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Highlights  Abstract  

▪ A novel RBSSAE based fault diagnosis 

framework is developed for large-scale system. 

▪ A generalized RB index calculation algorithm 

for deep neural networks is proposed. 

▪ The search procedure of reconstruction 

directions is optimized using the SFFS method. 

▪ The optimal reconstruction magnitudes are 

calculated by Stephenson iterative method. 

▪ The proposed RBSSAE has outstanding 

diagnostic performance and computational 

efficiency. 

 The reconstruction-based (RB) approach can effectively suppress the 

misdiagnosis problem due to the smearing effect in fault isolation. 

However, the current exploration of the RB approach for large-scale 

nonlinear systems is still limited. Therefore, this paper proposes a 

reliable and effective fault diagnosis method based on a reconstruction-

based stacked sparse autoencoder (RBSSAE) for high-dimensional 

industrial systems. In RBSSAE, a reconstruction-based index achieved 

by the Steffensen iterative method is developed to check whether the 

given variable(s) are responsible for the faults efficiently. However, the 

number of possible faulty variable combinations grows exponentially 

with the system dimension or actual abnormal variables, causing an 

unbearable computational burden for variable combination optimization. 

Hence, the proposed RBSSAE utilizes a sequential floating forward 

selection approach to rapidly isolate the most decisive combination of 

fault variables, meeting a requirement of online fault diagnosis. Finally, 

the effectiveness of the RBSSAE is verified on a numerical example and 

a real industrial case. Comparisons with other state-of-the-art methods 

are also presented. 
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1. Introduction 

Early warning and fault isolation through fault detection and 

diagnosis (FDD) technology when faults occur is vital to 

strengthen modern industrial production safety and save 

production costs (1). The existing FDD methods can be mainly 

classified into mechanism-driven and data-driven methods. 

Unlike mechanism-driven methods, data-driven methods can 

obtain correlations between system parameters from historical 

process data without detailed system structural parameters and 

internal principles (2). With the rapid development of industrial 

production process automation and informatization technology, 

data-driven methods have received extensive attention and 

research (3). Multivariate statistical analysis (MSA) method, 

such as principal component analysis (PCA) (4,5) and partial 

least squares (PLS) (6,7), is one of the most typical data-driven 

methods that has been intensively studied and successfully 

applied in the field of FDD. Typically, the MSA methods utilize 
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statistical indexes, such as the squared prediction error (SPE) 

and Hoteling’s T2, to monitor the process operation state. Once 

the process is detected as faulty, the next step is to isolate the 

root sources for further guiding fault analysis. The contribution 

plot (CP) method is the most commonly used fault isolation 

method, which is simple to calculate but prone to the smearing 

effect, resulting in serious misdiagnosis, particularly for 

complex faults in large-scale systems (8). 

The underlying reason for the smearing effect is that the 

abnormal variations inevitably affect the latent variable space 

rather than only existing in the residual space (9). As a result, 

the contribution of non-faulty variables is incorrectly 

exaggerated and exceeds the control threshold, leading to 

erroneous fault isolation results. Fortunately, the reconstruction-

based (RB) approach is recognized as an effective method for 

suppressing the smearing effect in linear and nonlinear systems 

(10,11). This approach minimizes the reconstruction residuals 

by tuning the observed data actively with a given fault direction, 

avoiding the error transfer to latent variable space. When the 

minimized reconstruction residual is below the confidence limit, 

the given fault direction can be one correct path to restore the 

faulty data to normal condition (10). It is worth noting that the 

RB approach applied in PCA has guaranteed the accuracy of 

univariate fault isolation with large fault magnitudes by 

rigorous mathematical proofs (12,13). However, many fault 

directions exist to fulfill this requirement if the number of fault 

variables is not limited (14). To address this issue, the 

researchers usually add an artificial constraint that the variables 

involved in the fault direction are minimal to ensure the 

uniqueness of the isolation results (15). 

Nevertheless, the RB approach has to evaluate all possible 

combinations of variables because the real fault direction is 

unknown, leading to a severe computational burden (16). For 

this problem, researchers have mainly focused on optimizing 

the variable combination search logic to improve computational 

efficiency (14,17–19). Owing to the high complexity of modern 

industry, the process variables are highly nonlinear and highly 

coupled with each other. It is well known that linear MSA 

methods cannot accurately represent highly nonlinear 

relationships in many modern industrial systems (20). Hence, 

many nonlinear MSA methods aided by kernel or neural 

network techniques are proposed to handle nonlinear data 

(21,22). The neural network method, such as auto-encoder (AE) 

and auto-associative neural network (AANN), incorporates 

nonlinear activation layers to compress the observed data to the 

latent variable space and then reconstruct it to the original space 

(23). But inevitably, neural network techniques also suffer from 

the smearing effect (24). 

To solve this problem, researchers have made many attempts 

to improve the performance of neural network methods. Pawlik 

et al. (25) combined the neural network method with a novel 

parameter named relative differences product of network 

statistics (rDPNS) for diagnosing machine misalignment and 

unbalance. Hallgrímsson et al. (15) optimize the AE using 

sparsity constraints to decrease the contribution of process 

variables unrelated to the faulty variables. The RB approach has 

also been applied to the neural network technique to address the 

smearing effect. Ren et al. (11,26) introduced the RB approach 

to AANN and input training neural network (ITNN), and the 

results showed that these improved methods could effectively 

inhibit the influence of the smearing effect. Tang et al. (16) 

extended the application of the RB approach to the variational 

AE model. These methods use the BAB method to optimize the 

search procedure for faulty variables. However, the BAB 

method is still inefficient when facing high-dimensional 

systems. To address this situation, Ren et al. further optimize 

the iterative calculation of reconstruction magnitude and 

reconstruction direction search (27). However, the network 

structure of the above RB approach-assisted neural network 

techniques is fixed five-layer, which are still lacking in feature 

extraction capability for complex variable correlation in the face 

of large-scale data in modern industry. 

Deep learning has been successfully applied in process 

monitoring for large-scale industrial systems in recent years via 

its more complex network structure for extracting deep features 

(28). Li et al. (29) proposed an attention-based highway 

bidirectional long short-term memory (AHBi-LSTM) network 

for fault diagnosis based on the raw vibration signal. Karabacak 

et al. (30) applied the convolutional neural network (CNN) in 

thermal imaging from worm gearboxes; the results show that 

the method performed better than the vibra- and sound-based 

diagnosis methods. Although there has been much work 

applying deep learning to the FDD technology, the 

investigations on a generalized RB-assisted deep neural 
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network framework are still limited for multivariate fault 

isolation. 

Therefore, this work aims to develop a reconstruction-based 

stacked sparse auto-encoder for effective and accurate fault 

diagnosis in high-dimensional nonlinear systems. The main 

contributions of this work can be summarized as follows: (1) the 

proposed RBSSAE extends the application of RB approach to 

deep neural networks, which can efficiently suppress the 

misdiagnosis problem caused by the smearing effect while 

extracting deeper features; (2) introducing the Sequential 

floating forward selection method to search for the most 

decisive combination of faulty variables efficiently; (3) using 

the Steffensen iterative method for approximating the nonlinear 

derivative equations to obtain the corresponding optimal fault 

magnitude, so as to obtain the RB index promptly and precisely 

with small computational effort. These contributions allow the 

RBSSAE to accurately isolate faulty variables within a short 

period after a fault occurs. In the end, a numerical example and 

a real industrial case are demonstrated to test and validate the 

effectiveness of the RBSSAE. 

2. Material and methods 

2.1. The basic stacked sparse auto-encoder, SSAE 

2.1.1. Auto-encoder, AE 

AE is an unsupervised learning neural network with a three-

layer structure, which usually consists of an encoder and a 

decoder, as shown in Fig. 1. Given a data set 𝑿 =

[𝒙(1), 𝒙(2), . . . , 𝒙(𝑁)]  ∈ ℝ𝑛×𝑁  containing 𝑁  samples with 𝑛 

variables, where 𝒙(𝑖) = [𝑥1
(𝑖), 𝑥2

(𝑖), . . . , 𝑥𝑛
(𝑖)]

T
∈ ℝ𝑛, (1 ≤ 𝑖 ≤ 𝑁) 

denotes the 𝑖𝑡ℎ  sample. In AE, the encoder 𝑓𝑒𝑛𝑐  projects the 

input 𝒙(𝑖)  into the 𝑙 -dimensional latent space and obtains the 

latent variables 𝒉(𝑖) ∈ ℝ𝑙×1, which is formulated as: 

𝒉(𝑖) = 𝑓𝑒𝑛𝑐(𝒙(𝑖)) = 𝜎(𝑾𝑒𝑛𝑐𝒙(𝑖) + 𝒃𝑒𝑛𝑐), (1) 

where 𝑾𝑒𝑛𝑐 ∈ ℝ𝑙×𝑛 and 𝒃𝑒𝑛𝑐 ∈ ℝ𝑙×1 are the weight matrix and 

bias vector of the encoder, respectively. The activation function 

of the encoder is set as 𝜎(𝜏) =
1

1+𝑒𝑥𝑝(−𝜏)
. 

Through the decoder 𝑓𝑑𝑒𝑐  , 𝒉(𝑖)  is transformed back to the 

original space and reconstructs the model input 𝒙(𝑖) as: 

𝒙(𝑖) = 𝑓𝑑𝑒𝑐(𝒉(𝑖)) = 𝜎(𝑾𝑑𝑒𝑐𝒉(𝑖) + 𝒃𝑑𝑒𝑐), (2) 

where 𝒙(𝑖) is the model output of the AE, 𝑾𝑑𝑒𝑐 ∈ ℝ𝑛×𝑙 and 

𝒃𝑑𝑒𝑐 ∈ ℝ𝑛×1  are the weight matrix and bias vector of the 

decoder, respectively. The activation function of the decoder is 

the same as that of the encoder. 

The AE network is trained by updating the weight matrix 

and bias vector through error backpropagation to minimize the 

loss function, as shown in Eq. (3). 

𝐿𝐴𝐸 =∑‖𝒙(𝑖) − 𝒙(𝑖)‖
2

𝑁

𝑖=1

+ 𝜆𝑠(‖𝑾
𝑒𝑛𝑐‖2 + ‖𝑾𝑑𝑒𝑐‖2), (3) 

where 𝐿𝐴𝐸  is the loss function of the AE network, ‖⋅‖2 denotes 

L2 norms. The left term is the reconstruction error, while the 

right term is the regularized network structure penalty to prevent 

network overfitting, whose weight is controlled by 𝜆𝑠. 

  

Output

 

Input

Hidder layer

Encoder Decoderenc
f

dec
f  

Fig. 1. Schematic diagram of the AE network. 

2.1.2. Sparse auto-encoder, SAE 

SAE improves the feature extraction efficiency by adding  

a sparsity constraint in the basic AE to control the average 

activation of the hidden layer neurons (31). The average 

activation measure of the hidden layer neuron 𝑗 over the total 

sample set is given by: 

𝜌̂𝑗 =
1

𝑁
∑[𝜎𝑗(𝑾

𝑑𝑒𝑐𝒙(𝑖) + 𝒃𝑒𝑛𝑐)]

𝑁

𝑖=1

, (4) 

where 𝜎𝑗(⋅) denotes the 𝑗th variable of the 𝜎(⋅). 

The relative entropy penalty term is added to the loss 

function to achieve the sparse constraint of the SAE, which is 

calculated as: 
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𝐾𝐿(𝜌 ∥ 𝜌̂𝑗) = log
𝜌

𝜌̂𝑗
+ (1 − 𝜌)log

1 − 𝜌

1 − 𝜌̂𝑗
, (5) 

where 𝐾𝐿(∙) denotes the Kullback-Leibler divergence.  𝜌 is 

a predefined sparse target parameter. 

The loss function of the SAE is given by: 

𝐿𝑆𝐴𝐸 = 𝐿𝐴𝐸 + 𝜆𝑠𝑝𝑎𝑟𝑠𝑒∑𝐾𝐿(𝜌 ∥ 𝜌̂𝑗)

𝑙

𝑗=1

, (6) 

where 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 controls the sparse penalty weight. 

2.1.3. Stacked sparse auto-encoder, SSAE 

SSAE is a deep neural network that arranges the base layers of 

multiple SAEs into a stacked structure through a fully connected 

form to obtain a more powerful nonlinear representation and 

more vital generalization ability. The SSAE stacked by 𝑚 SAEs 

is shown in Fig. 2.

 

 

 

 
Encoder Network

  

 

  

 

Decoder Network

Latent Variable
 

 

X̂X

enc

1
f

enc

2
f

enc
f
m

dec
f
m

dec

2f
dec

1
f

enc

3
f

−

enc

1
f
m −

dec

1
f
m dec

3
f

 

 

Fig. 2. Structure of the SSAE. 

A layer-by-layer greedy unsupervised learning approach is 

used to optimize the inner parameter of SSAE. After training the 

outer SAE, their hidden layer is used as input to train the inner 

SAE, and finally, all the trained SAEs are cascaded to obtain the 

SSAE that has been parameter initialized. After performing pre-

training, the parameters of each layer of the SSAE are locally 

optimal. The pre-trained SSAE is connected to the supervised 

classifier Softmax to fine-tune to obtain the optimal SSAE 

model. The Softmax cross-entropy loss function is: 

𝐿𝑆𝑜𝑓𝑡𝑚𝑎𝑥 = −∑𝐶𝑗log
𝑒𝑥𝑗

∑ 𝑒𝑥𝑘𝐾
𝑘

, (7) 

where 𝐶𝑗 is the true classification label of the 𝑗th sample.  𝐾 is 

the total number of categories.  𝑥̂𝑗 is the 𝑗th input of the Softmax 

classifier. 

Softmax uses the minimized cross-entropy loss to 

distinguish the correct or incorrect classification. Then, softmax 

adjusts the network parameters of the whole SSAE with the BP 

algorithm to make the parameter-adjusted classification labels 

of the integrated model as close to the true labels as possible, 

and finally achieves the purpose of optimizing the SSAE model. 

2.2. Reconstruction-based sparse stacked autoencoder, 

RBSSAE 

2.2.1. Reconstruction-based index 

The Squared prediction error (SPE) statistic 𝒬  was used to 

monitor the residual space of the SSAE model, and the 

magnitude of its value reflects the degree of deviation between 

the observed data and model output, 

𝒬(𝒙) = ‖𝒙‖2 = ‖𝒙 − 𝒙‖2 = (𝒙 − 𝒙)T(𝒙 − 𝒙), (8) 

with a confidence limit: 
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 𝛿𝛼

2 = 𝜃1(1 −
𝜃2ℎ0(1 − ℎ0)

𝜃1
2 +

𝜁𝛼√2𝜃2ℎ0
2

𝜃1
)
1
ℎ0

ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2

𝜃𝑖 =∑𝜆𝑘
𝑖

𝑛

𝑘=1

, 𝑖 = 1,2,3

, (9) 

at (1 − 𝛼) × 100%  confidence level, where 𝛿𝛼
2  is the 

threshold of 𝒬 , and 𝜁𝛼   is the standard score corresponding to 

(1 − 𝛼)%.  𝜆𝑘 is the eigenvalues of the covariance matrix of 𝒙.  

𝒙  is detected as an abnormal sample when 𝒬(𝒙) > 𝛿𝛼
2 , 

otherwise, it will be classified as the normal sample. 

Given an abnormal sample 𝒙 ∈ ℝ𝑛×1, assume that the fault 

involved 𝑑  variables Ω𝑖 = {𝑥𝑣1 , 𝑥𝑣2 , … , 𝑥𝑣𝑑} , 𝑑 ≤ 𝑛 . Then, the 

non-faulty sample 𝒛Ω𝑖  can be expressed as 

𝒛Ω𝑖 = 𝒙 − 𝜩Ω𝑖𝒇Ω𝑖 , (10) 

where 𝜩Ω𝑖 = [𝜉𝑣1 , 𝜉𝑣2 , … , 𝜉𝑣𝑑] ∈ ℝ
𝑛×𝑑 denotes the hypothetical 

fault direction, where 𝜉𝑣1 ∈ ℝ
𝑛×1  is the 𝑣1 -th standard 

orthonormal basis. For instance, 𝜉𝑣1 = [0 1 0 0 … 0]T 

denotes the hypothetical fault involved in the second variable 

𝑥2 , 𝑣1 = 2 ; 𝜉𝑣2 = [
0 1 0 0 … 0
1 0 0 0 … 0

]
T

  denotes the 

hypothetical fault involved in the second and first variables 𝑥2 

and 𝑥1 , 𝑣2 = [2 1] . 𝒇Ω𝑖 = [𝑓𝑣1 , 𝑓𝑣2 , … , 𝑓𝑣𝑑]
𝑇 ∈ ℝ𝑑×1  is the 

corresponding fault magnitude vector, 𝑓𝑣1  denotes the fault 

magnitude in 𝑥𝑣1 . 

Denote the nonlinear mapping of the SSAE model as Φ(⋅), 

SSAE model output of 𝒛Ω𝑖  is: 

𝒛̂Ω𝑖 = Φ(𝒛Ω𝑖) = 𝑓1
𝑑𝑒𝑐 ∘ 𝑓2

𝑑𝑒𝑐 ∘ … ∘ 𝑓𝑚
𝑑𝑒𝑐 ∘ 𝑓𝑚

𝑒𝑛𝑐 ∘

𝑓𝑚−1
𝑒𝑛𝑐 ∘ … ∘ 𝑓1

𝑒𝑛𝑐(𝒛Ω𝑖), (11)
 

where the symbol ∘  denotes the composite between the 

mappings. 𝑓𝑗
𝑒𝑛𝑐  and 𝑓𝑗

𝑑𝑒𝑐   denote the encoding and decoding 

process of the 𝑗-th SAE, respectively. 

Then, the SPE index of 𝒛Ω𝑖  can be indicated as: 

𝒬(𝒛Ω𝑖) = ‖𝒛Ω𝑖 − 𝒛̂Ω𝑖‖
2
= ‖𝒛Ω𝑖 −Φ(𝒛Ω𝑖)‖

2
=

(𝒛Ω𝑖 − 𝒛̂Ω𝑖)
T
(𝒛Ω𝑖 − 𝒛̂Ω𝑖)

= (𝒙 − 𝜩Ω𝑖𝒇Ω𝑖 − 𝒛̂Ω𝑖)
T
(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖 − 𝒛̂Ω𝑖)

= ‖𝒙 − 𝒛̂Ω𝑖‖
2
− 2(𝒙 − 𝒛̂Ω𝑖)

T
𝜩Ω𝑖𝒇Ω𝑖 + 𝒇Ω𝑖

T𝒇Ω𝑖 . (12)

 

Concerning 𝒬(𝒛Ω𝑖), there is only one unknown parameter 

that is 𝒇Ω𝑖 . Hence, the next step is to find an optimized 𝒇Ω𝑖  that 

can obtain a minimum 𝒬(𝒛Ω𝑖): 

𝒬Ω𝑖
𝑟𝑏 = min

𝒇Ω𝑖

𝒬(𝒛Ω𝑖) = min
𝒇Ω𝑖

‖𝒛Ω𝑖 − Φ(𝒛Ω𝑖)‖
2
, (13) 

where 𝒬Ω𝑖
𝑟𝑏  is the reconstruction-based (RB) index along the 

fault direction 𝜩Ω𝑖. If the RB index is lower than the confidence 

limit 𝒬Ω𝑖
𝑟𝑏 < 𝛿𝛼

2, then the process can be brought back to normal 

along with the fault direction 𝜩Ω𝑖 . 

Researchers have given optimal existence proofs for 

RBPCA (32). However, this proof is not suitable for nonlinear 

systems such as SSAE. In order to obtain the corresponding 

reconstruction-based index, it is necessary to prove the 

existence of optimums applicable to nonlinear systems. For the 

convenience of the proof, the auxiliary function is first defined 

as: 

Ψ:ℝ𝑛 ↦ ℝ, Ψ(𝒇Ω𝑖) = 𝒬(𝒛Ω𝑖) = ‖𝒙 − 𝒛̂Ω𝑖‖
2
−

2(𝒙 − 𝒛̂Ω𝑖)
T
𝜩Ω𝑖𝒇Ω𝑖 + 𝒇Ω𝑖

T𝒇Ω𝑖

= ‖𝒙 − Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)‖
2
−

2(𝒙 − Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖))
T

𝜩Ω𝑖𝒇Ω𝑖 + ‖𝒇Ω𝑖‖
2
. (14)

 

As the sigmoid function is bounded, the following relation 

holds: 

‖Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)‖ = ‖𝜎(𝜏1
𝑑𝑒𝑐)‖ ≤ √𝑛, (15) 

where 𝜏1
𝑑𝑒𝑐 = 𝑾1

𝑑𝑒𝑐 (𝑓2
𝑑𝑒𝑐 ∘ … ∘ 𝑓𝑚

𝑑𝑒𝑐 ∘ 𝑓𝑚
𝑒𝑛𝑐 ∘ 𝑓𝑚−1

𝑒𝑛𝑐 ∘ … ∘

𝑓1
𝑒𝑛𝑐(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)) + 𝒃1

𝑑𝑒𝑐 . 

Consider the following limits: 

lim
𝒇Ω𝑖→∞

Ψ(𝒇Ω𝑖)

‖𝒇Ω𝑖‖
2 = lim

𝒇Ω𝑖→∞

‖𝒙 − Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)‖
2

‖𝒇Ω𝑖‖
2

−2 lim
𝒇Ω𝑖→∞

(𝒙 − Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖))
T

𝜩Ω𝑖𝒇Ω𝑖

‖𝒇Ω𝑖‖
2 + lim

𝒇Ω𝑖→∞

‖𝒇Ω𝑖‖
2

‖𝒇Ω𝑖‖
2 . (16)

 

First, according to Eq. (15), it holds that 0 ≤ ‖𝒙 −

Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)‖ ≤ ‖𝒙‖ + ‖Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)‖ ≤ ‖𝒙‖ + √𝑛 , 

then 0 ≤ lim
𝒇Ω𝑖→∞

‖𝒙−Φ(𝒙−𝜩Ω𝑖
𝒇Ω𝑖

)‖
2

‖𝒇Ω𝑖‖
2 ≤ lim

𝒇Ω𝑖→∞

(‖𝒙‖+√𝑛)2

‖𝒇Ω𝑖‖
2 = 0 , so 

lim
𝒇Ω𝑖

→∞

‖𝒙−Φ(𝒙−𝜩Ω𝑖𝒇Ω𝑖
)‖
2

‖𝒇Ω𝑖‖
2 = 0 . Similarly, 0 =

lim
𝒇Ω𝑖

→∞

−‖𝒙−Φ(𝒙−𝜩Ω𝑖𝒇Ω𝑖
)‖

‖𝒇Ω𝑖
‖

= lim
𝒇Ω𝑖

→∞

−‖𝒙−Φ(𝒙−𝜩Ω𝑖𝒇Ω𝑖
)‖‖𝒇Ω𝑖‖

‖𝒇Ω𝑖‖
2 ≤

lim
𝒇Ω𝑖→∞

(𝒙−Φ(𝒙−𝜩Ω𝑖𝒇Ω𝑖
))
T
𝜩Ω𝑖𝒇Ω𝑖

‖𝒇Ω𝑖
‖
2 ≤ lim

𝒇Ω𝑖→∞

‖𝒙−Φ(𝒙−𝜩Ω𝑖𝒇Ω𝑖
)‖‖𝒇Ω𝑖‖

‖𝒇Ω𝑖
‖
2 ≤

lim
𝒇Ω𝑖→∞

‖𝒙‖+√𝑛

‖𝒇Ω𝑖‖
= 0 , so lim

𝒇Ω𝑖→∞

(𝒙−Φ(𝒙−𝜩Ω𝑖
𝒇Ω𝑖

))
T
𝜩Ω𝑖

𝒇Ω𝑖

‖𝒇Ω𝑖‖
2 = 0 . 

Therefore, it is concluded that: 
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lim
𝒇Ω𝑖

→∞

Ψ(𝒇Ω𝑖)

‖𝒇Ω𝑖‖
2 = 0 − 0 + 1 = 1. (17) 

As a result, Ψ(𝒇Ω𝑖) → +∞  when 𝒇Ω𝑖 → ∞ .  Then ∃𝛿 > 0 , 

Ψ(𝒇Ω𝑖) > Ψ(𝟎)  when ‖𝒇Ω𝑖‖ > 𝛿 , where 𝟎  denotes the zero 

vector. And since Ψ(𝒇Ω𝑖) is continuous on 𝐵𝛿(𝟎)̅̅ ̅̅ ̅̅ ̅̅ , where 𝐵𝛿(𝟎)̅̅ ̅̅ ̅̅ ̅̅  

denotes the closed ball with center 𝟎 and radius 𝛿, there exists 

a minimum value of Ψ(𝒇Ω𝑖) on 𝐵𝛿(𝟎)̅̅ ̅̅ ̅̅ ̅̅ , written as ι. Clearly, ι <

Ψ(𝒇Ω𝑖)  when 𝒇Ω𝑖 ∈ 𝐵𝛿(𝟎)
̅̅ ̅̅ ̅̅ ̅̅  , and ι < Ψ(𝟎) < Ψ(𝒇Ω𝑖)  when 

𝒇Ω𝑖 ∈ ℝ
𝑑 − 𝐵𝛿(𝟎)̅̅ ̅̅ ̅̅ ̅̅  . Therefore, ι  is the minimum value of 

Ψ(𝒇Ω𝑖) on ℝ𝑑, that is, there exists the  minimum value of the 

nonlinear system 𝒬(𝒛Ω𝑖). 

Since the affine and activation layers of each SAE consist of 

smooth mappings, the nonlinear mapping of the SSAE model 

Φ(⋅) is also smooth, so Eq. (13) can be solved by computing the 

zeros of the derivative equation of 𝒬(𝒛Ω𝑖)  concerning 𝒇Ω𝑖  , as 

follow: 

d𝒬(𝒛Ω𝑖)

d𝒇Ω𝑖
=
dΨ(𝒇Ω𝑖)

d𝒇Ω𝑖
=

2(Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖) − 𝒙)
T dΦ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)

d𝒇Ω𝑖

+2(𝜩Ω𝑖𝒇Ω𝑖)
T
dΦ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)

d𝒇Ω𝑖
+ 2𝒇Ω𝑖 , (18)

 

with 

dΦ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)

d𝒇Ω𝑖
= (∏𝐽𝑓𝑘

𝑑𝑒𝑐

𝑚

𝑘=1

)(∏𝐽𝑓𝑚−𝑘+1
𝑒𝑛𝑐

𝑚

𝑘=1

)(−𝜩Ω𝑖), (19) 

where 𝐽𝑓𝑘
𝑑𝑒𝑐 denotes the Jacobian matrix of the mapping 𝑓𝑘

𝑑𝑒𝑐 , 

𝐽𝑓𝑘
𝑑𝑒𝑐  and 𝐽𝑓𝑘

𝑒𝑛𝑐 are given by: 

𝐽𝑓𝑘
𝑑𝑒𝑐 = diag [𝜎(𝜏𝑘

𝑑𝑒𝑐) (1 − 𝜎(𝜏𝑘
𝑑𝑒𝑐))]𝑾𝑘

𝑑𝑒𝑐 , (20) 

𝐽𝑓𝑘
𝑒𝑛𝑐 = diag[𝜎(𝜏𝑘

𝑒𝑛𝑐)(1 − 𝜎(𝜏𝑘
𝑒𝑛𝑐))]𝑾𝑘

𝑒𝑛𝑐 . (21) 

Let 
d𝒬(𝒛Ω𝑖

)

d𝒇Ω𝑖
= 0 , the resulting 𝒇Ω𝑖

∗   is the optimal fault 

magnitude corresponding to the hypothetical fault direction 𝜩Ω𝑖 . 

At the end of the traversal of all hypothetical reconstruction 

directions, the final combination of the optimal reconstruction 

direction 𝜩 and magnitude 𝒇 obtained that minimizes the final 

RB index of sample 𝒙: 

𝒬𝑟𝑏 = min
Ω𝑖, Ω𝑖⊂Ω

𝒬Ω𝑖
𝑟𝑏 , (22) 

where Ω  is the set containing all combinations of variables 

involved in the fault. 

2.2.2. Steffensen method 

In the traditional method of solving the RB index, there exists 

an analytical solution to the equation 
d𝒬(𝒛Ω𝑖

)

d𝒇Ω𝑖
= 0. However, the 

model is strongly nonlinear for the SSAE-based residual 

reconstruction, and it is difficult to obtain the corresponding 

analytical solution. In this case, the equation 
d𝒬(𝒛Ω𝑖

)

d𝒇Ω𝑖
= 0  is 

converted into a vector fixed point problem as shown in Eq. (23), 

then solved by the Steffensen method, which is faster than the 

Gradient descent (GD) and Momentum gradient descent (MGD) 

(27). 

𝒇Ω𝑖 = 𝜁(𝒇Ω𝑖) = (Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖) − 𝒙)
T dΦ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)

d𝒇Ω𝑖

+(Φ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖) − 𝒙)
T
𝜩Ω𝑖

+(𝜩Ω𝑖𝒇Ω𝑖)
T
dΦ(𝒙 − 𝜩Ω𝑖𝒇Ω𝑖)

d𝒇Ω𝑖
+ 2𝒇Ω𝑖 . (23)

 

According to the Steffensen method, the iterative equation 

is obtained as follows: 

𝒇Ω𝑖
(𝜏+1)

= 𝒇Ω𝑖
(𝜏)
− [𝑱(𝜏)]

−1
[𝜁 (𝒇Ω𝑖

(𝜏)) − 𝒇Ω𝑖
(𝜏)
], (24) 

where 𝜏 is the iteration counter, and 𝑱 is the approximations of 

the Jacobian matrix, denoted as: 

𝑱 = [

𝜔11 𝜔12
𝜔21 𝜔22

… 𝜔1𝑑
… 𝜔2𝑑

⋮ ⋮
𝜔𝑑1 𝜔𝑑2

⋱ ⋮
… 𝜔𝑑𝑑

] , (25) 

where 𝜔𝑗𝑘  is the forward differential of the partial 

derivatives, calculated as: 

𝜔𝑗𝑘 =
𝐹𝑗[𝑓v1

(𝜏)
,…,𝑓v𝑘

(𝜏)
,𝜁𝑘+1(𝒇Ω𝑖

(𝜏)
),…,𝜁𝑑(𝒇Ω𝑖

(𝜏)
)]−𝐹𝑗[𝑓v1

(𝜏)
,…,𝑓v𝑘−1

(𝜏)
,𝐹𝑘(𝒇Ω𝑖

(𝜏)
),…,𝐹𝑑(𝒇Ω𝑖

(𝜏)
)]

𝐹𝑗(𝒇Ω𝑖
(𝜏)
)

,

(26) 

with 𝐹(𝒇) =
d𝒬(𝒙−𝜩Ω𝑖

𝒇)

d𝒇
. 

The procedure for calculating the 𝒬Ω𝑖
𝑟𝑏 by Steffensen method 

is depicted in Algorithm 1. 

Algorithm 1. 𝒬Ω𝑖
𝑟𝑏 calculation by the Steffensen method. 

Step 1: Given an abnormal sample 𝒙, 𝒬(𝒙) > 𝛿𝛼
2. Initialize the 

iteration counter 𝜏 = 1, the fault magnitude 𝒇Ω𝑖
(0)
= 𝟎, the 

convergence threshold 𝑒 = 0.0001, the maximum number of 

iterations 𝜏𝑚𝑎𝑥 = 100. 

Step 2: Update 𝒇Ω𝑖
(𝜏)

 according to Eqs. (14)-(26) and then calculate 

𝒬Ω𝑖
(𝜏)
(𝑧Ω𝑖) by substituting 𝒇Ω𝑖

(𝜏)
 in Eq. (12). 

Step 3: Update 𝜏 = 𝜏 + 1, and return to Step 2 until |𝒬Ω𝑖
(𝜏−1)

(𝑧Ω𝑖) −

𝒬Ω𝑖
(𝜏)
(𝑧Ω𝑖)| < 𝑒 or 𝜏 ≥ 𝜏𝑚𝑎𝑥. 
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Step 4: 𝒇Ω𝑖
(𝜏)

 is the optimized fault magnitude corresponding to 𝜩Ω𝑖, 

and 𝒬Ω𝑖
𝑟𝑏 = 𝒬Ω𝑖

(𝜏)
(𝑧Ω𝑖). End of the algorithm. 

2.2.3. Variable selection via Sequential floating forward 

selection 

The derivation of the RB index in the previous section is based 

on the case where the potential fault directions are known, 

except that the information about the actual fault directions is 

normally inadequate when a fault occurs. Therefore, locating 

the fault-related variables accurately and efficiently is another 

complex problem in the reconstruction method. To address this 

problem, the task of this section involves identifying 𝑑 faulty 

variables from the 𝑛 process variables that satisfy 𝒬𝑟𝑏 ≤ 𝛿𝛼
2. It 

can be inferred from Proposition 1 that the more faulty variables 

are selected, the lower the RB index can be achieved.  

Proposition 1. Consider a variable set 𝒢 with 𝑑 variables: 

∀𝑣𝑘 ∈ 𝒢, 𝒬𝒢−𝑣𝑘
𝑟𝑏  ≥ 𝒬𝒢

𝑟𝑏 , (27) 

where 𝒬𝒢−𝑣𝑘
𝑟𝑏   denotes the RB index along the reconstruction 

direction corresponding to 𝒢 without 𝜐𝑘. 

Proof: See Ref. (11). 

It is necessary to restrict the number of faulty variables to 

avoid the fault directions tending to more faulty variables. The 

optimal fault directions should meet two conditions: (1) the RB 

index is smaller than the control threshold; (2) the RB index will 

be larger than the control threshold after removing any faulty 

variable from the fault directions, which can be represented as 

follow: 

{
𝒬𝒢
𝑟𝑏 < 𝛿𝛼

2

∀𝑣𝑘 ∈ 𝒢, 𝒬𝒢−𝑣𝑘
𝑟𝑏 > 𝛿𝛼

2 . (28) 

Exhaustive search (ES) is a common and effective method 

for solving variable selection problems. However, the 

combinations of variables that need to be considered by ES are 

numerous under high dimensional systems with complex faults, 

which imposes a tremendous computational burden. On the 

other hand, the BAB method drastically reduces the amount of 

variable combinations to be retrieved by constructing a search 

tree compared to the ES method. However, there is still a severe 

computational boundary due to its search from high to low 

dimensional variable combinations, while the computation of 

the RB index in the high dimensional reconstruction direction 

is costly and time-consuming. With these in mind, the SFFS,  

a multivariate suboptimal feature selection strategy based on  

a sequential greedy search algorithm, is applied to RBSSAE for 

variable selection. SFFS adds a deletion step on the basis of 

Sequential forward selection (SFS), which improves the 

disadvantages that SFS easily falls into local optimality and the 

redundancy of optimal feature sequences due to sequential 

greedy search. The SFFS framework for the RBSSAE is 

depicted in Algorithm 2. 

Algorithm 2. Variable selection procedure via SFFS in RBSSAE. 

Step 1: Given an abnormal sample 𝒙, 𝒬(𝒙) > 𝛿𝛼
2. Initialize the target 

set 𝒢 = ∅, the candidate set ℱ = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} includes all 

variables. 

Step 2: Insertion: seek the variable 𝑣∗ ∈ ℱ such that 𝑣∗ =

argmin
𝑣∈ℱ

𝒬𝒢∪𝑣
𝑟𝑏 , 𝒬𝒢∪𝑣

𝑟𝑏  is calculated according to Algorithm 1. Update 

𝒢 = 𝒢 ∪ 𝑣∗, ℱ = ℱ − 𝑣∗. 

Step 3: Return to step 2 until 𝒬𝒢
𝑟𝑏 < 𝛿𝛼

2. 

Step 4: Deletion: seek the variable 𝑣∗ ∈ 𝒢 such that 𝑣∗ =

argmin
𝑣∈𝒢

𝒬𝒢−𝑣
𝑟𝑏 . 

Step 5: Return to step 4, and update 𝒢 = 𝒢 − 𝑣∗ until 𝒬𝒢
𝑟𝑏 > 𝛿𝛼

2. 

Step 6: The variables in 𝒢 are isolated. End of the algorithm. 

2.2.4. Fault diagnosis framework of RBSSAE 

The fault diagnosis procedure of the RBSSAE method includes 

system modeling, fault detection, and fault isolation, as shown 

in Fig. 3. The detailed procedure for the RBSSAE is depicted in 

Algorithm 3. 

Algorithm 3. Fault diagnosis procedure by the proposed 

RBSSAE. 

Step 1: System modeling: develop a SSAE model by Section. 

2 and obtain the confidence limit 𝛿𝛼
2 by Eq. (9). 

Step 2: Collect and initialize a new sample 𝒙. 

Step 3: Fault detection: calculate the 𝒬(𝒙) based on Eq. (8). 

Return to Step 2 until 𝒬(𝒙) > 𝛿𝛼
2. 

Step 4: Fault isolation: this process is detected as abnormal. 

Isolate the variables most responsible for the fault by 

Algorithm 2. 

Step 5: End of the algorithm. 
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Fig. 3. The flowchart of the proposed RBSSAE for fault diagnosis.

3. Results and discussion 

This section verifies the proposed RBSSAE method by  

a numerical example and a practical pulverizing system. All 

computation is carried out using MATLAB R2022b on a PC 

with Intel® Core™ i7–1260p CPU (2.10 GHz). 

3.1. Numerical case 

3.1.1. Data generation and fault simulation 

The constructed 16-dimensional simulation process is generated 

by the following expressions: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑥1 = 𝜈1 + 𝑒1
𝑥2 = 𝜈1 + 2 + 𝑒2

𝑥3 = 0.35(𝜈1
2 − 4𝜈1 − 1) + 𝑒3

𝑥4 = 𝜈1
3 − 0.5 + 𝑒4

𝑥5 = 0.9𝑥3 + 0.15 + 𝑒5
𝑥6 = −𝑥4 + 0.25 + 𝑒6
𝑥7 = 1.2e

−2𝜈1 + 𝑒7
𝑥8 = 0.18 cos(2𝜋𝜈1) + 𝜈1

2 + 𝑒8
𝑥9 = 𝜈2 + 𝑒9

𝑥10 = 𝜈2 + 2 + 𝑒10
𝑥11 = 0.35(𝜈2

2 − 4𝜈1 − 1) + 𝑒11
𝑥12 = 𝜈2

3 − 0.5 + 𝑒12
𝑥13 = 0.9𝑥11 + 0.15 + 𝑒13
𝑥14 = −𝑥12 + 0.25 + 𝑒14
𝑥15 = 1.2e

−2𝜈2 + 𝑒15
𝑥16 = 0.18 cos(2𝜋𝜈2) + 𝜈2

2 + 𝑒16

, (29) 

where 𝜈1  and 𝜈2  are individually sampled from the uniform 

distribution U[−1, 1] , respectively.  𝑒𝑖 , 𝑖 = 1, … ,16  is a 

collection of independent noise variables following the normal 

distribution N(0, 0.01). 

First, 2000 samples are generated by Eq. (29), of which 1000 

samples are used to train the model, and 1000 samples are used 

for the testing set. Then, five types of fault cases are simulated 

by the Monte Carlo method from the testing set, corresponding 

to faults involving one to five random variables. The generated 

fault magnitude follows a uniformly random distribution from -

1 to 1. 

To further explore the model's performance and fault 

diagnosis capabilities, four statistical indexes, including fault 

detection rate (FDR), false alarm rate (FAR), the absolute 

fraction of variance (R2), and root mean square error (RMSE)), 

which are defined as follows: 

FDR =
1

𝑛
∑

𝑜𝑖
𝑟𝑖

𝑛

𝑖=1

× 100%, (30) 

FAR =
1

𝑛
∑

𝑝𝑖
𝑚 − 𝑟𝑖

𝑛

𝑖=1

× 100%, (31) 

where 𝑛  is the number of samples and 𝑚  is the number of 

variables, 𝑜𝑖  is the number of faulty variables isolated in the 𝑖 th 

test sample, 𝑟𝑖 is the total number of actual faulty variables in 

the 𝑖  th test sample, 𝑝𝑖   is the number of variables incorrectly 

isolated in the 𝑖 th test sample. 

R2 = 1 −
∑ ‖𝒙(𝑖) − 𝒙(𝑖)‖

2𝑛
𝑖=1

∑ ‖𝒙(𝑖) − 𝒙‖2𝑛
𝑖=1

, (32) 

where 𝒙 is the mean value of all observed testing samples. 

RMSE = √
1

𝑛
∑‖𝒙(𝑖) − 𝒙(𝑖)‖2
𝑛

𝑖=1

. (33) 
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3.1.2. Hyper-parametric sensitivity analysis
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Fig. 4. Comparisons of (a) R2 and (b) RMSE for different network structures.

The selection of hyperparameters significantly impacts the 

model training of auto-encoding networks. Fig. 4 illustrates the 

comparison of model performance under different network 

structures. It can be seen from the figure that with the increase 

in the number of layers of the network, the R2  of the model 

gradually increases, and the RMSE gradually decreases. This 

indicates that the deeper auto-encoder network structure can 

improve the model's feature extraction ability to learn the 

correlation between the system parameters and achieve better 

model performance. Further, the auto-encoder model with a 7-

layer network structure is significantly better than that of the 3-

layer and 5-layer networks. However, it is not easy to obtain 

significant performance improvement by continuing to increase 

the network depth. Similarly, more bottleneck layer nodes can 

ease the difficulty of feature extraction during model learning, 

thus obtaining good model performance under the same number 

of network layers. When the number of bottleneck layer nodes 

is 2, the model performance has reached the optimal value, and 

it is difficult to obtain significant model performance 

improvement when the number of bottleneck layer nodes 

continues to increase. Therefore, a 7-layer auto-encoder 

network and two bottleneck layer nodes were selected as the 

model structure. 

3.1.3. Comparisons with other approaches 

For comparison, five different methods are carried out in this 

section: (a) contribution plot-based PCA (CP-PCA), (b) 

reconstruction-based PCA (RBPCA), (c) contribution plot-

based SSAE (CP-SSAE), (d) reconstruction-based SSAE aided 

by the ES search (RBSSAE-ES), and (d) the proposed 

reconstruction-based SSAE aided by the SFFS search 

(RBSSAE-SFFS).

Table 1. The fault diagnosis results of different methods. 

 CP-PCA RBPCA CP-SSAE RBSSAE-ES RBSSAE -SFFS 

Faulty variables FDR/% FAR/% FDR/% FAR/% FDR/% FAR/% FDR/% FAR/% FDR/% FAR/% 

1 36.893 1.066 33.500 0.167 91.000 14.133 92.500 0.033 92.500 0.033 

2 34.500 2.300 35.750 0.179 89.750 24.786 93.250 0.036 93.250 0.036 

3 31.636 3.145 34.333 0.462 89.667 31.038 93.000 0.077 92.667 0.308 

4 28.966 3.580 40.375 0.417 88.875 39.833 93.000 0.042 92.250 0.417 

5 24.280 4.569 38.700 0.727 91.100 44.318 92.500 0.136 92.000 0.591 

Table 1 shows the fault diagnosis performance of different 

models in five types of fault cases, and the results of the 

proposed RBSSAE-SFFS are bolded. As can be seen from Table 

1, the FDR of the two PCA-based methods is lower than 40% 

for each fault case since the PCA method cannot deal with 

nonlinear relationships. Moreover, the FAR of RBPCA is much 
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lower than CP-PCA. This is because the RB approach can 

effectively suppress the influence of the smearing effect 

compared to the CP method, thus reducing the generation of 

misdiagnosis situations. In contrast, several SSAE-based 

approaches can adapt well to the nonlinearity and accurately 

identify the faults with high FDRs around or above 90%. While 

observing the FAR results of CP-SSAE and RB-SSAE, the FAR 

of CP-SSAE increases dramatically with the increase of fault 

parameters, from 14.133% for single-parameter fault to 44.318% 

for five-parameter fault. The reason is that more faulty variables 

can significantly affect the faulty contribution of normal 

variables, leading to faulty contribution of more normal 

variables being abnormally exaggerated and incorrectly 

exceeding thresholds. This results in worse misdiagnosis. The 

FAR of RBSSAE, on the other hand, always maintains a low 

value, which again leads to the conclusion that fault isolation by 

the RB approach can effectively suppress the influence of the 

smearing effect. Comparing the results of RBSSAE-ES and 

RBSSAE-SFFS, it can be observed that the FDR and FAR of 

RBSSAE-SFFS are slightly inferior to those of RBSSAE-ES. 

This is due to the influence of the SFFS search strategy, which 

will be discussed in more detail at the end of this section.
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Fig. 5. The fault isolation results of one fault parameter by (a) CP-SSAE and (b) RBSSAE, two fault parameters by (c) CP-SSAE and 

(d) RBSSAE.

In order to compare the fault isolation effectiveness of the 

CP and RB approaches and the effect of smearing effect more 

visually, two testing sets of 1000 samples are generated: (1) the 

first 500 samples of two sets are normal data; (2) the second 500 

samples simulate faults on the fourth variable and on both the 

fourth and tenth variables, respectively. The fault isolation 

results by CP-SSAE and RBSSAE are shown in Fig. 5, where 

the black cells represent the isolated variables, and the red line 

is the dividing line between normal and faulty samples. Fig. 5 

demonstrates that the SSAE model can effectively discriminate 

between normal and abnormal samples. However, as can be 

seen from Fig. 5 (a) and (c), the CP method isolates many 

normal variables in addition to the simulated faulty variables in 

the fault isolation stage, and as the fault parameters increase, 

more normal variables are incorrectly isolated. This is because 

the abnormal variable pulls up the faulty contribution of the 

remaining variables and even exceeds the control threshold, 

causing these normal variables to be incorrectly isolated by the 

CP method. In contrast, from Fig. 5 (b) and (d), the RB approach 

can accurately isolate the simulated faulty variables regardless 

of the single or multiple parameters fault. The reason is that the 

RB approach locates the faulty variables by the criterion of 

reconstructing the variables to pull the faulty samples back to 

the control thresholds without the influence on normal variables. 
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Fig. 6 Comparison of TC and TE for RBSSAE-ES and 

RBSSAE-SFFS. 

The RB approach can obtain excellent fault isolation results, 

but it also brings a severe computational burden. In order to 

further demonstrate the superiority of the proposed method in 

terms of computational efficiency, a comparison is carried out 

between RBSSAE-ES and RBSSAE-SFFS. Fig. 6 illustrates the 

average time consumption (TC) and the average times of RB 

evaluations (TE) of one fault sample for the two methods. Fig. 

6 shows that in the case of the faults involving a single variable, 

the TC and TE values by the ES and the SFFS are consistent 

since both methods need to traverse all variable combinations. 

As the number of faulty variables increases, the TC and TE for 

the ES search increase exponentially, whereas the SFFS search 

maintains a stable and controllable growth. Unlike the ES 

approach, the SFFS search is a greedy search method: when 

searching for the following variable, the variable combination 

of the previous search round is retained, equivalent to an 

univariate search. Instead, the ES search needs to re-traverse all 

possible variable combinations when performing variable 

combination element expansion. Such a search logic brings 

significant efficiency improvement to SSAE aided with the 

SFFS search, but it also carries the risk that the search falls into 

a local optimum. As can be seen from Table 1, RBSSAE-SFFS 

has different degrees of diagnostic degradation compared to 

RBSSAE-ES under 3, 4, and 5 parameters fault cases, which is 

caused by the local optimization problem of the SFFS search 

algorithm. Fortunately, the computational efficiency 

improvement is more objective than such a magnitude of 

degradation. The proposed RBSSAE-SFFS has excellent fault 

diagnosis capability and is more competent to handle complex 

faults in large-scale systems. 

3.2. The pulverizing system in coal-fired power plants 

This section evaluates the proposed RBSSAE-SFFS method 

using three actual failure cases of the pulverizing system in  

a subcritical 600MW unit of a coal-fired power plant. The 

pulverizing system is equipped with a ZGM-113N medium-

speed coal mill, the practical photos shown in Fig. 7. 

 

Fig. 7. The practical photos of the pulverizing system. 

As shown in Fig. 8, the pulverizing system mainly consists 

of a raw coal bunker, coal feeder, coal mill, and seal fan. The 

raw coal is first stored in the raw coal bunker after entering the 

pulverizing system from the coal bin. Then, the raw coal is sent 

to the coal feeder, which feeds the raw coal evenly into the coal 

mill according to the required quantity. Next, the raw coal falls 

into the mill and is ground and squeezed into pulverized coal of 

the required fineness. The primary air dries the pulverized coal 

and delivers it to the furnace for combustion at the desired 
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temperature. 
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Fig. 8. The Schematic diagram of the pulverizing system. 

Table 2 lists 26 operating variables selected to build the 

pulverizing system fault diagnosis models. Ten days of 

operational data with 30-second intervals are collected from the 

plant-level Supervisory Information System (SIS) database. The 

coal type remained essentially constant during the sampling 

period. The samples are selected from different load segments 

by random non-repeated sampling to ensure the homogeneity of 

the training samples. Eventually, 8000 samples are selected to 

build a 26-20-14-6-14-20-26 SSAE model.  Three real failure 

cases in system operation are collected to evaluate the validity 

of the proposed algorithm in the actual industrial process: 

Case 1: A clogged sampling tube led to incorrect 

measurements of primary air pressure (M5). 

Case 2: Abnormal measurements of the grinding roller 

bearing oil temperature (M14) caused by a damaged resistance 

temperature sensor. 

Case 3: A coal blockage failure in the coal mill results in 

anomalous measurements of primary airflow rate (M2, M3), 

motor current of coal mill (M6), coal-air mixture outlet 

temperature (M8-M10), and differential pressure between inlet 

and outlet of coal mill (M24, M25).

Table 2. Operation intervals for selected variables. 

No. Variables Description Unit 

M1 𝑀coal Coal feeding capacity of coal feeder t/h 

M2-M3 𝑊air Primary airflow rate t/h 

M4 𝑇air Primary air temperature ℃ 

M5 𝑃air Primary air pressure kPa 

M6 𝐼mill The motor current of the coal mill A 

M7 𝐼feed The motor current of the coal feeder A 

M8-M10 𝑇coal−air Coal-air mixture outlet temperature (3) ℃ 

M11 𝑃coal−air Coal-air mixture outlet pressure kPa 

M12 𝑇tile Thrust tile temperature ℃ 

M13-M15 𝑇𝑜𝑖𝑙 The grinding roller bearing oil temperature (3) ℃ 

M16-M17 𝑇bearing The motor bearing temperature (2) ℃ 

M18-M19 𝑇windingA The motor electronic winding phase A temperature (3) ℃ 

M20-M21 𝑇windingB The motor electronic winding phase B temperature (3) ℃ 

M22-M23 𝑇windingC The motor electronic winding phase C temperature (3) ℃ 

M24-M25 Δ𝑃𝑖𝑛−𝑜𝑢𝑡 Differential pressure between inlet and outlet of coal mill (2) kPa 

M26 𝑁unit Unit load MW 

Fig. 9 gives the fault isolation results by CP-SSAE and the 

proposed RBSSAE-SFFS in Case 1. Fig. 9 (a) shows the 

measured values of several sensors  (M1, M5, M6, and M11), 

with the data scaled between 0 and 1 according to the maximum 

and minimum values for easy visualization. When the sampling 

tube clogs up, the primary air pressure (M5) measurement drops 

rapidly and then keeps a lower value than the actual condition, 

as observed in Fig. 9 (a). Fig. 9 (b) demonstrates that the CP-

SSAE exhibits good fault detection performance, can 

effectively identify the start and end of the fault, and can 

successfully isolate the faulty variable M5. However,  

a significant number of incorrect isolations occurred, especially 
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on M1, M6, and M11, due to the smearing effect. Since the 

faults did not involve these variables, as shown in Fig. 9 (a). 

Conversely, Fig. 9 (c) illustrates that RBSSAE-SFFS can 

accurately isolate the faulty variable M5 and suppress the 

misdiagnosis, reflecting better fault isolation performance than 

the CP-SSAE. 
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Fig. 9. The fault isolation results of Case 1: (a) the measured 

values of M1, M5, M6, and M11 with standardization, (b) fault 

isolation by the CP-SSAE, and (c) fault isolation by the 

RBSSAE-SFFS. 

Fig. 10 displays the fault isolation results of Case 2 by two 

methods. As seen in Fig. 10 (a), the fault in Case 2 is not a step 

change fault as in Case 1. Instead, the magnitude of the fault in 

Case 2 becomes progressively more significant over time until 

the sensor is completely damaged. After replacing the sensor 

with a new one, the measured values returned to normal. Fig. 10 

(b) and (c) indicate that while both methods can identify faults 

at an early failure stage, intermittent isolation results are 

observed due to the small magnitude. On the other hand, the 

alarms are promptly deactivated after replacement with new 

sensors, exhibiting excellent fault detection performance of the 

SSAE model. Additionally, unlike CP-SSAE, which generates 

many misdiagnosis cases, RBSSAE-SFFS can isolate the fault 

parameter efficiently and accurately. 
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Fig. 10. The fault isolation results of Case 2: (a) the measured 

values of three grinding roller bearing oil temperature sensors 

M13, M14, and M15, (b) fault isolation by the CP-SSAE, (c) 

fault isolation by the RBSSAE-SFFS. 

Fig. 11 illustrates the standardized measured values of the 

fault-involved variables and the fault isolation results of the two 

methods for Case 3. As shown in Fig. 11 (a), the coal mill 

current and the differential pressure between the inlet and outlet 

of the coal mill started to oscillate upward after the fault 

occurred. Besides, the primary airflow rate and the coal-air 

mixture outlet temperature also decreased continuously since 

the beginning of the fault. The coal blockage occurred at around 

the 190th sample. It was not detected and handled by the 

operator until the 350th sample, in other words, 80 minutes after 

the fault occurred, which severely disrupted the normal 

operations and production of the pulverizing system. Fig. 11 (b) 

and (c) demonstrate that the RBSSAE-SFFS can identify the 

fault at the early stage of the fault and accurately isolate the 

faulty variables to inform the following root cause 

troubleshooting. However, CP-SSAE results exhibit a more 

severe misdiagnosis caused by the smearing effect in complex 

fault cases compared to the single parameter faults in the 

previous two cases. 
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Fig. 11. The fault isolation results of Case 3: (a) the measured 

values of M2, M6, M8, M24, and M25 with standardization, 

(b) fault isolation by the CP-SSAE, and (c) fault isolation by 

the RBSSAE-SFFS. 

Table 3. The fault diagnosis results of different methods. 

 CP-PCA RBPCA CP-SSAE RBSSAE-SFFS 

Case FDR/% FAR/% FDR/% FAR/% FDR/% FAR/% FDR/% FAR/% 

1 99.982 5.995 99.789 0.316 99.982 7.355 99.982 0.248 

2 64.128 5.655 76.432 2.248 95.117 10.141 94.892 0.346 

3 18.838 2.104 13.283 1.970 89.040 33.235 91.893 1.133 

Table 3 shows the fault diagnosis performance of different 

models in three real fault cases. As can be seen in Table 3, the 

results of Case 1 illustrate that the PCA-based method can still 

obtain good fault diagnosis results in nonlinear systems with 

simple faults, especially with large fault magnitudes. However, 

the results of Cases 2 and 3 show that it is difficult for PCA-

based methods to effectively fault diagnose nonlinear systems 

under complex faults, especially with multiple fault variables. 

The SSAE-based method has a higher FDR in all three fault 

cases, which indicates that the SSAE-based method can 

effectively detect the occurrence of faults. CP-SSAE has a 

higher FAR than RBSSAE-SFFS, suggesting that CP-SSAE 

produces many misdiagnoses and proving the outstanding 

smearing effect contamination of the RB approach. 

4. Conclusions 

This paper proposes a new RBSSAE-based fault diagnosis 

method for large-scale nonlinear systems. This method employs 

the RB approach to isolate the faulty variables in the SSAE 

model. Meanwhile, it applies the SFFS method and the 

Steffensen iterative method to improve the computational 

efficiency of the RB approach. The numerical example 

demonstrates that RBSSAE can effectively detect and isolate 

high-dimensional nonlinear systems with high FDR and low 

FAR, regardless of simple or complex faults. Compared with 

RBPCA, CP-SSAE, and other RBSSAE, the proposed 

RBSSAE-SFFS shows excellent computational efficiency and 

fault diagnosis capability superiority. Moreover, a deeper 

network structure significantly improves the feature extraction 

capability of the model so that the deeper system features can 

be captured to achieve better model performance. Finally, the 

industrial case results show that RBSSAE-SFFS can effectively 

cope with actual industrial processes and overcome the 

smearing effects to ensure accurate fault isolation results.
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