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Highlights  Abstract  

▪ Dynamic model of the folding wing 

mechanism with joint clearances is developed 

and solved. 

▪ The system reliability models with failure 

correlation are established. 

▪ The new evaluation methods for the system 

reliability models are proposed. 

▪ Variation rules of system reliability with 

different distribution parameters are analyzed. 

 The reliability of folding wing deployment performance greatly impacts 

flight vehicle reliability. Based on the dynamic analysis theory, the 

deployment dynamic model of folding wing mechanism with joint 

clearances is established and solved. Considering the failure correlation, 

the system reliability models are developed for both cases, without 

considering synchronization and considering synchronization. For the 

former, a solution method combining saddle point approximation and 

numerical integration is proposed. For the latter, an estimation method 

based on a combination of the fourth order moment Pearson distribution 

family and the numerical integration is proposed. The efficiency and 

accuracy of the proposed methods are verified through examples. In 

addition, the trend of the system reliability change when the distribution 

parameters of random variables are different is also analyzed. From the 

perspective of improving reliability, the above study can provide 

theoretical guidance and data support for the design, manufacturing and 

service process of the folding wing mechanism system. 
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1. Introduction 

As a vital flight control unit, the folding wing mechanism 

ensures flight safety, stability, and trajectory adjustments. Its 

deployment performance reliability directly impacts the flight 

vehicle’s mission success. Therefore, it is necessary to evaluate 

the reliability of the deployment performance of the folding 

wing system. 

Generally, successful deployment is achieved when the 

mechanism’s deployment time remains under a threshold. In 

harsh environments, this also involves synchronization 

reliability, where the time span between maximum and 

minimum deployment must stay below a threshold. These 

reliability indicators are related to the deployment time, so the 

dynamic of the folding wing mechanism with clearances needs 

to be modeled and solved. Many scholars have studied the 

dynamics of planar multibody systems containing joint 

clearances. Flores et al. 10,11 examined contact forces in 

revolute joints with clearances, and solved a crank-slider 

mechanism dynamic model using numerical integration. 

Mukras et al. 28 deduced hinge wear depth variation after long-

term operation. Zheng et al. 43 built a dynamic model for a 
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flexible multilink high-speed press with joint clearance. Li et al. 

23,24 focused on deployment mechanisms. They developed a 

model for rigid-flexible solar sail system dynamics with joint 

clearances. Li et al. 21 simulated spatial deployment 

mechanisms, studying the impacts of clearance, damping, 

friction, gravity, and flexibility on dynamic performance. These 

studies offer valuable insights for establishing and solving 

dynamic models for folding wing mechanisms with clearances. 

Traditional series system reliability calculation involves the 

assumption of independent component failures. However, in 

complex engineering scenarios, component failures often 

exhibit statistical correlation, which makes the independence 

assumption of traditional models invalid. Failure correlation 

was first proposed by Epler and has been studied in depth by 

many scholars. Marshall et al. 26 first proposed  

a multidimensional exponential distribution model, which is the 

basis for many subsequent failure correlation analysis models. 

Fleming 9 proposed the 𝛽  factor model, which has the 

advantages of few parameters, simplicity and flexibility. 

However, this model is only applicable to second-order 

redundant systems. Vaurio et al. 31 proposed the basic 

parameter (BP) model, which can be applied to calculate the 

failure probability of each order directly from the known failure 

data. Fleming et al. 8 proposed the Multiple Greek Letter (MGL) 

model on the basis of the 𝛽 factor model, which is widely used 

in failure correlation analysis. Mosleh et al. 27 proposed the 𝛼 

factor model, which is more accurate than the 𝛽 factor model. 

Currently, polynomial multilevel binomial failure rate 15 and 

parametric mixture 18 models are also proposed for failure 

correlation analysis. Zhang et al. 38 proposed a unit conditional 

probability based on safety, failure, and hybrid information to 

approximate the reliability calculation problem for series, 

parallel, and voting systems when considering failure 

correlation. Although the above methods are able to deal with 

the failure correlation problem, they fail to deeply analyze the 

causes of system failure correlation and the interaction law. Xie 

et al. 35 proposed a system-level load-strength interference 

model, which not only avoids the assumption of "failure 

independence", but also does not rely on the correlation 

coefficient. This research can provide a theoretical basis for the 

establishment of reliability models for similar engineering 

systems. 

At present, many reliability evaluation methods have been 

derived for various reliability problems. Monte Carlo 

simulation (MCS) is the most classical and widely used 

numerical simulation method 13,22. Zhuang et al. 48 applied 

MCS to obtain the dynamic wear reliability of aircraft locking 

mechanism. However, the efficiency of MCS is difficult to be 

accepted when dealing with time-consuming engineering 

simulations (multibody system dynamics). The first-order 

reliability method (FORM) 5,14 is very efficient. But FORM 

will have large errors when dealing with high nonlinear 

problems. In order to balance the efficiency and accuracy of 

reliability evaluation, the response surface method 3,36 has 

been proposed. Support vector machine 17,39 has also been 

widely used in reliability assessment. The nonlinear fitting 

capability of artificial neural networks is also strong, so they can 

also be used in surrogate models 7,44. The Kriging model 33,34 

also has a good fitting effect on the problems of high 

nonlinearity and local response mutation. The maximum 

entropy method 19,20,47 is a method to approximate the output 

response probability density function. The saddle point 

approximation (SPA) method 4,45 can solve the probability 

density function (PDF) of the output response quickly and 

accurately. In addition, the hybrid dimension reduction method 

37 can still analyze the mechanism reliability. The Pearson 

frequency curve method based on the first four moment is to 

approximate the PDF by the Pearson distribution family 

25,40,41,42. All these types of methods mentioned above have 

achieved good results in different reliability problems. 

Currently, the majority of research centers on the dynamic 

attributes of deployment mechanisms, with limited attention to 

their reliability evaluation. Fewer still delve into the reliability 

assessment of folding wing deployment mechanisms. Gao et al. 

12 analyzed the reliability of deployment synchronization. 

However, this study does not consider not only the mechanism 

joint clearance but also the failure correlation under external 

random aerodynamic loads. Pang et al. 29 calculated the 

deployment performance and impact resistance reliability of the 

folding tail system by the response surface method and MCS. 

However, the influence of joint clearance and the number of 

deployments are not considered. Pang et al. 30 also conducted 

an in-depth study on the synchronization reliability. But this 

method does not consider the correlation caused by load-sharing 
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characteristics. Wang et al. 32 considered the failure correlation 

of the folding wing system and solved the deployment reliability 

through a system-level load-strength interference model. 

Nonetheless, this study did not analyze the synchronization, and 

the conditional deployment time distribution assumed normal, 

limiting applicability.  

To comprehensively address the shortcomings of the above 

studies and to improve the computational efficiency as much as 

possible in the reliability assessment process, we took the 

folding wing deployment mechanism as the object of this study, 

and conducted an in-depth study on the reliability assessment 

process including failure correlation by taking into full 

consideration the problems that have not been considered in the 

above studies. In addition, to the best of our knowledge, there is 

no systematic report on the reliability assessment of deployment 

time and deployment synchronization of the folding wing 

system with clearance considering failure correlation, which is 

also the purpose of this study. In this study, we considered 

failure correlation due to external random loads and joint 

clearances in the folding wing system. The deployment time 

reliability and the deployment synchronization reliability with 

multiple deployments are also analyzed. Furthermore, 

reliability assessment methods are proposed to efficiently solve 

the reliability.  

In this paper, the contributions are summarized as follows: 

(1) The deployment dynamic model of the folding wing 

mechanism with joint clearances is established and solved. (2) 

The reliability models considering failure correlation are 

established which categorized as with or without 

synchronization. (3) Proposing estimation methods for each 

reliability model, the efficiency and accuracy of the proposed 

methods are verified by examples. In addition, this paper also 

studies the reliability variation trend when the random variable 

distribution parameters are different. It can provide theoretical 

guidance and data support for the design, manufacture, and 

work of similar folding wing deployment mechanisms from the 

perspective of reliability. 

The organization of this paper is as follows. Section 2 

presents the establishment and solution process of the dynamic 

model of the folding wing mechanism with joint clearances. 

Section 3 shows the system reliability model of the folding wing 

mechanism considering failure correlation, and proposes the 

corresponding reliability evaluation method to evaluate the 

system reliability. In Section 4, the correctness of the proposed 

method is illustrated by the numerical examples, and the system 

reliability with different random variable parameters is 

calculated. The conclusion is given in Section 5. 

2. Dynamic analysis of folding wing mechanism with joint 

clearance 

2.1. Mechanism composition and transmission principle 

In this study, there are four groups of folding wing mechanisms, 

which are symmetrically arranged in the upper and lower planes 

of the flight vehicle. There are two groups of folding 

mechanisms in the upper plane and two groups in the lower 

plane. As shown in Figure 1, each group of mechanisms 

contains electric cylinder, main wing, auxiliary wing and slider. 

 

Fig. 1. Structure of folding wing system. 
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Fig. 2. Folding wing mechanism composition.

The deployment actions of the four groups of folding wing 

mechanisms are all completed parallel to the XOY plane, the 

main wing can be simplified as a crank, while the auxiliary wing 

can be simplified as a connecting rod. As shown in Figure 2, 

taking the first group of folding wing mechanisms as an 

example, in the unfolding process, the cylinder will start, the 

driving force will push the slider to move along the slot, so that 

the crank will rotate and unfold around the rotation axis A. 

Finally, the slider reaches the specified locking position, at this 

time the whole deployment process is finished. 

2.2 Contact force analysis of joint with clearance 

Generally, the rotating pairs of the mechanism are not ideal. As 

shown in Figure 3, the eccentricity vector 𝒆  is introduced to 

describe the relative position between the journal and the 

bearing, which is expressed as 11: 

𝐞 = 𝐫𝑗 + 𝐀𝑗𝐬
′
𝑗
𝑐
− 𝐫𝑖 − 𝐀𝑖𝐬

′
𝑖
𝑐
  (1) 

where, 𝒓𝑗 and 𝒓𝑖 are the generalized coordinates of the center of 

mass for the journal and the bearing components, respectively. 

𝑨𝑗  and 𝑨𝑖  are the transformation matrices of the local 

coordinate system for the journal and the bearing components 

with respect to the generalized coordinate system, respectively. 

𝒔′𝑗
𝑐
 and 𝒔′𝑖

𝑐
 are the position vectors of the journal center and the 

bearing center in the local coordinate system, respectively.

 

Fig. 3. Relative position of bearing and journal.

When the journal and the bearing collide with each other, as 

shown in Figure 4, define the unit vector 𝒏 as the normal vector 

at the time of the contact collision. 
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Fig. 4. Collision of bearing and journal.

During the collision phase, there will be a certain penetration 

depth 𝛥 between the journal and the bearing, which is calculated 

as: 

∆= (eTe)1/2 − (𝑅𝑖 − 𝑅𝑗) = (e
Te)1/2 − 𝐶𝑟                            (2) 

where, 𝑅𝑖 and 𝑅𝑗 represent the radii of the bearing and journal, 

respectively. 𝐶𝑟 is the clearance size. 

Denoting the contact points between the journal and the 

bearing during their collision as 𝑄𝑗   and 𝑄𝑖  . The velocity 

calculation formulas for contact points 𝑄𝑗   and 𝑄𝑖   can be 

expressed as follows: 

{
𝐫̇𝑗
𝑄 = 𝐫̇𝑗 + 𝐀̇𝑗𝐬

′
𝑗
𝑐
+ 𝑅𝑗𝐧̇

𝐫̇𝑖
𝑄 = 𝐫̇𝑖 + 𝐀̇𝑖𝐬

′
𝑖
𝑐
+ 𝑅𝑖𝐧̇

  (3) 

where, the superscripted black dots of the vector represents its 

first derivative concerning time. 

The normal and tangential projections of the relative contact 

velocity are: 

{
𝑣𝑛 = (𝐫̇𝑗

𝑄 − 𝐫̇𝑖
𝑄)

𝐓
𝐧

𝑣𝑡 = (𝐫̇𝑗
𝑄 − 𝐫̇𝑖

𝑄)
𝐓
𝐭

   (4) 

where, 𝒕 represents the unit tangent vector. 

The expression for the normal contact force 𝐹𝑁 based on the 

L-N model is given by 10,11,28: 

𝐹𝑁 = 𝐾Δ1.5 (1 +
3(1−𝐶𝑒

2)

4

𝛿̇

𝛿̇0
)  (5) 

where, 𝐶𝑒  represents the restitution coefficient, 𝛿̇  denotes the 

penetration velocity, 𝛿̇0  represents the initial penetration 

velocity. 𝐾  represents the stiffness coefficient. It can be 

expressed as: 

𝐾 =
4

3(ℎ𝑖+ℎ𝑗)
(
𝑅𝑖𝑅𝑗

𝑅𝑖+𝑅𝑗
)
0.5

ℎ𝑖 =
1−𝜈𝑖

2

𝐸𝑖
ℎ𝑗 =

1−𝜈𝑗
2

𝐸𝑗
     (6) 

where, 𝐸𝑖 and 𝐸𝑗 are the modulus of elasticity of the bearing and 

journal, respectively. 𝜈𝑖   and 𝜈𝑗  are the Poisson's ratio of the 

bearing and journal, respectively. 𝑅𝑖 and 𝑅𝑗 are the radii of the 

inner circle of the bearing and the outer circle of the journal, 

respectively. 

The calculation equation for the friction force proposed by 

Ambrósio is given as follows 1: 

𝐹𝑇 = −𝑐𝑓𝑐𝑑𝐹𝑁 𝑠𝑔𝑛(𝑣𝑡)  (7) 

where, 𝑐𝑓  denotes the friction coefficient, 𝑠𝑔𝑛(𝑥)  represents 

the sign function, and 𝑐𝑑 is a dynamic correction parameter that 

depends on the tangential velocity. 

The centroids of the bearing and journal components 

experience resultant forces: 

𝐅𝑖 = 𝐹𝑁𝐧 + 𝐹𝑇𝐭𝐅𝑗 = −𝐅𝑖   (8) 

The moments experienced at the centroids of the bearing and 

journal components can be determined as: 

𝑀𝑖
𝑐 = 𝐫𝑖

𝑐 × 𝐅𝑖𝑀𝑗
𝑐 = 𝐫𝑗

𝑐 × 𝐅𝑗   (9) 

2.3 Dynamics of folding wing mechanism with joint 

clearance 

As shown in Figure 5, the origin of the generalized coordinates 

is located at A. The generalized coordinates of the crank, 

connecting rod, and slider are denoted as (𝑥1, 𝑦1 , 𝜃1) , 

(𝑥2, 𝑦2 , 𝜃2)  and (𝑥3, 𝑦3, 𝜃3) , respectively. The crank and 

connecting rod have lengths of 𝑙1 and 𝑙2. The distance between 

the slider and the X-axis is denoted as 𝑐 . Considering the 
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inclusion of clearances in the rotational pairs B and C. The 

constraint equations of the folding wing mechanism are as 

follows: 
𝚽 =

{
 
 

 
 𝑥1 −

1

2
𝑙1 𝑐𝑜𝑠 𝜃1

𝑦1 −
1

2
𝑙1 𝑠𝑖𝑛 𝜃1

𝑦3 + 𝑐
𝜃3 }

 
 

 
 

= 𝟎  (10) 

 

Fig. 5. A set of folding wing mechanism with joint clearances.

According to section 2.2, the contact forces 𝑭1
𝑄

  and 𝑭2
𝑄

  in 

the joint B, can be determined: 

{
𝐅1
𝑄 = 𝐹1𝑛𝐧1 + 𝐹1𝑡𝐭1 = [𝐹1𝑥

𝑄 , 𝐹1𝑦
𝑄 ]

𝑇

𝐅2
𝑄 = −𝐅1

𝑄 = [−𝐹1𝑥
𝑄 , −𝐹1𝑦

𝑄 ]
𝑇   (11) 

where, 𝒏1 and 𝒕1 are the unit normal and tangent vectors in joint 

B. 

Based on Eq. (8), the expressions for the moments 𝑀1
𝑐 and 

𝑀2
𝑐 at the crank and connecting rod centroids are given by: 

{
𝑀1
𝑐 = 𝐫𝑂1𝑄1 × 𝐅1

𝑄

𝑀2
𝑐 = 𝐫𝑂2𝑄2 × 𝐅2

𝑄    (12) 

where, 𝒓𝑂1𝑄1  and 𝒓𝑂2𝑄2  are the radius vectors of the crank and 

connecting rod. 

Similarly, the contact forces in the joint C, denoted as 𝑭3
𝑄

 

and 𝑭4
𝑄

 , the corresponding moments exerted at the slider and 

connecting rod are 𝑀3
𝑐 and 𝑀4

𝑐. 

The folding wing mechanism is also subject to other external 

forces. The electric cylinder, applies a driving force directly to 

the center of mass of the slider. The direction always points 

towards the positive X-axis. The segmental function expression 

for the variation of the driving force 𝐹𝑑 with time 𝑡 is: 

𝐹𝑑 = {

100𝑘𝑑𝑡 0 ≤ 𝑡 < 0.01
𝑘𝑑 0.01 ≤ 𝑡 ≤ 0.61

−100𝑘𝑑𝑡 + 62𝑘𝑑 0.61 < 𝑡 ≤ 0.62
    (13) 

where, 𝑘𝑑 is the peak of the driving force. 

During the unfolding process, both the main wing and the 

auxiliary wing experience aerodynamic loads. The centers of 

mass of the crank and the connecting rod are subjected to 

aerodynamic drag forces, denoted as 𝑓1  and 𝑓2 , which act 

continuously in the positive X-axis direction: 

𝑓𝑖 =
𝜌𝑎

2
𝐶0𝑏𝑖|𝑙𝑖 𝑠𝑖𝑛 𝜃𝑖|𝑉𝑞

2 𝑖 = 1,2  (14) 

where, 𝜌𝑎 is the air density. 𝐶0 is the air drag coefficient. 𝑏𝑖 are 

the wing thickness. |𝑙𝑖 𝑠𝑖𝑛 𝜃𝑖|  is the projection length of the 

folded wing on the Y-axis. 𝑉𝑞   is the flight speed of the flight 

vehicle. 

The flight attitude (pitch angle) of the flight vehicle also 

influences the unfolding dynamics. When the folding wing is 

not parallel to the ground, the gravitational force can be 

decomposed into two components along the X-axis and Z-axis 

directions. The gravitational component along the X-axis will 

inevitably impact the unfolding behavior. As shown in Figure 6, 

when the angle between the flight direction and the vertical 

upward direction of the ground is acute, the pitch angle 𝛿  is 

defined as positive. The magnitude of 𝐹𝛿 can be calculated as: 

𝐹𝛿
𝑖 = |𝑚𝑖𝑔 𝑠𝑖𝑛 𝛿| 𝑖 = 1,2,3  (15) 

where, 𝑚𝑖  is the mass of the ith component, 𝑔  is the 

acceleration of gravity. 
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Fig. 6. The flight attitude of flight vehicle.

Figure 7 illustrates the force distribution on the crank, 

connecting rod and the slider. The generalized force vector 𝑸 

can be derived: 

𝐐 =

[
 
 
 
 
 
 
 
 
 
 
 𝑓1 +𝑚1𝑔 𝑠𝑖𝑛 𝛿 + 𝐹1𝑥

𝑄

𝐹1𝑦
𝑄

𝑀1
𝑐

𝑓2 +𝑚2𝑔 𝑠𝑖𝑛 𝛿 − 𝐹1𝑥
𝑄 − 𝐹3𝑥

𝑄

−𝐹1𝑦
𝑄 − 𝐹3𝑦

𝑄

𝑀2
𝑐 +𝑀4

𝑐

𝑚3𝑔 𝑠𝑖𝑛 𝛿 + 𝐹𝑑 + 𝐹3𝑥
𝑄

𝐹3𝑦
𝑄

𝑀3
𝑐 ]

 
 
 
 
 
 
 
 
 
 
 

  (16) 

The dynamic equations of the folding wing mechanism can 

be formulated in the index-3 form: 

{
𝐌𝐪̈ +𝚽𝐪

𝑇𝛌 = 𝐐

𝚽(𝐪, 𝑡) = 𝟎
   (17) 

where, 𝒒̈  represents the second derivative of the generalized 

coordinates. 𝜱𝒒
𝑇   denotes the transpose of the Jacobian matrix 

for constraint equations. 𝝀  represents the Lagrange multiplier 

vector. 𝑴  corresponds to the mass matrix, which can be 

expressed as: 

𝐌 = 𝑑𝑖𝑎𝑔(𝑚1, 𝑚1, 𝐽1, 𝑚2,𝑚2, 𝐽2, 𝑚3, 𝑚3, 𝐽3)     (18) 

where, 𝑚𝑖(𝑖 = 1,2,3) represents the mass of the ith component. 

𝐽𝑖(𝑖 = 1,2,3)  represents the moment of inertia for the ith 

component. These parameters can be further described as: 

{
𝑚𝑖 = 𝜌𝑖𝑉𝑖

𝐽𝑖 =
1

12
𝑚𝑖(𝑙𝑖

2 +𝑤𝑖
2)

𝑖 = 1,2,3  (19) 

where, 𝜌𝑖 represents the density of the ith component, while 𝑉𝑖 

denotes its volume. Additionally, 𝑤𝑖  corresponds to the width of 

the ith component. 

The core of the Baumgarte algorithm 2 lies in preventing 

constraint violation during the numerical solution of Eq. (17). 

Based on this, Eq. (17) can be rewritten as: 

[
𝐌 𝚽𝐪

𝑇

𝚽𝐪 𝟎
] [
𝐪̈
𝛌
] = [

𝐐

𝛄 − 2𝛼(𝚽𝐪𝐪̇ + 𝚽𝑡) − 𝛽
2𝚽
]       (20) 

where, 𝛼  and 𝛽  are stabilization coefficients. 𝜸 = 𝜱𝒒𝒒̈ =

−(𝜱𝒒𝒒̇)𝒒
𝒒̇ − 2𝜱𝒒𝑡𝒒̇ − 𝜱𝑡𝑡. 

 

Fig. 7. Force analysis of mechanism components.
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The dynamic simulation parameters are shown in Table 1. In 

this study, we defined the clearance sizes 𝐶𝑟
𝐵 and 𝐶𝑟

𝐶 in joints B 

and C as equal. This is because it is possible to reduce the 

number of random variables in one dimension, which 

accordingly reduces the samples used for the subsequent 

reliability analysis and reduces the computational burden. At the 

same time, such a definition does not materially affect the 

reliability models and assessment methods proposed in this 

study. It is the same with 𝑏 . Based on Eq. (20), a dynamic 

numerical simulation is conducted, the rotation angle of the 

main wing is illustrated in Figure 8. 

 

 

Table 1. Simulation parameters of folded wing mechanism. 

Parameters Value Parameters Value 

𝑙1 1500 mm 𝜌𝑎 1.293 kg/m3 

𝑤1 300 mm 𝑏1 = 𝑏2 = 𝑏 7mm 

𝜌1 2700 kg/m3 𝐶𝑟
𝐵 = 𝐶𝑟

𝐶 = 𝐶𝑟 2.5mm 

𝑙2 1300 mm 𝑅1
𝑏 , 𝑅2

𝑏  10 mm 

𝑤2 200 mm 𝑐 100 mm 

𝜌2 2700 kg/m3 𝐶𝑒 0.9 

𝑉3 0.001 m3 𝐸1 70 GPa 

𝜌3 7870 kg/m3 𝜈1 0.33 

𝑘𝑑 550 N 𝐸2 200 GPa 

𝑉𝑞  140 m/s 𝜈2 0.3 

𝛿 0 𝑐𝑓 0.1 

𝐶0 1   

 

Fig. 8. Main wing rotation angle 𝜃1.

3. Reliability analysis of folding wing mechanism system 

3.1. System reliability analysis without considering 

deployment synchronization 

3.1.1. Reliability model 

Considering the randomness of the operating conditions, 

actuator performance, design and assembly processes of the 

folding wing, 𝑉𝑞  , 𝛿 , 𝑏  and 𝑘𝑑  are treated as normal random 

variables. Since the sizes of bearings and journals on the folding 

wing components will have uncertainties in the manufacturing 

process, which usually obey normal distribution, and since the 

assembly mode is a clearance fit, there is uncertainty in the 

clearance size. Through statistical analysis, it can be known that 

the clearance sizes obey the normal distribution. It is important 

to note that 𝑘𝑑 , 𝑏  and 𝐶𝑟  for each set of folding wing are 

independent and identically distributed. Defining 𝑡𝑖(𝑖 =

1,2,3,4) as the actual deployment time for the ith set of folding 

wing. We can derive the following expression: 

𝑡𝑖 = 𝑔(𝑉𝑞 , 𝛿, 𝑘𝑑𝑖 , 𝑏𝑖 , 𝐶𝑟𝑖) 𝑖 = 1,2,3,4  (21) 

where, 𝑔(•) represents the deployment time response implicit 

function. 𝑘𝑑𝑖, 𝑏𝑖 and 𝐶𝑟𝑖 correspond to the peak of driving force, 

wing thickness and joint clearance size, respectively, for the ith 

set of folding wing. 

In this study, it is required that 𝑡𝑖 for each set of folding wing 

is less than the threshold 𝑇 . The deployment performance 

reliability 𝑅𝑖 for any set of folding wing can be expressed as: 

𝑅𝑖 = 𝑃𝑟{𝑔(𝑉𝑞 , 𝛿, 𝑘𝑑𝑖 , 𝑏𝑖 , 𝐶𝑟𝑖) ≤ 𝑇}  (22) 

In practical engineering, the components that make up a 

system often operate under the same random load environment 

35. Therefore, it is necessary to consider the failure correlation 

in the system reliability. Based on Eq. (22), it is evident that 

𝑡𝑖(𝑖 = 1,2,3,4)  are collectively influenced by 𝑉𝑞   and 𝛿 . The 

introduction of 𝑉𝑞  and 𝛿 results in interdependencies among the 

failures of the folding wings. When 𝑉𝑞  and 𝛿 are constant, 𝑡𝑖 is 
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solely determined by 𝑘𝑑𝑖, 𝑏𝑖 and 𝐶𝑟𝑖, then the failure events are 

considered to be mutually independent. The system conditional 

reliability 𝑅𝑆|𝑉𝑞,𝛿 can be determined as: 

𝑅𝑆|𝑉𝑞,𝛿 = ∏ 𝑃𝑟 {𝑡𝑖|𝑉𝑞,𝛿 ≤ 𝑇}4
𝑖=1    (23) 

where, 𝑡𝑖|𝑉𝑞,𝛿 = 𝑔(𝑘𝑑𝑖 , 𝑏𝑖 , 𝐶𝑟𝑖|𝑉𝑞 , 𝛿)  is the deployment time of 

the ith set of folding wing under the condition that 𝑉𝑞  and 𝛿 are 

fixed. 

Defining 𝑃𝑉𝑞,𝛿
∗ = 𝑃𝑟 {𝑡𝑖|𝑉𝑞,𝛿 ≤ 𝑇} (∀𝑖 = 1,2,3,4) , the 

probability of all four folding wing mechanisms in the system 

operating normally under random 𝑉𝑞  and 𝛿 is the mathematical 

expectation of their conditional reliability function: 

𝑅𝑠 = ∫ 𝑓𝑉𝑞(𝑉𝑞)𝑓𝛿(𝛿) [∏𝑃𝑟 {𝑡𝑖|𝑉𝑞,𝛿 ≤ 𝑇}

4

𝑖=1

] 𝑑𝛿𝑑𝑉𝑞
𝑉𝑞,𝛿

 

               = ∫ 𝑓𝑉𝑞(𝑉𝑞)𝑓𝛿(𝛿) [𝑃𝑉𝑞,𝛿
∗ ]

4
𝑑𝛿𝑑𝑉𝑞𝑉𝑞,𝛿

                         (24) 

where, 𝑓𝑉𝑞(𝑉𝑞)  and 𝑓𝛿(𝛿)  are the probability density functions 

of 𝑉𝑞  and 𝛿. 

Furthermore, after each flight mission, every set of folding 

wing mechanism needs to be disassembled and replaced. The 

conditional PDF of 𝑡𝑖|𝑉𝑞,𝛿   can be defined as ℎ𝑡𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿) . 

Then Eq. (24) can be rewritten as: 

𝑅𝑠 = ∫ 𝑓𝑉𝑞(𝑉𝑞)𝑓𝛿(𝛿) [∏ ∫ ℎ𝑡𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿)𝑑𝑡𝑖
𝑇

0
4
𝑖=1 ] 𝑑𝛿𝑑𝑉𝑞𝑉𝑞,𝛿

    (25) 

When a flight vehicle operates under a specified airspace, its 

flight velocity 𝑉𝑞  and flight attitude (pitch angle 𝛿) are constant. 

However, there are many airspaces in which the vehicle 

operates, which are defined here as 𝛺𝑗 , (𝑗 = 1,2,⋯ , 𝑛𝑎) . 

Statistical analysis of the obtained data shows that 𝑉𝑞  and 𝛿 of 

the flight vehicle in these airspaces follow the normal 

distribution. In this study, according to the task description and 

regulations given in the engineering project, the flight vehicle 

will complete multiple missions, not only that, in multiple 

missions, the flight vehicle needs to continue to work in the 

same airspace, which means that in the process of completing 

multiple missions, the folding wing mechanisms on the flight 

vehicle will be deployed in the same airspace. However, during 

the first mission, the airspace in which the flight vehicle is 

operating is random, and therefore 𝑉𝑞  and 𝛿 of the vehicle are 

random during the first mission. Upon completion of the first 

mission, the airspace in which the vehicle operates can be 

determined, which in turn allows for the determination of 𝑉𝑞  and 

𝛿 under subsequent missions. That is, 𝑉𝑞  and 𝛿 during the first 

mission are the observation values under the respective 

distributions, while 𝑉𝑞  and 𝛿 during the subsequent missions are 

equal to the observation values. Let 𝑡𝑖|𝑉𝑞,𝛿
𝑗

, 𝑗 = 1,2,⋯ ,𝑚  be 

defined as the deployment time of the ith set of folding wing 

under the fixed 𝑉𝑞   and 𝛿  during the jth deployment event. By 

arranging 𝑡𝑖|𝑉𝑞,𝛿
𝑗

  in ascending order, we obtain the order 

statistics 𝑡𝑖|𝑉𝑞,𝛿
(1) , 𝑡𝑖|𝑉𝑞,𝛿

(2) , ⋯ , 𝑡𝑖|𝑉𝑞,𝛿
(𝑚)

 . The probability density 

function of 𝑡𝑖|𝑉𝑞,𝛿
(𝑚)

 is: 

ℎ𝑡𝑖|𝑉𝑞,𝛿
(𝑚)

(𝑡𝑖|𝑉𝑞 , 𝛿) = 𝑚 [𝐻𝑡𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿)]
𝑚−1

ℎ𝑡𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿)     (26) 

where, 𝐻𝑡𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿)  represents the conditional cumulative 

distribution function (CDF) of 𝑡𝑖|𝑉𝑞,𝛿 . 

When 𝑉𝑞  and 𝛿 are fixed, the probability that the ith set of 

folding wing successfully unfolds in all 𝑚 flight missions can 

be expressed as: 

𝑃𝑟 {⋂ 𝑡𝑖|𝑉𝑞,𝛿
𝑗

≤ 𝑇𝑚
𝑗=1 } = 𝑃𝑟 {𝑡𝑖|𝑉𝑞,𝛿

(𝑚) ≤ 𝑇}  (27) 

The system deployment performance reliability after 𝑚 

flight missions is: 

𝑅𝑠
𝑚 = ∫ 𝑓𝑉𝑞(𝑉𝑞)𝑉𝑞,𝛿

𝑓𝛿(𝛿) [𝐻𝑡𝑖|𝑉𝑞,𝛿(𝑇|𝑉𝑞 , 𝛿)]
4𝑚

𝑑𝛿𝑑𝑉𝑞      (28) 

Considering the uncertainty associated with the actual 

number of completed missions 𝑚  during the designated 

operational period, it is typical to establish a predetermined total 

number of flight missions 𝑁𝑡  to be accomplished. The 

probability of successfully completing each individual mission 

is denoted by 𝑝𝑚, and the outcomes of mission completion are 

mutually independent. Consequently, the actual number of 

completed missions 𝑚 in 𝑁𝑡 planned flights follows a binomial 

distribution, which can be expressed as follows: 

𝑃𝑟{𝑚 = 𝑘} = 𝐶𝑁𝑡
𝑘 𝑝𝑚

𝑘 (1 − 𝑝𝑚)
𝑁𝑡−𝑘 𝑘 = 0,1,2,⋯ ,𝑁𝑡      (29) 

Based on Eq. (28)-(29), the expression for the system 

deployment performance reliability, without considering 

synchronization, can be obtained using the law of total 

probability: 

𝑅𝑠 = ∑ 𝐶𝑁𝑡
𝑘 𝑝𝑚

𝑘 (1 −
𝑁𝑡
𝑘=0

𝑝𝑚)
𝑁𝑡−𝑘 ⋅ ∫ 𝑓𝑉𝑞(𝑉𝑞)𝑉𝑞,𝛿

𝑓𝛿(𝛿) [𝐻𝑡𝑖|𝑉𝑞,𝛿(𝑇|𝑉𝑞 , 𝛿)]
4𝑘

𝑑𝛿𝑑𝑉𝑞    (30) 
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3.1.2. Reliability assessment method 

The efficiency of MCS is hindered by the integration operations 

and unknown conditional cumulative distribution functions. 

The surrogate models demand numerous samples for precise 

global models, they also spend much time in predicting small 

failure probabilities through large training sets. Numerical 

integration methods strike a balance between efficiency and 

accuracy for integration tasks. Additionally, SPA excels in 

estimating distribution function tails. Thus, this study employs 

the numerical integration and SPA to solve the reliability issues. 

The Gauss-Hermite quadrature formula is utilized to handle 

the integration operation in Eq. (30), and the full factorial 

numerical integration (FFNI) method is applied to discretize the 

integration operation in Eq. (30), resulting in: 

𝑅𝑠 = ∑ 𝐶𝑁𝑡
𝑘 𝑝𝑚

𝑘 (1 −
𝑁𝑡
𝑘=0

𝑝𝑚)
𝑁𝑡−𝑘 ⋅ [

1

𝜋
∑ ∑ 𝑤𝑞1𝑤𝑞2𝐻𝑡𝑖|𝑉𝑞,𝛿

4𝑘 (𝑇|√2𝜎𝑉𝑞𝛼𝑞1 +
𝑚2
𝑞2=1

𝑚1
𝑞1=1

𝜇𝑉𝑞 , √2𝜎𝛿𝛼𝑞2 + 𝜇𝛿)]                     (31) 

where, 𝑚1  and 𝑚2  represent the number of integration nodes. 

𝑤𝑞1   and 𝑤𝑞2  denote the integration weights. 𝛼𝑞1   and 𝛼𝑞2  

represent the integration nodes. 𝜇𝑉𝑞 and 𝜇𝛿 are the means. 𝜎𝑉𝑞 

and 𝜎𝛿  are the standard deviations. 

For 𝐻𝑡𝑖|𝑉𝑞,𝛿, it can be solved using SPA. Let 𝑌 = 𝑔(𝑿), an 

approximate method 16,46 can be used to estimate the 

cumulant-generating function (CGF) of 𝑌 , given by the 

following expression: 

𝐾𝑌(𝑡) = 𝜅1𝑡 + 𝜅2
𝑡2

2
+ 𝜅3

𝑡3

6
+ 𝜅4

𝑡4

24
  (32) 

where, 𝜅𝑖(𝑖 = 1,2,3,4) is the ith cumulant of 𝑌: 

{
 
 

 
 
𝜅1 = 𝜇1

′

𝜅2 = 𝜇2
′ − 𝜇′

1
2

𝜅3 = 𝜇3
′ − 3𝜇2

′ 𝜇1
′ + 2𝜇′1

3

𝜅4 = 𝜇4
′ − 4𝜇3

′ 𝜇1
′ − 3𝜇′2

2
+ 12𝜇2

′ 𝜇′1
2
− 6𝜇′1

4

 (33) 

where, 𝜇𝑖
′ (𝑖 = 1,2,3,4) are the first four raw moments of 𝑌. 

The real number saddle point 𝑠𝑟  at 𝑌 = 𝑦 can be determined: 

𝜅1 + 𝜅2𝑠𝑟 + 𝜅3
𝑠𝑟
2

2
+ 𝜅4

𝑠𝑟
3

6
− 𝑦 = 0  (34) 

The expression of the CDF for 𝑌 is 6: 

𝐹𝑌(𝑦) = Φ(𝑤) + 𝜑(𝑤) (
1

𝑤
−

1

𝑣
)  (35) 

where, 𝛷(∗) and 𝜑(∗) are the CDF and PDF of the standard 

normal variable. The parameters 𝑤 and 𝑣 are: 

{
 

 𝑤 = 𝑠𝑔𝑛(𝑠𝑟) √2[𝑠𝑟𝑦 − 𝐾𝑌(𝑠𝑟)]

𝑣 = 𝑠𝑟√𝐾̈𝑌(𝑠𝑟)

  (36) 

where, 𝐾̈𝑌(𝑠𝑟) is the second derivative of the CGF for 𝑌 at 𝑠𝑟 . 

To compute 𝜇𝑖
′(𝑖 = 1,2,3,4), the use of the FFNI method and 

Gauss quadrature formula is necessary. Once the conditional 

CDFs for all nodes are obtained, the system reliability without 

synchronization can be calculated. The specific process is 

illustrated in Figure 9.

 

Fig. 9. Reliability assessment process without synchronization.

Input random variable distribution parameters

Using the FFNI/SGNI method to discretize the 

integration with common cause variables

Solving for the first four order origin moments of the 

conditional response corresponding to all integration 

nodes

Through Eq. (32)-Eq. (35), the conditional cumulative 

distribution functions corresponding to all integration 

nodes are calculated
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Identifying Gaussian integration nodes of other 
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Deterministic multibody dynamic 

analysis

System Reliability Analysis
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3.2. System reliability analysis considering deployment 

synchronization 

3.2.1. Reliability model 

In some extreme conditions, the deployment time of each 

folding wing should not differ too much. Otherwise, it will 

result in a reduction of stability. In this case, the deployment 

synchronization reliability also needs to be considered. In this 

study, the difference between the maximum and minimum 

deployment time within the system is taken as the indicator. The 

system reliability 𝑅𝑠
∗ considering synchronization for one flight 

mission can be expressed as: 

𝑅𝑠
∗ = ∫ 𝑓𝑉𝑞(𝑉𝑞)𝑓𝛿(𝛿) [𝑃𝑟 {𝑚𝑎𝑥 𝑡𝑖|𝑉𝑞,𝛿 ≤ 𝑇,𝑚𝑎𝑥 𝑡𝑖|𝑉𝑞,𝛿 −𝑉𝑞,𝛿

𝑚𝑖𝑛 𝑡𝑖|𝑉𝑞,𝛿 ≤ 𝜏}] 𝑑𝛿𝑑𝑉𝑞                       (37) 

where, 𝜏  is the given difference value threshold. Let 𝜀𝑡|𝑉𝑞,𝛿 =

𝑚𝑎𝑥 𝑡𝑖|𝑉𝑞,𝛿 −𝑚𝑖𝑛 𝑡𝑖|𝑉𝑞,𝛿  ,𝜉𝑡|𝑉𝑞,𝛿 = 𝑚𝑎𝑥 𝑡𝑖|𝑉𝑞,𝛿 . When 𝑉𝑞   and 𝛿 

are fixed, the conditional reliability 𝑅𝑠|𝑉𝑞,𝛿
∗𝑚  of the folding wing 

system for 𝑚 flight missions can be expressed as follows: 

𝑅𝑠|𝑉𝑞,𝛿
∗𝑚 = 𝑃𝑟 {⋂ 𝜉𝑡|𝑉𝑞,𝛿

(𝑖) ≤ 𝑇𝑚
𝑖=1 , ⋂ 𝜀𝑡|𝑉𝑞,𝛿

(𝑖) ≤ 𝜏𝑚
𝑖=1 }      (38) 

where, the symbol (𝑖) in the upper right corner represents the 

ith flight mission. 

By combining Eq. (37) and Eq. (38), the reliability 𝑅𝑠
∗𝑚 of 

the folding wing system for m  flight missions can be obtained 

as follows: 

𝑅𝑠
∗𝑚 = ∫ 𝑓𝑉𝑞(𝑉𝑞)𝑉𝑞,𝛿

𝑓𝛿(𝛿)𝑅𝑠|𝑉𝑞,𝛿
∗𝑚 𝑑𝛿𝑑𝑉𝑞  (39) 

The total reliability of the folding wing system considering 

synchronization is: 

𝑅𝑠
∗ = ∑ 𝐶𝑁𝑡

𝑘 𝑝𝑚
𝑘 (1 − 𝑝𝑚)

𝑁𝑡−𝑘 ⋅ 𝑅𝑠
∗𝑘𝑁𝑡

𝑘=0   (40) 

3.2.2. Reliability assessment method 

When calculating 𝜀𝑡|𝑉𝑞,𝛿 and 𝜉𝑡|𝑉𝑞,𝛿 , 𝑡𝑖|𝑉𝑞,𝛿(𝑖 = 1,2,3,4) need to 

be calculated, so the reliability model that introduces 

synchronization is more complex and difficult to solve. Due to 

the long computational time required for solving the multibody 

dynamic with clearances, MCS is difficult to accept. Using large 

training datasets for surrogate models can significantly extend 

computational time, especially when predicting responses for 

multiple flight missions. Therefore, this section presents an 

efficient approach combining Gaussian integration with the 

Pearson distribution family to solve the reliability model. 

Additionally, numerical simulation techniques are also applied. 

The Pearson distribution family allows the representation of 

the distribution's parameters as functions of the first four 

moments. Let 𝑍 = 𝑔(𝑿) be the performance function, then the 

mean 𝜇𝑍, standard deviation 𝜎𝑍, skewness 𝛼3𝑔 and kurtosis 𝛼4𝑔 

of 𝑍 are: 

{
  
 

  
 
𝜇𝑍 = ∫𝑍𝑓(𝐗)𝑑𝐗

𝜎𝑍 = √∫(𝑍 − 𝜇𝑍)
2𝑓(𝐗)𝑑𝐗

𝛼3𝑔 = ∫(
𝑍−𝜇𝑍

𝜎𝑍
)
3

𝑓(𝐗)𝑑𝐗

𝛼4𝑔 = ∫(
𝑍−𝜇𝑍

𝜎𝑍
)
4

𝑓(𝐗)𝑑𝐗

   (41) 

The PDF 𝑓  of the standardized variable 𝑍𝑢  satisfies the 

given differential equation 40,41,42: 

1

𝑓

𝑑𝑓

𝑑𝑍𝑢
= −

𝑎𝑍𝑢+𝑏

𝑐+𝑏𝑍𝑢+𝑑𝑍𝑢
2   (42) 

where, 𝑍𝑢 =
𝑍−𝜇𝑍

𝜎𝑍
. The coefficients 𝑎, 𝑏, 𝑐 and 𝑑 are related to 

the first four moments. 

It is now illustrated with a folding wing system, 𝜇𝑍 , 𝜎𝑍 , 

𝛼3𝑔and 𝛼4𝑔 of 𝑡𝑖|𝑉𝑞,𝛿  can be solved by the FFNI method, then 𝑎, 

𝑏, 𝑐 and 𝑑 can be calculated. Subsequently, ℎ̂𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿) will 

be approximated. It is important to note that we need to solve 

for both the maximum and minimum values of 𝑡𝑖|𝑉𝑞,𝛿  . 

Fortunately, methods such as inverse transform sampling can be 

employed to generate sufficient samples from 

ℎ̂𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿), 𝑖 = 1,2,3,4 . Assuming that a total of 𝑁0 

samples are generated, then 𝑁0 × 4  observations with 

𝑡𝑖|𝑉𝑞,𝛿(𝑖 = 1,2,3,4) can be obtained: 

𝐭 = [

𝑡11 𝑡12 𝑡13 𝑡14
𝑡21 𝑡22 𝑡23 𝑡24
⋮ ⋮ ⋮ ⋮

𝑡𝑁01 𝑡𝑁02 𝑡𝑁03 𝑡𝑁04

]   (43) 

where, the second number in the lower right corner represents 

the number of groups. 

The conditional system reliability with a single flight 

mission: 

𝑅𝑠|𝑉𝑞,𝛿
∗ =

1

𝑁0
∑ 𝐼(𝐭𝑙

𝑟𝑜𝑤)𝑁0
𝑙=1   (44) 

where, 𝒕𝑙
𝑟𝑜𝑤  represents the lth row in the matrix 𝒕 , 𝒕𝑙

𝑟𝑜𝑤 =

[𝑡𝑙1, 𝑡𝑙2, 𝑡𝑙3, 𝑡𝑙4] . 𝐼(𝒕𝑙
𝑟𝑜𝑤)  denotes the indicator function, which 

can be expressed as follows: 

𝐼(𝒕𝑙
𝑟𝑜𝑤) = {

1 𝑚𝑎𝑥 𝒕𝑙
𝑟𝑜𝑤 −𝑚𝑖𝑛 𝒕𝑙

𝑟𝑜𝑤 ≤ 𝜏⋂𝑚𝑎𝑥 𝒕𝑙
𝑟𝑜𝑤 ≤ 𝑇

0 otherwise
 (45) 

When the flight vehicle performs 𝑚 missions, it is repeated 
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𝑚 times to generate the sample set of 𝑡𝑖|𝑉𝑞,𝛿 . The sample set is 

defined as: 

𝐭𝑚 =

[
 
 
 
 𝑡11
(1)

𝑡12
(1)

𝑡13
(1)

𝑡14
(1)

⋯ 𝑡11
(𝑚)

𝑡12
(𝑚)

𝑡13
(𝑚)

𝑡14
(𝑚)

𝑡21
(1)

𝑡22
(1)

𝑡23
(1)

𝑡24
(1)

⋯ 𝑡21
(𝑚)

𝑡22
(𝑚)

𝑡23
(𝑚)

𝑡24
(𝑚)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑡𝑁01
(1)

𝑡𝑁02
(1)

𝑡𝑁03
(1)

𝑡𝑁04
(1)

⋯ 𝑡𝑁01
(𝑚)

𝑡𝑁02
(𝑚)

𝑡𝑁03
(𝑚)

𝑡𝑁04
(𝑚)
]
 
 
 
 

𝑁0×4𝑚

(46) 

where, the upper right corner symbol represents the number 

of times the mission was performed. 

The conditional reliability with synchronization, after 

performing m  flight missions, can be calculated: 

𝑅𝑠|𝑉𝑞,𝛿
∗(𝑚) =

1

𝑁0
∑ [∏ 𝐼(𝐭𝑙

(𝑘)𝑟𝑜𝑤)𝑚
𝑘=1 ]

𝑁0
𝑙=1   (47) 

where, 𝒕𝑙
(𝑘)𝑟𝑜𝑤 = [𝑡𝑙1

(𝑘), 𝑡𝑙2
(𝑘), 𝑡𝑙3

(𝑘), 𝑡𝑙4
(𝑘)]. 

By combining Eq. (47) with Eq. (39)-(40), the total 

reliability, denoted as 𝑅𝑠
∗ , can be efficiently computed. The 

entire calculation process is illustrated in Figure 10.

 

Fig. 10. Reliability assessment process with synchronization.

4. Examples of reliability analysis 

In this section, the first three examples are used to validate the 

accuracy of the proposed method by MCS. It should be noted 

that obtaining high-precision dynamic responses requires  

a significant amount of simulation time. Consequently, using 

MCS to compute the reliability in the fourth and fifth examples 

is not practical. Furthermore, the purpose of the fourth and fifth 

examples is to explore the variation trends of the system 

reliability under different random variable conditions. The sixth 

example is to explore the variation law of the reliability 

considering the randomness of the folding wing lengths. So only 

the proposed method is used in the fourth, fifth and sixth 

examples. 

4.1. Mathematical example 

Consider a series system containing four units as shown in 

Figure 11. The response of each unit is: 

𝑌1 = 𝑒𝑥𝑝( 0.1𝑋1 + 0.2) − 𝑒𝑥𝑝( 0.2𝑋2 + 𝑋3) − 4(𝑋1 + 1.5𝑋2

− 1)3 + 18 

𝑌2 = 𝑒𝑥𝑝( 0.1𝑋1 + 0.2) − 𝑒𝑥𝑝( 0.2𝑋4 + 𝑋5) − 4(𝑋1 + 1.5𝑋4

− 1)3 + 18 

𝑌3 = 𝑒𝑥𝑝( 0.1𝑋1 + 0.2) − 𝑒𝑥𝑝( 0.2𝑋6 + 𝑋7) − 4(𝑋1 + 1.5𝑋6

− 1)3 + 18 

𝑌4 = 𝑒𝑥𝑝( 0.1𝑋1 + 0.2) − 𝑒𝑥𝑝( 0.2𝑋8 + 𝑋9) − 4(𝑋1 +

                              1.5𝑋8 − 1)
3 + 18                                           (48)

 

Input random variable distribution parameters

Using the FFNI/SGNI method to discretize the 

integration with common cause variables

Solving for the mean, standard deviation, skewness 

and kurtosis of the conditional response 

corresponding to all integration nodes

According to Eq. (42), fitting the distribution and 

generating a large number of samples

Summarizing all the samples and then obtaining the 

set of samples corresponding to each integration 

node 

Identifying Gaussian integration nodes of other 

random variables by FFNI method and combining 

the input samples

Using Eq. (20) to solve the deployment time 

response of the folding wing mechanism with joint 

clearances

Deterministic multibody dynamic analysis

System reliability with synchronization

Using Eq. (39), Eq. (40) and Eq. (47), the reliability 

of the folding wing system with synchronization can 

be solved
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Fig. 11. Illustration of the system in Example 1.

The random variables are mutually independent, and the 

distribution parameters are shown in Table 2. 

Table 2. Random variables and distributed parameters in 

example 1. 

Random variables Distribution Mean value Standard deviation 

𝑋1 Normal 1 0.05 

𝑋2,𝑋4,𝑋6,𝑋8 Normal 1.2 0.05 

𝑋3,𝑋5,𝑋7,𝑋9 Normal 0.5 0.1 

Defining the response threshold as 𝑇1. The system reliability 

at one working time is shown in Figure 12(a). When the system 

works 𝑚 times, the system works for the kth ( 2k  ) time and 

the observations of 𝑋1  are the same as for the first time. The 

calculated results of system reliability are shown in Figure 12(b). 

As 𝑚  increases, the dispersion of the system response 

⋂ 𝑚𝑎𝑥
1≤𝑖≤4

𝑌𝑖
(𝑘)𝑚

𝑘=1   decreases. The difference 𝑚𝑎𝑥
1≤𝑖≤4

𝑌𝑖 − 𝑚𝑖𝑛
1≤𝑖≤4

𝑌𝑖 

needs to be less than the given threshold 𝜏1 . Figure 12(c) 

presents the reliability curves for 𝑚 = 2  and 𝑚 = 5 , as 𝜏1 

increases, the system reliability also increases. For any given 

operating condition, the reliability increase rate gradually 

diminishes until it reaches a nearly constant level.  

The sample sizes for both methods are listed in Table 3. The 

relative errors compared to the MCS are listed in Figure 12(d)-

12(e). In this study, the calculation error of the proposed method 

is determined by the relative error of the failure probability, the 

expression is: 

𝑒𝑟𝑟 =
|𝑅𝑝−𝑅𝑀𝐶𝑆|

1−𝑅𝑀𝐶𝑆
   (49) 

where, 𝑅𝑝  is the reliability obtained by the proposed method. 

𝑅𝑀𝐶𝑆  is the reliability obtained by MCS. In fact, all the 

calculation results based on MCS and the proposed method are 

approximate consistent. At the same time, the number of 

samples required by the proposed method is also small. 

Table 3. The sample sizes for both methods in Example 1. 

Methods 
Sample size(without 

synchronization) 

Sample size(with 

synchronization) 

MCS 2106 2106 

The proposed 

method 
75 75 

 

Fig. 12. (a) Reliability curve without synchronization for m=1. 

 

Fig. 12.(b) Reliability curves without synchronization for m>1. 

        

                

        

The series system of example 1
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Fig. 12.(c) Reliability curves with synchronization for m>1. 

 

Fig. 12.(d) Failure probability relative error without 

synchronization for Example 1. 

 

Fig. 12.(e) Failure probability relative error with 

synchronization for Example 1. 

4.2. Motion reliability of the four-bar mechanism system 

Consider a four-bar mechanism system as shown in Figure 

13. The system consists of two sets of four-bar mechanisms, 

with the driving link rod 1 being shared by both sets. The length 

of each rod is denoted by 𝑅𝑖(𝑖 = 1,2,⋯ 7) . The rod length 

distribution parameters are in Table 4. 

Table 4. Distribution parameters for each rod length. 

Random 

variables 
Distribution 

Mean 

value (mm) 

Standard 

deviation (mm) 

𝑅1 Normal 53 1 

𝑅2,𝑅4,𝑅6 Normal 122 1 

𝑅3,𝑅5,𝑅7 Normal 66.5 1 

Taking the first group of four-bar mechanism as an example, 

output angle 𝜑3 is: 

𝜑3 = 2𝑎𝑟𝑐𝑡𝑎𝑛
𝐷±√𝐷2+𝐸2−𝐹2

𝐸+𝐹
  (50) 

where, 𝐷 = −2𝑅1𝑅3 𝑠𝑖𝑛 𝜃 , 𝐸 = 2𝑅3(𝑅4 − 𝑅1 𝑐𝑜𝑠 𝜃) , 𝐹 =

𝑅2
2 − 𝑅1

2 − 𝑅3
2 − 𝑅4

2 + 2𝑅1𝑅4 𝑐𝑜𝑠 𝜃 . The value of    in this 

example is 100.5.

 

Fig. 13. Two sets of four-bar mechanisms.

  

  

  

  

  

  

  
   

  

Group I

Group II
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It is defined that the system is failure when 𝜑3  and 𝜑5 

exceed the threshold 𝑇2. The reliability is illustrated in Figure 

14(a). Consider this system that operates for a total of 𝑚 times, 

and at the kth (𝑘 ≥ 2 ) operation, each rod, except rod 1, is 

removed and replaced. Then the positioning reliability is shown 

in Figure 14(b). As 𝑚 increases, the reliability and the system 

response dispersion become smaller. Introducing 𝑚𝑎𝑥
𝑖=3,5

𝜑𝑖 −

𝑚𝑖𝑛
𝑖=3,5

𝜑𝑖  to describe the difference in output angles. The 

synchronization threshold is 𝜏2 . The system reliability curves 

for 𝑚 = 2 and 𝑚 = 5 are given in Figure 14(c). A higher value 

of 𝜏2 leads to higher reliability. With the continuous increase of 

𝑇2, the increment of reliability becomes smaller until it reaches 

a plateau. The MCS results also confirm the accuracy of the 

proposed method in all cases. The sample sizes for both 

methods are listed in Table 5. The relative errors compared to 

the MCS are listed in Figure 14(d)-14(e). 

Table 5. The sample sizes for both methods in Example 2. 

Methods 
Sample size(without 

synchronization) 

Sample size(with 

synchronization) 

MCS 3106 3106 

The proposed 

method 
375 375 

 

Fig. 14(a). Reliability curve without synchronization for m=1. 

 

Fig. 14(b). Reliability curves without synchronization for m>1. 

 

Fig. 14(c). Reliability curves with synchronization for m>1. 

 

Fig. 14(d). Failure probability relative error without 

synchronization for Example 2. 

 

Fig. 14(e). Failure probability relative error with 

synchronization for Example 2. 

4.3. Deployment performance reliability of folding wing 

system 

The random variables of the folding wing mechanism system 

are shown in Table 6. 
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Table 6 Distribution parameters of random variables for folding 

wing system 

Parameter Unit Distribution 
Mean 

value 

Standard 

deviation 

𝑉𝑞  m/s Normal 140 10 

𝛿  Normal 0 5 

𝑘𝑑1,𝑘𝑑2,𝑘𝑑3,𝑘𝑑4 N Normal 550 10 

𝑏1,𝑏2,𝑏3,𝑏4 mm Normal 7 0.25 

𝐶𝑟1,𝐶𝑟2,𝐶𝑟3,𝐶𝑟4 mm Normal 1.5 0.05 

Figure 15(a) depicts the reliability under 𝑚 (𝑚 = 2,5,8,10) 

flight missions. As 𝑚  increases, the reliability and system 

response dispersion decreases. The case where synchronization 

is included is shown in Figure 15(b). When 𝑇  is greater than 

0.57 s, the size of 𝜏  becomes the main factor influencing 

reliability. When 𝑇 is less than 0.545 s, the size of 𝑇 becomes 

the main factor. Figure 15(c) presents the reliability for different 

values of 𝑚, 𝜏, and 𝑇. When 𝑇 is greater than 0.57 s, the larger 

the value of 𝜏 is, the denser the reliability curves corresponding 

to different times 𝑚 are. Considering the uncertainty of 𝑚, as 

shown in Figure 15(d), 𝑝𝑚 is 0.5 and the expected number of 

planned flights is 𝑁𝑡  (𝑁𝑡 = 2,4,6,8,10 ). For the given 𝜏  and 𝑇 

(𝑇 ∈ [0.545,0.57]), the reliability increases with decreasing 𝑁𝑡. 

When 𝑇  exceeds 0.57 s, a higher value of 𝜏  results in denser 

reliability curves corresponding to different 𝑁𝑡 . Figure 15(e) 

illustrates the reliability under different 𝑝𝑚, with 𝑁𝑡 set to 10. 

Under the given 𝜏 and 𝑇, the system reliability decreases with 

an increase in 𝑝𝑚. When 𝑇 exceeds 0.57 s, higher values of 𝜏 

result in denser reliability curves corresponding to different 𝑝𝑚. 

It is evident that both the deployment time threshold 𝑇 and the 

number of deployment times 𝑚  significantly influence the 

system reliability. In the context of considering the deployment 

synchronization, at any given 𝑇  and 𝜏  level, an increase in 𝑚 

leads to lower system reliability. At any given 𝑇 and 𝑚 level, an 

increase in 𝜏 leads to higher system reliability. As 𝑇 increases, 

the system reliability first gradually increases and then reaches 

a stable state. Taking into consideration the uncertainty of 𝑚, 

under the given 𝑇 , 𝜏  and 𝑝𝑚 , a smaller 𝑁𝑡  leads to higher 

system reliability. Under the given 𝑇 , 𝜏  and 𝑁𝑡 , a higher 𝑝𝑚 

results in lower system reliability. 

The sample sizes for both methods are listed in Table 7. The 

relative errors compared to the MCS are listed in Figure 15(f)-

15(g). According to the MCS results, the proposed methods are 

suitable for solving the reliability of the folding wing system. 

In order to visualize the differences between the failure 

independent case and failure correlation case, the differences 

are shown in Figure 15(h). As can be seen from the figure, in 

the folding wing series system, the results in the assumed 

independent case are more conservative compared to the case 

where failure correlation is considered. Also, the difference 

between the two cases becomes smaller as the threshold 

increases. However, when the threshold is a constant value, the 

difference gradually increases as the number of components n 

in the system increases, and the results obtained based on the 

assumed independent case become less accurate. 

Table 7. The sample sizes for both methods in Example 3. 

Methods 
Sample size(without 

synchronization) 

Sample size(with 

synchronization) 

MCS 2106 1.2106 

The proposed method 1125 1125 

 

Fig. 15(a). Reliability curves without synchronization for m>1. 

 

Fig. 15(b). Reliability curves with synchronization for m>1. 
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Fig. 15(c). Reliability curves for different values of 𝑚, 𝜏 and 𝑇 

 

Fig. 15(d) Reliability curves with synchronization for different 𝑁𝑡 

 

Fig. 15(e). Reliability curves with synchronization for different 𝑝𝑚 

 

Fig. 15(f). Failure probability relative error without 

synchronization for Example 3. 

 

Fig. 15(g). Failure probability relative error with 

synchronization for Example 3. 

 

Fig. 15(h). Differences between the failure independent case 

and failure correlation for Example 3. 

4.4. Reliability of deployment performance under mean 

value variations 

This section assesses system reliability changes under varied 

mean values of random variables. The mean values listed in 

Table 8. Figure 16(a), 16(c), 16(e), 16(g) and 16(i) depict the 
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reliability without synchronization for 𝑉𝑞  , 𝛿 , 𝑏𝑖 , 𝑘𝑑𝑖  and 𝐶𝑟𝑖 . 

Figure 16(b), 16(d), 16(f), 16(h) and 16(j) depict the reliability 

with synchronization and randomness of 𝑚  for 𝑉𝑞  , 𝛿 , 𝑏𝑖 , 𝑘𝑑𝑖 

and 𝐶𝑟𝑖. 

Table 8. Mean values of random variables under different 

operating conditions. 

Number 
Random 

variable 
Mean value Number 

Random 

variable 

Mean 

value 

1 𝑉𝑞  100 (m/s) 6 𝑏𝑖 8 (mm) 

2 𝑉𝑞  180 (m/s) 7 𝑘𝑑𝑖 600 (N) 

3 δ 30 () 8 𝑘𝑑𝑖 500 (N) 

4 δ -30 () 9 𝐶𝑟𝑖 2 (mm) 

5 𝑏𝑖 6 (mm) 10 𝐶𝑟𝑖 1 (mm) 

The synchronization threshold is denoted as 𝜏  ( 𝜏 =

0.03,0.035,0.04,0.045,0.05), 𝑝𝑚 is set to 0.7, 𝑁𝑡 is equal to 10. 

It can be seen that without considering synchronization and 

randomness of 𝑚, systems with the smaller mean value of 𝑉𝑞 , 

larger mean value of 𝛿, smaller mean value of 𝑏𝑖, larger mean 

value of 𝑘𝑑𝑖  and larger mean value of 𝐶𝑟𝑖  exhibit higher 

reliability. When the means of the random variables change, the 

mean and dispersion of the system response will change. 

However, with the introduction of synchronization and 

randomness for 𝑚, during the ascending phase of the reliability 

curves (at the same 𝜏), smaller mean values of 𝑉𝑞  and 𝑏𝑖, and 

larger mean values of 𝛿 , 𝑘𝑑𝑖  and 𝐶𝑟𝑖 , lead to higher system 

reliability. In the stable phase of the reliability curve (at the 

same 𝜏 ), 𝑉𝑞  , 𝑘𝑑𝑖  and 𝐶𝑟𝑖  continue the change law of the 

reliability curve in the ascending phase, while the smaller mean 

value of 𝛿 results in the higher system reliability. For any given 

operating condition, as 𝜏 increases linearly, the reliability also 

increases, and the rate of increase diminishes gradually. 

 

Fig. 16(a). Reliability curves without synchronization for 

conditions 1 and 2. 

 

Fig. 16(b). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 1 and 2. 

 

Fig. 16(c). Reliability curves without synchronization for 

conditions 3 and 4. 

 

Fig. 16(d). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 3 and 4. 
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Fig. 16(e). Reliability curves without synchronization for 

conditions 5 and 6. 

 

Fig. 16(f). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 5 and 6. 

 

Fig. 16(g). Reliability curves without synchronization for 

conditions 7 and 8. 

 

Fig. 16(h). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 7 and 8. 

 

Fig. 16(i). Reliability curves without synchronization for 

conditions 9 and 10. 

 

Fig. 16(j). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 9 and 10. 

4.5. Reliability of deployment performance under 

standard deviation variations 

This section primarily focuses on evaluating the system 
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reliability under different standard deviations. The standard 

deviations are presented in Table 9. Figure 17(a), 17(c), 17(e), 

17(g) and 17(i) depict the reliability without synchronization for 

𝑉𝑞 , 𝛿, 𝑏𝑖, 𝑘𝑑𝑖 and 𝐶𝑟𝑖. Figure 17(b), 17(d), 17(f), 17(h) and 17(j) 

depict the reliability with synchronization and randomness of 𝑚 

for 𝑉𝑞 , 𝛿, 𝑏𝑖, 𝑘𝑑𝑖 and 𝐶𝑟𝑖. 

Table 9. Standard deviations of random variables under 

different operating conditions. 

Number 
Random 

variable 

Standard 

deviation 
Number 

Random 

variable 

Standard 

deviation 

11 𝑉𝑞  1 (m/s) 16 𝑏𝑖 0.5 (mm) 

12 𝑉𝑞  20 (m/s) 17 𝑘𝑑𝑖 1 (N) 

13 δ 1 () 18 𝑘𝑑𝑖 30 (N) 

14 δ 20 () 19 𝐶𝑟𝑖 0.005 (mm) 

15 𝑏𝑖 0.01 (mm) 20 𝐶𝑟𝑖 0.2 (mm) 

When the standard deviations of random variables change, 

both the dispersion and mean value of the system response will 

be affected. Without considering both synchronization and 

randomness of 𝑚 , as 𝑇  increases, the system reliability with 

smaller standard deviation for 𝑉𝑞  , 𝛿 , 𝑏𝑖  and 𝑘𝑑𝑖  will gradually 

increase and surpass that with larger standard deviation. For 𝐶𝑟𝑖, 

the reliability curves of both conditions are nearly coincident, 

and at the right boundary of 𝑇, the reliability is higher for the 

smaller standard deviation. As 𝑇  increases, the difference in 

reliability, at any 𝑚 level, always exhibits a pattern of “trough-

peak-stabilization”. When considering both synchronization 

and randomness of 𝑚, at any 𝜏 level, the system reliability with 

the smaller standard deviation is always initially lower than the 

other, and then the former gradually increases and surpasses the 

latter. Moreover, near the right boundary of 𝑇 , the system 

reliability with the smaller standard deviation is consistently 

higher than the other. 

 

Fig. 17(a). Reliability curves without synchronization for 

conditions 11 and 12. 

 

Fig. 17(b). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 11 and 12. 

 

Fig. 17(c). Reliability curves without synchronization for 

conditions 13 and 14. 

 

Fig. 17(d). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 13 and 14. 
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Fig. 17(e). Reliability curves without synchronization for 

conditions 15 and 16. 

 

Fig. 17(f). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 15 and 16. 

 

Fig. 17(g). Reliability curves without synchronization for 

conditions 17 and 18. 

 

Fig. 17(h). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 17 and 18. 

 

Fig. 17(i). Reliability curves without synchronization for 

conditions 19 and 20. 

 

Fig. 17(j). Reliability curves considering both synchronization 

and randomness of 𝑚 for conditions 19 and 20. 

4.6 Deployment reliability considering randomness of 

crank and connecting rod lengths 

In this example, the randomness of the crank and connecting rod 

lengths is taking into account. A total of 28,125 sample points 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

are computed. The distribution parameters of the random 

variables are listed in Table 10. 

Table 10. Distribution parameters of random variables for 

folding wing system in example 6. 

Parameter Unit Distribution Mean value Standard deviation 

𝑉𝑞  m/s Normal 200 25 

𝛿  Normal 0 25 

𝑘𝑑1,𝑘𝑑2,𝑘𝑑3,𝑘𝑑4 N Normal 1100 10 

𝑏1,𝑏2,𝑏3,𝑏4 mm Normal 6 0.25 

𝐶𝑟1,𝐶𝑟2,𝐶𝑟3,𝐶𝑟4 mm Normal 1.5 0.05 

𝑙11,𝑙12,𝑙13,𝑙14 mm Normal 1500 2 

𝑙21,𝑙22,𝑙23,𝑙24 mm Normal 1300 2 

Figure 18(a) depicts the reliability under 𝑚 (𝑚 = 2,5,8,10) 

flight missions. As 𝑚  increases, the reliability decreases. The 

case where synchronization is included is shown in Figure 18(b). 

It can be found that the reliability curves gradually remain in a 

stable state when 𝑇 is greater than 0.47s. At a constant value of 

the number of deployments, the larger the 𝜏 is, the higher the 

reliability is. At a constant value of 𝜏, the more the number of 

deployments, the lower the reliability. In addition, the final 

reliability difference between the two operating conditions 

gradually decreases as the 𝜏 grows. Obviously, these laws are 

consistent with the previous numerical examples. 

The differences between the failure independent case and 

failure correlation case are shown in Figure 18(c). The standard 

deviations of the common cause random variables 𝑉𝑞  and 𝛿 are 

25. It is clear that the greater the dispersion of the common 

cause random variables, the greater the difference, the larger the 

error in the results under the assumption of independence. The 

other laws are the same as in Example 3. 

 

Fig. 18(a). Reliability curves without synchronization for m>1. 

 

Fig. 18(b). Reliability curves with synchronization for multiple 

deployments. 

 

Fig. 18(c). Differences between the failure independent case 

and failure correlation for Example 6. 

5. Conclusion 

In this study, firstly, the dynamic model of the folding wing 

mechanism with joint clearances is established and solved. 

Subsequently, under the consideration of failure correlation, two 

reliability models for the deployment performance are 

developed: one without considering deployment 

synchronization and the other with deployment synchronization 

taken into account. Finally, the proposed methods are applied to 

solve the aforementioned reliability models, and their validity 

is verified through three illustrative examples. Additionally, an 

analysis of the system reliability variation under different 

distribution parameters of random variables is conducted. The 

conclusions are as follows: 

1. The proposed methods are employed to calculate the first 

three cases. Remarkably, the results from MCS are found to be 
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in excellent agreement with the outcomes of the proposed 

method. Moreover, the proposed methods required significantly 

fewer samples to compute the system reliability. It is proved that 

the proposed methods have high efficiency, accuracy and 

universality in solving related system reliability problems. 

2. From the numerical example of folding wing reliability 

analysis, it can be seen that the deployment time threshold, the 

synchronization threshold, the number of missions performed 

by the flight vehicle, and other parameters affect the reliability. 

And the degree of influence of each parameter on the reliability 

is different at different stages. 

3. Regardless of whether the deployment synchronization is 

considered or not, when the random variable distribution 

parameters affecting the deployment time change, the 

deployment performance reliability of the folding wing system 

also changes and is complicated. But there still exists the same 

rule of change.  

4. In the series system of folding wing mechanism, the 

reliability obtained under the assumption of independence is 

more conservative compared to the case where failure 

dependence is considered. As the number of components in the 

system increases, the dispersion of common cause random 

variables increases, and the results under the assumption of 

independence deviate more from the true results. 

In conclusion, the proposed methods can assess the system 

reliability of similar folding mechanisms efficiently and 

accurately. Moreover, from a reliability enhancement 

perspective, it offers valuable data support and guidance for the 

design, manufacturing and operational phases of such folding 

mechanisms.
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Nomenclature 

𝒓𝑗, 𝒓𝑖 the generalized coordinates of the center of mass for the journal and the bearing components 

𝑨𝑗 , 𝑨𝑖 the transformation matrices for the journal and bearing components 

𝒔𝑗
′𝑐, 𝒔𝑖

′𝑐 the position vectors of the journal and bearing centers in the local coordinate system 

𝒏, 𝒕 unit normal vector and unit tangent vector 

𝛥 penetration depth 

𝐶𝑟 clearance size 

𝐶𝑟
𝐵, 𝐶𝑟

𝐶 the clearance sizes of joint B and joint C 

𝒓̇𝑗
𝑄, 𝒓̇𝑖

𝑄
 The velocities of contact points for the journal and bearing 

𝑣𝑛 , 𝑣𝑡 The normal and tangential projections of the relative contact velocity 

𝐶𝑒 restitution coefficient 

𝐾 stiffness coefficient 

𝐹𝑁 , 𝐹𝑇 the normal contact force and friction force 

𝑭𝑗 , 𝑭𝑖 the contact resultant forces for the bearing and journal components 

𝑀𝑗
𝑐, 𝑀𝑖

𝑐 the moments for the bearing and journal components 

𝑘𝑑 the peak of the driving force 

𝜌𝑎 air density 

𝐶0 air drag coefficient 

𝑏1, 𝑏2 the thickness of the main wing and auxiliary wing 
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𝑙1, 𝑙2 the lengths of the main wing and auxiliary wing 

𝑉𝑞  flight speed 

𝛿 pitch angle 

𝑤1, 𝑤2 the widths of the main wing and auxiliary wing 

𝑉3 the volume of the slider 

𝜌1, 𝜌2, 𝜌3 the densities of the main wing, auxiliary wing, and slider 

𝐸1, 𝐸2 Elastic modulus of aluminum alloy and steel 

𝜈1, 𝜈2 Poisson's ratio of aluminum alloy and steel 

𝑐𝑓 friction coefficient 

𝑐 the distance between the slider and X-axis 

𝑅1
𝑏 , 𝑅2

𝑏 bearing inner radii at joint B and joint C 

𝑡𝑖(𝑖 = 1,2,3,4) the actual deployment time for the ith set of folding wing 

𝑅𝑖(𝑖 = 1,2,3,4) the deployment performance reliability for the ith set of folding wing 

𝑅𝑠|𝑉𝑞,𝛿  the system conditional reliability when 𝑉𝑞  and 𝛿 are constant values 

𝑡𝑖|𝑉𝑞,𝛿  the deployment time of ith set of folding wing when 𝑉𝑞  and 𝛿 are fixed 

𝑅𝑠 the system reliability 

𝐻𝑡𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿) the conditional cumulative distribution function of 𝑡𝑖|𝑉𝑞,𝛿  

𝑅𝑠
∗ the system reliability with synchronization 

𝑅𝑠|𝑉𝑞,𝛿
∗𝑚  

the system conditional reliability for 𝑚 flight missions when 𝑉𝑞  and 𝛿 are fixed with 

synchronization 

𝑅𝑠
∗𝑚 the system conditional reliability for 𝑚 flight missions with synchronization 

ℎ̂𝑖|𝑉𝑞,𝛿(𝑡𝑖|𝑉𝑞 , 𝛿) the approximate probability density function of 𝑡𝑖|𝑉𝑞,𝛿  

 


