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Highlights  Abstract  

▪ Consider the impact of equipment degradation 

maintenance on production decisions. 

▪ Physical modeling is used to analyze the 

equipment with imperfect fault data. 

▪ An improved genetic algorithm based on 

hormone regulation was used to solve the 

problem. 

▪ Integrating maintenance and production into a 

real production environment. 

 Equipment performance deteriorates continuously during the production 

process, which makes it difficult to achieve the expected effect of 

production decisions made in advance. Predictive maintenance and 

production decisions integrated scheduling aim to rationalise 

maintenance activities. It has been extensively researched. However, 

past studies have assumed that faults obey a specific probability 

distribution based on historical data. It is difficult to analyse equipment 

that is brand new into service or has poor historical failure data. Thus, in 

this paper, we construct a twin model of a device based on a physical 

modelling approach and tune it to ensure high fidelity of the model. 

Degradation curves were created based on equipment characteristics and 

developed maintenance activities. Develop an integrated scheduling 

model for predictive maintenance and production decisions with the goal 

of minimising maximum processing time. An improved genetic 

algorithm is used to solve the problem optimally. Finally, apply a 

practical scenario to verify the effectiveness of the proposed method. 
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1. Introduction 

Production decisions are primarily concerned with the rational 

allocation of resources and the sequencing of processes to 

optimise the desired production goals. Rational production 

decisions can improve efficiency, reduce costs and energy 

consumption, and ensure product quality and delivery[20]. 

However, in the actual production, it is often difficult to achieve 

the expected results with decisions made in advance. Mainly 

because of the continuous degradation of equipment 

performance during operation, which leads to frequent 

equipment failures. These failures often lead to disruption of 

production plans, directly affecting the implementation of 

production decisions and causing incalculable economic losses 

to the enterprise[11]. This is why is particularly important to 

take into account the maintenance process of the equipment in 

advance in the production decisions, especially in serial or 

process oriented production lines. 

Predictive maintenance and production decision-integrated 

scheduling is more in line with actual needs. In recent years, 
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many researchers have considered the impact of equipment 

maintenance on production scheduling, focusing on both single 

machine scheduling and line scheduling. The integration of 

predictive maintenance on a single machine for scheduling 

decisions has now been extensively studied[1,13,14,15]. Najid, 

NM et al.[12] established linear mixed integer programming to 

solve the production and maintenance integration problem, 

considering demand shortages and the reliability of the 

production line. Pan et al.[16] and Lu et al.[10] introduced the 

effective lifetime and maintenance lifetime of the machine to 

describe the degradation of the machine for the single machine 

scheduling model, designed improved algorithms to optimise 

the objectives. Liu et al.[9] proposed a model for coordinating 

predictive maintenance decisions with single-machine 

scheduling decisions based on predictive information, taking 

into account both machine lifetime and health affected by 

degradation. Yildirim and Nezami[21] considered the impact of 

product processing time on machine degradation and performed 

an experimental analysis with the objective of minimising 

maintenance costs and energy consumption. Zhang et al.[23] 

proposed a strategy that combines multitasking maintenance 

with production to solve the problem of idle resources and 

increased time cost due to maintenance in scheduling. For 

production lines consisting of multiple machines, the study 

focuses on the dependencies between the different machines, 

the collaboration between the equipment and the impact of 

predictive maintenance on the overall efficiency of the 

production line. Zahedi, Z. et al.[22] investigated the trade-off 

between production and maintenance costs for dual machine 

operation. Zhou and Lu[24] proposed a dynamic maintenance 

strategy for serial multi-device systems with high-quality 

integrated reliability by analysing the joint optimisation process 

for serial no-re-entry systems. Chen et al.[3] studied the bi-

objective scheduling problem of maximum completion time and 

total delay time when parallel machines have flexible 

maintenance time and job release time, and solved it with the 

improved NSGA-II. Kung and Liao[7] jointly predicted the 

optimisation of maintenance and job scheduling problems, 

considered the machine productivity affected by processing 

time, developed a heuristic algorithm based on taboo search. 

Paprocka et al.[17] proposed an equipment condition 

assessment method with reliability characteristics. Also, 

Paprocka et al.[18] developed a scheduling method that reflects 

the operation of the production system and the nature of 

disturbances and applied ant colony optimisation to construct  

a production schedule. Ladj et al.[8] studied the process shop 

scheduling based health management with predictive 

maintenance and proposed two integrated metaheuristics to 

solve the problem. Ghaleb et al.[5] studied the real-time joint 

optimisation of maintenance planning and production 

scheduling, considering the problems of new order introduction, 

order expediting, machine degradation, and random failures. 

In most of the published studies, an approach based on 

historical degradation data or assuming that the failure rate fits 

a specific probability distribution, such as the Weibull 

distribution, Maxwell distribution, Gamma distribution, etc., is 

usually used. Although some specific distributions have been 

validated as common distributions to describe the lifetime and 

failure rate of devices, However, this hypothetical approach is 

too coarse and has many limitations that make it difficult to 

describe the complex behaviour of equipment failures. And the 

assumed failure distribution approach usually also requires  

a large amount of historical failure data for parameter estimation. 

When failure data are incomplete, the estimation of parameters 

by experience can directly lead to inaccurate failure rate 

prediction. In this paper, the main focus is on the integrated 

scheduling of predictive maintenance and production decisions 

for devices that lack historical degradation failure data. 

Specifically, a framework for integrated scheduling is first 

proposed. Then the future state and remaining lifetime of the 

equipment are predicted by modelling the equipment's twin 

dynamics and based on the degradation curve. Rationalise 

maintenance activities according to the equipment status and 

production plan to ensure the stability and reliability of the 

machining process. 

The overall structure of this paper is as follows: Chapter 2 

introduces the integrated scheduling framework. Chapter 3 

discusses the implementation of the relevant methods. Chapter 

4 introduces relevant case-application scenarios. Chapter 5 

verifies the validity of the proposed method and presents the 

results. Chapter 6 summarises the whole text and looks ahead. 
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2. Integrated Scheduling Framework for Predictive 

Maintenance and Production Decisions Making 

In order to effectively manage the conflict between the 

maintenance needs of data-deficient equipment and production 

tasks, the framework shown in Figure 1 is proposed. The aim is 

to achieve collaborative management of maintenance and 

production by combining physical modelling of equipment, 

real-time data and optimal scheduling. The framework uses 

physical models to describe device behaviour and failure 

mechanisms, combined with data-driven predictive models to 

provide a reliable basis for decision makers.

 

Fig. 1. Integrated scheduling framework.

The framework includes the following key components: 

First, the structure, operating principle, and failure mechanism 

of the equipment are modelled by physical modelling methods, 

and degradation curves are introduced. Simulation tuning of the 

physical model based on sensor data is performed to 

compensate for the insufficient historical degradation data. 

Second, the operating parameters of the equipment is monitored 

in real time to identify the current status of the equipment. The 

physical model is then combined with real-time data to monitor 

and predict equipment health status using data analysis and 

predictive models. Finally, the optimal scheduling algorithm is 

also used to determine the best maintenance time and 

production scheduling plan. 

The integrated scheduling framework for predictive 

maintenance and production decision-making based on  

a physical modelling approach can better capture the failure 

characteristics and maintenance needs of equipment and 

provide a reliable basis for decision-making. This approach 

usually requires some approximations and assumptions to be 

made to the analytical model, which makes the model somewhat 

distant from the real equipment. A data-driven, machine-

learning-based approach allows for more accurate health status 

assessments of equipment[19]. However, predictive 

maintenance using a physical modelling approach offers  

a viable option for equipment that lacks historical degradation 

failure data. A new idea is provided for the solution of such 

equipment predictive maintenance and production decision 

integrated scheduling problems. 

The framework is applicable to both stand-alone equipment 

and production floor systems. By integrating physical 

modelling, data analysis, and optimisation methods, high 

equipment reliability and planning accuracy can be ensured. 

3. Approach 

3.1. Equipment condition prediction based on a physical 

modelling approach 

3.1.1. Twin static model creation 

To create a high-fidelity static models of equipment twins, we 

took the following three key steps, as illustrated in Figure 2. 

The initial step is to build the twin mapping model. Firstly, 

the physical parameters of the equipment are collected, 

including dimensions, structure, connections and other 

performance parameters. These parameters describe the 

geometry and kinematic characteristics of the device. 

Subsequently a static model is constructed based on the 

equipment parameters. Take the robotic arm for example, it is 

possible to collect dimensional structures, joint parameters to 
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build a geometrical model of the robotic arm. And to build  

a kinematic model of the robotic arm, based on the mode of 

movement. 

The second step is to add physical characteristics. To 

simulate the motion of the equipment with more realism, we 

need to introduce physical properties. This includes considering 

the inertial properties of the equipment, such as mass 

distribution and rotational inertia. We also considered physical 

effects such as frictional and inertial forces and incorporated 

them into the static model to more accurately simulate the 

motion of the equipment. 

The third step is to add virtual sensors. We use the static 

model of the equipment to simulate the measurement of the 

equipment by the virtual sensor and thus generate the virtual 

sensor data. These data can be used to monitor the status of the 

equipment, perform failure detection, or verify control 

algorithms.

Step3:Adding virtual sensors

·   Generate virtual sensor data 
by simulating actual sensors, 
such as position, speed, torque, 
etc., as needed

Step2:Adding physical properties

·  Add inertial characteristics of the 
equipment, including mass distribution, 
rotational inertia, et

·   Consider friction, inertial forces
 and other physical effects physical 
 effects

Step1:Building twin models

·   Collect the physical 
parameters of the equipment, 
including dimensions and 
structure
·   Establish a static mapping 
model
·   Build kinematic model of 
equipment

 
Fig. 2. The twin static model creation process.

3.1.2 Degradation curve generation 

Aivaliotis et al.[2] proposed that for equipment lacking 

historical degradation data, the degradation curve of the 

corresponding equipment can be studied based on maintenance 

records, manufacturer data, and relevant literature. Specifically, 

the degradation characteristics of the equipment can be 

characterised based on the frequency of component replacement 

or relevant literature data and manufacturer's data, on the basis 

of which a corresponding degradation curve can be generated. 

These curves describe the performance trends of the equipment 

at different levels of degradation and provide a basis for 

predicting the degradation behaviour of the equipment. Finally, 

we map these degradation curves into the twin model. This 

process as shown in Figure 3.

 

Fig. 3. Twin device degradation process.
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3.1.3 Equipment status prediction 

As shown in Figure 4. The model built in the first two steps 

extracts features from the data to determine whether the current 

equipment is in a normal operating state, a degraded state, or  

a potential fault state, providing a basis for subsequent 

prediction and maintenance decisions. Next, the twin model is 

adjusted for simultaneous simulation based on the device 

monitoring data. A dynamic bias compensation model between 

the physical data and the twin simulation data is considered to 

ensure high fidelity of the model. Finally, based on the above 

two steps of analysis, the twin model and degradation curve are 

combined to predict the future performance status of the 

equipment in order to rationalize the maintenance activities in 

the production process.

 

Fig. 4. Synchronous tuning and state prediction.

3.2 Predictive maintenance and production decision - 

integrated scheduling 

This chapter focuses on the joint driving torque and jitter of the 

twin robotic arm as the basis for maintenance decisions, and 

defines the variable parameters as shown in Table 1 for the 

predictive maintenance and production decisions integration 

scheduling problem in the replacement flow shop. 

Table 1. Variable parameter table. 

Parameters Connotation of parameters 

𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑛} Production Order Collection 

𝑀 = {𝑀1, 𝑀2, … 𝑀𝑚} Machine Collection 

𝑡(𝑖, 𝑗) 
Processing time of order task 𝑗 on 

machine 𝑖 

𝑤(𝑖, 𝑗) 
Waiting time between machine 𝑖 
processing order 𝑗 and 𝑗 + 1 

ϵ Relative deviation of joint torque 

μ Ideal joint torque 

μ′ Joint torque in degenerative state 

𝜀 Shaking degree 

θ Joint torque deviation threshold 

𝑃𝑚 Maintenance time 

𝑇𝑖1 
Machine 𝑀𝑖 processing process time 

consumption 

𝑇𝑖2 
Time consumed by the machine 𝑀𝑖 

maintenance process 

𝑇𝑖  Total time consumed by machine 𝑀𝑖 

𝑇𝑡𝑜𝑡𝑎𝑙  Total processing time 

3.2.1. Problem Description 

In the replacement flow shop, a total of 𝑛  order tasks 𝐽 =

{𝐽1, 𝐽2, … , 𝐽𝑛} , processed on 𝑚  machines 𝑀 = {𝑀1, 𝑀2, … 𝑀𝑚} . 

Each order task is processed at different times on each machine, 

and all orders are processed in the same order on each machine. 

As a semi-flexible manufacturing system, the replacement shop 

requires a certain amount of adjustment time when configuring 

processes to suit different production needs. But the adjustment 

time is very short, and its effect is ignored here. The degradation 

of the robotic arm during operation is mainly reflected in the 

decline of the joint drive torque. When sufficient torque cannot 

be provided, it will affect the motion quality and control 

accuracy of the robotic arm, resulting in jittering and unstable 

control of the robotic arm. When exceeding a certain threshold, 

maintenance strategies need to be developed to improve 

equipment performance. The scheduling objective is to 

rationalise the maintenance strategy and optimise the workpiece 

machining sequence to minimise the final completion time. The 

entire process satisfies the following constraints: 

1) At the start time, all workpieces and equipment to be 

machined are ready; 

2) Optimal initial performance status of all equipment; 

3) The start time of the subsequent order must be after the 

completion time of the preceding order, and the current 

equipment status is idle; 

4) The equipment can go directly to processing after the 
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maintenance is completed; 

The mathematical model is described as follows: Assume 

that 𝑡(𝑖, 𝑗)  denotes the processing time of order task 𝑗  on 

equipment 𝑖 . 𝑤(𝑖, 𝑗)  denotes the waiting time between the 

completion of order 𝑗 by equipment 𝑖 and the next processing. 

Then the total time 𝑇𝑖1  consumed by machine 𝑀𝑖  during 

processing is: 

𝑇𝑖1 = ∑[𝑡(𝑖, 𝑗) + 𝑤(𝑖, 𝑗)]

𝑛

𝑗=1

(1) 

The performance degradation of the robotic arm during 

operation is mainly reflected in the degree of degradation of the 

joint torque and the degree of jitter. Specifically, the relative 

deviation of the torque ϵ and the degree of jitter 𝜀 are used to 

assess whether the equipment should be subjected to 

maintenance activities. 

ϵ =
μ − μ′

μ
(2) 

Where μ  is the joint torque of the equipment in optimal 

operation, while μ′  is the joint torque in a degraded state of 

performance. If ϵ  exceeds the deviation threshold θ , or if the 

magnitude and frequency of 𝜀 are outside the safety range given 

by the manufacturer before the order task 𝑗  is processed, the 

equipment needs to be subjected to the corresponding 

maintenance activities first. Then the total time 𝑇𝑖2 consumed 

by the maintenance activity of the equipment 𝑀𝑖 process is: 

𝑇𝑖2 = ∑(𝑃𝑚) (3) 

Then the total time 𝑇𝑖  consumed by equipment 𝑀𝑖 is: 

𝑇𝑖 = 𝑇𝑖1 + 𝑇𝑖2 (4) 

The total processing time 𝑇𝑡𝑜𝑡𝑎𝑙  for this production is: 

𝑇𝑡𝑜𝑡𝑎𝑙 = max{𝑇𝑖  | 𝑖 = 1,2,3, … , 𝑚} (5) 

The objective function is to minimize the maximum 

processing time: 

min 𝑇 = min{𝑇𝑡𝑜𝑡𝑎𝑙} (6) 

3.2.2. An improved genetic algorithm based on hormonal 

regulation mechanism 

Production scheduling is shown to be a typical class of NP-hard 

problems. While theoretically possible exact solutions exist, in 

real-world problems of large size, exponential levels of 

computational time are usually required. Therefore, for the 

solution of such problems, meta-heuristic algorithms such as 

genetic algorithms, particle swarm algorithms, simulated 

annealing algorithms, etc. Such algorithms can find suboptimal 

solutions in acceptable time. Genetic algorithms accounted for 

45 per cent of all research[6]. 

Genetic algorithms are excellent in combinatorial 

optimisation problems. It can effectively deal with discrete 

decision variables and has strong global search ability. And it 

can deal with multiple individuals at the same time, accelerating 

the solution of large-scale combinatorial optimisation problems, 

which is widely used to solve large-scale shop scheduling 

problems. However, genetic algorithm also has the 

disadvantage of relying too much on crossover and variation 

links to jump out of the local optimal solution. 

 Based on the problem description in 3.2.1, an improved 

genetic algorithm based on hormone regulation mechanisms is 

proposed. The overall idea of the algorithm is as 

follows.Optimisation of initial populations using backward 

learning. A combination of roulette and elite retention is used to 

retain the best individuals while ensuring individual diversity. 

The algorithm is guaranteed to have global search capability by 

means of diverse variants. Adaptive cross-variance probabilities 

are designed using hormonal regulatory mechanisms. The 

population diversity can be maintained by a rough search in the 

early iterations and a detailed search in the late iterations to 

retain the superior individuals and improve the convergence rate. 

The flow chart of the algorithm is shown in Figure 5. 

 

Fig. 5. Flow chart of improved genetic algorithm based on 

hormone regulation. 
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Usually the population evolution process is mainly 

classified into two stages: 

▪ Pre-population evolution: large crossover probability and 

small variation probability, which are conducive to rapid 

population convergence and have the characteristic that 

more optimal solutions are not easily lost; 

▪ Late stage of population evolution: small crossover 

probability and large variation probability are conducive to 

refined search and the maintenance of population diversity. 

The deficiencies of conventional GA were improved by 

introducing hormonal regulation mechanisms. The hormone 

regulation rise function and fall function law equations are: 

𝐹𝑢𝑝(𝐺) =
𝐺𝑛

𝑇𝑛 + 𝐺𝑛
(7) 

𝐹𝑑𝑜𝑤𝑛(𝐺) =
𝑇𝑛

𝑇𝑛 + 𝐺𝑛
(8) 

where 𝐺 is the function independent variable; 𝑇 is the threshold 

and 𝑇 > 0; 𝑛 is the Hill coefficient and 𝑛 ≥ 1; 𝑛 and 𝑇 jointly 

determine the slope of the curve. The function has monotonicity 

and non-negativity. If hormone 𝑥  is regulated by hormone 𝑦 , 

then the relationship between the rate of secretion 𝑆𝑥  of 

hormone 𝑥 and the concentration 𝐶𝑦 of hormone 𝑦 is: 

𝑆𝑥 = 𝛼𝐹(𝐶𝑦) + 𝑆𝑥0 (9) 

where 𝑆𝑥0  is the basal secretion rate of hormone 𝑥 ; 𝛼  is a 

constant factor. 

If the average fitness of the current population is high, it 

indicates that the diversity of the population is low, and at this 

time, the crossover rate should be reduced and the variation rate 

increased to increase the population diversity. On the contrary, 

it is necessary to increase the ability of population exploration. 

Adaptive crossover probability factors can be designed based 

on hormonal regulation laws: 

𝑃𝑐 = 1 − 𝑃𝑐
0 [1 + 𝛼

(𝑓𝑎𝑣)𝑛𝑐

(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑛𝑐 + 𝑓𝑎𝑣
𝑛𝑐

] (10) 

Adaptive variation probability factor: 

𝑃𝑚 = 𝑃𝑚
0 [1 + 𝛽

(𝑓𝑎𝑣)𝑛𝑚

(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑛𝑚 + 𝑓𝑎𝑣
𝑛𝑚

] (11) 

(10) and (11) in which 𝑃𝑐
0  and 𝑃𝑚

0   represent the initial 

crossover probability and the initial variance probability, 

respectively; 𝑓𝑎𝑣 represents the adaptation mean; 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 

represent the maximum and minimum values of fitness in each 

generation of individuals, respectively; 𝛼、𝛽、𝑛𝑐、𝑛𝑚  are 

coefficient factors. 

4. Case study 

4.1. Scene Introduction 

Taking an actual customised assembly workshop as an example. 

In this workshop, many different types of products can be 

processed by switching machine processes. The type of order is 

mostly small batch customised processing, the type of product 

processed varies from order to order, and the time spent on each 

process is also different. This workshop is characterised by 

semi-flexible production and is a classic flow shop. In this case 

study, the equipment data is collected through the sensors in the 

controller, specifically the drive torque of the joint axes, to 

achieve monitoring of the equipment status. The scene model of 

the assembly workshop and the twin model of the robotic arm 

are shown in Figure 6.

 

Fig. 6. Assembly workshop scene and twin model of robotic arm.
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In Simscape, the robotic arm model is constructed by 

connecting the rigid body to each axis of rotation. Constrain the 

twin model by obtaining the range of motion of the robotic arm 

from the manufacturer, and the maximum single-axis speed. 

The input to the robotic arm twin static model is the position 

information of each joint axis, which is converted into torque 

information to drive the model's motion. From the manufacturer, 

it is known that the robotic arm, especially during long-term 

operation, can cause instability in the drive torque control due 

to bearing and gear wear, which can affect the quality of the 

product assembly or processing. And from some related robotic 

arm studies, it can also be considered that bearings are the most 

vulnerable to failure. Bearings can account for up to 44% of the 

total number of failures in some equipment[4]. For the failure 

mechanism of bearing and gear wear, the modeling of the wear 

process is realized by introducing the Coulomb viscous friction 

model.

Table 2. Processing Schedule. 

scale Order Number (Process, processing time/min) 

Small scale 

𝐽1 (1,116) (2,125) (3,137) (4,104) (5,157) 

𝐽2 (1,139) (2,99) (3,178) (4,143) (5,101) 

𝐽3 (1,144) (2,148) (3,131) (4,136) (5,91) 

𝐽4 (1,127) (2,179) (3,111) (4,155) (5,117) 

𝐽5 (1,139) (2,116) (3,148) (4,118) (5,109) 

𝐽6 (1,90) (2,177) (3,175) (4,102) (5,151) 

𝐽7 (1,168) (2,119) (3,122) (4,140) (5,124) 

𝐽8 (1,119) (2,153) (3,101) (4,136) (5,111) 

𝐽9 (1,86) (2,163) (3,145) (4,94) (5,95) 

𝐽10 (1,148) (2,97) (3,133) (4,165) (5,178) 

𝐽11 (1,111) (2,178) (3,106) (4,127) (5,89) 

𝐽12 (1,99) (2,137) (3,156) (4,174) (5,154) 

𝐽13 (1,158) (2,117) (3,157) (4,97) (5,126) 

𝐽14 (1,159) (2,109) (3,163) (4,148) (5,117) 

𝐽15 (1,178) (2,163) (3,85) (4,116) (5,105) 

𝐽16 (1,157) (2,111) (3,132) (4,155) (5,103) 

𝐽17 (1,139) (2,158) (3,175) (4,139) (5,108) 

𝐽18 (1,174) (2,128) (3,106) (4,173) (5,83) 

𝐽19 (1,146) (2,113) (3,114) (4,88) (5,85) 

𝐽20 (1,171) (2,146) (3,167) (4,168) (5,177) 

Medium scale 

𝐽21 (1,134) (2,86) (3,167) (4,182) (5,161) 

𝐽22 (1,112) (2,165) (3,74) (4,81) (5,174) 

𝐽23 (1,163) (2,168) (3,63) (4,170) (5,189) 

𝐽24 (1,121) (2,145) (3,187) (4,81) (5,165) 

𝐽25 (1,175) (2,64) (3,135) (4,92) (5,174) 

𝐽26 (1,192) (2,221) (3,73) (4,48) (5,187) 

𝐽27 (1,144) (2,130) (3,155) (4,168) (5,192) 

𝐽28 (1,129) (2,187) (3,112) (4,176) (5,169) 

𝐽29 (1,152) (2,124) (3,211) (4,174) (5,72) 

𝐽30 (1,155) (2,196) (3,161) (4,180) (5,154) 

Large scale 

𝐽30 (1,150) (2,131) (3,189) (4,140) (5,137) 

𝐽31 (1,189) (2,169) (3,158) (4,71) (5,170) 

𝐽32 (1,148) (2,156) (3,88) (4,167) (5,146) 

𝐽33 (1,131) (2,124) (3,122) (4,187) (5,162) 

𝐽34 (1,112) (2,185) (3,163) (4,114) (5,132) 

𝐽35 (1,159) (2,177) (3,195) (4,159) (5,148) 

𝐽36 (1,141) (2,120) (3,181) (4,165) (5,120) 

𝐽37 (1,192) (2,148) (3,126) (4,193) (5,63) 

𝐽38 (1,128) (2,159) (3,110) (4,181) (5,120) 

𝐽39 (1,166) (2,133) (3,134) (4,88) (5,65) 

𝐽40 (1,159) (2,137) (3,167) (4,139) (5,130) 
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In the case of joint scheduling problems, a week's production 

tasks are usually scheduled at the same time, that is, 20 

production orders. However, in order to compare the 

effectiveness of the proposed algorithm under different case 

sizes, three scenarios of small-scale processing, medium-scale 

processing  and large-scale processing are set up in this 

chapter.The processing schedule is shown in Table 2. It should 

be noted that the maintenance interval of the robotic arm for 

bearings and gears is usually 1–3 months. However, for the 

scheduling of a week's production tasks, from time to time, we 

encounter time points that require maintenance. In practise, the 

current status of the equipment needs to be identified to allow 

for more accurate scheduling of maintenance activities. This 

paper is only a theoretical illustration, assuming that in this 

production schedule, the equipment performance declines to an 

unacceptable state and the maintenance overhaul time is set to 

6 hours based on experience. 

4.2 Design of orthogonal experiments to determine 

hormone coefficient factors 

The value of the parameter 𝑃𝑐
0, 𝑃𝑚

0 , 𝛼, 𝛽, 𝑛𝑐, 𝑛𝑚 in the adaptive 

cross-variance operator directly affects the range of values of 

the cross-variance rate, the increase and decrease. Rational 

design of parameters can ensure the efficiency and diversity of 

the search process. The estimation of parameters only by 

empirical means is highly uncertain. Orthogonal experiments 

were designed to ensure the reasonableness of the crossover 

variability. Table 3 shows the processing schedule selected for 

the orthogonal experiments. The data is mainly derived from the 

shop floor scheduling public dataset case flowshop1 provided 

by OR-Library.

Table 3. The processing schedule selected for the orthogonal experiment. 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝐽1 59 37 67 39 30 

𝐽2 89 41 42 59 43 

𝐽3 18 56 75 95 75 

𝐽4 65 67 50 57 13 

𝐽5 1 79 71 78 88 

𝐽6 49 100 30 76 36 

𝐽7 99 9 34 44 62 

𝐽8 35 46 58 26 73 

𝐽9 8 98 97 20 73 

𝐽10 39 73 20 55 30 

𝐽11 60 18 97 61 22 

𝐽12 71 1 4 88 52 

𝐽13 20 22 7 3 28 

𝐽14 44 30 55 68 92 

𝐽15 29 89 12 96 71 

𝐽16 54 12 21 74 2 

𝐽17 62 96 61 79 53 

𝐽18 50 13 48 40 37 

𝐽19 89 69 57 1 70 

𝐽20 50 56 8 67 46 

𝐽21 32 24 23 87 62 

𝐽22 12 88 64 14 13 

𝐽23 35 57 78 99 80 

𝐽24 70 76 53 2 19 

𝐽25 79 22 77 74 95 
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Five experiments were conducted for each of the nine sets 

of orthogonal parameters based on experience, with an initial 

population size of 50 and a maximum number of iterations of 

500 during the experiment.The orthogonal numerical 

experimental parameters and experimental results are shown in 

Table 4. The parameters are chosen to ensure that the crossover 

rate and the variation rate are within the appropriate intervals. 

The optimal solution and the optimal number of iterations 

for each orthogonal parameter in Table 4 are averaged, and the 

results are shown in Figure 7. The values of parameters 𝑃𝑐
0 and 

𝛼 will directly affect the coverage of the crossover rate. And the 

parameters 𝑃𝑚
0   and 𝛽  will directly affect the coverage of the 

variability. From the results in Table 4 and Figure 7, it can be 

observed that the solution accuracy and optimal number of 

iterations for the fifth group of parameters are significantly 

better than the other groups of parameters. Therefore, the initial 

crossover rate 𝑃𝑐
0 can be determined as 0.6, 𝛼 as 0.15, the initial 

variability 𝑃𝑚
0  as 0.1, and 𝛽 as 20.

Table 4. Parameters and results of orthogonal numerical experiments. 

 1 2 3 4 5 6 7 8 9 

𝑃𝑐
0 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 

𝑃𝑚
0  0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 

𝛼 0.1 0.1 0.1 0.15 0.15 0.15 0.2 0.2 0.2 

𝛽 15 20 25 15 20 25 15 20 25 

nc 4 4 4 4 4 4 4 4 4 

nm 4 4 4 4 4 4 4 4 4 

Optimal 

Solution 

1483 

1496 

1483 

1494 

1488 

1483 

1502 

1483 

1483 

1485 

1520 

1521 

1507 

1504 

1537 

1483 

1483 

1483 

1493 

1494 

1483 

1483 

1483 

1483 

1483 

1517 

1497 

1515 

1501 

1511 

1489 

1486 

1494 

1494 

1486 

1483 

1486 

1486 

1492 

1483 

1497 

1511 

1513 

1502 

1520 

Optimal 

Iterations 

394 

354 

372 

214 

168 

343 

239 

181 

106 

144 

168 

364 

167 

292 

157 

73 

206 

322 

172 

66 

97 

60 

157 

255 

58 

69 

263 

260 

133 

396 

255 

346 

118 

271 

165 

241 

212 

72 

491 

469 

396 

74 

458 

428 

153 

 

Fig. 7. Average optimal solution and average optimal number of iterations.

5. Results & discussion 

Since different robotic arms are studied in the same way, the 

most complex six-axis robotic arm in the system is used as an 

example to analyse the results. The joint drive torque of the six-

axis robotic arm joint axis 3 at different operating cycles is 

shown in Figure 8. Where M0 is the wear-free curve obtained 

by taking the joint cycle moment of the robotic arm in the best 

operating condition and performing several iterations. M1 (blue 

line), M3 (green line), and M6 (cyan line) are the joint axis 3 

drive torque curves of the robotic arm after one month, three 

months, and six months of actual operation, respectively.
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Fig. 8. Six-axis robotic arm (axis 3) joint drive torque. 

 

Fig. 9. Difference between M1, M3, M6 and optimum drive torque.

Figure 9 shows the difference between the joint cycle torque 

during the operation of the equipment for different periods of 

time and the optimal operating condition. From the figure, it can 

be seen that the difference between the joint torque and the 

torque in the best operating condition during a long period of 

operation becomes more and more obvious, and as the 

controller drive torque decreases, the high load of the original 

task intensity may even cause the robot arm control to jitter, thus 

affecting the processing and assembly quality of the product. 

Figure 10 shows the average relative deviation of the drive 

torque of the joint axis 3 of the six-axis robotic arm during long-

term operation, specifically the relative deviation of the average 

value of the torque in one cycle per month from the average 

value of the torque in one cycle during optimal operation. Due 

to the existence of the wear accumulation effect, the longer the 

operation time of the robotic arm, the faster the degradation of 

the arm, which is basically consistent with the lifetime 

distribution of the actual robotic arm. If the relative deviation of 

the torque is higher than the threshold value of 0.15 N*m, the 

quality of the processed product is considered to be lower than 

acceptable. For the quality of the product and the reliability of 

the equipment, it is necessary to carry out the corresponding 

maintenance and repair activities.
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Fig. 10. Average relative deviation of drive torque.

Scheduling of orders of different sizes using improved 

genetic algorithms. Where the initialised population size is 50 

and the number of iterations is 500. The improved genetic 

algorithm IGA is compared with GA, PSO, SA, and the optimal 

results are taken after running each of the four algorithms five 

times. The minimum processing times for the four algorithms 

for different order sizes are obtained as shown in Table 5. 

Table 5. Minimum processing time for different scales. 

 IGA GA PSO SA 

Small scale 3594 3686 3666 3618 

Medium scale 5168 5329 5381 5277 

Large scale 6808 6926 2967 6904 

Focus on small order analysis.The maximum completion 

time of the generation scheduling scheme of IGA is 3594 min 

and the simulation runtime is 18.792s; the maximum 

completion time of GA is 3686 min and the simulation runtime 

is 8.261s; the maximum completion time of PSO is 3666 min 

and the simulation runtime is 6.241s; the maximum completion 

time of SA is 3618 min and the simulation runtime is 12.269s. 

The iterative optimisation process is shown in Figure 11. The 

initial solution quality of IGA is significantly better than the 

other three algorithms, and the improved genetic algorithm is 

convergent as a whole; it converges faster, has better stability, 

and is less likely to fall into local optimal solution. The 

scheduling Gantt charts of the three algorithms are shown in 

Figures 12, 13, 14, and 15 respectively. PM in the chart 

represents the maintenance process.

 

Fig. 11. Algorithm iterative optimization process. (small scale). 
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Fig. 12. IGA Optimal Gantt Chart. 

 

Fig. 13. GA Optimal Gantt Chart. 

 

Fig. 14. PSO Optimal Gantt Chart. 
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Fig. 15. SA Optimal Gantt Chart.

6. Conclusion & Outlook 

This paper proposes an integrated scheduling strategy for 

predictive maintenance and production decisions based on  

a physical modeling approach, in which physical modeling, 

degradation feature identification, degradation curve extraction, 

and equipment performance state prediction are used to 

compensate for the lack of historical data for equipment that 

lacks historical degradation failure data. In considering 

integrated scheduling, the problem is solved by an improved 

genetic algorithm with hormone regulation mechanisms. 

Orthogonal experiments are designed to determine the values of 

the algorithm parameters. Comparing IGA with GA, PSO and 

SA, the results show that the optimal scheduling scheme of IGA 

is completed 92 minutes earlier than GA, 72 minutes earlier than 

PSO, and 24 minutes earlier than the SA. 

The approach through physical modelling is slightly better 

in scenario applicability and analysis accuracy than the 

approach assuming a probability distribution of failures, but it 

cannot be compared to the data-driven approach based on 

machine learning as the main strategy. This is mainly due to the 

fact that physical modelling identifies only the most vulnerable 

failure characteristics and ignores the possibility of sudden 

equipment failures. Therefore, the prediction of equipment 

performance status based on the physical modelling approach 

can only make a general judgement as a next-best option in the 

absence of historical data. When the equipment has 

accumulated a certain amount of historical degradation data, 

based on the combination of machine learning and digital twins, 

and through the dynamic scheduling strategy to adjust the 

conflict between maintenance and production in real time, to 

minimise the impact of maintenance activities on the production 

decision-making, and to achieve the maximisation of the 

economic benefits of the enterprise.
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