceed 

the tabulated critical value found in Tables 2, 3. This indicates 

that the data collection possesses the 𝑁𝐵𝑅𝑈𝑚𝑔𝑓 characteristic. 

 

Fig. 5.

5. Conclusions 

In unraveling the intricate tapestry of aging theories, we 

embarked on a captivating exploration of an avant-garde 

concept known as "New Better than Renewal Used in Moment 

Generating Function Ordering" (NBRUmgf), born from the 

depths of moment generating function ordering. Our journey led 

us through unraveling the intricate threads that weave various 

relationships within this innovative paradigm. Practical 

applications of this aging notion in a shock model are outlined, 

and we also covered certain closure attributes, convolution, 

mixing, and the creation of a coherent system within the 

((NBRUmgf) class. Our testing methodology, born from the 

essence of the U-statistic, emerged as a robust instrument in the 

symphony of statistical analysis. With the powerful 

Mathematica 13.3 program as our conductor, we orchestrated 

Monte Carlo simulations to extract the elusive critical values, 

unlocking the secrets hidden within the null distribution. 

Furthermore, we explored the Makeham, Weibull, and linear 

failure rate (LFR) Pitman asymptotic efficiency. The 

significance of our research extends beyond theoretical realms 

to practical applications, with the suggested test poised to 

evaluate the effectiveness of treatment approaches across 

diverse domains, including but not limited to engineering and 

medical research. As exemplified in the applications section, 

our findings provide a versatile tool that can be harnessed to 

gauge the impact and efficacy of various methodologies, 

making it a valuable asset in the toolkit of researchers and 

practitioners across different fields. Additionally, the support of 

the Mathematica 13.3 program streamlines the implementation 

process, making it accessible for practitioners in both academia 

and industry.
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