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Highlights  Abstract  

▪ A milling surface topography model was 

developed based on milling kinematics theory. 

▪ A surface roughness prediction model is 

proposed based on the sparrow search 

algorithm optimized least support square 

vector machine method. 

▪ A surface roughness reliability model is 

presented based on response surface 

methodology. 

▪ The correctness of the proposed method is 

verified by milling experiments on 7050 

aluminium alloy. 

 Surface roughness is influenced by various factors with uncertainty 

characteristic, and roughness reliability can be used for the assessment 

of the surface quality of CNC milling. The paper develops a method for 

the assessment of surface quality by considering the coupling effect and 

uncertainty characteristics of various factors. According to the milling 

kinematics theory, the milling surface topography simulation is 

conducted by discretizing the cutting edge, machining time, and 

workpiece. Considering the coupling effect of various factors, a 

roughness prediction model is established by the SSA-LSSVM, and its 

prediction accuracy reaches more than 95%. Then, the roughness 

reliability model is developed by applying the response surface 

methodology to achieve the assessment of surface quality. The proposed 

method is verified by the milling experiments. The maximum values of 

the relative errors between the simulation and experimental results of the 

surface roughness and roughness reliability are 9% and 1.5% 

respectively, indicating the correctness of the method proposed in the 

paper.  
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1. Introduction 

With the rapid development of manufacturing technology, the 

surface integrity of parts has received great attention in related 

fields. The formation mechanism of surface geometries and the 

modeling process are important components of surface integrity 

studies, which mainly includes irregular micro-geometries such 

as surface roughness, waviness, and shape error [1]. The 

formation of surface topography of the part is a complex process, 

it is through the relative motion of the tool on the surface of the 

workpiece to remove the material to form different shapes and 

sizes of bumps and valleys. From this point of view, tool 

parameters and machining parameters have a great influence on 

the surface topography, which further affects the mechanical 

and usage properties of the workpiece as well as the working 

accuracy and life [2]. Milling is widely used in the field of CNC 
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machining, in which the ball end milling cutter is usually 

applied to CNC milling for machining typical parts due to its 

adaptability and easy planning of machining routes. Therefore, 

the research on the surface quality of CNC milling machining 

has arisen, in which how to perform surface topography 

simulation and roughness prediction of the workpiece is the core 

task. 

Nowadays, many investigators have done deep studies about 

milling surface topography and obtained some worthwhile 

theories and methods. Depending on the dynamic response, 

Yuan et al [3] established a cylindrical milling cutter milling 

workpiece surface topography simulation model. Peng et al [4] 

studied the prediction and simulation of 3D surface morphology 

based on microsphere end milling. Zhang et al [5] proposed the 

surface morphology model with the initial phase difference as  

a variable in milling and analyzed its effect on the surface 

morphology characteristics. Zhang et al [6, 7] researched the 

surface topography acquired by rounded corner milling cutters 

under multi-axis control. Paper [8,9] established the model of 

surface topography with the Z-map method. Żurawski K et al 

[10] presented a method for predicting the surface topography by 

taking into account the depth and width of cutting as well as 

radial runout, which was validated by milling experiments of 

three different materials. Chen et al [11] presented a method for 

surface morphology formation during vibration-assisted milling. 

Corral et al [12] developed a mathematical model of surface 

topography based on the geometrical intersection of the tool and 

the workpiece. Paper [13,14] investigated the effects of feed rate 

and tool inclination changes on surface morphology and proved 

the feasibility of the method by three-axis milling experiments. 

As one of the important indexes of surface geometry, it is 

especially essential to accurately establish the prediction model 

of surface roughness. For the past few years, various academics 

have done research on the prediction of surface roughness. 

Agrawal et al [15] conducted 39 sets of turning machining AISI 

4340 steel tests on machine CNC machine tools and used 

multiple linear regression methods to establish a model of the 

surface roughness. Kong et al [16] comprehensively analyzed the 

advantages and disadvantages of four Bayesian linear 

regression models in predicting surface roughness and provided 

an accurate method to predict roughness. Shahrajabian et al [17] 

obtained the relationship between surface roughness and 

machining parameters using orthogonal tests, which were 

optimized by a genetic algorithm to obtain the parameters 

corresponding to the minimum surface roughness. Ouyang et al 

[18] investigated the surface roughness prediction problem 

during milling machining based on BP neural network 

algorithm. Han [19] developed a prediction model for the surface 

roughness of metal-formed parts, and it was concluded that the 

surface roughness increases with the increase of contact normal 

pressure by the model. Liu et al [20] established the surface 

roughness prediction model for ball screw whirlwind milling 

according to Hertz’s elastic contact theory and argued that the 

surface roughness is inversely proportional to the cutting force 

under the same cutting parameters. Considering the high-speed 

precision milling, Li [21] built a roughness prediction model in 

the high-speed milling process by optimizing lssvm with 

particle swarm algorithm. Nevertheless, with the development 

of intelligent algorithms, the use of time series modelling for 

prediction is becoming more common. The paper provides an 

overview of the recent literature on time series modelling, as 

shown in Table 1. 

Table 1. The literature and method for correlated time series 

modelling. 

Modelling methods Relevant literature Field of application 

LSTM-ALO; LSTM-
INFO 

[22-24] 
Evaluation of battery health life; 

Prediction of water flow 

RVM-IMRFO [25] 
Evaluation of variables; monthly 

pan evaporation prediction 

ANFIS-WCAMFO [26] 

Water resources management, 

agricultural planning and 
irrigation design 

ELM-JFO [27] 
Modelling groundwater level 

fluctuations 

SVM–FFAPSO [28] 
Urban water planning and 

management 

The papers [22-24] used a correlation time series algorithm to 

evaluate the battery life and to predict water flow rate, 

respectively. Paper [25] proposed an RVM-IMRFO model to 

predict monthly pan evaporation with limited climatic data (e.g., 

temperature). To address the problem of difficult selection of 

hyperparameters in adaptive neuro-fuzzy inference systems 

(ANFIS), paper [26] applied the WCA-MFO to seek optimization 

of parameters in ANFIS and applied this hybrid algorithm to 

achieve the prediction of reference evapotranspiration, which is 

of vital importance for water resources management and 

agricultural planning. Adnan R M et al [27] used the ELM-JFO 

algorithm to develop a prediction model for groundwater levels 

by using hydroclimatic numbers. The articlethe fully utilizes 
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JFO algorithm’s strong optimization ability and fast 

convergence speed to solve the problem of ELM’s difficulty in 

finding a global optimized solution. Paper [28] used the FFA 

algorithm to compensate for the PSO algorithm’s weakness of 

easily falling into local optimum, and combined them with the 

SVM method to evaluate the dissolved oxygen concentration, 

which is of great significance for drinking water resources as 

well as aquatic ecology. These correlated time series algorithms 

mainly predict the future trends based on existing historical data. 

For example, the prediction of water flow and the prediction of 

evapotranspiration in the above study. These forecasting 

problems are to some extent related to time as well as seasonal 

variations and can be further divided into long-term time and 

short-term time prediction. The above articles are of the great 

value and have an important contribution to the modelling of the 

relevant aspects of time series. However, in the paper, the data 

used to build the surface roughness prediction model is obtained 

from a surface topography simulation model. With a specific set 

of parameters, a specific surface roughness value can be 

attained. The data of the previous moment does not influence 

the data of the subsequent moment and the modelling process 

has no relation to the order of data selection. Therefore, the 

paper does not use correlation time series modelling approach 

to develop the surface roughness prediction study. In addition, 

regression prediction method is usually employed to solve the 

problem of surface roughness prediction, such as multiple 

regression [15,17,30], random forest regression [15,31], bayesian 

linear regression [16], least squares support vector machine 

regression [21,29]. However, some parameters involved in these 

regression methods are difficult to select and the problem of 

how to reasonably determine the form of the regression equation, 

which leads to the prediction model accuracy does not meet the 

requirements. Therefore, the paper utilizes the advantage of 

LSSVM in dealing with nonlinear regression problems and 

combines the powerful optimization searching ability of the 

sparrow search algorithm to establish a surface roughness 

prediction model of SSA-LSSVM, aiming at solving the 

problem of the lack of surface roughness prediction accuracy. 

The above studies are basically about milling surface 

topography and surface roughness prediction studies. On the 

one hand, most of the surface roughness prediction studies are 

conducted by designing orthogonal experiments, and the 

roughness prediction model is built with multiple regression, 

neural networks and other methods according to orthogonal 

experimental data. The models above do not completely 

consider the coupling effect of various parameters and the 

amount of data used for modeling is low, which greatly have an 

impact on the prediction accuracy of the model. On the other 

hand, in the practical machining, the uncertainty of surface 

roughness is caused by the uncertainty characteristics of the 

parameters, which has a great impact on the assessment of 

surface quality. These are not involved in the above studies on 

surface quality. Therefor, the paper aims to solve the above 

practical problems of low accuracy of surface roughness 

prediction and rational assessment of surface quality.  

The paper established a milling surface topography 

simulation model based on milling kinematics, which 

comprehensively considers the coupling effect of each 

parameter. The model reveals the intrinsic mechanism of the 

milling process, and provides the basis for the establishment of 

the surface roughness prediction model; To realize the higher 

prediction accuracy of surface roughness, a full-factor 

simulation experiment with 4 parameters was used, and a total 

of 256 sets of data were obtained. SSA was used to optimize the 

parameters in the LSSVM, which overcame the problem of the 

difficulty in selecting the parameters in the LSSVM, so that the 

prediction accuracy and performance of the model were further 

improved; The paper established a roughness reliability model 

based on the response surface method, which provides  

a reference for solving the problem of surface quality 

uncertainty due to the uncertainty characteristics of parameters 

in the actual machining process. Hence, in the paper, a surface 

roughness prediction model and a universal method for the 

assessment of surface roughness are presented, which have the 

advantages as follows: 

(1) Based on milling kinematics theory, a milling surface 

topography model is established by discretizing the milling 

edge and machining time. This model reveals the intrinsic 

mechanism of the milling process, and provides the basis for the 

establishment of the surface roughness prediction model.  

(2) Considering the coupling effect of various factors, the 

surface roughness prediction model is developed based the 

SSA-LSSVM, which realises the prediction of surface 

roughness accurately and provides a foundation for roughness 
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reliability modelling.  

(3) Due to the uncertainty characteristic of the parameters 

affecting surface roughness in actual machining, a surface 

roughness reliability model is built by the response surface 

methodology. The method expands the assessment of surface 

quality from the traditional deterministic analysis to the 

uncertainty analysis, which is closer to the actual mill 

machining process. 

2. Milling surface topography modelling based on ball end 

milling cutter 

2.1. Cutting edge model 

To establish the milling surface topography model of the ball-

end milling cutter, it is necessary to obtain the milling edge 

model first.  

 

Fig.1. Cutting edge model of ball end milling cutter. 

As shown in Fig. 1, the ball milling cutter j-th tooth local 

coordinate system Oi-XiYiZi is established, in which the ball 

centre is the origin and the axis Zj is coincident with the tool 

axis direction. Therefore, any point Q on the j-th tooth can be 

represented: 

{

𝑄𝑥 = 𝑟 𝑠𝑖𝑛 𝑘 ⋅ 𝑐𝑜𝑠 𝜃
𝑄𝑦 = 𝑟 𝑠𝑖𝑛 𝑘 ⋅ 𝑠𝑖𝑛 𝜃

𝑄𝑧 = −𝑟 𝑐𝑜𝑠 𝑘

   (1) 

Where 𝑟 is the tool radius (unit: mm), 𝑘 is the angle between the 

line connecting the Q point and the centre of the ball end milling 

cutter with the negative direction of the coordinate axis OiZi 

(unit: rad), 𝜃 is the angle from the line Q’O to the axis OiXi, 

where Q’ is the projection point of the point Q on the plane Oi-

XiYi, 𝜃 is related to the helix angle 𝜑 as shown below: 

𝜃 = 𝑡𝑎𝑛 𝜑 𝑙𝑛( 𝑐𝑜𝑡(
𝑘

2
))  (2) 

Where 𝜑 is the helix angle. 

Therefore, combining equations (1) and (2), the coordinates 

of any point Q on the i-th tooth in the cutter edge in the 

coordinate system Oi-XiYiZi can be expressed: 

{

𝑄𝑥 = 𝑟 𝑠𝑖𝑛 𝑘 ⋅ 𝑐𝑜𝑠( 𝑡𝑎𝑛 𝜑 𝑙𝑛( 𝑐𝑜𝑡(
𝑘

2
)))

𝑄𝑦 = 𝑟 𝑠𝑖𝑛 𝑘 ⋅ 𝑠𝑖𝑛( 𝑡𝑎𝑛 𝜑 𝑙𝑛( 𝑐𝑜𝑡(
𝑘

2
)))

𝑄𝑧 = −𝑟 𝑐𝑜𝑠 𝑘

 (3) 

2.2. Trajectory equation of cutting edge 

To facilitate the establishment of the equations of the milling 

edge trajectory, the coordinate system based on the milling 

process of the ball-end cutter is established in Fig. 2. The 

description for each coordinate system is as follows: 

a) OG-XGYGZG is the workpiece coordinate system, usually 

with the lower left corner of the workpiece as the coordinate 

origin, which is used to represent the interrelationship between 

the tool and the workpiece. 

b) OJ-XJYJZJ is the tool spindle coordinate system, the 

coordinate axis OJZJ coincides with the machine tool spindle 

axis and performs a translational movement relative to the 

workpiece, which is in the same direction as the coordinate 

system OG-XGYGZG. 

c) OC-XCYCZC is the tool coordinate system, which is 

established with the ball centre of the tool as the origin. When 

the tool is not eccentric, the axis OCZC is coincident with the 

axis OJZJ and rotates around the machine spindle with angular 

velocity  . 

d) The coordinate system OD-XDYDZD, the same as Oi-

XiYiZi above, is used to represent any point on the j-th tooth, 

whose coordinate axis ODZD coincides with the coordinate axis 

OCZC. 

 

Fig. 2. Coordinate system in milling. 
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Double-edged and four-edged ball end milling cutters are 

commonly used in the milling process. One of the cutter teeth is 

designated as the reference cutter tooth and its coordinate 

system is consistent with the tool coordinate system. Thus, the 

coordinate transformation matrix from the coordinate system 

OD-XDYDZD to the coordinate system OC-XCYCZC can expressed: 

𝑇𝐷−𝐶 = [

𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛽 0 0
𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 0 0

0 0 1 0
0 0 0 1

]                         (4) 

where 𝛽 = (𝑗 − 1) ⋅ 2𝜋/𝑁,and 𝑁 is the total number of cutter 

teeth. 

Due to the existence of tool eccentricity during milling, it is 

assumed that the eccentricity distance between the tool axis 

ODZD and the spindle axis is 𝑒, and the radial eccentricity angle 

is 𝛿 ; Assuming that the spindle drives the tool around the 

spindle coordinate system with an angular velocity 𝜔  to turn 

clockwise. Hence, taking into account the tool eccentricity, 

spindle rotation, and cutting tool attitude, the transformation 

matrix from OC-XCYCZC to OJ-XJYJZJ can be stated as: 

𝑇𝐶−𝐽 = [

𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜓 − 𝑠𝑖𝑛 𝜂 𝑠𝑖𝑛 𝜓 𝑒 𝑐𝑜𝑠 𝛿
−𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑐𝑜𝑠 𝜓 − 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝜓 𝑒 𝑠𝑖𝑛 𝛿

0 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0
0 0 0 1

](5) 

Where 𝜂 = 𝜙0 − 𝜔𝑡 , 𝜙0  is the initial phase angle, 𝑡  is the 

processing time, and 𝜓 is the forward tilt angle. 

During the milling process, it is assumed that the 

displacements of the ball centre of the ball end milling cutter in 

the X, Y, and Z directions are 𝑥𝑑, 𝑦𝑑  and 𝑧𝑑 respectively, then 

the coordinate transformation matrix from OJ-XJYJZJ to OG-

XGYGZG can be defined as: 

𝑇𝐽−𝐺 = [

1 0 0 𝑥0 + 𝑥𝑑

0 1 0 𝑦0 + 𝑦𝑑

0 0 1 𝑧0 + 𝑧𝑑

0 0 0 1

]                         (6) 

Where 𝑥𝑑, 𝑦𝑑 and 𝑧𝑑 are the coordinates of the initial position 

of the ball centre for the ball end milling cutter in the 

workpiece’s coordinate system. 

Therefore, the transformation from the coordinate system 

OD-XDYDZD to the coordinate system OG-XGYGZG is all 

completed, and the equation of the trajectory of any point in the 

workpiece’s coordinate system can be denoted as: 

(𝑋, 𝑌, 𝑍, 1) = 𝑇𝐽−𝐺 ⋅ 𝑇𝐶−𝐽 ⋅ 𝑇𝐷−𝐶 ⋅ (𝑄𝑥 , 𝑄𝑦 , 𝑄𝑧 , 1)        (7) 

2.3 Milling surface topography simulation algorithm  

After modelling the machining process, this section discretizes 

the cutting edge and machining time, meshes the workpiece, and 

solves the residual height of the workpiece surface by 

comparing the height values of the discretized points of the 

cutting edge with the mesh points of the workpiece, to realize 

the simulation of milling surface topography.  

To ensure the simulation accuracy, the discretization 

accuracy of the cutting edge and machining time needs to be 

ensured, which is related to the accuracy of the workpiece 

meshing. As shown in Fig. 3, the workpiece’s surface is 

discretized into a 𝑚 × 𝑛  rectangular grid, and to make the 

discrete points on the cutting edge traverse all the grid points, it 

is necessary to keep the length 𝐿  smaller than the minimum 

distance between workpiece grids. At the same time, to make 

the simulation more accurate, it is necessary to ensure that the 

projection (arc length AC) of the trajectory travelled by each 

discrete point on the cutting edge in a single time step 𝛥𝑡 on the 

mesh surface of the workpiece is less than 𝑚𝑖𝑛{ 𝑑𝑥, 𝑑𝑦} . 

Therefore, the microelement length 𝐿 of the cutting edge as well 

as the single time step 𝛥𝑡  should satisfy the following 

formulation:  

𝐿 ≤ 𝑚𝑖𝑛( 𝑑𝑥, 𝑑𝑦), 𝑑𝑥 = 𝑙𝑥/𝑚, 𝑑𝑦 = 𝑙𝑦/𝑛      (8) 

Δ𝑡 ≤
𝑚𝑖𝑛{𝑑𝑥,𝑑𝑦}

𝑣
, 𝑣 = 2𝜋 ⋅ 𝑟 ⋅ 𝑛/60  (9) 

 

Fig. 3. Grid diagram of the milled workpiece. 

In Eq. (8), 𝐿  is the length of a single cutting-edge 

microelement, 𝑑𝑥  and 𝑑𝑦  are the length and width of the 

discretized mesh, 𝑙𝑥  and 𝑙𝑦  are the length and width of the 

workpiece respectively; In Eq. (9), 𝛥𝑡 is a single time step, 𝑣 is 

the linear velocity of a discrete point on the cutting-edge, and 𝑛 

is the rotational speed.
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Fig. 4. the flow chart of the algorithm for milling surface topography. 

After the machining time and the cutting edge are 

discretized according to the corresponding accuracy, the 

position of the discrete point on the cutting edge at any moment 

in the coordinate system of the workpiece can be calculated by 

Eq. (7). Compared with the height value of the workpiece, if the 

height of the discrete point is smaller than the height value on 

the workpiece’s surface, it indicates that the workpiece is 

machined, and the height of the point on the workpiece surface 

needs to be updated. On the contrary, if the height value of the 

discrete points is larger than the height value of the workpiece 

surface, it indicates that the workpiece is not milled and the 

height of the workpiece surface does not need to be changed. 

The specific simulation steps are as follows: 

(1) Initialize milling data. Setting the geometric and milling 

parameters of the tool (including the radius of the tool, the 

number of teeth of the tool, the row spacing, the feed per tooth, 

the spindle speed, etc.). 

(2) Establish the workpiece mesh model. According to the 

size of the workpiece, the workpiece is meshed and the matrix 

𝐴[𝑖, 𝑗](𝑖 = 1,2, ⋯ , 𝑚; 𝑗 = 1,2, ⋯ , 𝑛)  is used to denote the 

height corresponding to each mesh point on the surface of the 

part. 

(3) Discrete process. The machining time of the workpiece 

and the milling edge of the tool are discretized according to the 

corresponding accuracy. 

(4) Machining area judgment. Calculate the coordinate value 

(𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤)  of the discrete point on the cutting edge in the 

workpiece coordinate system at the current moment, and judge 

whether the discrete point on the tooth enters the cutting area of 

the workpiece by the coordinate value: if 0 ≤ 𝑥𝑤 ≤ 𝑙𝑥 and 0 ≤

𝑦𝑤 ≤ 𝑙𝑦 are satisfied at the same time, the point has entered the 

cutting area of the workpiece; otherwise, the calculation of the 

next discrete point is carried out. 

(5) Correspondence between discrete and grid points. The 

corresponding relationship between the discrete points of the 

cutting edge and the grid points of the workpiece is determined 
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by the correspondence between the coordinate value (𝑥𝑤 , 𝑦𝑤) 

and the subscripts (𝑖, 𝑗)  of the height matrix 𝑨 . When the 

coordinate value (𝑥𝑤 , 𝑦𝑤) of the discrete point falls on the grid 

point, it is indicated that the point exactly corresponds to an 

element of the matrix 𝐴[𝑖, 𝑗] ;when the coordinate value 

(𝑥𝑤 , 𝑦𝑤) of discrete point is not on the grid point, it is sufficient 

to find its nearest workpiece grid point. 

(6) Cutting judgment. Compare the value 𝑧𝑤  with the 

element 𝐴[𝑖, 𝑗]  of the corresponding height matrix 𝑨 . If 𝑧𝑤  is 

small, the workpiece is cut, and replace 𝐴[𝑖, 𝑗] with 𝑧𝑤 and store 

the value in matrix 𝑨; Otherwise, it will not be processed. 

(7) Topography generation. According to the final data 

stored in the matrix 𝑨, the surface topography is gained by using 

simulation software. 

(8) Calculation of surface roughness. After the surface 

topography simulation is completed, according to the definition 

of three-dimensional (3D) arithmetic mean deviation [32], the 

surface roughness (Sa) can be represented as: 

𝑆𝑎 =
1

𝑚𝑛
∑ ∑ |𝑧(𝑢, 𝑣) − ℎ|𝑛

𝑣=1
𝑚
𝑢=1   (10) 

where m and n are the number of discrete points in X and Y 

directions respectively, 𝑧(𝑢, 𝑣) is the height of the discrete point, 

and ℎ is the reference plane equation. The reference plane is the 

three-dimensional arithmetic mean plane, and the equation ℎ =

1

𝑚𝑛
∑ ∑ 𝑧(𝑢, 𝑣)𝑛

𝑣=1
𝑚
𝑢=1 . 

3. Surface roughness prediction model based on sparrow 

search algorithm optimized least support square vector 

machine method 

As an important index to measure the quality of machined parts, 

surface roughness prediction is particularly important in 

practical machining. This part acquires a massive amount of 

data from the simulation and establishes a prediction model 

about Sa in combination with the Least Support Squares Vector 

Machine (LSSVM) for predicting 3D surface roughness. The 

accuracy of the prediction model based on LSSVM depends 

largely on the parameters 𝜎  and 𝛾  in the LSSVM model. 

However, the SSA algorithm has the characteristics of strong 

search ability and fast speed, which is beneficial for the 

optimization of parameters in LSSVM. Therefore, SSA-

LSSVM is used to establish the prediction model of surface 

roughness in this section, which makes the prediction of surface 

roughness intelligent and precise. 

3.1. Least-squares support vector machine (LSSVM) 

Support Vector Machine (SVM) is a machine learning algorithm 

proposed by Vapanik et al [33], which has good predictive ability 

in dealing with nonlinear complex and finite sample 

information, but with high computational complexity, long 

learning time, and low efficiency. The Least Squares Support 

Vector Machine (LSSVM) is an improvement of SVM by 

adding the sum of error squares to the objective function [34]. 

Compared with SVM, LSSVM applies a new function, which 

can accurately find the analytical solutions of the model 

parameters, improve the computational efficiency, and has 

strong nonlinear fitting ability and. Therefore, this study 

proposes to use LSSVM to establish the prediction model of 

surface roughness. 

Assume that the sample data is (𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 ∈ 𝑅𝑛  is the input 

variable, which is the parameter affecting the surface roughness, 

and 𝑦𝑖 ∈ 𝑅 is the corresponding output value, which is the 3D 

surface roughness, where 𝑅𝑛  and 𝑅  are the n-dimensional 

vector and the one-dimensional vector respectively. The 

expression for the regression prediction of the LSSVM is given 

by: 

𝑦 = 𝑓(𝑥) = 𝜔𝑇 ⋅ 𝜙(𝑥) + 𝑏  (11) 

where 𝜔𝑇 is a multidimensional feature space weight vector, 𝑏 

is a constant, and 𝜙(𝑥) is a nonlinear mapping function. By the 

SVM theory, Eq (12) can be given to solve Eq. (11): 

𝑚𝑖𝑛 𝐽 (𝜔, 𝑒) =
1

2
||𝜔||2 +

1

2
𝛾 ∑ 𝑒𝑖

2𝑛
𝑖=1 , 𝑠𝑡. 𝜔𝑇𝜙(𝑥𝑖) + 𝑏 + 𝑒𝑖 =

𝑦𝑖 , 𝑖 = 1,2 ⋯ 𝑛  (12) 

where 𝑒𝑖 is the deviation between the output and the result of 

the regression function, 𝛾 is the regularization parameter. 

To solve the above optimization problem, the corresponding 

Lagrangian function is constructed and transformed as: 

𝐿(𝜔, 𝑏, 𝑒, 𝛼) =
1

2
||𝜔||2 +

1

2
𝛾 ∑ 𝑒𝑖

2𝑛
𝑖=1 − ∑ 𝛼𝑖

𝑛
𝑖=1 (𝜔𝑇𝜙(𝑥𝑖) +

𝑏 + 𝑒𝑖 − 𝑦𝑖)    (13) 

where 𝛼 = [𝛼1, 𝛼2, ⋯ , 𝛼𝑛]  is the Lagrangian vector, 𝛼𝑖  is the 

Lagrangian multiplier. 

According to the Karush-Kuhn-Tucker condition, the partial 

derivatives of 𝐿(𝜔, 𝑏, 𝑒, 𝛼)  in Eq. (13) can be obtained and 

make its value zero, as shown in Eq. (14): 
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𝛿𝐿

𝛿𝜔
= 0 → 𝜔 = ∑ 𝜙(𝑥𝑖),𝑛

𝑖=1
𝛿𝐿

𝛿𝑏
= 0 → ∑ 𝛼𝑖

𝑛
𝑖=1 ,

𝛿𝐿

𝛿𝑒𝑖
= 0 →

𝑒𝑖 =
𝛼𝑖

𝑟
,

𝛿𝐿

𝛿𝛼𝑖
= 0 → 𝜔𝑇𝜙(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖 = 0     (14) 

Eliminating 𝜔 and 𝑒𝑖, the solution to Eq. (14) is expressed 

as: 

[
0
𝑦

] = [
0 𝑉𝑇

𝑉 𝐾 + 𝛾−1𝐼
] [

𝑏
𝛼

]  (15) 

where 𝛼 = [𝛼1, 𝛼2, ⋯ , 𝛼𝑛] , 𝑦 = [𝑦1, 𝑦2, ⋯ 𝑦𝑛]𝑇  , 𝑄 =

[1,1, ⋯ 1]𝑇 , 𝐼  is the unit matrix, and 𝐾(𝑥𝑖 , 𝑦𝑖)  is the kernel 

function, which is calculated as: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(
||𝑥𝑖−𝑥𝑗||

2𝜎2 )  (16) 

In conclusion, the final LSSVM model is presented as: 

𝑦 = ∑ 𝛼𝑖
𝑛
𝑖=1 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏  (17) 

3.2. Sparrow Search Algorithm (SSA) 

The sparrow search algorithm, an intelligent optimization 

algorithm inspired by the sparrow's foraging behaviour and 

predator avoidance behaviour [35], was proposed in 2020. It is  

a new model and provides the advantages of high optimization 

ability and speed [36]. The sparrow search algorithm mainly 

simulates the process of sparrow feeding, and each sparrow 

represents a location attribute. 

In D-dimensional space, the position of each sparrow𝑋𝑠𝑖𝑡𝑒 =

[𝑋1, 𝑋2, ⋯ , 𝑋𝐷] , the fitness value 𝑓 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑑] , and the 

fitness function is selected to be the mean-square error as shown 

in Eq. (18). 

𝑒𝑚𝑠𝑒 = √
1

𝑛
∑ (𝑦 − 𝑦′)2𝑛

𝑘=1   (18) 

Where y is the expected value and y' is the predicted value. 

The sparrow algorithm operation process consists of three 

parts: discoverer, follower and pre-warner, in which the total 

number and proportion of discoverers and followers are 

unchanged, and the two can be transformed into each other 

according to the change of the fitness value. The optimal 

positions of the population members are constantly updated by 

foraging and anti-predation behaviors. 

Set the number of sparrow populations to N. In the K-th 

iteration, the position of the discoverer is updated in the manner 

as:11 

𝑥𝑖,𝑝
𝑘+1 = {

𝑥𝑖,𝑝
𝑘 ⋅ 𝑒𝑥𝑝(

−𝑖

𝛼⋅𝐺
), 𝑅 < 𝑆

𝑥𝑖,𝑝
𝑘 + 𝑄 ⋅ 𝑀, 𝑅 > 𝑆

   (19) 

Where 𝑥𝑖,𝑝
𝑘+1 denotes the information of the i-th sparrow in the 

j-th dimension in the p-th iteration. 𝐺 is the maximum number 

of iterations, 𝑄  is a random number obeying the standard 

normal distribution, 𝑀  is a unit vector, and 𝑅  and 𝑆  stand for 

the warning value and the safety value, respectively. When 𝑅 <

𝑆 , it means that there is no danger near the search range and the 

search range continues to expand. On the contrary, danger is 

found near the search range and the position needs to be moved. 

The follower’s position is updated in the following way: 

𝑥𝑖,𝑝
𝑘+1 = {

𝑄 ⋅ 𝑒𝑥𝑝( 𝑥𝑤𝑝
𝑘 − 𝑥𝑖,𝑝

𝑘 ), 𝑖 >
𝑛

2

𝑥𝑏𝑝
𝑘+1 + |𝑥𝑖,𝑝

𝑘 − 𝑥𝑏𝑝
𝑘+1| ⋅ 𝐴 ⋅ 𝑀, 𝑖 <

𝑛

2

      (20) 

Where 𝑥𝑤𝑝
𝑘  is the global worst value for that iteration, 𝑥𝑏𝑝

𝑘+1 

denotes the optimal position of the current finder. 

The proportion of pre-warners in the population is between 

10% and 20%, and the location is updated as below: 

𝑥𝑖,𝑝
𝑘+1 = {

𝑥𝑏𝑒𝑠𝑡
𝑘 + 𝛽 ⋅ (𝑥𝑖,𝑝

𝑘 − 𝑥𝑏𝑒𝑠𝑡
𝑘 ), 𝑓𝑖 > 𝑓𝑔

𝑥𝑖,𝑝
𝑘 + 𝜆 ⋅ (

|𝑥𝑖,𝑝
𝑘 −𝑥𝑤𝑝

𝑘|

(𝑓𝑖−𝑓𝑤)+𝜀
), 𝑓𝑖 = 𝑓𝑔

   (21) 

Where 𝑥𝑏𝑒𝑠𝑡
𝑘   is currently the best place for sparrows, 𝛽  is a 

parameter about the step, 𝜆 ∈ [−1,1] , 𝑓𝑖  is the current 

individual fitness value, 𝑓𝑔  and 𝑓𝑤  are the current population 

optimal fitness and worst fitness respectively. 

3.3. Surface roughness prediction model by the SSA-

LSSVM 

When using the LSSVM method to build the model of 

roughness prediction, it is necessary to choose the appropriate 

kernel width coefficient 𝜎  and regularization parameter 𝛾 , 

which is the key to accurate prediction. Hence, in this section, 

the sparrow search algorithm is applied to find the optimal 

values of parameters 𝜎  and 𝛾  to improve the prediction 

accuracy. The steps of the algorithm are displayed below: 

1 Acquire the data, divide the training and test samples, and 

normalize the data by Eq. (22). 

𝑢𝑖′ =
𝑢𝑖−𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥−𝑢𝑚𝑖𝑛
   (22) 

where 𝑢𝑖 ′ denotes the normalized data; 𝑢𝑖 is the original data; 

𝑢𝑚𝑎𝑥  and 𝑢𝑚𝑖𝑛  are the maximum and minimum values in the 

original data, respectively. 

2 Initialize the parameters of the SSA-LSSVM model, 

including the population size, the iteration number, the 

proportion of discoveries and followers, and the ranges for 
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(𝜎, 𝛾). 

3 The initial fitness value f of each sparrow is calculated 

according to Eq. (18) and ranked according to the fitness size. 

4 Based on Eq. (19) to (21), the positions of the discoverer, 

follower, and pre-warner are updated, the fitness value of the 

sparrow’s new position is calculated, and 𝑓𝑔 as well as 𝑓𝑤 are 

updated. 

5 Determine whether the maximum iteration number is 

reached or not. If reached then output the global optimal 

parameters, otherwise go to step 4. 

6 The best value (𝜎, 𝛾)  searched by SSA is assigned to 

LSSVM and the LSSVM model is trained to obtain an 

optimized prediction model about Sa. 

The flow chart for Sa prediction model is shown in Fig. 5.

 

Fig. 5. The flowchart to predict the surface roughness by SSA-LSSVM.

The surface topography modelling and the surface forming 

mechanism in the second part of this paper showed that feed per 

tooth, row spacing, tool radius, and rake angle are the key 

contributors affecting surface roughness. 

In this section, feed per tooth, row spacing, tool radius, and 

forward tilt angle are used as inputs, and surface roughness is 

the output value. To improve the accuracy of the prediction 

model, the training samples should be as large as possible and 

four values are selected for each of the above parameters as 

shown in Table 2. Considering the coupling effect of various 

factors, a total of 44 = 256 sets of results are obtained through 

simulation experiments, as shown in Table 3. Therefore, 256 

groups of data were obtained, in which 226 groups were 

randomly selected to train the model, and the remaining 30 

groups were used to evaluate the effect of the SSA-LSSVM 

model. 

Table 2. Values of input parameters. 

No. Input parameter Input value 

1 Feed per tooth (mm/z) 0.2，0.3，0.4，0.5 

2 Row spacing (mm) 0.2，0.3，0.4，0.5 

3 Tool radius (mm) 3，4，5，6 

4 Forward tilt angle (°) 0，5，10，15 
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Table 3. Simulation results. 

Feed per 

tooth(mm/z) 

Row 

spacing(mm) 

Tool 

radius(mm) 

Forward tilt 

angle (°) 

surface 

roughness (um) 

0.2 0.2 3 0 1.0003 

0.2 0.3 3 0 1.4185 

0.2 0.4 3 0 1.9329 

0.2 0.5 3 0 2.6059 

0.3 0.2 3 0 1.2263 

0.3 0.3 3 0 2.341 

0.3 0.4 3 0 3.0329 

0.3 0.5 3 0 3.4444 

︙ ︙ ︙ ︙ ︙ 

0.4 0.2 6 15 0.9253 

0.4 0.3 6 15 0.9914 

0.4 0.4 6 15 1.1855 

0.4 0.5 6 15 1.4963 

0.5 0.2 6 15 1.502 

0.5 0.3 6 15 1.5461 

0.5 0.4 6 15 1.6507 

0.5 0.5 6 15 1.8702 

3.4. Predictive results and analysis of the model 

The above 256 sets of simulation experimental data are 

numbered, and 226 sets of them are chosen for training. The 

parameters of SSA⁃LSSVM are set as shown in Table 4, and the 

iterative process of seeking the optimal parameters in the 

LSSVM by SSA is presented in Fig. 6 

Table 4 The parameters of SSA⁃LSSVM 

parameters value 

sparrow populations 30 

the maximum number of iterations 40 

𝜎 [0.01, 100] 

𝛾 [0.1, 2000] 

safety value 0.6 

Proportion of discoverers in the population 0.7 

Proportion of followers in the population 0.1 

Proportion of pre-warner s in the 

population 
0.2 

 

Fig. 6. Fitness curve by the SSA-LSSVM. 

To effectively analyze and evaluate the of the effectiveness 

of the proposed model, the paper uses five performance indexes 

by comparing real and predicted data, and they are calculated as 

in Eqs. (23-27). 

𝑅𝐸𝐴(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟) =
|𝑅𝑖−𝑃𝑖|

𝑅𝑖
   (23) 

𝑅𝐸𝐴(𝑁𝑎𝑠ℎ 𝑒𝑓𝑓𝑐𝑖𝑒𝑛𝑐𝑦) = 1 −
∑ (𝑅𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝑅𝑖−�̅�)2𝑁
𝑖=1

           (24) 

𝑅𝑀𝑆𝐸(𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟) = √
∑ (𝑅𝑖−𝑃𝑖)2𝑁

𝑖=1

𝑁
   (25) 

𝑀𝐴𝐸(𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟) =
1

𝑁
∑ |𝑅𝑖 − 𝑃𝑖|

𝑁
𝑖=1       (26) 

𝑊𝐼(𝑊𝑖𝑙𝑙𝑚𝑜𝑡𝑡 𝑖𝑛𝑑𝑒𝑥) = 1 −
∑ (𝑅𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (|𝑅𝑖−�̅�|+|𝑃𝑖−�̅�|)2𝑁
𝑖=1

       (27) 

where Ri is the actual surface roughness value and Pi is the 

predicted surface roughness value; 𝑅is the mean value of the 

predicted surface roughness in the data, N is the total number of 

test samples. The REA, RMSE and MAE are closer to 0, and 

the NSE and WI are closer to 1, indicating the effect of the 

model is better. 

Fig. 7 (a) compares the predicted and actual results of SSA-

LSSVM. The blue points show the relationship between the 

predicted and actual values in the test samples. The red line 

indicates “Predicted value of surface roughness = Actual value 

of surface roughness”, and the closer the blue points are to the 

red line, the smaller the error from the prediction model. As 

shown in Fig. 7 (a), most of the blue dots are very close to the 

red line, demonstrating the correctness of the roughness 

prediction model developed in the paper. 

To further illustrate the superiority of the model in the paper, 

the paper applys the LSSVM, the PSO-LSSVM and the WOA-

LSSVM to compare with the SSA-LSSVM. The sample data, 

inputs, and outputs of each prediction model are the same as 

those of the SSA-LSSVM model. The prediction results of each 

model for the test samples are shown in Figs.7 (b-d), and the 

performance indexes of each model are presented in Table 5. 
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Fig. 7. Scatter plot of predicted and actual values by different prediction model: (a) SSA-LSSVM  

(b) PSO-LSSVM (c) WOA-LSSVM (d) LSSVM.

Table 5. Performance indexes of each model. 

          Method 

Indexes   
SSA-LSSVM PSO-LSSVM WOA-LSSVM LSSVM 

NSE 0.9984 0.9938 0.9920 0.9818 

RMSE 0.0359 0.0714 0.0807 0.1216 

MAE 0.0211 0.0520 0.0694 0.0906 

WI 0.9991 0.9984 0.9980 0.9976 

As shown in Fig. 7, the SSA-LSSVM prediction model 

developed in the paper is closer to the actual results than the 

other models, which indicates its better prediction performance. 

As shown in Table 5, the performance indexes RMSE and MAE 

in the SSA-LSSVM are 0.0359 and 0.0211, which are smaller 

than those of other models, and the NSE and WI are 0.9984 and 

0.9991, respectively, which are closer to 1 than those of other 

models. This further proves that the prediction results of the 

SSA-LSSVM model have a higher precision accuracy. 

In addition, Figs 8 and 9 show the Violin and Taylor 

diagrams for the different models. The Taylor diagram shows 

that the predicted values obtained by SSA-LSSVM have  

a closer standard deviation and higher correlation with the 

actual values. The violin diagram shows the method proposed 

in the paper seems to be more similar to the distribution of 

actual values compared to the other methods. Fig 10 compares 

the absolute value of the relative error (REA) of each model. It 

can be seen that the REA of the SSA-LSSVM model is overall 

lower than the REA of the other models, and the REA curve 

fluctuates around 0, further showing the superiority of the SSA-

LSSVM model. Therefore, the SSA-LSSVM method proposed 

in the paper has a greater advantage in surface roughness 

prediction.
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Fig. 8. Violin diagram of different models. 

 

Fig. 9. Taylor diagram of different models.

 

Fig. 10. The absolute value of relative error between predicted 

and actual values. 

4. Reliability model of surface roughness based on 

response surface method 

From the modelling of the surface topography above, it is clear 

that the surface topography is affected by the feed per tooth, the 

row spacing, the tool radius, and the tool rake angle, which also 

affects the surface roughness. In practical machining, the small 

fluctuations in the milling process are not considered, which 

inevitably results in small variations in cutting parameters. 

These variations can further lead to uncertainty in surface 

roughness, which may result in surface quality failure due to 

substandard surface roughness. Hence, it is essential to develop 
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the research on surface roughness reliability.  

Most of the existing reliability calculation methods are 

based on the known functional expressions, and the reliability 

is obtained by the primary second-order moments, JC method, 

Monte Carlo method and other methods [37]. However, in some 

practical problems, such as for nonlinear systems like the one in 

this paper, the relationship between the fundamental random 

variables and Sa may be highly nonlinear, and there is no clear 

analytical expression [38]. When calculating the reliability of 

such systems, the above method may not be possible to calculate 

the reliability. The surface roughness in this paper has  

a nonlinear relationship with feed per tooth, row spacing, tool 

radius, and tool rake angle, no explicit expression exists. 

Therefore, this section analyzes surface roughness reliability 

through the response surface methodology, which provides  

a solution to the problem of reliability analysis of such complex 

systems. 

The response surface methodology uses the experimental 

design method to generate sample points by inputting a certain 

range of parameter values, fitting a response surface function 

using regression analysis, and replacing the real function or 

limit state surface with an easy function (response surface 

function) or surface (response surface) to complete the 

reliability calculation [39,40]. 

Response surface functions are usually often in polynomial 

form for the basic random variable and are generally expressed 

as a noncomplete quadratic polynomial that ignores the cross-

product term. The response surface function for n random 

variables is usually expressed as: 

𝑔 = 𝑍(𝑥) = 𝑎0 + ∑ 𝑏𝑖𝑥𝑖 + ∑ 𝑐𝑖𝑥𝑖
2𝑛

𝑖=1
𝑛
𝑖=1              (28) 

where 𝑥 is the underlying random variable; 𝑍(𝑥) is the response 

surface function; 𝑎0 , 𝑏𝑖  and 𝑐𝑖  are 2n+1 coefficients to be 

determined. 

The design variables in this section are feed per tooth, row 

spacing, tool radius, and tool rake angle, respectively, which are 

expressed in the form of a random vector 𝑥 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛]. 

The steps to obtain reliability based on the response surface 

methodology are given as follows: 

(1) The number of variables n is determined and the 

response surface function form as shown in Eq. (28) is chosen. 

(2) According to the center point of this iteration, the sample 

points are selected by following the central composite design 

method. Assuming that in the k-th iteration, with 𝑋(𝑘) =

(𝑥1
(𝑘)

, ⋯ , 𝑥𝑖
(𝑘)

, ⋯ 𝑥𝑛
(𝑘)

) as the center point, 2n sample points are 

selected according to Eq. (29), and a total of 2n+1 sample points 

are obtained by combining the center points 𝑋(𝑘) . where the 

center point of the first iteration 𝑋(1) = 𝜇𝑥 = (𝜇1, ⋯ , 𝜇𝑖, ⋯ 𝜇𝑛), 

𝜇𝑥is the mean point of the fundamental random variable. 

𝑋𝑖±
(𝑘)

= 𝑋(𝑘) ± 𝑓𝛿𝑖𝑒𝑖   (29) 

where 𝛿𝑖  is the standard deviation of the underlying random 

variable, 𝑓 is the coefficient, which takes the values 1, 2, or 3, 

and 𝑒𝑖 = [0, ⋯ 0,1,0 ⋯ 0], where the i-th element is 1. 

(3) According to the 2n+1 sets of sample points, calculate 

the function function values for these points: 𝑔 =

[𝑔1, 𝑔2, ⋯ , 𝑔2𝑛+1] 

(4) Since Eq. (28) has only 2n+1 coefficients to be 

determined, by bringing the data from steps (2) and (3) into the 

Eq. (28), the system of equations can be derived: 

𝑋𝜆𝑇 = 𝑌    (30) 

where 𝜆 = (𝑎0, 𝑏1, ⋯ , 𝑏𝑛 , 𝑐1, ⋯ , 𝑐𝑛), 𝑌 = (𝑔1, 𝑔2, ⋯ , 𝑔2𝑛+1)𝑇. 

(5) The JC method or the improved first second order 

moment is utilized to solve the check-point 𝑋𝛩(𝐾) =

(𝑥1
𝛩(𝐾)

, 𝑥2
𝛩(𝐾)

, ⋯ , 𝑥𝑛
𝛩(𝐾)

)  of 𝑧(𝑥)  and the reliability index 𝛽(𝐾) , 

where the superscript K denotes the K-th iteration step. 

(6) The center point 𝑋(𝐾+1) of the next iteration is calculated 

by linear interpolation of the sample point (𝑋(𝐾), 𝑧(𝑋(𝐾))) and 

the check-point (𝑋𝛩(𝐾), 𝑧(𝑋𝛩(𝐾))), 𝑋(𝐾+1) is calculated by Eq. 

(31): 

𝑋
(𝐾+1)

= 𝑋(𝐾) + (𝑋Θ(𝐾) − 𝑋(𝐾)) ⋅
𝑧(𝑋(𝐾))

𝑧(𝑋(𝐾))−𝑧(𝑋Θ(𝐾))
         (31) 

(7) With the new 𝑋
(𝐾+1)

 as the center point, continue with 

steps (2) to (5) to find the reliability indicators 𝛽(𝐾+1) for the 

(k+1)-th time. 

(8) Taking ∣ 𝛽(𝐾) − 𝛽(𝐾+1) ∣< 𝜀  as the condition to judge 

whether conversion or not, when the condition is satisfied, 

𝛽(𝐾+1) is the index of roughness reliability, and the calculation 

is finished; when the condition is not satisfied, continue the 

cycle of calculation until ∣ 𝛽(𝐾) − 𝛽(𝐾+1) ∣< 𝜀 is satisfied. The 

flow chart for solving roughness reliability based on the 

response surface method is shown in Fig. 11. 
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Fig. 11. The flow chart for calculating reliability by response 

surface methodology. 

5. Experiment case 

5.1. Experimental verification of surface topography and 

roughness 

To verify the accuracy of the surface topography and surface 

roughness model, the paper adopts the orthogonal experimental 

program shown in Table 6, and conducts 16 sets of milling 

machining experiments on a four-axis machine tool. The 

material of the workpiece is aluminium alloy 7050, and the tool 

parameters appear in Table 7. 

 

Table 6. Orthogonal experimental program. 

NO. 

Radius of the 

milling 

cutter(mm) 

Row 

space(mm) 

Feed per 

tooth(mm/r) 

Tool front tilt 

angle(°) 

1# 3 0.2 0.2 0 

2# 3 0.3 0.3 5 

3# 3 0.4 0.4 10 

4# 3 0.5 0.5 15 

5# 4 0.2 0.3 10 

6# 4 0.3 0.2 15 

7# 4 0.4 0.5 0 

8# 4 0.5 0.4 5 

9# 5 0.2 0.4 15 

10# 5 0.3 0.5 10 

11# 5 0.4 0.2 5 

12# 5 0.5 0.3 0 

13# 6 0.2 0.5 5 

14# 6 0.3 0.4 0 

15# 6 0.4 0.3 15 

16# 6 0.5 0.2 10 

Table 7. Tool parameters. 

Radius of the 

milling 

cutter(mm) 

Helix angle of 

tool (°) 
Number of tool 

teeth 

Total length of 

the tool(mm) 

3 

4 

5 

6 

30 2 50 

Fig. 12 shows the milling experimental machining site and 

workpiece after milling. In Fig. 12(b), the number of the 

machined workpiece corresponds to the number of each group 

of machining parameters. 

 

Fig. 12. Milling site and finished workpieces:(a) Milling 

processing; (b) Workpieces after machining. 

As shown in Fig. 13, the measuring instrument used for the 
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experiment, roughness profiler, has a measuring range of 0.01-

10um, and the maximum travel distances in the horizontal and 

vertical directions are 100 mm and 80 mm respectively. After 

the milling process is completed, the measuring area is selected 

for each workpiece, and the roughness profiler is used to 

measure the height coordinates of the area and calculate the 

surface roughness Sa by Eq. (10).

 

Fig. 13. Measuring process by roughness profiler.

Fig. 14 is a comparison of the experiment results with the 

measurement results, and it can be found that the Sa values 

obtained from the experiments under different milling 

conditions are the same as those obtained from the simulation. 

The maximum error value 9.84% occurs in group 4 and the error 

values of both experiment and simulation results are less than 

10%. Therefore, the correctness of the method introduced in this 

paper are verified. 

 

Fig. 14. Comparison of Experimental Results and Simulation 

Results. 

To further illustrate the consistency between the simulation 

and the experiment, 2 groups were selected from the above 

experiments, and the corresponding two-dimensional(2D) 

contours in the row spacing direction and the feed direction 

were intercepted to compare. With the acquired profile data, the 

root-mean-square error (RSME) between the simulation results 

and the measurement results is introduced as an evaluation 

parameter to assess the correctness of the model, and smaller 

RMSE values indicate higher correctness. The RMSE is 

represented by: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑍(𝑥𝑖,𝑦𝑖)−𝑍(𝑋𝑖,𝑌𝑖))2𝑛

𝑖=1

𝑛
  (32) 

where 𝑍(𝑥𝑖 , 𝑦𝑖) is the corresponding height of the simulated 2D 

profile, 𝑍(𝑋𝑖 , 𝑌𝑖)  is the height of the measured 2D profile 

corresponding to the simulation, and n is the total number of 

measurement points. 

As shown in Figs. 15(a)-(d), the 2D contour diagrams of 

simulation and experiment for the parameter cases of group 3 

and group 12, respectively, it is observed that the 2D contour 

change trends of simulated and experimental results are 

generally the same. As can be seen from Figs. 15(b) and (d), the 

corresponding row spacings are 0.4 mm and 0.5 mm, 

respectively, which are consistent with the parameters of the 
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milling experimental row spacings, further demonstrating the consistency between simulation and experiment.

 

Fig. 15. Comparison of 2D contours of simulation results and experimental results (a) Feed direction contour under group 3 

parameters; (b) Line spacing direction contour under group 3 parameters; (c) Feed direction  

contour under group 12 parameters; (d) Line spacing direction contour under group 12 parameters.

By Eq (30), the corresponding RMSE values of Figs. 15(a)-

(d) can be obtained in Table 8, and it is evident that the RMSE 

values are all near 0, indicating that the deviation of the 2D 

profile between the simulation and the experiment is very minor, 

and the simulation and experiment are relatively consistent. 

Therefore, the surface topography simulation method and 

roughness prediction method proposed in this study have been 

experimentally verified, which can provide theoretical guidance 

for the prediction and improvement of the workpiece’s surface 

quality. 

Table 8. RMSE values corresponding to Figs. 15(a)-(d). 

No. RMSE 

Figure a 0.000987 

Figure b 0.000904 

Figure c 0.000891 

Figure d 0.0014 

5.2 Experimental verification of roughness reliability 

Surface roughness reliability can be used to evaluate whether 

the surface roughness or surface quality of several parts meets 

the actual production requirements. As shown in Fig. 16, the 

same roughness profiler above is used for the experimental 

verification of the roughness reliability. 

 

Fig. 16. Measurement of roughness reliability. 
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Before the measurement, the surface of the machined 

workpiece needs to be divided into 250 measurement areas of 

2𝑚𝑚 × 2𝑚𝑚. After the division of the area is completed, each 

area of the workpiece is measured with a roughness profiler to 

determine whether it is qualified or not according to whether the 

roughness of the area meets the permissible value, and then the 

roughness reliability in the actual situation is calculated by Eq. 

(33). By comparing the actual and simulated values of 

roughness reliability, it can demonstrate whether the surface 

roughness reliability model based on the response surface 

method is correct. 

𝑀𝑅 =
𝑁𝑚

𝑁𝑛
   (33) 

Where 𝑀𝑅 is actual roughness reliability, 𝑁𝑚 is measured area 

qualified quantity, 𝑁𝑛 is total quantity of measurement area. 

Table 9 shows that the roughness reliability model obtained 

by the method proposed in the paper is verified since the 

calculated values of reliability are particularly similar to the 

experimental results. By comparing with the Monte Carlo 

method, it is found that surface roughness reliability values 

acquired by this method are closer to the experimental values, 

demonstrating that the response surface method has a higher 

prediction precision than the Monte Carlo method. Therefore, 

the approach proposed in this study for obtaining roughness 

reliability by the response surface method was experimentally 

validated, and it can be used for roughness reliability prediction.

Table 9 Roughness reliability by various methods 

No. 

Methods for calculating reliability Experimental methods for obtaining reliability 
Reliability of the 

experiment response surface 

methodology 
Monte Carlo method Number of eligible areas 

Total number of areas 

measured 

1 96.76% 95.85% 243 250 97.2% 

2 95.63% 97.68% 238 250 95.2% 

3 98.21% 96.73% 246 250 98.4% 

4 97.09% 97.62% 241 250 96.4% 

5 98.24% 96.51% 247 250 98.8% 

6 97.56% 96.49% 243 250 97.2% 

7 96.69% 98.19% 240 250 96.0% 

8 98.06% 98.42% 244 250 97.6% 

9 96.65% 95.61% 242 250 96.8% 

10 96.93% 97.96% 243 250 97.2.% 

11 96.88% 95.83% 244 250 97.6% 

12 95.67% 96.37% 237 250 94.8% 

13 95.29% 96.13% 239 250 95.6% 

14 96.73% 97.54% 240 250 96% 

15 94.58% 95.62% 233 250 93.2% 

16 97.53% 96.84% 245 250 98.0% 

6. Conclusion 

The article develops a surface roughness prediction model, and 

applies the roughness reliability model established based on the 

response surface method to realize the surface quality 

assessment in actual milling machining. The specific 

conclusions are as follows: 

(1) Based on milling kinematics theory, a milling surface 

topography model is established in this paper by discretizing the 

milling edge and machining time, which takes the influence of 

various parameters into account. The model can be used for 

milling surface topography simulation. 

(2) Optimizing the key parameters of the LSSVM model by 

the SSA, the prediction accuracy of roughness model is more 

than 95% and the model performance indexes are all superior to 

other models, indicating that the SSA-LSSVM model proposed 

in this paper is more competitive in predicting surface 

roughness. 

(3) For the uncertainty characteristic of various parameters 

in the machining process, the paper applies the response surface 
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method to establish a roughness reliability model. The 

experimental results show that the accuracy of the reliability 

model based on the response surface method is higher than that 

of the Monte Carlo method, which indicates that this method 

can be used to analyze the roughness reliability and provide  

a basis for the assessment of surface quality in the actual milling 

process. 

(4) The paper focuses on the study of surface quality 

assessment in CNC milling, which is mainly limited to CNC 

milling machining processes. The next study is to develop  

a series of methods for the surface quality assessment of other 

various kinds of CNC machining, such as turning, grinding and 

boring.

Acknowledgments 

The research was sponsored by the National Natural Science Foundation of China (grant no.51905334, grant no.52305261 and 

grant no.12002186), Shanghai Sailing Program (grant no.19YF1418600), Beijing Union University (No. ZK80202101), R&D Program 

of Beijing Municipal Education Commission (KM202211417012), and the Open Foundation of National Key Laboratory of Strength 

and Structural Integrity (ASSIKFJJ202305002). 

Reference 

1. Dong Y, Li S, Li Yan, et al. Research on Modeling and Simulation of Surface Topography Obtained by Trochoidal Milling Mode with Ball 

End Milling Cutter[J]. Journal of Mechanical Engineering, 2018, 54(19): 212-223. DOI:10.3901/JME.2018.19.212. 

2. Wang B, Wang Z, Hou Y, et al. Surface texture prediction and analysis of ball end milling cutter machining[J]. Machine Tools and 

Hydraulics, 2016, 044(013):1-5. (In Chinese). 

3. Yuan L, Zeng S, Chen Z. Simultaneous prediction of surface topography and surface location error in milling[J]. Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(10): 1805-1829. 

DOI:10.1177/0954406214547401. 

4. Peng Z, Jiao L, Yan P, et al. Simulation and experimental study on 3D surface topography in micro-ball-end milling[J]. The International 

Journal of Advanced Manufacturing Technology, 2018, 96: 1943-1958. https://doi.org/10.1007/s00170-018-1597-6. 

5. Zhang W, Hua B, Zhang L, et al. Modeling and simulation of Surface Topography in secondary milling with ellipsoid end milling cutter[J]. 

International Journal on Interactive Designand Manufacturing (IJIDeM), 2023: 1-14. https://doi.org/10.1007/s12008-023-01475-6. 

6. Zhang C, Zhang H, Li Y, et al. Modeling and on-line simulation of surface topography considering tool wear in multi-axis milling process[J]. 

The International Journal of Advanced Manufacturing Technology, 2015, 77: 735-749. https://doi.org/10.1007/s00170-014-6485-0. 

7. Bo L, Yanlong C, Wenhua C, et al. Geometry simulation and evaluation of the surface topography in five-axis ball-end milling[J]. The 

International Journal of Advanced Manufacturing Technology, 2017, 93: 1651-1667. https://doi.org/10.1007/s00170-017-0505-9. 

8. Hao Y, Liu Y. Analysis of milling surface roughness prediction for thin-walled parts with curved surface[J]. The International Journal of 

Advanced Manufacturing Technology, 2017, 93: 2289-2297. https://doi.org/10.1007/s00170-017-0615-4. 

9. Shujuan L, Dong Y, Li Y, et al. Geometrical simulation and analysis of ball-end milling surface topography[J]. The International Journal 

of Advanced Manufacturing Technology, 2019, 102: 1885-1900. https://doi.org/10.1007/s00170-018-03217-5. 

10. Żurawski K, Żurek P, Kawalec A, et al. Modeling of Surface Topography after Milling with a Lens-Shaped End-Mill, Considering 

Runout[J]. Materials, 2022, 15(3): 1188. https://doi.org/10.3390/ma15031188. 

11. Chen W, Zheng L, Xie W, et al. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-

milling[J]. Journal of Materials Processing Technology, 2019, 266: 339-350. https://doi.org/10.1016/j.jmatprotec.2018.11.011. 

12. Buj-Corral I, Vivancos-Calvet J, Dominguez-Fernandez A. Surface topography in ball-end milling processes as a function of feed per tooth 

and radial depth of cut[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 151-159. 

https://doi.org/10.1016/j.ijmachtools.2011.10.006 

13. Xu J, Xu L, Geng Z, et al. 3D surface topography simulation and experiments for ball-end NC milling considering dynamic feedrate[J]. 

CIRP Journal of Manufacturing Science and Technology, 2020, 31: 210-223. https://doi.org/10.1016/j.cirpj.2020.05.011. 

14. Zheng M, Dong Y, et al. Effect of inclination-angle of ball-milling cutter on surface morphology of hard aluminium alloy workpiece. [J] 

Lanzhou Univ Technol 2016, 42(4):36–41. (In Chinese) 

http://dx.doi.org/10.3901/JME.2018.19.212
https://doi.org/10.1177/0954406214547401
https://doi.org/10.3390/ma15031188
https://doi.org/10.1016/j.jmatprotec.2018.11.011
https://doi.org/10.1016/j.ijmachtools.2011.10.006
https://doi.org/10.1016/j.cirpj.2020.05.011


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 2, 2024 

 

15. Agrawal A, Goel S, Rashid W B, et al. Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC) [J]. Applied Soft 

Computing, 2015, 30: 279-286. https://doi.org/10.1016/j.asoc.2015.01.059. 

16. Kong D, Zhu J, Duan C, et al. Bayesian linear regression for surface roughness prediction [J]. Mechanical Systems and Signal Processing, 

2020, 142: 106770. https://doi.org/10.1016/j.ymssp.2020.106770. 

17. Shahrajabian H, Farahnakian M. Modeling and multi-constrained optimization in drilling process of carbon fiber reinforced epoxy 

composite[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14: 1829-1837. https://doi.org/10.1007/s12541-

013-0245-1. 

18. Ouyang H B. Deformation prediction based on BP artificial neural network of milling thin-walled aluminum alloy parts[J]. Applied 

Mechanics and Materials, 2014, 687-691: 492-495 https://doi.org/10.4028/www.scientific.net/AMM.687-691.492 

19. Han J, Zhu J, Zheng W, et al. Influence of metal forming parameters on surface roughness and establishment of surface roughness 

prediction model[J]. International Journal of Mechanical Sciences, 2019, 163: 105093. https://doi.org/10.1016/j.ijmecsci.2019.105093 

20. Liu C, Huang Z, Huang S, et al. Surface roughness prediction in ball screw whirlwind milling considering elastic-plastic deformation 

caused by cutting force: Modelling and verification[J]. Measurement, 2023, 220: 113365. 

https://doi.org/10.1016/j.measurement.2023.113365. 

21. Li B, Tian X. An effective PSO-LSSVM-based approach for surface roughness prediction in high-speed precision milling[J]. Ieee Access, 

2021, 9: 80006-80014. https://doi.org/10.1109/ACCESS.2021.3084617 

22. Hong S, Yue T, Liu H. Vehicle energy system active defense: a health assessment of lithium‐ion batteries[J]. International Journal of 

Intelligent Systems, 2022, 37(12): 10081-10099. https://doi.org/10.1002/int.22309 

23. Hong S, Zeng Y. A health assessment framework of lithium-ion batteries for cyber defense[J]. Applied Soft Computing, 2021, 101: 107067. 

24. Yuan X, Chen C, Lei X, et al. Monthly runoff forecasting based on LSTM–ALO model[J]. Stochastic environmental research and risk 

assessment, 2018, 32: 2199-2212. https://doi.org/10.1007/s00477-018-1560-y 

25. Adnan R M, Mostafa R R, Dai H L, et al. Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms 

using limited climatic data[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 2192258. 

https://doi.org/10.1080/19942060.2023.2192258. 

26. Adnan R M, Mostafa R R, Islam A R M T, et al. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled 

with heuristic algorithms[J]. Computers and Electronics in Agriculture, 2021, 191: 106541. https://doi.org/10.1016/j.compag.2021.106541. 

27. Adnan R M, Dai H L, Mostafa R R, et al. Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms 

using hydroclimatic data[J]. Geocarto International, 2023, 38(1): 2158951.https://doi.org/10.1080/10106049.2022.2158951. 

28. Adnan R M, Dai H L, Mostafa R R, et al. Modeling multistep ahead dissolved oxygen concentration using improved support vector 

machines by a hybrid metaheuristic algorithm[J]. Sustainability, 2022, 14(6): 3470. https://doi.org/10.3390/su14063470. 

29. Lu X, Hu X, Wang H, et al. Research on the prediction model of micro-milling surface roughness of Inconel718 based on SVM[J]. 

Industrial Lubrication and Tribology, 2016, 68(2): 206-211.https://doi.org/10.1016/j.neucom.2015.08.124 

30. Misaka T, Herwan J, Ryabov O, et al. Prediction of surface roughness in CNC turning by model-assisted response surface method[J]. 

Precision Engineering, 2020, 62: 196-203. https://doi.org/10.1016/j.precisioneng.2019.12.004 

31. Pimenov D Y, Bustillo A, Mikolajczyk T. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear 

on face mill teeth[J]. Journal of Intelligent Manufacturing, 2018, 29(5): 1045-1061. https://doi.org/10.1007/s10845-017-1381-8 

32. Li, W, Shuyi G E, Hao S I, et al. Elliptical model for surface topography prediction in five-axis flank milling[J]. Chinese Journal of 

Aeronautics, 2020, 33(4): 1361-1374. https://doi.org/10.1016/j.cja.2019.06.007. 

33. Yuan X, Wang Y, Zhang Y. Support vector machine inverse model control based on fuzzy control compensation[J]. Electronic Measurement 

and Instrumentation. 2007, 21(01): 39-43. (In Chinese). 

34. Wang H, Hu Z, Zhang Y et al. Short-term wind speed combination prediction based on clustered empirical mode decomposition and least 

squares support vector machine[J]. Journalof Electrotechnology, 2014, 29(04): 237-245. (In Chinese). 

35. Song C, Yao L, Hua C, et al. A water quality prediction model based on variational mode decomposition and the least squares support 

vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China[J]. Environmental 

monitoring and assessment, 2021, 193(6): 363. https://doi.org/10.1007/s10661-021-09127-6. 

https://doi.org/10.1016/j.asoc.2015.01.059
https://doi.org/10.1016/j.ymssp.2020.106770
https://doi.org/10.1007/s12541-013-0245-1
https://doi.org/10.1007/s12541-013-0245-1
https://doi.org/10.1016/j.ijmecsci.2019.105093
https://doi.org/10.1016/j.measurement.2023.113365
https://doi.org/10.1109/ACCESS.2021.3084617
https://doi.org/10.1080/19942060.2023.2192258
https://doi.org/10.1016/j.compag.2021.106541
https://doi.org/10.1080/10106049.2022.2158951
https://doi.org/10.3390/su14063470
https://doi.org/10.1016/j.neucom.2015.08.124
https://doi.org/10.1007/s10845-017-1381-8
https://doi.org/10.1016/j.cja.2019.06.007


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 2, 2024 

 

36. Yue, Y., Cao, L., Lu, D. et al. Review and empirical analysis of sparrow search algorithm. Artif Intell Rev 56, 10867–10919 (2023). 

https://doi.org/10.1007/s10462-023-10435-1. 

37. Changcong, Z.; Zhenzhou, L.; Feng, Z.; Zhufeng, Y. An Adaptive Reliability Method Combining Relevance Vector Machine and 

Importance Sampling. Struct. Multidiscp. Optim. 2015, 52, 945–957. https://doi.org/10.1007/s00158-015-1287-z. 

38. Ou Y, Wu Y, Cheng J, et al. Response Surface Method for Reliability Analysis Based on Iteratively-Reweighted-Least-Square Extreme 

Learning Machines[J]. Electronics, 2023, 12(7): 1741. https://doi.org/10.3390/electronics12071741. 

39. Zhang Z, Hu X, Qi Y, et al. Geometric error allocation method for CNC machine tools based on vector projection response surface[J]. 

Journal of Jilin University (Engineering Edition),2022,52(2): 384-391. Doi:10.13229/j.cnki.jdxbgxb20211089. 

40. Niu P, Cheng Q, Zhang T, et al. Hyperstatic mechanics analysis of guideway assembly and motion errors prediction method under thread 

friction coefficient uncertainties[J]. Tribology International, 2023, 180: 108275. https://doi.org/10.1016/j.triboint.2023.108275. 

 

https://doi.org/10.13229/j.cnki.jdxbgxb20211089
https://doi.org/10.1016/j.triboint.2023.108275

