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Highlights  Abstract  

▪ Constructed local and global median feature 

line plots that mined global information. 

▪ Constructing hypergraphs to carve out spatially 

diverse relationships of features. 

▪ Construction, and joint embedding of multi-

class graphs to mine sensitive features. 

▪ Verified the generalization and robustness 

using KNN, BP and SVM as classifiers. 

 Traditional dimensionality reduction techniques usually rely on a single 

or a limited number of similar graphs for graph embedding, which limits 

their ability to extract more information about the internal structure of 

the data. To address this problem, this study proposes a rotor fault dataset 

dimensionality reduction algorithm based on multi-class graph joint 

embedding (MCGJE). The algorithm first overcomes the defect that the 

traditional feature space cannot take both local and global information 

into account by constructing local and global median feature line graphs; 

secondly, based on the graph embedding framework, the algorithm also 

constructs a hypergraph structure for inscribing complex multivariate 

relationships between high-dimensional data in the feature space, which 

in turn enables it to contain more fault information. Finally, we 

conducted two different rotor fault simulation experiments. The results 

show that the MCGJE-based algorithm has robust dimensionality 

reduction capability and can significantly improve the accuracy of fault 

identification. 
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1. Introduction 

At present, the condition monitoring data of various machinery 

and equipment is becoming the basis for enterprise production 

to achieve high-quality operation and efficient management, 

and such data is also an important strategic resource 

indispensable for the implementation of intelligent 

manufacturing [25, 12, 21, 17]. Rotating machinery with a rotor 

system as the basic architecture has been widely used in 

aerospace, rail transport, wind power generation, and other 

important fields, and the implementation of intelligent operation 

and maintenance management for them is of great significance. 

In engineering applications, it is usually necessary to install 

multiple sensors at the key cross-section of the system to collect 

multi-channel information and extract statistical features from 

the vibration signals collected from each channel, but the 

increase in the number of features will undoubtedly produce the 

problem of "dimensional catastrophe" [27, 19, 15, 14, 10]. 

Therefore, exploring how to reduce the relevant features in 

high-dimensional fault datasets and solving the problem of 

constructing a good knowledge representation model for the 

representation of equipment operating states are especially 
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crucial for developing machine intelligence fault diagnosis and 

decision-making techniques for industrial big data [23, 2, 20]. 

In practice, the original fault features we have collected have 

many redundant features that greatly increase the difficulty of 

fault identification. Therefore, it is very necessary to carry out 

dimensional reduction of the original fault features. The 

dimensional reduction method can not only eliminate redundant 

features but also greatly improve the accuracy of fault 

identification. In recent years, a variety of dimensionality 

reduction methods are emerging one after another, which are 

mainly divided into traditional feature dimensionality reduction 

methods and data dimensionality reduction methods based on 

deep neural network technology, which greatly promote the 

development of dimensionality reduction methods for datasets. 

However, the latter requires a large amount of sample data when 

training the network, which makes the network training time 

and difficulty increase. Traditional dimensionality reduction 

methods can achieve the same effect as well as reduce the cost 

when the amount of sample data is small in a specific domain. 

Therefore, there is still engineering value in the study of 

traditional dimensionality reduction methods [7, 8, 32, 34]. 

In recent years, many dimensionality reduction methods have 

been successfully applied to the fault diagnosis of mechanical 

equipment, such as the widely used dimensionality reduction 

algorithms with principal component analysis (PCA) [24, 16], 

But the non-linear correlation may be lost after PCA 

dimensionality reduction, so in order to better deal with the 

nonlinear relationship between the flow of learning came into 

being, which is representative of the proposed domain 

Preserving Embedding Neighborhood Preserving Embedding 

(NPE) algorithm [3, 13]; Marginal Fisher Analysis Marginal 

Fisher Analysis (MFA) [33], Orthogonal discriminant 

projection Orthogonal discriminant projection (ODP) [11].  and 

so on. The above algorithms perform dimensionality reduction 

by finding the optimal projection matrix, in which the projection 

matrix of MFA is solved by maximizing the Fisher criterion, and 

ODP is solved by scatter-weighted difference. Algorithms that 

rely on sample point-to-point (P2P) metric learning have 

restricted generalization capabilities and are incapable of 

extracting more discriminative information for subsequent fault 

classification. Hence, nearest feature space embedding (NFSE) 

[6], weighted feature line embedding (WFLE) [1], multiple 

kernel feature line embedding (MKFLE) [4], and others based 

on point-to-space (P2S) metrics have been introduced. These 

algorithms utilize the P2S metric, which not only compresses 

the feature space dimension but also enables the extraction of 

additional information for fault identification. However, there is 

a nearest-neighbor selection error during the computation 

process when employing the P2S metric. To tackle this issue, 

Dong [5] introduced an enhancement to the P2S projection 

metric, replacing it with the median metric. This modification 

aims to minimize the adverse effects of nearest neighbor 

selection errors on the algorithm. In addition, he proposed  

a feature space nearest neighbor selection method using samples 

instead of projected points, which improves the speed of nearest 

neighbor selection. The development of the above feature space 

is that the mining of local information cannot take into account 

global information and is a single point-to-projected point or 

median point relationship, which cannot portray high-

dimensional data in a many-to-many relationship. 

Targeting the characterization of multivariate relationships 

between data, hypergraph structural models for portraying 

multivariate relationships between data are emerging and have 

been fruitful in computer disciplines, not least in applications 

such as image classification and fault diagnosis, so hypergraphs 

have already made a mark in the field of fault recognition. Two 

hypergraph neural network models were proposed for fault 

classification in electromechanical coupled systems. Zhang et 

al. [30] proposed a network based on time translation, which 

achieves accurate classification. Yan et al. [26] proposed a new 

multiresolution hypergraph neural network to address the 

problem of traditional graph neural networks not being able to 

depict complex higher-order relationships in data. Yuan [28] et 

al. proposed a dimensionality approximation algorithm for 

semi-supervised multi-graph joint embedding in response to the 

problem of excessive dimensionality of fault datasets by 

combining graph and hypergraph models. From the above 

development, it can be seen that the hypergraph model has been 

developed rapidly, but the hypergraph, as a model describing 

multivariate relationships, has limited noise resistance and 

generalization ability. Therefore, from the perspective of multi-

class graph, linking the hypergraph structural model with the 

feature space structural model may achieve better 

dimensionality reduction. 
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Dimensionality reduction using feature space can well improve 

the generalization and anti-noise properties of the algorithm. 

However, the median metric of the feature space is  

a single point-to-point pattern, which makes the algorithm itself 

ignores the many-to-many relationship in the high-dimensional 

space, while the hypergraph itself is a common method to use 

the hyperedge to include multiple data samples so as to better 

mine the multivariate fault data information. The combination 

of the two can improve the algorithm's noise immunity and 

generalization, and can also accurately describe the high-

dimensional multivariate fault data information in the feature 

space. So for the above problems of traditional graph 

embedding, this paper proposes to construct local median 

feature line graph, global median feature line graph and 

hypergraph, and use the method of multi-class graph union to 

achieve the purpose of improving the generalization and noise 

resistance of graph structure and also well depicting the many-

to-many relationship of high-dimensional samples of the data, 

and taking into account the local and global information. To this 

end, a new dimensionality reduction algorithm based on the 

joint embedding of multi-class graphs is proposed for rotor fault 

datasets. And it is successfully applied to rotor fault diagnosis. 

The main contributions of this thesis are as follows: 

⚫ The traditional feature space algorithm cannot take into 

account both local and global structure information. This 

paper aims to solve this defect by constructing local 

median eigenline maps and global median eigenline maps 

to achieve the purpose of comprehensively extracting the 

intrinsic structural information of data. 

⚫ In view of the fact that the composition of graph 

embedding algorithms in the traditional feature space is 

still in the form of a single point-to-point construction, 

which is unable to portray the many-to-many relationships 

of high-dimensional data, the hyperedge set, i.e., the 

hypergraph structure, is introduced here, which is able to 

portray the many-to-many relationships of the data very 

well, and makes up for the intrinsic limitations of the 

feature space. 

⚫ For the first time, the algorithm combines local median 

feature line graphs, hypergraphs, and global median 

feature line graphs to jointly extract sensitive features from 

multiple types of graphs, thus greatly reducing the 

difficulty of subsequent fault pattern recognition.  

2. Related work 

2.1. Introduction to feature space algorithms 

The feature space algorithm discovers the most efficient 

projection matrix in feature space by considering three factors, 

namely, category divisibility, neighborhoods structure 

preservation and nearest-neighbor feature space metric, in a 

graph embedding framework. Although the feature space 

algorithm has good neighborhoods structure preservation and 

improves the generalizations performance of the algorithm, the 

feature space projection metric it employs is prone to nearest 

neighbor selection error. 

2.1.1. Median feature line 

To address the shortcomings of the nearest neighbor selection 

error of the feature space algorithm, a graphical representation 

of the error is given in Fig. 1. Observe that the sample point 

𝑋1, 𝑋2  and the point to be measured 𝑥𝑖  are farther away from 

each other compared to the sample point 𝑋3, 𝑋4. However, in the 

case of the projection metric |𝑋𝑖  𝑃12| < |𝑋𝑖  𝑃34| , this error 

results in the scattering matrix not reflecting the local topology 

of the sample in a real and effective way. Therefore, the 

literature [5] proposes to improve the projection metric to the 

median point metric, i.e., take the midpoint of the sample point 

𝑋1, 𝑋2 and the sample point 𝑋3, 𝑋4 as the projection points and 

observe that |𝑋𝑖  𝑃𝑚12| > |𝑋𝑖 𝑃𝑚34| , and therefore this 

approach is more in line with the real data distribution structure, 

Furthermore, it can solve the problem of neighbor selection 

error. 

 

Fig. 1. Improvement of extrapolation error. 

2.1.2. Nearest neighbor feature space selection guided by 

P2S 

Taking the construction of the nearest-neighbor into account, 

let's use two feature line embedding graphs as an example: the 
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conventional feature space nearest-neighbor selection, as 

illustrated in Fig. 2(a). In this scenario, the sample point 𝑥𝑖 

calculates the distance to all six feature lines and then sorts them 

to identify the two nearest feature lines. Therefore, literature [5] 

proposes the nearest neighbor selection in the feature space 

guided by P2S as shown in Fig. 2(b). It determines the nearest 

median by computing only three points in the sample. Therefore, 

all the feature line algorithms proposed later use the P2S nearest 

neighbor selection method.

(a) (b) 

Fig. 2. Selection of nearest neighbor feature space. 

2.2. Hypergraph Structure 

As shown in Fig. 3, graph models are widely used in the field 

of machine learning to describe the relationships that exist 

between things. In fault diagnosis applications, data samples are 

represented by each node of the graph model, and similar 

relationships between the samples are represented by 

connecting lines between the nodes. The main difference 

between a hypergraph model and a graph model is that it has 

more hyperedge vertices. The edges of the graph model merely 

signify the connection between two points, while the edges of 

the hypergraph model incorporate multiple vertices. Moreover, 

hyperedges linked by multiple points share more vertices and 

thereby contain more data. 

 

  

(a) (b) (c) 

Fig. 3. Graph Structure Model: (a) simple graph. (b) hypergraph. (c) incidence matrix Q. 

Although the feature space median metric, i.e., it solves the 

problem of nearest-neighbor selection error and improves the 

efficiency of nearest-neighbor selection, this algorithm and the 

related improved algorithms only obtain the local information 

of the samples, and cannot consider the global information. On 

the other hand, the algorithm is a single point-to-point metric, 

which can not portray the complex multivariate structure among 

high-dimensional data, and it can not mine more data 

information; and the algorithm is a single graph embedding, 

which can not synergise with the multi-class graph structure, 

and the effect of dimension reduction is limited. Therefore, how 

to deal with the complex structure among high-dimensional data 

more comprehensively and more realistically becomes the focus 

of this study. 

3. Proposed MCGJE algorithm 

In the process of data dimensionality reduction, an accurate and 
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comprehensive representation of the structure of fault data helps 

to extract valuable feature information for classification. 

However, high-dimensional fault datasets usually have complex 

internal structures, and a single structure alone cannot fully 

describe such complex internal relationships. Therefore, in this 

paper, we construct a data dimensionality reduction algorithm 

for collaborative discrimination of multi-structured graphs 

(MCGJE), which combines local median feature graphs, global 

median feature graphs and hypergraphs. The basic principle is 

as follows: The original faulty high-Witte set is 𝑋 =

[𝑥1, 𝑥2, ⋯ 𝑥𝑛] ∈ 𝑅𝐷×𝑛, and the downgraded faulty low-witte set 

is 𝑌 = [𝑦1 , 𝑦2, ⋯ 𝑦𝑛] ∈ 𝑅𝑑×𝑛 ; after the transformation of the 

projection matrix 𝐴 of the MCGJE algorithm, 𝑌 = 𝐴𝑇𝑋 realizes 

the sample features downgraded, where (𝑑 ≤ 𝐷). The specific 

steps are as follows: 

First, we capture local information by constructing local intra- 

and inter-class median eigenline maps, while enhancing the 

generalizations and noise immunity of the projection matrix. 

Next, we design intra- and inter-class hypergraphs to capture 

higher-order relationships between data samples. Subsequently, 

we build intra- and inter-class global median eigenline maps to 

reflect the global information in the set of high-dimensional 

fault features. Finally, in the low-dimensional embedding space, 

we reinforce intra-class structural relationships and suppress 

inter-class structural relationships. This approach can extract 

sensitive features and achieve dimensionality reduction of fault 

data.

Fig. 4. 

Schematic diagram of the MCGJE algorithm. 

3.1. Constructed local median feature line graph 

According to the schematic diagram of the MCGJE algorithm 

shown in Fig. 4, the inner class local median feature line graph 

and the inner inter-local median local median feature line graph 

are constructed to achieve the purpose of mining the local 

information and to improve the generalization and noise 

immunity of the reduced projection matrix. 

Determine the Euclidean distance between the sample point and 

the median projection point. 

‖𝑥𝑖 − 𝑓(𝑚𝑝)(𝑥𝑖)‖
2
 (1) 

The median projection points of sample point 𝑥𝑖  in feature 

space 𝑓(𝑚𝑝) , denoted as 𝑓(𝑚𝑝)(𝑥𝑖) , is determined using 

calculation 𝑓(𝑚𝑝)(𝑥𝑖) =
1

𝑃
∑ 𝑥𝑗

𝑝𝑃
𝑗=1  . Additionally, 𝑥𝑗

𝑝
  represents 

the initial 𝑗  constituent sample points. To enhance 

computational simplicity, this study adopts a constant value of 

𝑃 = 2. 

As shown in Fig. 4, the median feature line  intraclass graph 

𝐺𝑛𝑤
(𝑚𝑝)

= {𝑋𝑛𝑤 , 𝑊𝑛𝑤
(𝑚𝑝)

} is constructed using intraclass nearest-

neighbor median projection points, where 𝑋𝑛𝑤 is the intraclass 

nearest-neighbor sample point and 𝑊𝑛𝑤
(𝑚𝑝)

  is the intraclass 
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weight matrix of the local median feature line graph. 

𝑤𝑛𝑤
(𝑚𝑝)

(𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑓𝑛𝑤

(𝑚𝑝)
(𝑥𝑖)‖

2

2(𝑡𝑖
𝑤)2

) (2) 

where 𝑡𝑖
𝑤 =

1

𝑁
∑ ‖𝑥𝑖 − 𝑓𝑛𝑤

𝑚𝑝
(𝑥𝑖)‖𝑁

𝑖=1   , 𝑓𝑛𝑤
𝑚𝑝

(𝑥𝑖)  is the 𝑘1 nearest 

neighbor median projection points within the class of 𝑥𝑖. 

As shown in Fig. 4, the median feature line interclass graph 

𝐺𝑛𝑏
(𝑚𝑝)

= {𝑋𝑛𝑏 , 𝑊𝑛𝑏
(𝑚𝑝)

}  is constructed using the interclass 

nearest-neighbor median projection points, where 𝑋𝑛𝑏  is the 

interclass nearest-neighbor sample point and 𝑊𝑛𝑏
(𝑚𝑝)

  is the 

interclass weight matrix of the local median feature line graph. 

𝑤𝑛𝑏
(𝑚𝑝)

(𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑓𝑛𝑏

(𝑚𝑝)
(𝑥𝑖)‖

2

2(𝑡𝑖
𝑏)2

) (3) 

where 𝑡𝑖
𝑏 =

1

𝑁
∑ ‖𝑥𝑖 − 𝑓𝑛𝑏

𝑚𝑝
(𝑥𝑖)‖𝑁

𝑖=1  , 𝑓𝑛𝑏
𝑚𝑝

(𝑥𝑖)  is the 𝑘2  nearest 

neighbor median projection points between classes of 𝑥𝑖. 

Find the objective function. The intraclass spatial scatter matrix 

is computed using local median feature line graphing 𝑆𝑛𝑤
𝑚𝑝

 , the 

inter-class spatial scatter matrix is computed using local median 

feature line graphing 𝑆𝑛𝑏
𝑚𝑝

. The expressions are respectively. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T
mp mp mp mp

nw nw i i nw i i nw i

T
mp mp mp mp

nb nb i i nb i i nb i

S w x x f x x f x

S w x x f x x f x

 = − − −

 = − − −





 (4) 

Therefore, further simplifying the above equation, the objective 

function of the local Median feature line graph is defined as: 

{
𝑚𝑖𝑛

𝐴
𝑡𝑟(𝐴𝑇𝑋𝐿𝑛𝑤𝑋𝑇𝐴)

𝑚𝑎𝑥
𝐴

𝑡𝑟(𝐴𝑇𝑋𝐿𝑛𝑏𝑋𝑇𝐴)
 (5) 

where the Laplace matrix of the local Median feature line graph 

within and between classes can be expressed as 𝐿𝑛𝑤 = 𝐷𝑛𝑤 −

𝑊𝑛𝑤 , 𝐿𝑛𝑏 = 𝐷𝑛𝑏 − 𝑊𝑛𝑏  , 𝐷𝑛𝑤 , 𝐷𝑛𝑏   as the diagonal matrices 

𝐷𝑖𝑗
𝑛𝑤 = ∑ 𝑤𝑛𝑤

(𝑚𝑝)
(𝑥𝑖)𝑗=1 , 𝐷𝑖𝑗

𝑛𝑏 = ∑ 𝑤𝑛𝑏
(𝑚𝑝)

(𝑥𝑖)𝑗=1  . 

3.2. Constructed global median feature line graph 

The method includes constructing a global intra-class median 

feature line graph using intra-class distances between distant 

neighbor points, which contains global information in each class 

of data. In addition, a global interclass median eigenline graph 

is constructed using interclass distances between distant 

neighbor points, thereby considering global information in each 

class of data, as shown in the following process. 

As shown in Fig. 4, the global median feature line intraclass 

graph 𝐺𝑑𝑤
(𝑚𝑝)

= {𝑋𝑑𝑤 , 𝑊𝑑𝑤
(𝑚𝑝)

} is constructed using the intraclass 

median far-neighbor projection points, where 𝑋𝑑𝑤  is the 

intraclass far-neighbor sample point and 𝑊𝑑𝑤
(𝑚𝑝)

 is the intraclass 

weight matrix of the global median feature line graph. 

𝑤𝑑𝑤
(𝑚𝑝)

(𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑓𝑑𝑤

(𝑚𝑝)
(𝑥𝑖)‖

2

2(𝑡𝑖
𝑤)2

) (6) 

where 𝑡𝑖
𝑤 =

1

𝑁
∑ ‖𝑥𝑖 − 𝑓𝑑𝑤

𝑚𝑝
(𝑥𝑖)‖𝑁

𝑖=1   , 𝑓𝑑𝑤
𝑚𝑝

(𝑥𝑖)  is the 𝑘1  distant 

neighborhood median projection point within the class of 𝑥𝑖. 

As shown in Fig. 4, the global median feature line interclass 

graph 𝐺𝑑𝑏
(𝑚𝑝)

= {𝑋𝑑𝑏 , 𝑊𝑑𝑏
(𝑚𝑝)

} is constructed using the interclass 

median far-neighbor projection points, where 𝑋𝑑𝑏  is the 

interclass far-neighbor sample points and 𝑊𝑑𝑏
(𝑚𝑝)

  is the 

interclass weight matrix of the global median feature line graph. 

𝑤𝑑𝑏
(𝑚𝑝)

(𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑓𝑑𝑏

(𝑚𝑝)
(𝑥𝑖)‖

2

2(𝑡𝑖
𝑏)2

) (7) 

where 𝑡𝑖
𝑏 =

1

𝑁
∑ ‖𝑥𝑖 − 𝑓𝑑𝑏

𝑚𝑝
(𝑥𝑖)‖𝑁

𝑖=1  , 𝑓𝑑𝑏
𝑚𝑝

(𝑥𝑖)  is the 𝑘2  distant 

neighborhood median projection point between classes of 𝑥𝑖. 

Therefore, the intraclass spatial scatter matrix is computed using 

global median feature line graphing 𝑆𝑑𝑤
𝑚𝑝

 , the inter-class spatial 

scatter matrix is computed using global median feature line 

graphing 𝑆𝑑𝑏
𝑚𝑝

. The expressions are respectively. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T
mp mp mp mp

dw dw i i dw i i dw i

T
mp mp mp mp

db db i i db i i db i

S w x x f x x f x

S w x x f x x f x

 = − − −

 = − − −





 (8) 

Therefore, further simplifying the above equation, the objective 

function of the global Median feature line graph is defined as: 

{
𝑚𝑖𝑛

𝐴
𝑡𝑟(𝐴𝑇𝑋𝐿𝑑𝑤𝑋𝑇𝐴)

𝑚𝑎𝑥
𝐴

𝑡𝑟(𝐴𝑇𝑋𝐿𝑑𝑏𝑋𝑇𝐴)
 (9) 

where the Laplace matrix of the global Median feature line 

graphs within and between classes can be expressed as 𝐿𝑑𝑤 =

𝐷𝑑𝑤 − 𝑊𝑑𝑤  , 𝐿𝑑𝑏 = 𝐷𝑑𝑏 − 𝑊𝑑𝑏  , 𝐷𝑖𝑗
𝑑𝑤 = ∑ 𝑤𝑑𝑤

(𝑚𝑝)
(𝑥𝑖)𝑗=1 ,    

𝐷𝑖𝑗
𝑑𝑏 = ∑ 𝑤𝑑𝑏

(𝑚𝑝)
(𝑥𝑖)𝑗=1  . 

The constructed local median eigenline maps and global median 

eigenline maps not only take into account the category 

separability through intra-class and inter-intra-class, but also 

take into account the local and global information through the 

near-neighborhoods median eigenspace metric and far-

neighborhoods median eigenspace metric factors, and well 

maintain the generalizations performance and noise resistance 

of the projection matrix. However, the projection matrix is 

ultimately only a single point-to-point similarity relation of the 
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data samples and cannot contain multiple high-dimensional 

information. To solve these problems, we introduce the concept 

of hypergraph structure. 

3.3. Hypergraph structure of constructions 

The median projection point is the midpoint of any two data 

samples, and when there are only two sample points, the 

hypergraph constructed using these two sample points must 

contain the midpoint of the Euclidean distance between these 

two sample points. Similarly, when extended to multiple sample 

points, the hypergraph constructed using those sample points 

must also contain the midpoint of the Euclidean distance 

between all those sample points. Therefore, the data sample 

points are used to guide the construction of the hyperedge of the 

hypergraph model so that it contains more sample points and 

projection points, and thus more information, for the purpose of 

portraying higher-order relationships between data samples. 

Construct intraclass hypergraph 𝐺𝑄
𝑤 = {𝑋𝑄

𝑤 , 𝐸𝑄
𝑤 , 𝑊𝑄

𝑤}  and 

interclass hypergraph 𝐺𝑄
𝑏 = {𝑋𝑄

𝑏 , 𝐸𝑄
𝑏 , 𝑊𝑄

𝑏}  to accurately 

describe the multi-class corresponding to multi-sample 

relationship between fault data. Here, 𝑋𝑄
𝑤  and 𝑋𝑄

𝑏  represent 

intra-class and inter-class hypergraph sample sets, while 𝐸𝑄
𝑤 

and 𝐸𝑄
𝑏 denote intra-class and inter-class hypergraph hyperedge 

sets, and the corresponding weight matrices are 𝑊𝑄
𝑤 and 𝑊𝑄

𝑏. 

In the intraclass hypergraph 𝐺𝑄
𝑤 , the hyperedge weights are 

defined as: 

𝑤𝑖
𝑤 = 𝑤(𝑒𝑖

𝑤) = ∑ 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑥𝑗‖

2(𝑡𝑖)
2

)

𝑥𝑗∈𝑒𝑖
𝑤

 (10) 

where 𝑡𝑖 =
1

𝑘1
∑ ‖𝑥𝑖 − 𝑥𝑗‖𝑥𝑗∈𝑒𝑖

𝑤  , 𝑥𝑗  are the 𝑘1  nearest neighbor 

points within the class of 𝑥𝑖. 

The association matrix 𝑄𝑤 is defined as follows: 

𝑄𝑖𝑗
𝑤 = 𝑞(𝑥𝑖 , 𝑒𝑗

𝑤) = {
1,      if  𝑥𝑖 ∈ 𝑒𝑗

𝑤

0,      otherwise
 (11) 

Based on the hyperedge weights 𝑊𝑤 and the correlation matrix 

𝑄𝑤, we derive the intraclass sample point degrees 𝑥𝑖 ∈ 𝑋𝑤 and 

the intraclass hyperedge degrees 𝑒𝑗
𝑤 ∈ 𝐸𝑤: 

𝑢(𝑥𝑖 , 𝑒𝑗
𝑤) = ∑ 𝑤(𝑒𝑗

𝑤) = ∑ 𝑤(𝑒𝑗
𝑤)𝑞(𝑥𝑖 , 𝑒𝑗

𝑤

𝑁

𝑗=1𝑒𝑗∈𝐸𝑤

) = ∑ 𝑤𝑗
𝑤𝑄𝑖𝑗

𝑤

𝑁

𝑗=1

 (12) 

𝑢𝑗
𝑤 = 𝑢(𝑒𝑗

𝑤) = ∑ 𝑞(𝑥𝑖

𝑥𝑖∈𝑋𝑤

, 𝑒𝑗
𝑤) = ∑ 𝑄𝑖𝑗

𝑤

𝑀

𝑖=1

 (13) 

Similarly, the hyperedge weights of the standard hypergraph 𝐺𝑄
𝑏  

between classes are defined as follows: 

𝑤𝑖
𝑏 = 𝑤(𝑒𝑖

𝑏) = ∑ 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑥𝑗‖

2(𝑡𝑖)
2

)

𝑥𝑗∈𝑒𝑖
𝑏

 (14) 

where 𝑡𝑖 =
1

𝑘2
∑ ‖𝑥𝑖 − 𝑥𝑗‖𝑣𝑗∈𝑒𝑖

𝑏  , 𝑥𝑗  are the 𝑘2  nearest neighbor 

points between classes of 𝑥𝑖. 

The corresponding association matrix 𝑄𝑏  is denoted as: 

𝑄𝑖𝑗
𝑏 = 𝑞(𝑥𝑖 , 𝑒𝑗

𝑏) = {
1         if  𝑥𝑖 ∈ 𝑒𝑗

𝑏

0       otherwise
 (15) 

The degree of the interclass sample point 𝑥𝑖 ∈ 𝑋𝑏  and the 

degree of the interclass hyperedge 𝑒𝑗
𝑏 ∈ 𝐸𝑏 are defined as: 

𝑢(𝑥𝑖 , 𝑒𝑗
𝑏) = ∑ 𝑤(𝑒𝑗

𝑏

𝑒𝑗∈𝐸𝑏

) = ∑ 𝑤(𝑒𝑗
𝑏

𝑁

𝑗

)ℎ(𝑥𝑖 , 𝑒𝑗
𝑏) = ∑ 𝑤𝑗

𝑏

𝑁

𝑗

𝑄𝑖𝑗
𝑏  (16) 

𝑢𝑗
𝑏 = 𝑢(𝑒𝑗

𝑏) = ∑ 𝑞(𝑥𝑖

𝑥𝑖∈𝑋𝑏

, 𝑒𝑗
𝑏) = ∑ 𝑄𝑖𝑗

𝑏

𝑀

𝑖=1

 (17) 

When downscaling high-dimensional data, it is necessary to 

make the intra-class information more compact and the inter-

class information more distant in order to extract sensitive 

features. Therefore, the final objective function can be 

expressed as follows: 

2
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 (18) 

 

Equation (18) can be used to derive the optimization objective 

function for hypergraphs: 

{
𝑚𝑖𝑛

𝐴
𝑡𝑟(𝐴𝑇𝑋𝐿𝑄

𝑤𝑋𝑇𝐴)

𝑚𝑎𝑥
𝐴

𝑡𝑟(𝐴𝑇𝑋𝐿𝑄
𝑏 𝑋𝑇𝐴)

 (19) 

3.4. Designed MCGJE objective function 

In order to cluster a subset of intra-class samples during low-

dimensional embedding and as far away from inter-class 

samples as possible, MCGJE needs to maximize the inter-class 

scatter matrix while minimizing the intra-class scatter matrix. 

Therefore, the objective function of the MCGJE algorithm is: 

𝑎𝑟𝑔𝑚𝑎𝑥
𝐴

𝑡𝑟{𝛼[(𝐴𝑇𝑋𝐿𝑛𝑏𝑋𝑇𝐴) + (𝐴𝑇𝑋𝐿𝑑𝑏𝑋𝑇𝐴)] + (1 − 𝛼)(𝐴𝑇𝑋𝐿𝑄
𝑏 𝑋𝑇𝐴)

𝑡𝑟{𝛽[(𝐴𝑇𝑋𝐿𝑛𝑤𝑋𝑇𝐴) + (𝐴𝑇𝑋𝐿𝑑𝑤𝑋𝑇𝐴)] + (1 − 𝛽)(𝐴𝑇𝑋𝐿𝑄
𝑤𝑋𝑇𝐴)

 

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝐴

𝑡𝑟{𝐴𝑇[𝛼(𝑋𝐿𝑛𝑏𝑋𝑇 + 𝑋𝐿𝑑𝑏𝑋𝑇) + (1 − 𝛼)𝑋𝐿𝑄
𝑏 𝑋𝑇]𝐴}

𝑡𝑟{𝐴𝑇[𝛽(𝑋𝐿𝑛𝑤𝑋𝑇 + 𝑋𝐿𝑑𝑤𝑋𝑇) + (1 − 𝛽)𝑋𝐿𝑄
𝑤𝑋𝑇]𝐴}

 
(20) 

where the parameter 𝛼, 𝛽 ∈ [0,1] , is used to regulate the 

contribution of different scatter matrices to the feature 

extraction. 

Due to the small sample issue, Fisher's criterion uses results in 
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matrix singularity, which lowers the algorithm's discrimination 

performance. The scatter-weighted difference is therefore 

maximized as the objective function. Finally, the objective 

function is built as shown in equation (21) to improve the 

algorithm's suitability for fault classification. 

{
𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐴𝑇 [(𝛼𝑁𝑚𝑏 + (1 − 𝛼)𝑁𝑏)] − [(𝛽𝑁𝑚𝑤 + (1 − 𝛽)𝑁𝑤)]𝐴

𝑠𝑡.       𝐴𝑇𝐴 = 𝐼
 (21) 

where𝑁𝑚𝑤 = 𝑋𝐿𝑑𝑤𝑋𝑇 + 𝑋𝐿𝑛𝑤𝑋𝑇 ,𝑁𝑚𝑏 = 𝑋𝐿𝑑𝑏𝑋𝑇 + 𝑋𝐿𝑛𝑏𝑋𝑇 , 

𝑁𝑏 = 𝑋𝐿𝑄
𝑏 𝑋𝑇,𝑁𝑤 = 𝑋𝐿𝑄

𝑤𝑋𝑇. 

Equation (21) corresponds to the generalized eigenvalue 

problem in the Lagrange multiplier approach. 

[(𝛼𝑁𝑚𝑏 + (1 − 𝛼)𝑁𝑏)] = 𝜆[(𝛽𝑁𝑚𝑤 + (1 − 𝛽)𝑁𝑤)] (22) 

Solve eq. (22) for eigenvalues and eigenvectors. Thus, the steps 

of the proposed MCGJE dimensionality reduction algorithm are 

as follows: 

Input the number of nearest neighbor points required by 

MCGJE 𝑘1, 𝑘2, the high dimensional dataset 𝑋 = {𝑥𝑖|𝑖 = 1,2，

⋅⋅⋅ 𝑛} ∈ 𝑅𝑑×𝑛 and the balance parameter 𝛼, 𝛽. Then output the 

low dimensional dataset 𝑌 = {𝑦𝑖|𝑖 = 1,2， ⋅⋅⋅ 𝑛} ∈ 𝑅𝑑×𝑛  and 

the projection matrix 𝐴 = [𝑎1, 𝑎2,⋅⋅⋅ 𝑎𝑟] ∈ 𝑅𝑑×𝑟. The steps are 

as follows. 

1. Create a local intraclass median feature line graph 

𝐺𝑛𝑤
(𝑚𝑝)

. Compute the Laplace matrix 𝐿𝑛𝑤of 𝐺𝑛𝑤
(𝑚𝑝)

; 

2. Create a local interclass median feature line graph 

𝐺𝑛𝑏
(𝑚𝑝)

 . Compute the Laplace matrix 𝐿𝑛𝑏 of 𝐺𝑛𝑏
(𝑚𝑝)

; 

3. Construct the global intraclass median feature line 

graph 𝐺𝑑𝑤
(𝑚𝑝)

 . Compute the Laplace matrix 𝐿𝑑𝑤 of 𝐺𝑑𝑤
(𝑚𝑝)

; 

4. Construct the global interclass median feature line 

graph 𝐺𝑑𝑏
(𝑚𝑝)

. Compute the Laplace matrix 𝐿𝑑𝑏of 𝐺𝑑𝑏
(𝑚𝑝)

 ; 

5. Construct the intraclass hypergraph structure 𝐺𝑄
𝑤 . 

Compute the hyper-Laplacian matrix 𝐿𝑄
𝑤 of 𝐺𝑄

𝑤; 

6. Construct the interclass hypergraph structure 𝐺𝑄
𝑏  . 

Compute the hyper-Laplacian matrix 𝐿𝑄
𝑏  of 𝐺𝑄

𝑏  ; 

7. The eigenvalues in equation (22) are sorted in 

descending order. The eigenvectors associated with the first 𝑑 

eigenvalues are selected to construct the projection matrix 𝐴 =

[𝜆1, 𝜆2,⋅⋅⋅ 𝜆𝑑] ∈ 𝑅𝐷×𝑑 ,This matrix is then processed through 

𝑌 = 𝐴𝑇𝑋  to obtain a subset of low-dimensional embedded 

features.  

4. Rotor fault diagnosis process for the developed MCGJE 

algorithm 

The rotor fault diagnosis process is illustrated in Fig. 5 using the 

MCGJE algorithm that was proposed in this study.

 

Fig. 5. Procedure of fault diagnosis.

The specific troubleshooting steps are as follows： 

1. Firstly, wavelet noise was removed from the original 

vibration signal. Then, the time domain, frequency domain and 

time-frequency domain feature parameters are collected. Then, 
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the high-voltage feature 𝑋 is created, and then 𝑋 is normalized. 

Finally, the training set and test set are divided into 𝑡𝑟𝑎𝑖𝑛𝑋and 

𝑡𝑒𝑠𝑡𝑋. 

2. The low-dimensional fault feature set 𝑡𝑟𝑎𝑖𝑛𝑌  and the 

projection matrix 𝐴 are obtained by dimensional simplification 

of 𝑡𝑟𝑎𝑖𝑛𝑋 by MCGJE, and the low-dimensional fault feature set 

𝑡𝑒𝑠𝑡𝑌  is obtained by dimensional reduction of 𝑡𝑒𝑠𝑡𝑋  by the 

projection matrix 𝐴 as well. 

3. Input 𝑡𝑟𝑎𝑖𝑛𝑌 and 𝑡𝑒𝑠𝑡𝑌 into k-nearest neighbor (KNN) 

[29], back propagation (BP) [22], support vector machine (SVM) 

[9] for fault pattern recognition to get fault diagnosis results. 

5. Experimental analysis 

This study used two different types of experimental platforms, 

Experiment 1 and Experiment 2, to evaluate the performance of 

the MCGJE algorithm in various aspects. 

5.1. Experiment 1 

Unbalance failure is a common type of failure in rotor systems. 

In order to study the dynamic change of the state of this fault, 

the HZXT-DS-001 type experimental bench of Wuxi Houde 

Automation Instrumentation Co. Ltd. shown in Fig. 6, is 

selected to carry out the rotor unbalance fault simulation 

experiment. Four accelerometers were positioned on the test 

bench to capture two radial (X, Y) and one axial (Z) vibration 

signals from each bearing housing. Fig. 6(a) is a physical 

drawing of the rotor test bench, and Fig. 6(b) shows the exact 

location of the bearing housing and the mounted sensors. 

Among them, I~IV are the four bearing seats, and ch1~12 are 

the signal acquisition channels of the four acceleration sensors, 

respectively.

(a) HZXT-DS-001 Double-span rotor test bench 

(b) Sketch of lab bench 

Fig. 6. Model HZXT-DS-001 double span rotor test bench and its sketch. 

The configurations of mass disks with unbalanced faults in one 

of the experiments are shown in the following table. For ease of 

description, the six faults are labeled RF 1, RF 2, RF 3, RF 4, 

RF 5, and RF 6.

Table 1. Configuration of the mass disk. 

Fault type 
Number of unbalanced mass blocks 

Mass disk 1 Mass disk 2 

RF 1 2 0 

RF 2 2 3 

RF 3 3 0 

RF 4 3 3 

RF 5 0 2 

RF 6 0 3 
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Each mass imbalance state is simulated by allocating different 

numbers of mass blocks on the mass disc 1 and disc 2, and the 

number of mass blocks on each mass disc has three groups of 0, 

2, and 3, which ensures that six mass imbalance states can be 

simulated by adding a different number of mass blocks on the 

two mass discs. At a sampling frequency of 20 KHz and a 

rotational speed of 3400 r/min, 100 sets were collected for each 

fault condition. Among them, 50 groups are used for training 

and 50 groups are used for testing. According to Table 2, a total 

of 38 statistical feature parameters in time domain, frequency 

domain and time-frequency domain are extracted, thus forming 

a high-dimensional set, in which 12 38 = 456.

Table 2. Characteristic parameters. 

Serial 

number 
Features 

Serial 

number 
Features 

Serial 

number 
Features 

1 Maximum 9 
Root-mean-square 

amplitude 
17 Average frequency 

2 Minimum 10 Root mean square 18 Spectral second-order moments 

3 Peak-to-peak ratio 11 Absolute average 19 Standard deviation rate 

4 variance 12 Shape factor 20 Kurtosis frequency 

5 Averages 13 Crest factor 21 Root-mean-square frequency 

6 Skewness 14 Impulse factor 22 center frequency 

7 Kurtosis 15 Clearance factor 
23~38 

Four-layer wavelet packet 

decomposition of band energy 

features 8 Mean square 16 Kurtosis value 

Note: 1~16 are time-domain features, 17~22 are frequency-domain features, 23~38 are time-frequency-domain features

5.1.1. Parameter settings 

In this study, the parameters to be configured for the MCGJE 

algorithm are the target dimension 𝑑 , the nearest neighbor 

counts 𝑘1 and 𝑘2, and the special equilibrium coefficients 𝛼 and 

𝛽. According to the literature [18], it is usually chosen as the 

number of categories minus 1, i.e., 𝑑 = 5.  

 

Fig. 7. Selection of parameters k1, k2. 

 

Fig. 8. Selection of parameter 𝛼, 𝛽. 

The nearest neighbor points usually need to be larger than the 

embedding dimension and smaller than the number of samples. 

Furthermore, as elucidated in the scholarly works by authors 

[31] , it has been observed that when the value of the number of 

nearest neighbor points is too small, the graph structure of 

MCGJE may not adequately reflect the inherent data 

information. On the contrary, when the value of the number of 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

nearest neighbor points is too large, it not only increases the 

computational cost significantly, but also ignores the local 

information of multi-class graphs. To solve the above problem, 

the number of nearest neighbor points is determined using the 

grid search method. Grid search is a model hyperparameter 

optimization technique commonly used to optimize three or 

fewer numbers of hyperparameters, and is essentially an 

exhaustive method. For each hyperparameter, the user chooses 

a smaller finite set to explore, and then the Cartesian product of 

these hyperparameters yields several sets of hyperparameters. 

Grid search uses each set of hyperparameters to train the model, 

picking the hyperparameter with the smallest validation set 

error as the best hyperparameter. Therefore, in this study, the 

range of values of 𝑘1  and 𝑘2  is set to 5 < 𝑘1 < 20 , 5 < 𝑘2 <

20; the intervals of 𝛼, 𝛽 are both set to {0， 0.1， ⋅⋅⋅ 1}. The 

grid search method is employed to identify their optimal values, 

𝑘1 = 13, 𝑘2 = 11  and 𝛼 = 0.6, 𝛽 = 0.6  can be deduced from 

Fig. 7 and Fig. 8, guided by the principles of nearest neighbor 

point selection. 

5.1.2. Visualization of the outcomes of dimensionality 

reduction 

An attempt has been made to conduct a comparative analysis 

between the MCGJE algorithm and various existing methods in 

the field of dimensionality reduction, including the traditional 

PCA method, graph-based traffic learning algorithms such as 

NPE, MFA, and ODP, as well as the recently introduced feature 

space algorithms exemplified by MFSCDP [5]. Additionally, 

two variations of the MCGJE algorithm were also included in 

the comparison. The two variants of MCGJE take the form of 

variant I: local feature line graph and global feature line graph, 

and variant II: hypermap. For the other five algorithms, a cross-

validation method was used to obtain the optimal state 

parameter values. Where NPE corresponds to the nearest 

neighbor value of 𝑘 = 7 , ODP corresponds to the nearest 

neighbor value of 𝑘 = 9 , MFA corresponds to the eigenmap 

nearest neighbor value of 𝑘 = 8, and the penalty map nearest 

neighbor value of 𝑘 = 10,  the corresponding parameter values 

of variants I and II are the same as those of the MCGJE 

algorithm.

(a) Original data  (b) PCA (c) NPE 

(d) MFA  (e) ODP  (f) Variant I  
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(g) Variant II  (h) MFSCDP  (i) MCGJE  

Fig. 9. Different algorithms for 3D visualization.

The MCGJE algorithm demonstrates a superior low-

dimensional visualization effect compared to the other seven 

algorithms, as depicted in Fig. 9, following the process of 

dimensionality reduction. As can be seen from the figure, 

according to the algorithm proposed in this paper, samples of 

the same kind are more clustered into clusters, and dissimilar 

samples are more far away. Hence, it can be observed that the 

dimensionality reduction capability of MCGJE surpasses that of 

the remaining seven algorithms. 

5.1.3. The assessment criteria for fault classification and 

dimension reduction outcomes 

The 𝛿 =
𝑆𝐵

𝑆𝑊
 [18] evaluation metric is employed to evaluate the 

classification and clustering effectiveness of the test sample set. 

Its purpose is to visualize the distinguishability between fault 

classes within the low-dimensional test set of the MCGJE 

algorithm. The parameters of the metric are outlined as follows. 

𝑍𝐵 =
1

𝑡
∑(𝑠𝑖 − 𝑠)

𝑡

𝑖=1

(𝑠𝑖 − 𝑠)𝑇  (23) 

𝑍𝑊𝑖 =
1

𝑐
∑(𝑦𝑛

(𝑖)
− 𝑠𝑖)

𝑐

𝑖=1

(𝑦𝑛
(𝑖)

− 𝑠𝑖)
𝑇

 (24) 

𝜂 =
𝑍𝐵

∑ 𝑍𝑊𝑖𝑝𝑖
𝑐
𝑖=1

 (25) 

where 𝑡 is the number of fault categories, 𝑠𝑖 is the class 𝑖 mean, 

𝑠  represents the overall mean, 𝑐  is the number of samples in 

each class, 𝑝𝑖  represents the prior probability of class 𝑖 and 𝑝𝑖 =

𝑛𝑖

𝑛
  , 𝑦𝑛

(𝑖)
  represents the samples contained in class 𝑖 , and 𝑆𝑊𝑖  

represents the scatter of class 𝑖 . Larger 𝜂  indicates more 

compact aggregation of similar classes and more dispersal of 

dissimilar classes, indicating better dimensionality reduction of 

the algorithm. 

Calculate the differentiability index for each method of 

dimensionality reduction according to Eq. (25), and the results 

are shown in Fig. 10. From the figure, it is obvious that the 

MCGJE algorithm has the largest divisibility index.

 

Fig. 10. Algorithm separability index.
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In order to better quantify the effect of the established 

dimensionality reduction, this study inputs the low-dimensional 

features obtained from the test samples after dimensionality 

reduction by each algorithm into the KNN for fault 

identification, and the identification results are shown in Table 

3.

Table 3. Recognition rate of different states. 

Dimensionality 

reduction method 

Diagnostic accuracy by status category (%) Average 

recognition 

accuracy (%) RF1 RF2 RF3 RF4 RF5 RF6 

PCA 100.0 86.0 100.0 98.0 90.0 82.0 92.7 

NPE 50.0 0 2.0 46.0 0 0 16.3 

MFA 70.0 0 0 72.0 0 0 23.6 

ODP 64.0 76.0 82.0 98.0 74.0 74.0 78.0 

Variant I 98.0 91.0 93.0 96.0 93.0 91.0 93.6 

Variant II 96.0 92.0 94.0 96.0 96.0 98.0 95.3 

MFSCDP 98.0 84.0 90.0 96.0 96.0 84.0 91.3 

MCGJE 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Through a comparative and analytical examination of Fig. 9 and 

Fig. 10, along with the data presented in Table 3, several 

conclusions can be derived. 

1. Both PCA and NPE methods show low performance in 

terms of 3D visualization and separability indices. This is due 

to the fact that the NPE method only takes into account the 

nonlinear structure of the data but ignores the topological 

structure of the data, while PCA fails to capture the nonlinear 

correlation information during the dimensionality reduction 

process. 

2. In order to better consider the intrinsic structure of the 

data, the stream learning algorithms MFA and ODP are widely 

used, but the dimensionality reduction of the MFA and ODP 

algorithms is not ideal, and the fundamental reason for this is 

that they are all embedded in a single graph structure, which is 

not able to characterize more information about the data. 

3. The recently proposed feature space algorithm 

MFSCDP has improved in terms of separability index and 

discriminative accuracy. However, it ignores the intricate many-

to-many relationships that exist in high-dimensional data and 

the global information contained in the data. 

4. The Variant I algorithm considers local and global 

information in the median eigenspace but does not consider 

multivariate structural relationships in high-dimensional data, 

while the Variant II algorithm only considers multivariate 

structural relationships in high-dimensional data. 

5. Compared with the other seven methods, the MCGJE 

algorithm considers the inherent defects of the other algorithms. 

Firstly, it takes into account the local and global structural 

information of the data by constructing the local median 

eigenline map and the global median eigenline map; secondly, 

it takes into account the feature space multivariate structural 

information by the hypergraph structure on this basis. Therefore, 

the MCGJE algorithm has the highest separability index and the 

highest discriminative accuracy. 

5.1.4. Experiments with different sample proportions 

In order to verify the stability of MCGJE algorithms, the study 

also used different scales to divide the sample sets. Then, the 

low-dimensional test sample set after dimensionality reduction 

of each algorithm was input into the KNN nearest neighbor 

classifier, and the results are shown in Fig. 11. 

Observation shows that the accuracy of NPE and MFA 

algorithms is generally low; ODP, MFSCDP and variant I 

algorithms tend to be smooth; PCA and variant II algorithms 

obviously reach a relatively high recognition accuracy, but not 

100% recognition accuracy. The MCGJE algorithm proposed in 

this paper, on the other hand, has reached 100% recognition 

accuracy at training set 50 and has been maintaining this 

recognition accuracy very smoothly; the main reason for this is 

the use of multi-structural graph co-discrimination. 
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Fig. 11. Experiments with different scales.

5.1.5. Anti-noise experiment 

In the actual production of equipment, environmental noise is 

prevalent, so this subsection is for each algorithm to test its anti-

noise performance. Different noises are used to interfere with 

the vibration signal, and their signal-to-noise ratios are set to -

8dB, -6dB, -4dB, -2dB, 0dB, 2dB, 4dB, 6dB, and 8dB, and then 

the low-dimensional features are inputted into the KNN to 

obtain the fault identification results as shown in Fig. 12.

 

Fig. 12. Anti-noise experiment.

Observation shows that NPE, MFA, and variant II have been at 

a relatively low level; MFSCDP and variant I are at a higher 

position, which is due to the fact that they have adopted a feature 

space structure that enhances the noise immunity of the 

algorithm very well. However, only the MCGJE algorithm 

continues to increase in recognition accuracy at a relatively high 

state as the signal-to-noise ratio increases. This experiment 

shows that the method proposed in this paper is less sensitive 

and more robust to noise. 

5.1.6. Comparative experiments with multiple classifiers 

In order to comprehensively analyze the performance of the 

MCGJE algorithm, the feature sets obtained during the 

dimensionality reduction process of the MCGJE algorithm are 

input into three different classifiers: KNN, SVM and BP, and 

the recognition results of the test samples are visually 

represented by the confusion matrix, as shown in Fig. 13. In 

addition, Table 3 provides the recognition accuracies for each 

classifier.
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Table 4. Recognition accuracy of MCGJE with different classifiers. 

Dimensionality 

reduction method 

Diagnostic accuracy by status category (%) Average 

recognition 

accuracy (%) RF1 RF2 RF3 RF4 RF5 RF6 

KNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

SVM 100.0 100.0 98.00 100.0 100.0 100.0 99.6 

BP 98.0 84.0 90.0 96.0 96.0 84.0 91.3 

 

 

a) KNN 

 

b) SVM 

 

c) BP 

Fig. 13. (a)(b)(c) shows the confusion matrix plot for different 

classifiers. 

Combined with Figure 13 and Table 3, it can be seen that 

MCGJE exhibits strong stability in recognition accuracy in the 

face of different classifiers. 

5.2. Experiment 2 

The double-span rotor experimental setup shown in Fig. 14 was 

used to investigate the generality of the MCGJE algorithm [5]. 

Twelve eddy current sensors were arranged at each of the six 

critical sections of this experimental bench. Simulation 

experiments were carried out on five different states, such as 

normal, loose, unbalance, misalignment, and touch grinding. 

The eddy current sensor model is a JX20XL type sensor with  

a frequency range of 0~10KHz. In the rotational speed 

2800𝑟/𝑚𝑖𝑛 , the sampling frequency is 5000Hz, every 1024 

sampling points as a sample, the sampling time is set to 20.5s, 

100 samples are sampled for each state, according to the 50:50 

construction of the training and testing data set, and then 

according to Table 3 for each channel vibration signal samples 

to extract 38 feature parameters, a total of 38 12 = 456 features.
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(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 14. Double span rotor experimental platform. Where Figure (a) for the normal state, (b) for Bolt looseness, (c) for Mass 

imbalance, (d) for Rubbing, (e) for Rotor misalignment. 

Table 5. Key parameters of the test rig. 

Parameters Value 

Shaft 1 length (mm) 415 

Shaft 2 length (mm) 350 

Diameter of the disc (mm) 120 

Diameter of the shaft 1 and shaft 2 (mm) 15 

Rated power of the motor (kW) 1.1 

Mass of the disc (kg) 2.1 

Maximum allowable torque of the coupling (N·m) 20 

Sensitivity of the eddy current sensor (V/mm) 10 

Speed range of the motor (rpm) 0-12000 

To make the article more concise, the rotor fault types and 

normal states are noted as, Rotor misalignment fault(RMF), 

Mass imbalance fault(MIF), Rubbing fault(RF), Bolt looseness 

fault(BLF), normal state(NS), respectively. 
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5.2.1. Parameter settings 

This experiment employed identical parameters to those utilized 

in experiment 1, thereby ensuring the reliability and uniformity 

of the study. Hence, the parameters of the MCGJE algorithm 

can be defined as follows: 𝑑 = 4  represents the target 

dimension, while 𝑘1 = 13, 𝑘2 = 11  denotes the count of 

nearest neighbor points within and between classes. The 

equilibrium coefficient 𝛼, 𝛽  are set to 𝛼 = 0.6, 𝛽 = 0.6 

respectively 

5.2.2. Visualization of the outcomes of dimensionality 

reduction 

The experimental platform shown in Fig. 14 was used to 

conduct comparative experiments to verify the reliability of the 

algorithms discussed in this thesis.

(a) Original data  (b) PCA (c) NPE 

(d) MFA  (e) ODP  (f) Variant I  

(g) Variant II  (h) MFSCDP  (i) MCGJE  

Fig. 15. Different algorithms for 3D visualization.

Observation of Fig. 15 shows that the CDEMSP algorithm has 

intra-class aggregation and well-defined inter-class intervals, 

while the other seven algorithms have varying degrees of 

confusions. 

5.2.3. The assessment criteria for fault classification and 

dimension reduction outcomes 

The quantification of the downscaling effect of each algorithm 

was performed using Eq. (25) and assessed on the experimental 

rig for the double-span rotor, as depicted in Fig. 14. The 

separability index is depicted in Fig. 16.
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Fig. 16. Algorithm separability index.

To provide a comprehensive description of the algorithm's 

performance, the KNN classifier is utilized for fault pattern 

recognition by inputting low-dimensional samples. The findings 

are presented in Table 6.

Table 6. Recognition rate of different states. 

Dimensionality reduction method 
Diagnostic accuracy by status category (%) 

Average recognition accuracy (%) 
RMF MIF RF BLF NS 

PCA 100.0 96.00 100.0 100.0 100.0 99.2 

NPE 54.0 2.0 4.0 0.0 60.0 24.0 

MFA 2.0 0.0 98.0 0.0 0.0 20.0 

ODP 44.0 74.0 30.0 12.0 98.0 51.6 

Variant I 100.0 98.0 100.0 100.0 96.0 98.8 

Variant II 100.0 88.0 100.0 100.0 94.0 96.4 

MFSCDP 100.0 96.0 100.0 100.0 98.0 98.8 

MCGJE 100.0 100.0 100.0 100.0 100.0 100.0 

6. Conclusion 

In order to solve the problem that traditional graph embedding 

algorithms cannot accurately describe the intrinsic real 

relationship between data, thus reducing the accuracy of fault 

classification. In this thesis, the MCGJE algorithm is proposed 

from the perspective of multi-class graph joint embedding. The 

algorithm not only takes into account the information of local 

and global feature space, but also makes full use of the 

hypergraph structure to portray the multivariate relationships of 

high-dimensional data in feature space, so as to extract more 

sensitive low-dimensional features. In addition, the MCGJE 

algorithm has better generalizations ability and noise resistance, 

which is inseparable from the use of feature space structure. By 

using the rotor fault dataset, we performed experiments on anti-

noise, variable scale, effect of different classifiers, three-

dimensional visualization, and multiple method separability 

metrics. The same experiments were conducted using another 

testbed to validate the implementation and the reliability of the 

proposed algorithms. Based on the results of empirical analyses 

on two rotor test benches, it can be concluded that the algorithm 

significantly improves the accuracy of recognition. This leads 

to more reliable diagnostic results. However, it is worth noting 

that the following aspects of this study deserve further 
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investigation: 

1. Currently, we use feature lines (P = 2) to make 

connections to the hypergraph structure. In subsequent work, 

how to combine eigenfaces and special holes with hypergraph 

structures will be the next focus of attention. 

2. In real engineering environments, where most of the 

data collected is unlabeled, the question of how to use limited 

labelled data to predict unlabeled data is one that should be 

given more consideration. 

3. In addition to the application of the algorithm to rotor 

faults, how to apply it to more areas, such as bearing and 

gearbox faults, has become a key concern.
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