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 Reliability is sometimes computed as the likelihood of achieving an 

intended function in the presence of uncertainties, and this is known as 

dynamic reliability by the conditional probability approach. These 

techniques can produce incredibly accurate reliability estimates. This 

work uses the dynamic response spanning action Markov hypothesis for 

the composite random reliability problem. Two steps are needed to 

describe conditional probability: first, the Taylor expansion approach is 

used to derive a 2nd-order approximate formula for determining the 

dynamic reliability of the random structure. The second step is to come 

up with a mathematical sampling strategy based on the statistical 

analysis's Kriging model. The Kriging interpolation model's sampling 

process satisfies the nonlinear association between structural random 

boundaries and dynamic reliability. Consequently, the finite element 

results can be used immediately to anatomize the impact of random 

structural parameters on dynamic reliability, bypassing the arduous and 

time-consuming theoretical derivation. The numerical example results 

show that the sampling method based on the Kriging model is 

unconcerned about the ratio used to represent dispersion and provides 

extra benefits in computational verisimilitude and calculation 

productivity. 
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1. Introduction 

Uncertainties are inherent in several aspects of engineering 

systems, including but not limited to material qualities, loads, 

and geometrical parameters. Reliability analysis offers  

a suitable framework for addressing uncertainties and assessing 

the probability of failure. This strategy is becoming more 

prevalent in other disciplines. A large body of literature and 

applications under the title “Reliability Engineering" has 

existed in engineering for many years. In practical engineering, 

the responses of structures often follow probability distributions 

with arbitrary shapes due to the propagation of uncertainties 
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such as external loads, material properties, and geometric 

dimensions [1,2]. Reliability or risk management is one of the 

main concerns in the design phase, as the occurrence of faults 

in technical systems, e.g., in an aircraft, spacecraft, or nuclear 

power plant, can have catastrophic consequences. Therefore, 

the expectation of higher reliability and lower environmental 

impact has become essential. Reliability-Based Design (RBD) 

is a design method that has gained popularity in practice as it 

allows this expectation to be considered at the design stage. 

Reliability analyses are widely used in industry, ranging from 

structural engineering [3-5] to mechanical engineering [6, 7] 

and material design [8-10]. Various reliability analysis 

strategies have been developed to estimate the probability of 

technical structure failure effectively. Sampling-based methods 

include Monte Carlo simulation (MCS) and its advanced 

variants [11–13]. Although these methods can be used for 

problems of varying complexity, the computational effort 

required for practical engineering cases is generally high. 

Analytical approximation methods, such as the first-order 

reliability method (FORM) [14, 15] and the second-order 

reliability method (SORM) [16, 17]. These methods have 

proven efficient in estimating the probability of failure but can 

lead to incorrect results for problems with high nonlinearity or 

multiple design points. 

Engineering structures contain several uncertain factors in 

many aspects, such as the randomness of material parameters, 

geometric dimensions, boundary conditions, damping, etc. 

These random factors will negatively impact the dynamic 

response analysis results. Under certain conditions, it may also 

become a dominant factor, so it is very necessary to consider the 

randomness of structural parameters in dynamic reliability 

analysis. In recent years, some dynamic reliability studies have 

been carried out considering the dual randomness of tailoring 

and structural parameters, but they have failed to achieve 

systematically effective results. The difficulty lies in 1) The 

dynamic reliability analysis centered on the randomness of the 

load is based on the random vibration theory, while the 

reliability analysis considering the randomness of the structural 

parameters is based on the random variable pattern. The coupled 

solution of the two is difficult to express in a unified model: 2) 

Some existing analysis methods are mainly based on stochastic 

finite element and Monte Carlo sampling methods. However, 

the stochastic finite element method involves intricate formulas 

and cumbersome calculations. Meanwhile, in the Monte Carlo 

method, the amount of calculation is too large to be applied in 

practical engineering. There arises a necessity to find a simple, 

convenient, practical, and efficient reliability analysis method. 

Random vibration on viscoelastic materials extends across 

various domains such as structural engineering [18,19], 

transportation [20,21], civil engineering [22,23], aeronautical 

engineering [24,25], and complex recovery system assessment 

[26], simulation approaches for complex systems [27], large-

scale load-carrying structures [28]. 

The reliability analysis of structures under random loads 

falls into the category of dynamic reliability. Among them, the 

dynamic reliability research based on the first transcendence 

problem has made great progress, forming theoretical methods 

based on the spanning process and theoretical methods based on 

the diffusion process. Three analytical techniques, as an 

example of Multiple Stripe Analysis (MSA) [29-30], cloud 

analysis [31], and Incremental Dynamic Analysis (IDA) [32].  

A multi-state manufacturing system’s dynamic reliability 

analysis under a non-homogeneous continuous-time Markov 

process (NHCTMP) [33]. In the literature, four key types of 

techniques can be found for seismic fragility analysis of 

structures, i.e. the empirical, hybrid, experimental, and 

analytical methods [34–37]. However, in these studies, all 

structure parameters are assumed to be deterministic. To 

evaluate the dynamic reliability, response, and possible failure 

of buried corroded pipeline under rockfall impact [38]. In recent 

years, certain developments have been made in the reliability 

research of composite stochastic systems that consider 

structural and excitation randomness.  

The analysis methods can be summarized as conditional 

random response method [39-40] and 

conditional reliability method [41-43]; there are three types 

of conditional iteration methods [44]. Among them, the 

conditional reliability method extends the deterministic 

structural dynamic reliability results to unconditional dynamic 

reliability considering the random parameters of the structure. 

Methods to improve the shearer reliability, stability, and 

vibration reduction in the coal mining process [45]. Spencer and 

Elishakoff [41] calculated the reliability of single-degree-of-

freedom linear and nonlinear systems based on the Kolmogorov 
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equation of dynamic reliability and the relationship between 

conditional probability and total probability; Zhao et al. 

[42] used the point estimation method and response surface 

method to calculate the unconditional reliability of multi-

degree-of-freedom hysteresis structures are achieved. Abhijit 

and Subrata [43] used the Taylor expansion method to solve the 

unconditional probability and analyze the reliability of concrete 

dams under earthquake action. The conditional reliability 

method has clear mathematical concepts and clear analysis 

processes and can estimate the impact of random parameters on 

reliability from multiple angles. However, there are also 

problems, such as the tedious derivation process, and the 

computational complexity will increase with the larger 

dimension of the random variable. It isn't easy to apply it to 

complex structures. 

In view of this, this research considers the impact of 

structural random parameters based on deterministic structural 

dynamic reliability analysis. It proposes to fit the nonlinear 

correlation among dynamic reliability and structural random 

boundaries through the Kriging interpolation model. Then, it 

establishes a mathematical sampling method based on the 

Kriging model. At the same time, a conditional reliability 

calculation method based on the second-order Taylor expansion 

is derived. Finally, the application characteristics of the two 

methods are compared and illustrated through numerical 

examples, and the effectiveness of the methods is analyzed. 

Parallel to these studies, this study investigates a wide range of 

dynamic reliability analyses, including the Monte Carlo method 

of dynamic reliability analysis, the 2nd-order Taylor expansion 

method of dynamic reliability analysis, and the Kriging 

sampling method of dynamic reliability analysis. Therefore, the 

researchers assumed that this objective was attainable. Although 

the different methods' effects on the structure performance may 

differ from the dynamic reliability analysis, the different 

methods influencing the dynamic reliability analysis are 

presented in Table 1.

Table 1. The different methods influencing the dynamic reliability analysis are presented. 

 

Reference 

Dynamic 

reliability 

Monte Carlo 

method 

2nd order Taylor 

expansion method 

Kriging 

sampling 

method 

 

Methodology 

Zhian L et al. (2023) 

[46] 
√ √ × √ 

Semi-Parallel Active learning 

method based on Kriging (SPAK) 

B. Echard et al. 

(2013) [47] 
√ √ × √ 

Active learning Kriging-based and 

Monte Carlo (AK-MCS) simulation 

B. Echardet, al. 

(2011) [48] 
√ √ × √ 

Active learning reliability method 

combining Kriging and Monte 

Carlo Simulation 

Nicolas Lelièvre et, 

al. (2018) [49] 
√ √ × √ AK-MCSi 

Qing Guo et al. 

(2019) [50] 
√ × × √ 

Active learning Kriging model-

Directional importance sampling 

(ALK-DIS) method 

Yan Shi et, al. 

(2019) [51] 
√ √ × √ 

Double-loop 

optimization algorithm combined 

with Monte Carlo 

Simulation-Active learning Kriging 

method 

Xiaoping Du et, al. 

(2005) [52] 
√ × × × 

Reliability-Based Design (RBD) 

method 

Zhangli Hu et, al. 

(2021) [53] 
√ √ √ × Second-order reliability methods 

This Work √ √ √ √  

2. Conditional probability method for dynamic 

reliability analysis of random structures: 

The dynamic reliability theory assumes of random response 

crossing over the first failure. When the structural response is a 

stationary random process, its dynamic reliability can be 

expressed as a Poisson process. For high limits, the probability 
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of crossing the limit is very small, and the event is rare, so the 

Poisson process is acceptable. However, the assumption that 

crossover events are independent is difficult to accept for 

narrow-band processes. The semi-analytical approximation 

method can be used to correct the shortcomings of the Poisson 

process method. Among them, the approximation of Vanmarke 

and Corotis, which obey the Markov process based on the 

number of crossovers, is considered the most accurate. The 

dynamic reliability formula corresponding to the bilateral limit 

is: 

R(x0)=exp [
Tσẋ

2πσx
exp (-

r2

2
)

1-exp(-√
π

2
qr)

1-exp(-
r2

2
)

]  (1) 

In the formula: r = 
x0

σx

, x0 is the given bilateral limit value; q 

is the shape parameter of the spectral density Syy(ω) , q=√1-
λ1

λ0λ2
 

where λj is the response auto-power spectral density function, 

and the calculation formula is: 

λj= ∫ ωkSyy(ω)dω
∞

-∞
   (2) 

Equation (1) is the conditional dynamic reliability when the 

structural parameters are considered as definite values. To 

account for the randomness of the structural parameters, the 

calculation formula suitable for the unconditional dynamic 

reliability is derived below. The random variable vector of 

structural parameters is symbolized by X , which normally 

indicates the randomness of structure mass and rigidity. For a 

given X, the reliability at this time can be obtained according to 

equation (1) Rc(t|X) , so the unconditional dynamic reliability 

formula can be written as: 

Ruc(t)=∫
x
Rc(t|X)fx(X) dX   (3) 

In the formula: f
x
(X)  is the joint probability density of 

X . Equation (3) is equivalent to solving multiple integrals, 

which usually can only rely on numerical methods. In this 

article, two methods for solving equation (3) are presented: one 

is to derive the second-order conditional probability calculation 

formula based on Taylor expansion; the other is to establish a 

Kriging model-based numerical sampling method and illustrate 

the effectiveness and applicability of the method is illustrated 

by numerical examples. 

2.1. 2nd order Taylor expansion method: 

Expand the conditional reliability. 𝑅𝑐(𝑡|𝑋) 

Rc(t|X)=Rc(X0)+ ∑ (Xk-Xk0)N
k=1 Rc,k

1 (X0)+
1

2
∑ ∑ (Xk-N

k=1
N
l=1

Xk0)(Xl-Xl0)Rc,kl
II (X0)                                  (4) 

According to the definition of mathematical expectation of 

multidimensional random variables, unconditional reliability 

is the mathematical expectation of conditional dynamic 

reliability. Rc(t|X) 

Ruc=Rc(t|X)=Rc(X0)+ ∑ (Xk-N
k=1

Xk0) Rc,k
1 (X0)+

1

2
∑ ∑ (Xk-Xk0)(Xl-

N
k=1

N
l=1

Xl0)Rc,kl
II (X0)                             (5) 

The second term of equation (5) (Xk-Xk0) is equal to 0, so 

equation (5) can be simplified and written as: 

Ruc=Rc(X0)+
1

2
∑ ∑ (Xk-Xk0)(Xl-Xl0)Rc,kl

IIN
k=1

N
l=1 (X0)    (6) 

If the random variable 𝑋  is transformed into the standard 

normal space U, then equation (6) can be further simplified as: 

Ruc(U)=Rc(U0)+
1

2
∑ ∑ ((Xk-Xk0)2)Rc.kl

IIN
k=1

N
l=1 (U0)    (7) 

Rc(U0) is the reliability of the random variable when taking 

the mean value, and the expression is shown in equation (1). Let 

Rc=exp(-Tα̅) , and then we have Rc,k
I =αk

I Rc , 𝑅𝑐,𝑘𝑙
𝐼𝐼 = 𝛼𝑘

𝐼 𝛼𝑙
𝐼𝑅𝑐 −

𝛼𝑘
𝐼𝐼𝑅𝑐, where α, αk

I  and  αkl
II  are the crossing rate, the first-order 

derivative, and the second-order derivative of the crossing rate 

with random variables, respectively. The conditional expected 

crossing rate is written as follows: 

α=
ab

c
   (8) 

Then there are: 

a=
1

2π

σẋ

σx
;        A=1-exp (-√

π

2

x0

σx
q)  (9) 

 B=exp (-
x0

2

2σx
2) ,      b=A.B;  (10) 

c=exp (
1

2
(

x0

σx
)

2

) -1   (11) 

According to equation (8), the first derivative of 𝛼 

concerning the random variable can be directly calculated: 

αk
I = (

αk
I

a
+

bk
I

b
-

ck
I

c
) α̅   (12) 

in: 
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αk
I =a (

σẋ,k
I

σẋ
-

σx,k
I

σx
)   (13) 

bk
I =√

π

2
x0 (

qx,k
I

σẋ
-

qσx,k
I

σx
2 ) (1-A)B+x0

2 σx,k
I

σx
3 A B  (14) 

ck
I =-

x0
2

(σx)3 σx,k
I (1+c)   (15) 

The second-order moment is derived according to equation 

(12), and the expression is as follows: 

αk
II= (

αkl
II a-αk

I αl
I

a
2 +

bkl
II b-bk

I bl
I

b
2 -

ckl
II c-ck

I cl
I

c
2 ) a+

αk
I αl

I

a
  (16) 

In the formula: 

αkl
II = (

2σx,k
I σx,l

I

σx
2 -

2σx,̇ k
I σx,l

I -σẋ,kl
II σx+σx,kl

II σẋ

σxσẋ
) a  (17) 

bkl
II =AIIB+2AIBI+ABII   (18) 

AI=√
π

2
x0 [

qk
I

σx
-

qσxk
I

σx
2 ] (1-A);   BI =x0

2 σx,k
I

σx
3  B  (19) 

AII=√
π

2
x0 [

qkL
II σ

x

2
-2qk

I σx,k
I σx+2qσx,k

I -qσxkl
II σx

σx
3 .(1-A)+

qk
I σx+qσx,k

I

σx
2 Ak

I ](20) 

BII=x0
2 [

σx,kl
II

σx
3 B-

3σx,k
I σx,l

I

σx
4 B+

σx,k
I

σx
3 Bk

I ]  (21) 

ckl
II =x0

4 (
3σx,k

I σx,l
I -σx,kl

II σx

x0
2σx

4 +
(σx,k

I )
2

σx
6 ) (1+c)  (22) 

The narrowband process 𝑞  shown in equation (1) is also 

random, and the mean value and its derivative can be obtained 

according to the moments of each order of the power spectrum 

function: 

q=√1-
λ1

λ0λ2
,       qk

I =
1-q

2

2q
(

λ0,k
I

λ0
+

λ2,k
I

λ2
-

2λ1,k
I

λ1
) (23) 

qk
II=

1-q
2

2q
(

λ0,kl
II

λ0-λ0,k
I

λ0,k
I

λ0

2 +
λ2,kl

II
λ2-λ2,k

I
λ2,l

I

λ2

2 -
2λ1,kl

II
λ1-λ1,k

I
λ1,l

I

λ1

2 ) -
1+q

2

q(1-q
2

)
qk

I ql
I    (24) 

It can be seen from the above results that as long as the first-

order derivative and the second-order derivative of the variance 

of each response quantity concerning the random parameters are 

obtained, unconditional reliability can be obtained according to 

the aforementioned method. 

2.2. Numerical sampling method based on the Kriging 

model: 

Concerning the problem shown in equation (3), a discernible 

correlation exists between conditional dynamic reliability and 

structural random parameters. However, there is no clear 

analytical expression for this relationship due to nonlinear 

factors such as structure, response, and load. This article aims 

to introduce the Kriging method for unconditional dynamic 

reliability calculation, building upon the Kriging approach. The 

main work includes fitting conditional dynamic reliability and 

numerical simulation of unconditional reliability, which are 

explained separately in the subsequent sections. 

1) Kriging method fitting of conditional dynamic reliability: 

A certain response surface form is used to fit the relationship 

between conditional dynamic reliability R(t|x1,x2,…,xn,) and 

structural random parameters x1,x2,…,xn  including the 

selection of response surface form and sample test design 

method. Based on the Kriging [54] method, formula (3) can be 

expressed as: 

R̃(t|X)=f T(X)β+z(X)   (25) 

Among them: β  is the regression coefficient; f(X)  is the 

polynomial coefficient, which is usually taken as a fixed 

constant and does not affect the approximation accuracy; 𝑧(𝑋) 

is a random function with a mean value of 0, a variance of σ2 

and a covariance matrix of: 

cov[z(xi),z(xj)]=σ2R(xi,xj),     i, j=1,2,…,n (26) 

R(xi,xj)  is the spatial correlation equation of any two 

sample points in the space, which plays a decisive role in the 

accuracy of the simulation, is generally chosen to be. 

Gaussian form: 

R(xi,xj)=exp |- ∑ θk|xi
k-xj

k|
2p

k=1 |  (27) 

The parameter θk  can be given by the highest probability 

evaluation of the function, that is, the construction problem of 

the optimal Kriging model adapted into a nonlinear 

unconstrained optimization problem, whose form is: 

max
θk>θ

-
[n ln σ̂

2+ ln(det R)]

2
   (28) 

2) Numerical simulation of unconditional dynamic 

reliability equation (25) obtains the fitting form of conditional 

dynamic reliability. Substitute it into equation (3) to obtain the 

unconditional probabilistic dynamic reliability: 

R(t)=∫
x
R(t|X)fx(X) dX =∫

x
(f T(X)β+z(X))fx(X) dX     (29) 

According to the definition of the expected value of  

a multidimensional random variable, equation (29) is 

synonymous with the mathematical expectation of 

calculating R(t|X) , and can be calculated by numerical 

simulation. First, according to the statistical characteristics of 

the random variables, 𝑁 groups of samples are extracted from 
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the sample space, and N conditional dynamic reliability values 

are calculated. Subsequently, the Kriging response surface of 

the conditional reliability is obtained using the method of step 

1), and finally, the average value of the conditional dynamic 

reliability is used to estimate unconditional dynamic 

reliability. Among them, the Kriging response surface's fitting 

accuracy and calculation efficiency are pivotal factors for 

determining the effectiveness of this approach. 

3. Example analysis: 

The motion equation of a single-degree-of-freedom system 

subject to stationary random excitation can be expressed 

as mÿ+cẏ+ky=f(t) , where 𝑚  is mass, 𝑐  is damping, and k is 

stiffness; the auto-power spectral density of stationary random 

process f(t)  is Constant value, Sff(ω)=S0=1 . System 

parameters 𝑚, 𝑐 , and 𝑘  are independent normally distributed 

random variables, with average values of 15, 0.05, and 40, 

respectively. Assuming that the three random variables have the 

same variation coefficient ν, analyze the dynamic 

reliability 𝑅 of the displacement response for time 𝑡 = 100. 

The second-order Taylor expansion method and the Kriging 

model sampling method are used to calculate the dynamic 

reliability of the random structure. The Monte Carlo method 

was used to analyze the reliability obtained 106  times as the 

accurate result. To study the impact of system parameter 

variability on dynamic reliability, the coefficient of variation of 

random variables changes from 0 to 0.3. Tables 2, 3, and Figures 

1 and 2 list the reliability results when the corresponding 

bilateral displacement response limit values are 3𝜎 and 3.5𝜎, 

respectively, where 𝜎  is the standard deviation of the 

displacement steady-state response. When the coefficient of 

variation is 0, the system structure is deterministic. When the 

limit values are  3𝜎  and 3.5𝜎 , the corresponding dynamic 

reliability results are 0.99809 and 0.99879, respectively. 

It can be seen from the results in Tables 2, 3, and Figures 1 

and 2 that when considering structural variability, the dynamic 

reliability values obtained by the second-order Taylor expansion 

method and the Kriging response surface sampling method are 

both lower than the dynamic reliability value of the 

deterministic structure. This result is consistent with objective 

reality. It's attached. It can also be concluded that the results and 

error trends obtained by the two methods are consistent. The 

structural dynamic reliability value decreases with the increase 

of the coefficient of variation. The higher the limit value, the 

smaller the difference will be.

Table 2. The juxtaposition of the Monte Carlo method against the outcomes of this investigation (with a margin of 3𝜎). 

Coefficient of variation 
Monte Carlo method 2nd order Taylor expansion method Kriging sampling method 

Reliability Reliability Error (%) Reliability Error (%) 

v = 0.05 0.9460765 0.9459862 0.00908 0.9461312 0.00558 

v = 0.10 0.941336 0.9399672 0.13698 0.9419264 0.07069 

v = 0.15 0.9268815 0.9329606 0.68953 0.9268926 0.00611 

v = 0.20 0.915876 0.9501382 3.75422 0.915976 0.02097 

v = 0.25 0.880352 0.9271094 5.92798 0.8769696 0.48098 

v = 0.30 0.9361075 0.9132836 8.98796 0.9316416 0.74618 

 

Figure 1. The Comparison of the Monte Carlo method concerning the results of this research (margin 3 𝜎). 
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Table 3. The juxtaposition of the Monte Carlo method against the findings of this research (with a margin of 3.5𝜎). 

Coefficient of 

variation 

Monte Carlo method 2nd order Taylor expansion method Kriging sampling method 

Reliability Reliability Error (%) Reliability Error (%) 

v = 0.05 0.9592128 0.9592112 0.00021 0.9592104 0.00028 

v = 0.10 0.957552 0.958242 0.07128 0.957987 0.04803 

v = 0.15 0.9513504 0.9568512 0.61029 0.9527248 0.20394 

v = 0.20 0.9363936 0.9547968 1.98403 0.9365761 0.09548 

v = 0.25 0.9102336 0.9521472 4.79351 0.9101728 0.64265 

v = 0.30 0.905232 0.9393024 8.00139 0.8999536 1.07834 

 

Figure 2. The comparison of the Monte Carlo method concerning the results of this research (margin 3.5 𝜎).

When deriving based on the Taylor expansion method, only 

the first two-order terms are taken to simplify the calculation of 

the conditional probability expansion. It can be observed from 

the outcomes in Table 3 and Figure 2 that although the second-

order Taylor expansion method can obtain the response 

statistical moments and corresponding reliability with less 

calculation, the resulting error has a great relationship with the 

value of the coefficient of variation. Controlled by the two 

limits, when the structural variation coefficient is lower than 0.2, 

the computation precision is favorable, and the highest error is 

1.98%. Conversely, as the variation coefficient is higher than 

0.2, the error escalates swiftly with the rise of the variation 

coefficient. Specifically, when the variable anomaly is 0.3, the 

error approaches 8%.

 

Figure 3. Accuracy of the different limits and different coefficients of variation error. 
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Table 4. Adjusting the preciseness of the Kriging response surface method. 

Coefficient of 

variation 

Sample 

number 

Average relative error (%) 

Limit 3.5σ Limit 3.0σ 

0.05 

100 0.93403 x10-3 4.00247 x10-3 

70 1.51496 x10-3 4.21586 x10-3 

50 6.42056 x10-3 1.56311 x10-2 

0.10 

100 1.00977 x10-2 3.46207 x10-2 

70 3.96330 x10-2 5.80372 x10-2 

50 4.41826 x10-2 1.25496 x10-1 

0.15 

100 3.97513 x10-2 1.01858 x10-1 

70 8.97992 x10-2 2.60395 x10-1 

50 1.33621 x10-1 4.61991 x10-1 

0.20 

100 2.83267 x10-1 4.47643 x10-1 

70 5.07296 x10-1 4.92779 x10-1 

50 3.80032 6.96043 

0.25 

100 0.59284 4.04291 

70 1.09856 5.12987 

50 2.93289 7.50032 

0.30 

100 4.79305 2.1938 

70 5.62168 11.201 

50 5. 82904 8.78599 

When calculating the Kriging sampling method, different 

sample numbers are first selected to construct the Kriging 

response surface, and then another 100 groups of samples are 

selected as error test data. The Kriging simulation accuracy 

when the number of samples is 50, 70, and 100 under different 

coefficients of variation is shown in Table 4. It can be seen from 

the average relative error results that when analyzed by the 

Kriging sampling method, the response surface model 

constructed using 50 sample points has achieved good fitting 

accuracy. The results in Tables 2 and 3 and Figures 1 and 2 show 

that compared with the Taylor expansion method, the Kriging 

sampling method has higher calculation accuracy when 

calculating the conditional probability shown in equation (3), 

and under the two limits, when the coefficient of variation 

increases from 0.05 to 0.3, the change in calculation error is not 

obvious. The maximum error within the value of the coefficient 

of variation is within one percent. A comparison of the accuracy 

errors of the two methods at other different limit values and 

different coefficients of variation can be seen in Figure 3. 

4. Conclusion: 

This paper proposes a Taylor expansion method and the Kriging 

model derived from statistical analysis to perform structural 

reliability analysis. The proposed strategy is found to be 

economic in the number of calls to the expensive performance 

function and its results are very accurate for the probability of 

failure. This approach combines the advantages of two methods: 

The Kriging interpolation model and the second-order Taylor 

expansion method. 

• According to the different methods for dealing with 

structural random parameters, two conditional reliability 

methods are introduced in this paper to solve the problem 

of composite random reliability: the second-order Taylor 

expansion method and the numerical sampling method 

based on the Kriging model. The Kriging sampling 

process uses the Kriging interpolation model to fit the 

nonlinear connection among dynamic reliability and 

structural random parameters. It can be easily calculated 

directly utilizing the finite element program, avoiding 

the tedious and arduous theoretical derivation. 

• The results of the calculation example show that the 

Taylor expansion method can determine the statistical 

moments of the response and the corresponding 

reliability with less computational effort, but the 

resulting error has a great relationship with the size of 

the variation coefficient. In general, the accuracy is 

lower when the variation coefficient is less than 0.2 high. 

• In comparison, the Kriging sampling process is 

insensitive to the size of the coefficient of variation, and 

its computational accuracy and efficiency are relatively 

high. In addition, since the Taylor expansion method 

requires the creation of specific analysis programs based 
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on the mean and coefficient of variation of random 

variables, it is usually impossible to use commercial 

software directly for reliability analysis. Therefore, the 

Kriging sampling method is more suitable for dynamic 

reliability analysis of complex structures.
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