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Highlights  Abstract  

▪ Utilize infrared thermography and deep 

convolutional neural network (DCNN) for fault 

diagnosis of diesel engines. 

▪ Conditional generative adversarial network is 

deployed for data augmentation of the diesel 

engine infrared images. 

▪ DCNN-based fault diagnosis method has better 

classification effect and algorithm stability 

compared with stacked auto-encoder, long 

short-term memory network and multi-layer 

perceptron. 

 This paper tries to introduce a new intelligent method for the early fault 

diagnosis of diesel engines. Firstly, infrared thermography (IRT) is 

introduced into diesel engine condition monitoring, then infrared images 

of diesel engines in four health states, such as normal condition, single-

cylinder misfire, multi-cylinder misfire and air filter blockage, are 

collected and the region of interest (ROI) of infrared images are 

extracted. Next, conditional generative adversarial network (CGAN) is 

deployed to perform data augmentation on infrared image datasets. 

Then, deep convolutional neural network (DCNN) and Softmax 

regression (SR) classifier are used for automatically extracting infrared 

image fault features and pattern recognition, respectively. Finally,  

a comparison with three deep learning (DL) models is performed. The 

validation results show that the data augmentation method proposed in 

the paper can significantly improve the early fault diagnosis accuracy, 

and DCNN has the best fault diagnosis effect and resistance to 

temperature fluctuation interference among the four DL models. 
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1. Introduction 

Diesel engine is the core power unit of many production 

systems, including construction machinery, agricultural 

vehicles, electric generators, ships, etc. Its working condition 

determines the reliability and overall efficiency of the system 

[12]. Due to the complex working environment and certain 

inherent manufacturing process defects, diesel engines are 

prone to various early faults during high temperature and 

pressure, high speed and heavy load operation, which can 

seriously affect productivity or even cause major safety 

accidents [14]. Therefore, to maintain the safety and stable 

operation of diesel engines, it is crucial to implement effective 

and reliable monitoring and diagnosis of diesel engine early 

faults and to take necessary maintenance measures. 

To solve this problem, various sensor signals are applied for 

fault diagnosis of diesel engines, mainly including vibration 

signals, sound signals, oil signals, pressure signals and speed-
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torque signals [53]. Among the above signal analysis methods, 

vibration signals are easy to measure and contain important 

dynamic information of related mechanical components, such 

as the burst combustion of gases in the engine cylinder, the 

impact of valves during opening and seating, the reciprocating 

inertial impact of pistons, and crankshaft rotation, etc. [54, 5], 

which have been widely used in fault diagnosis studies of diesel 

engines [2, 8, 43]. However, vibration signal detection and 

acquisition has some prominent limitations, including noise 

pollution, local contact measurement, and high computing costs, 

etc. Furthermore, the acquisition environment of diesel engine 

vibration signals is usually a high temperature and violently 

vibrating cylinder surface, which can easily lead to distorted or 

even damaged sensor measurements [51]. Besides, in many 

industrial production activities, vibration signal acceleration 

sensors are not allowed to be deployed [55]. Due to the above 

reasons, the development of alternative sensor technologies for 

monitoring the health state of diesel engines has become a hot 

research topic. 

In recent years, using contact sensors such as thermistors 

and thermocouples to collect temperature signals to carry out 

condition monitoring of mechanical equipment has attracted 

wide attention of researchers [26]. Common fault patterns of 

diesel engines such as misfire, air filter blockage, and 

insufficient oil supply are usually accompanied by significant 

temperature changes on the cylinder surface. However, contact 

temperature measurement usually only collects temperature 

changes at a few points on the equipment surface, which cannot 

fully characterize the real-time status of diesel engines. On this 

basis, infrared thermography (IRT) has gradually become a new 

non-contact nondestructive testing technique for measuring the 

surface temperature of equipment to overcome the negative 

effects of complex transmission paths and local detection 

caused by the contact temperature measurement. Compared 

with traditional methods based on vibration signal analysis, 

IRT-based fault diagnosis methods have the following 

outstanding advantages: 1) As the core device of the IRT system, 

infrared thermal camera can monitor the surface temperature of 

the equipment under test without contacting it and visualize it 

through infrared images; 2) IRT can detect the equipment 

remotely and in a wide range, which is suitable for health state 

monitoring of large mechanical equipment. 3) Unlike the 

vibration signal analysis method, IRT-based method is not 

affected by the vibration frequency of mechanical equipment. 

In summary, infrared images reflect the temperature changes of 

the equipment and the surrounding environment, and contain 

rich information about the equipment state, which can be well 

applied to the subsequent fault diagnosis studies. Other non-

contact detection techniques, such as sound signal detection, 

have some shortcomings such as low signal-to-noise ratio and 

complex noise pollution, and traditional signal processing 

methods are difficult to separate and extract the fault signals. 

Therefore, IRT-based fault diagnosis methods for mechanical 

equipment have been widely studied and applied by scholars at 

home and abroad [42, 16, 39]. However, the existing IRT-based 

fault diagnosis methods have the following main challenges in 

the practical industrial applications of mechanical equipment: 

(1) Currently, IRT-based fault diagnosis methods of 

mechanical equipment usually require manual extraction of 

infrared image feature parameters, and the process of feature 

selection requires a large amount of a priori knowledge, but in 

actual industrial applications, such a priori knowledge is not 

always available in time, which largely affects the accuracy of 

fault diagnosis;  

(2) During the operation of mechanical equipment, the 

surface temperature usually changes according to the rule of 

first increasing and then remaining stable, but the fault may 

occur at any time after the power is turned on. The current IRT-

based methods mostly collect infrared images of the equipment 

in the stable state and carry out fault diagnosis afterwards, 

without considering the influence of temperature changes on the 

fault diagnosis results at the early stage of equipment operation; 

(3) To date, IRT has been widely used for fault pattern 

identification of rotating machinery such as rolling bearings, 

rotor systems, and shafts in steady state, but there is a lack of 

diagnostic research for early faults of mechanical equipment, 

especially a lack of research on early fault identification of 

reciprocating machinery such as diesel engines based on IRT. 

For early faults of diesel engines, especially minor faults, 

there is often a lack of supervision signals with obvious labels 

and sufficient training samples. In this case, the method of 

unsupervised learning [32, 46, 50] can play an important role. 

Unsupervised learning can learn useful structures and patterns 

from input data without labels or supervision signals. Through 
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the data augmentation technology based on unsupervised 

learning, simulated synthetic data with early fault 

characteristics can be generated, which can be used to train and 

optimize the diagnosis model and improve the early fault 

detection ability of the model. 

Therefore, to make up for the above research deficiencies,  

a new unsupervised data augmentation based fault diagnosis 

method is proposed for the problems of inconspicuous infrared 

image features and insufficient training data at the early stage 

of diesel engine operation, which can achieve accurate and 

efficient diagnosis of early faults of diesel engines with the 

unique advantages of IRT. Firstly, infrared images of diesel 

engines in different health states are obtained by using infrared 

thermal camera detection, followed by data augmentation of the 

experimental dataset with conditional generative adversarial 

network (CGAN), then feature parameters of infrared images 

are automatically extracted based on deep convolutional neural 

network (DCNN), and finally Softmax regression (SR) 

classifier is deployed for fault pattern recognition of diesel 

engines, while the experimental data collected from a high-

pressure common rail diesel engine is used to verify the 

effectiveness of the proposed method. 

The remainder of the paper is organized as follows: Section 

2 reviews and analyzes the related literature and the current 

status of research. In Sections 3 and 4, the basic principles and 

methodological procedures of CGAN and DCNN are 

introduced, respectively. Section 5 details the basic components 

of the fault diagnosis system of diesel engines and information 

about the infrared image acquisition experiment, and analyzes 

the CGAN-based data augmentation process. In Section 5, the 

effectiveness and superiority of the proposed method are 

verified using the experimentally obtained datasets. Finally, 

Section 7 summarizes the innovative work of the paper. 

2. Related literature review 

IRT-based fault diagnosis of mechanical equipment mainly 

includes three steps: infrared image acquisition, feature 

parameter extraction and fault pattern recognition. Among them, 

feature parameter extraction is the most critical step among the 

above steps [24], which directly affects the accuracy of 

subsequent pattern recognition. In recent years, deep learning 

(DL) has received key attention from all walks of life for its 

excellent feature extraction ability, and has been widely applied 

in speech recognition, image processing, machine vision and 

other fields [21, 33, 28, 35]. Compared with the traditional 

method of manually extracting feature parameters, DL can 

directly process a large amount of raw data, dig deep into the 

intrinsic laws of data, and carry out adaptive learning of 

mapping relationships between data without artificially 

establishing complex mathematical models, which effectively 

reduces the information loss brought by manual processing. 

Furthermore, in the context of big data, DL can effectively 

improve the intelligence and adaptability of fault diagnosis. 

Based on the excellent feature extraction ability of DL, many 

researchers are working on the application of DL methods in the 

field of fault diagnosis of mechanical equipment [13, 38, 17].  

Verstraete et al. [41] addressed the shortcomings of 

traditional manual feature extraction methods, such as 

complicated operation and the need for more expert knowledge 

of the relevant system, by converting the original data into time-

frequency images and then inputting them into DCNN for 

adaptive feature extraction and fault diagnosis, which can 

overcome the uncertainty brought by insufficient expert 

knowledge to the diagnosis results. Jia et al. [18] introduced IRT 

into fault diagnosis of bearings to solve the problems of rotating 

machinery damage and noise pollution caused by sensor 

installation in the process of vibration signal acquisition, and 

the feature extraction and fault diagnosis effects of bag of visual 

words (BoVW) and convolutional neural network (CNN) were 

compared and analyzed. Liu et al. [27] proposed a fault 

diagnosis method of the rolling bearing based on sound signal 

analysis, which uses short-time Fourier transform (STFT) to 

convert the acoustic signal into a spectrogram and input it into 

a stacked sparse self-encoder (SSAE) network for adaptive 

extraction of fault features, and finally SR classifier is deployed 

for fault pattern recognition. Xiao et al. [48] proposed a fault 

diagnosis model of the insulator string based on IRT and 

probabilistic neural network (PNN) for the close relationship 

between insulator string state and its surface temperature 

distribution, and the automatic identification of fault patterns 

can be achieved by using the SR classifier. Xu et al. [49] 

addressed the limitations of existing methods in feature learning, 

converted the one-dimensional vibration signal into a two-

dimensional grayscale image based on continuous wavelet 
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transform (CWT), and used DCNN and random forest (RF) 

integrated learning method for fault diagnosis research of 

bearings, and the experimental results demonstrated that the 

method has a high accuracy. 

The combination of IRT and DL has also seen some research 

progress. Choudhary [4] et al. collected infrared images of 

rolling bearings in six different states, and used artificial neural 

networks (ANN) and LeNet-5 for feature extraction and pattern 

recognition, and demonstrated the superiority of CNN by 

comparing and analyzing the classification results of the two 

methods. Li et al. [26, 25] achieved good results in an in-depth 

study of failure patterns in industrial gearboxes and rotor 

systems, using IRT and CNN for infrared image acquisition and 

pattern recognition of common faults. Wang [44] et al. proposed 

a crack recognition method based on IRT with CNN for image 

recognition and classification to address the problems of low 

efficiency and poor interference resistance in steel plate crack 

detection by traditional non-destructive testing (NDT) 

techniques, and achieved high recognition accuracy on the test 

set. 

In summary, we can see that DL methods have better fault 

diagnosis performance compared to traditional methods that 

rely on manually designed features. Currently, the common 

methods and basic processes for fault diagnosis of diesel 

engines are mainly signal acquisition, manual feature extraction, 

and pattern recognition based on machine learning (ML). Under 

this research theme, Ramteke et al. [34] used fast Fourier 

transform (FFT) and STFT to extract feature parameters from 

the collected vibration and sound signals of diesel engines in 

different wear states and ANN is applied for failure pattern 

identification. Flett et al. [9] proposed a fault diagnosis method 

for valve train of the diesel engine based on a Naive Bayes 

Classifier, which can achieve accurate identification of fault 

patterns such as valve spring deformation and abnormal 

clearance by improving the root mean square (RMS). Kowalski 

et al. [19] proposed a new fault diagnosis method based on the 

extreme learning machine (ELM) for 15 different health states 

of impulse program diesel engines. 

In the research of IRT-based fault diagnosis of diesel engines, 

some scholars have started their preliminary exploration. 

Baranitharan et al. [1] proposed an intelligent life monitoring 

method for diesel engines based on infrared image processing 

technique, which quantifies the infrared images of engine 

operation using image processing techniques to assess the 

engine life in terms of pixel values. Li et al. [36] designed a test 

rig for monitoring diesel engine exhaust faults using IRT to 

measure the radiated temperature of the outer surface of the 

exhaust pipe under different operating conditions, and analyzed 

the relationship between diesel engine exhaust temperature and 

faults according to the principle of infrared thermometry. Using 

ultrasonic IRT, Su et al. [37] carried out ultrasonic IRT principle 

and series of experimental studies for the limitations of 

traditional NDT technology in detecting crack defects in aero-

engine blades, and built an ultrasonic IRT detection test 

platform to achieve the detection of fine cracks in aero-engine 

guide blades and working blades. 

Although some achievements have been made in the 

research of diesel engine fault diagnosis, there are still many 

deficiencies in the application of traditional ML, including the 

cumbersome feature engineering, the need for manual 

intervention, the inability to automatically learn, and the limited 

ability to process large-scale nonlinear data. CNN has been 

proven to be an effective method in the field of feature 

extraction [29, 10]. Compared with traditional ML methods, 

CNN has two significant advantages: 1) It can automatically 

extract deep level features of data and has good generalization 

ability; 2) By using local connections and weight sharing, the 

network parameters are easy to train and optimize [47]. DCNN 

has a more complex network structure and better feature 

extraction ability compared to general CNN models. Therefore, 

in this study, DCNN was used to extract infrared image feature 

parameters of diesel engines under different fault patterns. 

From the above literature, it can be seen that the methods 

based on IRT and DL are widely used in the field of rotating 

machinery fault diagnosis, however, the acquisition process of 

infrared images is usually carried out in the stable state after the 

equipment has been running for a period of time, and the 

research of early fault diagnosis for rotating machinery under 

variable temperature still needs to be explored; for reciprocating 

machinery such as diesel engines, the research of fault diagnosis 

based on IRT and DL is in the initial stage, and the early fault 

diagnosis research of diesel engines under variable temperature 

is still a blank. 

To fill the above research gaps, this paper simulates several 
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common fault patterns and collects infrared images under 

different fault states using a diesel engine experiment bench for 

the variable temperature process from start-up operation to 

temperature stabilization, and then CGAN and DCNN are 

applied for data augmentation and infrared image fault feature 

extraction for early fault diagnosis of the diesel engine. The 

infrared image dataset is divided into several sub-datasets 

according to the same time interval and used to verify the effect 

of temperature variation on the accuracy and stability of the 

algorithm. 

3. CGAN-based data augmentation 

In the application of DL methods, only limited data can be 

acquired for model training in many cases, so data augmentation 

operation is an indispensable part. Data augmentation methods 

mainly include two categories of supervised data augmentation 

and unsupervised data augmentation methods, which are 

classified as shown in Figure 1. 

In recent years, with the continuous development of DL 

techniques, unsupervised data augmentation methods have 

received more and more attention. For example, generative 

adversarial network (GAN) [11] has been widely used in many 

fields such as image processing, speech processing, computer 

vision (CV), and natural language processing (NLP), including 

image generation [40], style migration [15], super-resolution [6], 

and image restoration [7]. As an unsupervised generative DL 

model, GAN adopts the idea of confrontation optimization in its 

structural design. Among the many functions of GAN, image 

generation is the most widely used, aiming to generate the 

desired images using the generator.

 

Fig. 1. Classification of data augmentation methods.

3.1. The network structure of CGAN 

GAN consists of two neural network models, a generator G and 

a discriminator D. The role of the generator is to generate virtual 

data similar to the real data by inputting random noise, while 

the role of the discriminator is to determine whether the input 

data is real or virtual. The iterative training of GAN is the 

process of continuous adversarial optimization of the generator 

and the discriminator, and the performance of both the generator 

and the discriminator can be effectively improved so that the 

virtual data generated by the generator cannot be distinguished 

by the discriminator, thus achieving the purpose of image 

generation. The training of GAN can be stopped when the 

quality of the output samples of the generator no longer 

improves, i.e., the discriminator is unable to determine the 

authenticity of the data generated by the generator. The method 

flow of GAN is shown in Figure 2 [23].
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Fig. 2. The method flow of GAN.

CGAN has made some improvements on the basis of GAN. 

For the generator of the original GAN, the generated images are 

random and unpredictable, so the output of the network cannot 

be controlled, and the actual operability is not strong. In 

response to the issue of the inability of the original GAN to 

generate images with specific attributes mentioned above, 

Mehdi Mirza et al. [30] proposed CGAN in 2014, which 

generates images that meet specific conditions by adding 

constraints to the generator and discriminator in the original 

GAN. The method flow of CGAN is shown in Figure 3.

 

Fig. 3. The method flow of CGAN.

CGAN is a generative model that learns how to generate 

images from random noise corresponding to given conditions 

by means of adversarial training, so that the generated images 

have the same distribution as the original images, thus achieving 

the task of image generation.  

 

Fig. 4. The network structure of CGAN. 

CGAN essentially incorporates additional added constraints 

into the generator G and discriminator D, which can be in any 

form, such as text, labels, images etc., aiming to enable the 

network to be better trained under the corresponding 

requirements. Except for the introduction of conditional 

constraints, the implementation process of CGAN is basically 

the same as that of GAN. The network structure of CGAN is 

shown in Figure 4. 

As can be seen in Figure 4, the constraint c is introduced as 

additional input information to CGAN, which is combined with 

the random noise t as the input to the generator G; while in the 

discriminator D, the constraint c and the output of the generator 

are combined with the original data x as the input to the 

discriminator. This improvement has been shown to be very 

effective in many studies [31, 3, 45]. 

3.2. The loss function of CGAN 

During the iterative training of GAN and its modified forms, the 

adversarial optimization between the generator and 

discriminator can be viewed as a maximal and minimal game, 
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where the generator tries to maximize the error rate of the 

discriminator and the discriminator tries to minimize its error 

rate. This competition drives the training of the model and 

motivates the generator to generate more realistic data and the 

discriminator to become more accurate. The loss function of a 

classical GAN is as follows [11]: 

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑡~𝑝𝑡(𝑡)

[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑡)))](1) 

where, x denotes the original data, t denotes the random noise 

input to the generator, G(t) is the data generated by the generator, 

D(x) is the probability that the discriminator judges the original 

data to be true, D(G(t)) denotes the probability that the 

discriminator judges the data generated by the generator to be 

true, and E represents the mathematical expectation under the 

specified data distribution of the solution. In summary, in the 

actual training process, GAN achieves the optimization of two 

models by alternating iterations. First, the generator is kept 

constant and the parameters of the discriminator are optimized 

so that it can better distinguish the real image from the generated 

image. Then, the discriminator is fixed and parameters of the 

generator are optimized so that it can generate more realistic 

images to deceive the discriminator. This process continues 

until a predetermined number of training sessions is reached or 

the quality of the generated images meets the requirements. 

For the discriminator, where x is the original data, i.e., the 

real data, the optimization objective of its training process is to 

maximize the loss function V(G,D), in other words, it is 

necessary to make D(x) as large as possible while D(G(t)) is as 

small as possible, and the process of optimizing the 

discriminator can be expressed as follows: 

𝑚𝑎𝑥
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑡~𝑝𝑡(𝑡)

[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑡)))]        (2) 

For the generator, the optimization objective of its training 

process is to minimize the loss function V(G,D), and the process 

of optimizing the generator with optimal discriminator 

parameters can be expressed as follows: 

𝑚𝑖𝑛
𝐺

𝑉(𝐺, 𝐷) = 𝐸𝑡~𝑝𝑡(𝑡)
[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑡)))]   (3) 

Therefore, the objective function of GAN can be represented 

by the following equation: 

𝐹1 = 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐺, 𝐷)   (4) 

Except for the introduction of relevant conditional 

constraints, the implementation process and network structure 

of CGAN and GAN are basically the same. In the training 

process of CGAN, the constraints c are added to the inputs of 

both the generator and the discriminator, and then the loss 

function and objective function of CGAN are shown in Eq. (5) 

and Eq. (6), respectively [49]. 

𝑉∗(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 𝐷 (𝑥/𝑐)] + 𝐸𝑡~𝑝𝑡(𝑡)

[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑡/𝑐)))]     (5) 

𝐹2 = 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉∗(𝐺, 𝐷)  (6) 

where, D(x/c) denotes the probability that the original data x is 

true after inputting both the constraints c and the original data x 

to the discriminator, and D(G(t/c)) represents the probability 

that the false data generated by the discriminator after inputting 

both the constraints c and the random noise t to the generator is 

judged to be true. 

In summary, CGAN improves the quality and controllability 

of image generation by introducing constraints as user input, 

which is a simple and effective improvement on the classical 

GAN. 

Diesel engines have a wide variety of fault types and fault 

degrees, and the data distribution corresponding to each fault 

type also has its own uniqueness. Using CGAN can simulate the 

signal data of various fault types, which greatly expands the 

source of training data. This can not only effectively improve 

the generalization ability of the model, but also help the model 

to better understand and learn the data distribution of various 

fault types. Moreover, CGAN-based data augmentation can also 

help to improve the real-time performance of the diagnosis 

model. Since CGAN can generate a large number of simulated 

data in the training process, it can greatly reduce the amount of 

real data needed for online diagnosis. In this way, the 

complexity of online calculation can be reduced, and the real-

time diagnosis can be improved. CGAN-based data 

augmentation can not only improve the early fault diagnosis 

ability, generalization ability and robustness of the model, but 

also improve the real-time performance of the model, which has 

important application prospects. 

4. DCNN-based feature extraction  

CNN is a kind of feedforward neural network containing 

convolution computation for processing data with grid structure 

(e.g., images) proposed by Professor LeCun based on the idea 

of back propagation training delayed neural networks [20]. 

Meanwhile, DCNN usually contains multiple convolutional 
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layers, pooling layers and fully connected layers, which can 

better capture the high-level features of images and perform 

very well in many tasks such as image classification, target 

detection, speech recognition, natural language processing, etc. 

The structure of DCNN network is shown in Figure 5.

 

Fig. 5. Typical DCNN architecture. 

4.1. Convolutional layer 

The convolutional layer, as the core of DCNN, mainly uses  

a series of convolutional kernels to perform convolution 

operations on the input image data and output the feature map. 

Each convolutional kernel in the convolutional layer shares the 

same weight parameters, thus reducing the number of 

parameters of the whole model, alleviating the problem of 

overfitting, and also improving the generalization ability of the 

model. At the same time, the convolutional kernels convolve 

only local regions of the input image, thus preserving the local 

spatial information of the input image and making the model 

invariant to operations such as deformation and translation of 

the input image. The convolution operation can be described as 

follows: 

𝐱𝑖
𝑛 = 𝐜𝑛 ∗ 𝐱𝑖

𝑛−1 + 𝐛𝑖
𝑛   (7) 

where, 𝒙𝑖
𝑛 represents the i-th output mapping of the n-th layer, 

and 𝒙𝑖
𝑛−1 represents the i-th output mapping of the (n-1)th layer. 

𝒄𝑛 is the convolution kernel of the n-th layer, the symbol “*” 

represents the convolution operation, and 𝒃𝑖
𝑛 is the bias vector. 

4.2. Activation layer 

Convolution operation is a linear operation, no matter how 

many convolutional layers are superimposed, the output is  

a linear combination of the inputs, when the network has limited 

ability to express features and cannot handle complex nonlinear 

problems. Therefore, a nonlinear activation function needs to be 

added after the convolutional layers in order to give the network 

nonlinear description capability. The activation layer is usually 

located after the convolutional layer of the DCNN and is used 

to perform nonlinear transformations on the input data to better 

extract features and enhance the expressiveness of the model. 

The choice of the activation function has a great influence on 

the performance of the neural network. The common activation 

functions are: sigmoid function, tanh function, ReLU function, 

etc. The curves of each function and its expressions are shown 

in Figure 6, where the solid line is the activation function and 

the dashed line is its derivative.

 

Fig. 6. Common activation functions.

Among the above three activation functions, ReLU function 

is the most widely used in CNN. Compared with the first two, 

ReLU function not only has faster convergence speed, but also 

has certain sparse expression characteristics of the output. Using 

one-sided inhibition can effectively avoid the gradient 

disappearance problem, which makes the training of neural 

networks more stable and has faster computation speed and 

better convergence.  



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

4.3. Pooling Layer 

The main role of pooling layer is to downsample the output of 

the convolution operation to obtain a smaller output feature map, 

thus reducing the number of parameters and computation of the 

network, while retaining the main feature information of the 

input. There are usually two types of pooling layers: maximal 

pooling and average pooling. Maximal pooling selects the 

largest value from each subregion of the input as the output. On 

the other hand, average pooling computes the average of each 

subregion as the output. A visual representation of the two 

pooling operations is shown in Figure 7. 

 

Fig. 7. Schematic diagram of two pooling operations. 

In Figure 7, the size of the pooling kernel is 22. The pooling 

operation can be expressed by the following equation: 

𝐱𝑖
𝑛 = 𝑑𝑜𝑤𝑛(𝐱𝑖

𝑛−1) + 𝐛𝑖
𝑛  (8) 

where, 𝒙𝑖
𝑛  denotes the i-th output mapping of the n-th layer, 

𝑑𝑜𝑤𝑛(⋅) is the pooling function, and 𝒃𝑖
𝑛  represents the bias 

vector of the n-th layer. 

The pooling layer can help the network learn a more robust 

feature representation and thus improve the generalization 

ability of the network. Since information about the location of  

a pattern or concept is usually encoded in the features, and the 

maximal value of the feature map region carries more 

information in terms of the amount of information compared to 

the average value, maximal pooling is used more often in the 

pooling process. 

4.4. Fully connected layer 

The fully connected layer is usually the last layer of DCNN, and 

its role is to flatten the feature maps (usually two-dimensional 

matrices) output from the convolutional and pooling layers into 

one-dimensional vectors, and to perform product and addition 

operations with a set of learnable weight matrices to obtain the 

final classification results by the SR classifier [22], as shown in 

Figure 8. 

 

Fig. 8. Schematic diagram of the fully connected layer. 

In Figure 8, Z represents the output of the final layer in the 

fully connected network for the sample to be classified, which 

usually contains the score of each class, i.e., the probability that 

the sample belongs to the corresponding class. Each neuron in 

the fully connected layer is connected to all the neurons in the 

previous layer, so the number of parameters in this layer is very 

large and it tends to lead to overfitting problems. To avoid this, 

some regularization operations, such as dropout or L2 

regularization, are usually added before the fully connected 

layer. 

5. The proposed system for fault diagnosis of diesel 

engines  

In this paper, a fault diagnosis system of the diesel engine based 

on IRT and DCNN is proposed, including four basic modules 

such as infrared image acquisition, data augmentation, feature 

extraction, and pattern recognition, as shown in Figure 9. First, 

infrared images are acquired for different health states of the 

diesel engine, including four states of normal condition, single-

cylinder misfire, multi-cylinder misfire, and air filter blockage; 

second, before extracting infrared image fault features, the 

region of interest (ROI) of the infrared image is extracted, and 

the CGAN-based infrared image generation method is applied 

for data augmentation processing; then, DCNN is deployed to 

automatically extract feature parameters of infrared images; 

finally, the fault features extracted in the previous step are 

divided into training and test sets according to a certain ratio, 

and the final pattern recognition is performed using the SR 

classifier.
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Fig. 9. Fault diagnosis system of the diesel engine.

It should be noted that the IRT-CGAN-DCNN based fault 

diagnosis method of the diesel engine does not require prior 

knowledge of equipment fault laws, parameter setting methods 

and other related priori knowledges when applied. It can 

directly collect infrared images of the diesel engine in different 

health states, which will be input to DCNN for fault pattern 

recognition through CGAN-based data augmentation 

processing. The method has excellent adaptive learning 

capability, simple and efficient application, and is highly 

adaptable to fault diagnosis of diesel engines. The specific 

process and visualization of the proposed fault diagnosis 

method of the diesel engine is shown in Figure 10.

 

Fig. 10. Procedure of the proposed method. 
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5.1. Experiment description and infrared image 

acquisition 

As a typical reciprocating mechanical equipment, diesel engines 

have a harsh operating environment and complex work tasks, 

making it more difficult to carry out effective fault diagnosis. 

Compared with the traditional fuel injection system, high-

pressure common rail technology has precise fuel injection 

control, better fuel economy, lower emissions, lower noise and 

vibration, and higher power performance, and is now widely 

used in various types of machinery and equipment engines. In 

this paper, we take the high-pressure common rail diesel engine 

test bench as an example to carry out the research of diesel 

engine fault diagnosis methods using IRT. In the infrared image 

analysis, the cylinder head temperature change of the diesel 

engine directly reflects the working status of the fuel injection 

system, and intake and exhaust system, therefore, it is very 

relevant and engineering practical significance to collect the 

infrared image signals under different health states for fault 

diagnosis research in the cylinder head area of the diesel engine. 

The paper relies on the condition monitoring experimental 

bench of the CA6DF3-20E3 high-pressure common rail diesel 

engine in the university laboratory for infrared image 

acquisition, which mainly includes two parts: the diesel engine 

and control panel, in addition, a MAG32 infrared thermal 

camera and a data acquisition system are deployed for infrared 

image acquisition. The basic composition and actual 

arrangement of the above equipment are shown in Figure 11.

 

Fig. 11. (a) Enlarged views of the infrared thermal camera and control panel; (b) IRT-based diesel engine condition monitoring 

system; (c) Diesel engine.

As shown in Figure 11, the start and shutdown of the diesel 

engine is mainly controlled by the switch on the control panel, 

and the real-time status information such as speed, intake 

pressure, oil quantity and water temperature can also be read 

from the control panel, and the speed and output of the diesel 

engine are adjusted using the accelerator pedal. The technical 

parameters of the diesel engine and the infrared thermal camera 

used in the experiment are shown in Table 1.

Table 1. Technical parameters of the diesel engine and infrared thermal camera. 

Diesel engine Infrared thermal camera 

Common rail mode BOSCH electronic control Infrared detector type Uncooled focal plane 

Air intake mode Supercharged intercooling Image resolution 384×288 

Rated power 155 KW Frame rate 50fps 

Rated speed 2300 r/min Measuring range -20℃~150℃ 

Maximal torque 760NM Ambient temperature 19.2℃ 

Compression ratio 17.4 Measuring sensitivity 0.02℃ 

Total displacement 6.7 L Emissivity 0.94 

Number of cylinders 6 Test distance 1.2m 
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During the experiment, four types of faults, including 

normal condition (NC), single-cylinder misfire (SCM), multi-

cylinder misfire (MCM), and air filter blockage (AFB), were 

introduced into the diesel engine. Note that SCM and MCM are 

simulated by disconnecting the cylinder ignition power line, and 

an outer cover is added to the air filter to simulate AFB. The 

above fault patterns of the diesel engine are shown in Figure 12.

 

Fig. 12. (a) NC；(b) SCM；(c) MCM；(d) AFB.

In Figure 12(a), the six cylinders of the engine are labeled as 

①-⑥, and the specific manifestations of SCM and MCM are 

misfire of cylinder 1, cylinder 3 and cylinder 4 at the same time, 

respectively. The engine speed was fixed at 500 rpm and the 

infrared images of the diesel engine were acquired using an 

infrared thermal camera following the steps detailed in 

Algorithm 1.

Algorithm 1. Steps for the infrared image acquisition of the diesel engine 

Step 1. Select one of the four simulated fault types. 

Step 2. Before starting the experiment, the infrared thermal camera parameters were set, and at this time the diesel engine and 

room ambient temperatures were consistent, both at 19.2°C. 

Step 3. The diesel engine speed was set to a constant 500 rpm and one infrared image was acquired every 10s.  

Step 4. The experiment time was set to 25 minutes, and the maximal surface temperature of the cylinder had stabilized to 51.5°C 

by the end of the experiment. 150 infrared images were finally acquired for each fault type. 

Step 5. Cool the diesel engine to room temperature sufficiently, keep the parameters such as image acquisition equipment, 

distance, angle, ambient temperature and humidity unchanged, and repeat Step 1 through Step 4 for the other three fault types  until 

data collection is complete. 

Note: In the experiment, air conditioners and humidifiers are used to adjust the indoor temperature and humidity.

It should be noted that the reason why an infrared image is 

collected every 10s is because the maximal acquisition 

frequency of the infrared thermal camera used in the experiment 

is every 3s to collect an infrared image. Subject to the hardware 

limitations, the infrared thermal camera manufacturer suggested 

that the best acquisition frequency should be set to collect an 

infrared image every 10s, to ensure that as much experimental 

data as possible can be collected in a limited period of time, and 

at the same time, the imaging quality of the infrared thermal 

camera can be guaranteed. On the other hand, an important topic 

of this paper is the early fault diagnosis of diesel engines. In the 

actual operation process, the faults of diesel engines may occur 

at any moment during the operation process. Therefore, at the 

early stage of diesel engine operation, the lack of training data 

due to the short start-up time exists objectively, and the 

significance of early fault diagnosis research lies in detecting 

whether the diesel engine has a fault state in the shortest 

possible time. 
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5.2 Process of infrared image data augmentation 

Before performing infrared image data augmentation, the ROI 

of infrared images are first extracted to narrow down the 

processing of image data to focus on the cylinder area with 

obvious temperature changes to reduce the interference of 

redundant information in the images. Extracting image ROI is a 

common task in the field of image processing and CV, which 

can effectively reduce the computational effort of image 

processing, better image feature extraction, and improve the 

efficiency and speed of image processing. In the field of CV, 

extracting ROI has a wide range of applications in tasks such as 

image classification, target detection, and target tracking [52]. 

The infrared image of the diesel engine under NC after 20 

minutes of stable operation is selected and shown in Figure 13. 

 

Fig. 13. The infrared image of the diesel engine under NC after 

20 minutes of steady operation. 

In Figure 13, the temperature unit is °C. The observation 

shows that the infrared image expresses the temperature 

distribution on the surface of the diesel engine in a visualized 

form, however, it also contains many disturbing factors that 

affect the analysis. For example, in the whole infrared image, 

the areas with higher temperature and obvious brightness are 

mainly the cylinder block area, the top turbocharger area, the 

bottom battery area and individual scattered locations where the 

brightness and temperature are the highest below the 

turbocharger.  

Further analysis shows that diesel engine infrared images 

have the following unique characteristics compared to other 

types of infrared images or visible light pictures: 

(1) Temperature distribution characteristics: infrared images 

of the diesel engine reflect the temperature distribution inside 

the engine. By observing the infrared images, the hot and cold 

spots inside the engine can be clearly seen. These hot and cold 

spots reflect the heat flow and heat dissipation inside the engine. 

(2) Visualization of the combustion process: infrared images 

can visualize the process of diesel combustion in the 

combustion chamber. When diesel fuel burns, it releases a large 

amount of heat, which can be visualized by infrared images. By 

observing the infrared image, we can clearly perceive the shape 

and size of the combustion chamber, as well as the distribution 

of diesel fuel in the combustion chamber. 

(3) Fault diagnosis: infrared images can be used for fault 

detection and diagnosis. For example, by observing infrared 

images, problems such as engine misfire, oil leakage, gas 

leakage and blockage can be found. At the same time, the 

performance changes and aging of the engine can be assessed 

by comparing the differences in the infrared images at different 

points in time. 

(4) Condition monitoring: infrared images can be used for 

real-time monitoring of the engine operating condition. For 

example, the workload, operating efficiency and emissions of 

the the engine can be understood through observing the infrared 

images, which is important for evaluating the performance of 

the engine and maintaining the normal operation. 

Moreover, different faults also have corresponding 

characteristics in infrared images of the diesel engine. For 

example, (1) The cylinder temperature will have a certain 

temperature increase under normal operation conditions, but 

when a misfire occurs in a certain cylinder of the engine, the 

cylinder temperature will obviously rise beyond the normal 

working range due to incomplete combustion or inaccurate 

ignition timing, which makes the infrared image locally bright. 

(2) The temperature rise caused by AFB may be uneven. In an 

infrared image, it can be observed that the regional temperature 

distribution is uneven, and the size or shape of hot spots are 

inconsistent. Large and obvious hot spots may be formed in 

areas with serious blockage. (3) The starting failure in the diesel 

engine may be caused by the serious wear of the inner wall of 

the cylinder, the excessive gap between the cylinder liner and 

the piston ring, the air leakage of the valve, and the failure of 

the fuel injection pump or the blockage of the fuel injection 

nozzle. Then, abnormal temperature distribution or uneven hot 

spots may be displayed in infrared images. 

In conclusion, infrared images of the diesel engine offer 
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unique advantages in terms of temperature distribution 

characteristics, combustion process visualization, fault 

diagnosis, and operation status monitoring. These advantages 

make IRT a powerful non-destructive testing and diagnostic tool 

with a wide range of applications in the field of fault diagnosis 

of diesel engines. 

Furthermore, some of the extraneous elements such as 

wiring, piping and other parts of the test bench can also cause 

greater interference to the infrared image analysis. Therefore, 

before data augmentation of the infrared image, the image ROI 

needs to be extracted, the significance of which is to reduce the 

influence of interfering factors and facilitate the next step of 

feature extraction. The resolution of the infrared image acquired 

in this study is 384×288, and after extracting the ROI for the 

diesel engine block part, the resolution is 360×50, as shown in 

Figure 14. 

 

Fig. 14. The Infrared image ROI of the diesel engine under NC 

After the ROI extraction operation, the infrared image size 

is reduced from 324 kb to 52.7 kb, indicating that the ROI 

extraction can effectively reduce the amount of data to be 

processed, thus improving the speed and efficiency of 

subsequent fault pattern identification. In the next step, the 

extracted ROI is input to the CGAN model for data 

augmentation, as shown in Figure 15.

 

Fig. 15. (a) The original infrared image ROI under NC; (b) Examples of the infrared image ROI under NC generated by CGAN.

Analysis of Figure 15 shows that CGAN learns how to 

generate images from random noise corresponding to the given 

conditions by means of adversarial training, so that the 

generated images have the same distribution as the original 

images, achieving a good image generation effect and thus data 

augmentation. 

6. Experiment validations  

6.1. Experimental dataset description 

The diesel engine operation process is usually accompanied by 

significant temperature changes. In this experiment, the average 

temperature of the cylinder surface continued to rise from  

19.2℃ at the initial operation to 51.5℃ and then remained 

basically stable. In this case, an infrared image was acquired 

every 10s using the infrared thermal camera for 25 minutes, and 

finally 150 infrared images were acquired for each fault type. In 

this study, four effective DL models such as DCNN, stacked 

auto-encoder (SAE), recurrent neural network (RNN), and deep 

neural network (DNN) will be applied for infrared image feature 

extraction and combined with SR classifier for fault pattern 

recognition. 

To investigate the early fault diagnosis performance of each 

model, this paper uses two datasets for the validation of related 

models, including dataset 1 and dataset 2. Specifically, based on 

the ROI extraction of infrared images, the acquisition time of 

each fault type is divided into 5 parts equally, and there are 30 

samples in each time zone, then dataset 1 is a sample grid 

consisting of 5 time zones, including zone 1 (0-5min), zone 2 

(5-10min), zone 3 (10-15min), zone 4 (15-20min), and zone 5 

(20-25min), each zone is 5 minutes long and contains 120 

samples (4 fault types × 30 samples). Dataset 2, on the other 

hand, is based on the original data and is augmented with data 

using CGAN. The specific operation is as follows: the infrared 

images in a single time zone under each fault type are used as 

the original images, and constraints such as image size and 

number are added to generate 90 infrared images, i.e., the 

sample size in a single time zone under each fault type is 

expanded from 30 to 120, and the total sample size of dataset 2 

eventually reaches 4 times that of dataset 1. For example, the 
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infrared images under four fault types in zone 3 of Dataset 1 are 

shown in Figure 16. 

It is uniformly stated that the concepts such as early fault 

diagnosis and early operation stage of the diesel engine 

mentioned in the following of this paper are for time zone 1, i.e., 

the first 5 minutes of diesel engine operation.

 

Fig. 16. Infrared images of diesel engines of four fault types: (a) NC, (b) SCM, (c) MCM, (d) AFB.

As shown in Figure 16, the differences between the infrared 

images of different fault types are very small under the effect of 

heat conduction of mechanical equipment, and it is difficult to 

distinguish them visually, so artificial intelligence (AI) 

techniques need to be introduced to assist in decision making. 

In this paper, the training and test sets are randomly divided 

according to the ratio of 8 to 2 for evaluating the performance 

of the model and adjusting the hyperparameters of the model. 

Specific descriptions of individual temporal zones in dataset 1 

and dataset 2 are given in Table 2 and Table 3, respectively. 

Table 2. Detailed description of a single zone in dataset 1. 

Fault types Class labels 
Number of 

training images 

Number of test 

images 

NC 1 24 6 

SCM 2 24 6 

MCM 3 24 6 

AFB 4 24 6 

Table 3. Detailed description of a single zone in dataset 2 

Fault types Class labels 
Number of 

training images 

Number of test 

images 

NC 1 96 24 

SCM 2 96 24 

MCM 3 96 24 

AFB 4 96 24 

It is worth noting that in the paper, due to the limitation of 

time and experimental equipment, experimental data was 

collected for each fault mode only once. However, to ensure that 

this single experiment's results are not influenced by other 

factors leading to potential errors, it may be more meaningful to 

conduct multiple sets of  experiments for each fault mode, and 

this aspect will be specifically developed in the future research. 

6.2. Parameter setting of the involved DL models 

In the paper, four DL models such as DCNN, SAE, RNN, and 

DNN are used for infrared image feature extraction, and finally, 

SR classifier is deployed for fault pattern recognition. Therefore, 

for DCNN, this paper uses the AlexNet model for feature 

parameter extraction. AlexNet model has a complex network 

structure consisting of multiple convolutional layers (CL), 

pooling layers (PL) and fully connected layers (FCL), and also 

uses ReLU activation function, dropout regularization and other 

techniques, which has the advantages of high accuracy and 

scalability. The emergence of AlexNet marks the rise of DCNN, 

which has led to significant progress in research in the field of 

CV. The detailed structure of the AlexNet model is shown in 

Table 4.

Table 4. Model structure and parameter settings of AlexNet.  

Layers Number of convolution kernels Convolution kernel size Input size Output size stride padding 

Input layer / / 227×227×3 / / / 

CL 1 96 11×11 227×227×3 55×55×96 4×4 0 

PL 1 1 3×3 55×55×96 27×27×96 2×2 / 

CL 2 256 5×5 27×27×96 27×27×256 1×1 2×2 

PL 2 1 3×3 27×27×256 13×13×256 2×2 / 

CL 3 384 3×3 13×13×256 13×13×384 1×1 1×1 

CL 4 384 3×3 13×13×384 13×13×384 1×1 1×1 

CL 5 256 3×3 13×13×384 13×13×256 1×1 1×1 

PL 3 1 3×3 13×13×256 6×6×256 2×2 / 

FCL 1 / / 6×6×256 4096 / / 

FCL 2 / / 4096 2048 / / 

FCL 3 / / 2048 4 / / 

Output layer / / / 4 / / 
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To verify the effectiveness and superiority of DCNN, DL 

models such as SAE, RNN and DNN are applied for 

comparative analysis. In the study of the paper, the long short-

term memory (LSTM) neural network and multilayer 

perceptron (MLP) in RNN and DNN are deployed for fault 

feature extraction and pattern recognition, respectively. The 

detailed parameter settings of the above models are shown in 

Table 5. 

Table 5. Parameter settings for releted comparison models. 

Models Size of the networks Activation functions Classifiers 

SAE [54000, 1024, 512, 128, 4] ReLU Softmax 

LSTM [54000, 100, 100, 4] Sigmoid Softmax 

MLP [54000, 512, 256, 128, 4] ReLU Softmax 

6.3. Results and discussion 

In the practical application of diesel engines, functional faults 

may occur at various stages of the operation process. Therefore, 

to prevent possible early faults and perform timely fault 

diagnosis and troubleshooting, this case divides the working 

process of the diesel engine according to time, aiming to verify 

the effectiveness of the data augmentation method proposed in 

this paper for early fault diagnosis of diesel engines. At the same 

time, the fault diagnosis results are compared with the DL 

models such as SAE, LSTM, and MLP to prove the superiority 

of the DCNN-based fault diagnosis method proposed in the 

paper. 

First, based on dataset 1, the above four DL models were 

used for fault pattern recognition, and each model was trained 

and tested 10 times for different time zones, and the specific 

classification results are shown in Table 6 and Figure 17, 

respectively.

Table 6. Classification results of dataset 1. 

Models  
Time zones 

Average 
0-5min 5-10 min 10-15 min 15-20 min 20-25 min 

DCNN 
Accuracy 65.42% 97.91% 99.58% 99.17% 100% 92.42% 

Std 0.0647 0.0208 0.0125 0.0250 0 0.0246 

SAE 
Accuracy 59.35% 93.33% 95% 90.42% 89.58% 85.54% 

Std 0.0648 0.0333 0.0947 0.0895 0.1074 0.0780 

LSTM 
Accuracy 57.08% 97.50% 95.83% 97.50% 100% 89.58% 

Std 0.0933 0.0276 0.0559 0.0382 0 0.0430 

MLP 
Accuracy 62.50% 95.83% 96.25% 97.50% 97.08% 89.83% 

Std 0.0833 0.0417 0.0542 0.0425 0.0647 0.0573 

Note: Std represents standard deviation. 

 

Fig. 17. Diagnostic accuracy of DCNN, SAE, LSTM and MLP in five time zones of dataset 1.

As seen in Table 6 and Figure 17, the average diagnostic 

accuracy of DCNN is the highest in all five independent time 

zones of dataset 1, and the overall average diagnostic accuracy 

is also the highest among the four models, reaching 92.42%. 

The other three models performed differently within each time 

zone, among which, MLP ends up with the second highest 

average diagnostic accuracy after DCNN with 89.83%, while 

SAE and LSTM have lower average diagnostic accuracies of 

85.54% and 89.58%, respectively. 

In terms of early fault diagnosis performance, the 
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classification accuracy of the four DL models for different fault 

patterns in the early operation stage of the diesel engine is 

mainly analyzed. First, it can be seen that the early fault 

diagnosis accuracy of all four DL models is low. Obviously, the 

early fault diagnosis accuracy of DCNN is 65.42%, which is 

still the highest among the four models, and LSTM has the 

lowest accuracy, which is only 57.08%. In terms of algorithm 

stability, the proposed DCNN method also has better 

performance, with the lowest standard deviation of 0.0246 

among the four models in terms of diagnostic accuracy within  

a single time zone and during the whole operation process, 

while SAE has the highest standard deviation of 0.0780. 

To show the performance of DCNN, SAE, LSTM, MLP in 

early fault diagnosis of the diesel engine, the confusion matrix 

of classification results of the above four models for the data of 

zone 1 in dataset 1 is shown in Figure 18.

 

Fig. 18. Classification results of four methods for zone1 of dataset 1: (a) DCNN; (b) SAE; (c) LSTM; (d) MLP.

In Figure 18, the highest diagnostic accuracy among the 10 

training and testing results is taken for each DL model. As can 

be seen from Figure 18, at the early operation stage of the diesel 

engine, the cylinder temperature and room temperature are close 

to each other, and the amount of model training data is 

insufficient, which causes some interference to the early fault 

diagnosis. By analyzing the above experimental results, it can 

be concluded that under the condition of dataset 1, the 

diagnostic accuracy of all four DL models for zone 1 is below 

80%, but from zone 2 onwards, the accuracy of each model has 

improved significantly, which indicates that the existing 

methods are not well adapted to early fault diagnosis task of the 

diesel engine. Therefore, it is important to study how to improve 

the early fault diagnosis accuracy of the diesel engine as much 

as possible based on the limited training data. In this paper, we 

propose a CGAN-based data augmentation method to expand 

the amount of data in the early operation stage of the diesel 

engine and apply DL models such as DCNN for fault pattern 

recognition. With the early fault diagnosis technology, we can 

detect diesel engine faults in time, reduce engine downtime due 
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to faults, improve equipment reliability, reduce maintenance 

costs and machine downtime, and thus reduce production costs 

and improve economic efficiency. 

Based on dataset 2, DCNN, SAE, LSTM, MLP are used for 

fault pattern recognition, and each model is trained and tested 

10 times for different time zones, and the specific classification 

results are shown in Table 7 and Figure 19, respectively.

Table 7. Classification results of dataset 2. 

Models  
Time zones 

Average 
0-5min 5-10 min 10-15 min 15-20 min 20-25 min 

DCNN 
Accuracy 98.23% 100% 100% 100% 100% 99.65% 

Std 0.0148 0 0 0 0 0.0030 

SAE 
Accuracy 81.67% 100% 100% 100% 100% 96.33% 

Std 0.0502 0 0 0 0 0.0100 

LSTM 
Accuracy 94.27% 100% 100% 100% 100% 98.85% 

Std 0.0149 0 0 0 0 0.0030 

MLP 
Accuracy 81.58% 99.38% 100% 99.69% 100% 96.13% 

Std 0.0633 0.0125 0 0.0094 0 0.0170 

 

Fig. 19. Diagnostic accuracy of DCNN, SAE, LSTM and MLP in five time zones of dataset 2.

As can be seen from Table 7 and Figure 19, the average 

diagnostic accuracy of DCNN is the highest or tied for the 

highest in all five independent time zones of dataset 2, and the 

overall average diagnostic accuracy is also the highest among 

the four models, reaching 99.65%. In addition, LSTM ends up 

with the second highest average diagnostic accuracy after 

DCNN, reaching 98.85%, while SAE and MLP have relatively 

lower average diagnostic accuracies of 96.33% and 96.13%, 

respectively. 

In terms of early fault diagnosis performance, in line with 

the previous study, we mainly analyze the classification 

accuracy of the four DL models for different fault patterns in the 

early operation stage of the diesel engine. First, it can be clearly 

seen that the early fault diagnosis accuracy of all four DL 

models has improved significantly after CGAN-based data 

augmentation of the dataset. Among them, the early fault 

diagnosis accuracy of DCNN is 98.23%, which is still the 

highest among the four models, and the lowest accuracy is MLP, 

which is 81.58%. Secondly, the algorithm stability of the four 

DL models has also achieved a substantial improvement. The 

DCNN proposed in this paper also has the best performance in 

terms of algorithm stability, and its standard deviation of 

diagnostic accuracy is the lowest among the four models in a 

single time zone and the whole operation process, which is 

0.0030. Meanwhile, the standard deviation of diagnostic 

accuracy of MLP is the largest, reaching 0.0170. 

Furthermore, in order to show the performance of DL 

models in early fault diagnosis of the diesel engine after 

applying the CGAN-based data augmentation method, the 

confusion matrix of the classification results of the above four 

models for the data of zone 1 in dataset 2 is shown in Figure 20.
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Fig. 20. Classification results of four models for the data of zone 1 in dataset 2: (a) DCNN; (b) SAE; (c) LSTM; (d) MLP.

In Figure 20, the highest diagnostic accuracy among the 10 

training and testing results is taken for each DL model. Since all 

the above four DL models used the SR classifier for fault pattern 

recognition, the analysis results for dataset 1 and dataset 2 can 

show that DCNN has better infrared image feature extraction 

capability, which is more beneficial for subsequent fault pattern 

recognition. Moreover, during the 25 minutes of diesel engine 

operation, a large part of the time is in the state of gradual 

temperature rise, so the classification results of both dataset 1 

and dataset 2 can achieve the highest fault diagnosis accuracy 

and the lowest standard deviation, which proves that DCNN has 

better algorithm stability and stronger resistance to temperature 

fluctuation interference when performing fault pattern 

recognition of the diesel engine. 

To quantify the effect of CGAN-based data augmentation 

method on the improvement of fault diagnosis accuracy of 

DCNN, SAE, LSTM, MLP in the early operation stage and 

whole operation cycle of the diesel engine, the related 

calculation results are shown in Table 8 and Table 9. 

Table 8. Comparison results of the average fault diagnosis 

accuracy and its standard deviation for dataset 1 and dataset 2 

over the whole operation cycle 

Models Dataset Accuracy    Comparison 1 Std Comparison 2 

DCNN 
Dataset 1 92.42% 

7.82% 
0.0246 

87.80% 
Dataset 2 99.65% 0.0030 

SAE 
Dataset 1 85.54% 

12.61% 
0.0780 

87.18% 
Dataset 2 96.33% 0.0100 

LSTM 
Dataset 1 89.58% 

10.35% 
0.0430 

93.02% 
Dataset 2 98.85% 0.0030 

MLP 
Dataset 1 89.83% 

7.01% 
0.0573 

70.33% 
Dataset 2 96.13% 0.0170 

Table 9. Comparison results of the average fault diagnosis 

accuracy and its standard deviation for data of zone 1 under 

dataset 1 and dataset 2 

Models Dataset Accuracy Comparison 1 Std Comparison 2 

DCNN 
Dataset 1 65.42% 

50.15% 
0.0647 

77.13% 
Dataset 2 98.23% 0.0148 

SAE 
Dataset 1 59.35% 

37.61% 
0.0648 

22.53% 
Dataset 2 81.67% 0.0502 

LSTM 
Dataset 1 57.08% 

65.15% 
0.0933 

84.03% 
Dataset 2 94.27% 0.0149 

MLP 
Dataset 1 62.50% 

30.53% 
0.0833 

24.01% 
Dataset 2 81.58% 0.0633 

In Table 9, Comparison 1 and Comparison 2 indicate the 

degree of improvement in fault diagnosis accuracy and the 
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degree of decrease in its standard deviation before and after data 

augmentation using CGAN, respectively. According to Table 6 

and Table 7, the comparative results of fault diagnosis accuracy 

of DCNN, SAE, LSTM, and MLP in five time zones during the 

diesel engine operation are shown in Figure 21.

 

Fig. 21. Comparison results of diagnostic accuracy of DCNN, SAE, LSTM and MLP in five time zones.

According to Table 8, Table 9, and Figure 21, it is evident 

that after data augmentation based on CGAN, the average 

diagnostic accuracy of the above four models has been 

improved to a certain extent in various time zones and overall. 

SAE has the highest overall average accuracy improvement, 

reaching 12.61%, while LSTM has the highest early fault 

diagnosis accuracy improvement, reaching 65.15%. In terms of 

algorithm stability, the above four models have significantly 

improved in various time zones and overall. LSTM has the most 

significant reduction in overall and early fault diagnosis 

accuracy standard deviation, reaching 93.02% and 84.03%, 

respectively.   

Furthermore, as can be seen from Table 2 and Table 3, zone 

1 after data augmentation has 480 infrared images, while the 

whole time zone before data augmentation contains 600 infrared 

images. By comparing the accuracy of dataset 1 in Table 8 and 

dataset 2 in Table 9, it can be concluded that the accuracy of the 

diesel engine early fault diagnosis has been greatly improved 

after data augmentation, in which the accuracy of early fault 

diagnosis of DCNN and LSTM has exceeded the accuracy in 

the whole time zone, while the accuracy of SAE and MLP has 

reached the comparable level as that in the whole time zone. It 

is enough to prove that a small number of datasets can yield 

comparable classification accurately when expanded through 

data augmentation methods as compared to a large real-world 

dataset. 

In summary, it can be concluded that the data augmentation 

method based on CGAN proposed in the paper can greatly 

improve the accuracy and algorithm stability of DL models for 

fault diagnosis of the diesel engine. Moreover, relevant 

experimental results indicate that DCNN has better feature 

extraction ability and algorithm stability compared to SAE, 

LSTM, and MLP, especially solving the engineering problem of 

low early fault diagnosis of diesel engines. The accuracy of 

early fault diagnosis based on DCNN can reach 98.23%. 

Therefore, the proposed IRT-DCNN based fault diagnosis 

method for diesel engines using CGAN based data 

augmentation has strong theoretical and practical value. 

6.4. Effect evaluation of data augmentation 

Before extracting infrared image features, this paper uses a data 

augmentation method based on CGAN to generate infrared 

images under certain constraints, to achieve the effect of data 

expansion. From Figure 14, it can be seen that the infrared 

image generated by CGAN is very close to the original image. 
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Fig. 22. Comparison of feature visualization before and after CGAN-based data augmentation.

To verify the role of CGAN-based data augmentation 

method in early fault diagnosis of diesel engines, the features of 

DCNN after the last layer of the fully connected operation 

during fault pattern recognition are selected for visualization 

based on the data of zone 1 in dataset 1 and dataset 2, as shown 

in Figure 22. 

It can be clearly seen from Figure 22 that after data 

augmentation based on CGAN, the separation of features has 

been greatly improved, which is conducive to further feature 

extraction and pattern recognition. To further verify the effect 

of data augmentation based on CGAN on fault pattern 

recognition of the diesel engine, dataset 3 and dataset 4 are 

constructed on the basis of original data, as shown in Table 10 

and Table 11, respectively. 

Table 10. Detailed description of dataset 3. 

Fault types 
Class 

labels 

Number of training 

images 

Number of test 

images 

NC 1 120 30 

SCM 2 120 30 

MCM 3 120 30 

AFB 4 120 30 

Table 11. Detailed description of dataset 4. 

Fault types Class labels 
Number of training 

images 

Number of test 

images 

NC 1 240 60 

SCM 2 240 60 

MCM 3 240 60 

AFB 4 240 60 

It should be noted that dataset 3 is the original data without 

zone division of the diesel engine operation process; dataset 4 

is the result of data augmentation of dataset 3 using CGAN, and 

since dataset 3 itself is all the data of the diesel engine during 

25 minutes of operation time, which is already more than 

sufficient, considering the limited computer resources, dataset 4 

is only expanded to twice of dataset 3. 

For dataset 3 and dataset 4, DCNN, SAE, LSTM, and MLP 

are trained and tested 10 times with the same settings of relevant 

network parameters, respectively, then the comparison results 

are shown in Table 12. 

As can be seen from Table 12, the CGAN-based data 

augmentation method can effectively improve the accuracy of 

fault pattern recognition of the diesel engine.

Tab. 12. Comparison results of average fault diagnosis accuracy and its standard deviation for each model under dataset 3 and dataset 4 

Model Dataset Average accuracy Comparison 1 Std Comparison 2 

DCNN 
Dataset 3 95.83% 

3.01% 
0.0105 

55.24% 
Dataset 4 98.71% 0.0047 

SAE 
Dataset 3 91.91% 

2.82% 
0.0316 

55.06% 
Dataset 4 94.50% 0.0142 

LSTM 
Dataset 3 86.42% 

9.97% 
0.0439 

60.59% 
Dataset 4 95.04% 0.0173 

MLP 
Dataset 3 85.83% 

8.40% 
0.0648 

36.73% 
Dataset 4 93.04% 0.0410 
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Among the four DL models, DCNN has the highest average 

diagnostic accuracy of 98.71%, while MLP has a relatively low 

diagnostic accuracy of 93.04%, LSTM has the largest 

improvement in average diagnostic accuracy of 9.97%, and the 

other three DL models also have different degrees of 

improvement in fault diagnosis accuracy after CGAN based 

data augmentation. On the other hand, DCNN has the best 

algorithm stability and is least affected by the variation of 

cylinder surface temperature. After CGAN-based data 

augmentation, the algorithm stability of LSTM improved the 

most, whose standard deviation of the average fault diagnosis 

accuracy decreased by 60.59%, and the algorithm stability of 

the other three DL models also improved to different degrees. 

7. Conclusions 

In this paper, IRT is introduced into diesel engine condition 

monitoring, and a fault diagnosis method based on CGAN and 

DCNN of diesel engines is proposed. Aiming at the real 

problems such as low early fault diagnosis accuracy of diesel 

engines and high influence by temperature fluctuation, CGAN 

is used to perform data augmentation on infrared image datasets, 

and then DCNN is deployed to automatically extract infrared 

image fault features, and the effectiveness and superiority of the 

proposed method are verified by comparing and analyzing with 

DL models such as SAE, LSTM and MLP. In summary, the 

innovative work of this paper is as follows:   

(1) An effective fault diagnosis method of diesel engines is 

proposed by combining IRT and DCNN, which can 

automatically extract fault features from infrared images, and 

the method has excellent algorithmic stability and resistance to 

temperature fluctuation interference;   

(2) The CGAN-based data augmentation method applied in 

this paper can not only substantially improve the accuracy and 

algorithmic stability of early fault diagnosis of diesel engines, 

but also effectively improve the diagnosis accuracy and 

algorithmic stability throughout the operation process and in 

each time zone, and the method is also applicable to DL models 

such as SAE, LSTM and MLP; 

(3) The experimental results show that the DCNN-based 

fault diagnosis method proposed in this paper has better 

classification effect and algorithm stability compared with SAE, 

LSTM and MLP, and can effectively identify different fault 

patterns.
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