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Highlights  Abstract  

▪ A Monte Carlo simulation method based on 

multi-source Bayes is proposed to establish the 

fuzzy fault tree model of motorized spindles. 

▪ Using a fault tree as the simulation model, the 

feasibility of reliability simulation is verified 

by comparing fuzzy importance with 

simulation importance. 

▪ The wavelet packet transform is combined with 

empirical mode decomposition to extract faults 

and simulate equipment reliability. 

 A Monte Carlo simulation method based on multisource bayes is 

proposed to improve the reliability of motorized spindles in cycloid gear 

grinding machines and reduce their failure rate. Based on field 

investigations and motorized spindle maintenance records, a fault tree 

model of a motorized spindle was established, and the fuzzy importance 

of each bottom event was evaluated. The fault tree of a motorized spindle 

was used as a Monte Carlo reliability simulation model, and its 

importance was used as the input parameter for the simulation. The 

reliability evaluation index of the motorized spindle was obtained at 

different simulation times. The feasibility and accuracy of the reliability 

simulation were verified by comparing the importance and simulation 

importance. A vibration test was designed for bearing faults with high 

importance, and fault extraction was performed by combining the 

wavelet packet transform and empirical mode decomposition. This 

method can also be used to simulate and analyze the reliability of other 

equipment or machine tools. 
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1. Introduction 

With the rapid development of various industries and the 

continuous advancement of manufacturing technology, the 

demand for various products, such as machinery and transport 

tools, continues to increase, which has accelerated the research 

and development of computer numerical control (CNC) 

machine tools. As key equipment in the precision machining 

stage of gears, cycloidal gear grinding machines will become 

mainstream in the development of high-end gear grinding 

machines in the future, owing to their unique advantages.  

A cycloidal gear grinding machine primarily comprises three 

linear motion axes and a rotary axis.  

As key components, motorized spindles are of great 

significance in the development of cycloid gear grinding 

machines. The motorized spindle operates under working 

conditions of high speed, high power, and high load, which 

makes its parts more prone to fatigue, fracture, and other faults. 
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Failure directly affects the machining performance of the 

machine tool, increasing the failure rates of parts. Therefore, to 

ensure the reliability and machining accuracy of the cycloid 

gear grinding machine, it is important to analyze and evaluate 

the failure of the motorized spindle and formulate 

corresponding maintenance and repair strategies to improve its 

reliability of the motorized spindle. 

In the reliability analysis of machine tools, the determination 

of the fault distribution model of an entire machine system is 

the basis for subsequent research. To solve the limitations of the 

failure-mode effect and criticality analysis, Nilesh [1] proposed 

a multi-factor decision-making method based on the Complex 

Proportional Assessment Grey (COPRAS-G) method. Gajanand 

[2] considered the fuzzy Failure Mode, Effects and Criticality 

Analysis (FMECA) method to be more suitable for the system 

criticality problem by comparing traditional and fuzzy FMECA 

analysis methods. Lee [3] analyzed the fault in a gear pump and 

explored an intelligent wear detection process based on the Mel-

Frequency Cepstrum coefficient. Joanna [4] proposed and 

discussed a matrix FMEA analysis method and applied it to 

select hydraulic components. Soltanali [5] proposed a fuzzy 

fault tree. The fault probability of the model is predicted using 

the active technology of knowledge to formulate a convenient 

maintenance plan for the equipment. 

Reliability modeling predicts, analyses, and evaluates the 

reliability of a system at different times by establishing  

a reliable model. Qian [6] proposed a Monte Carlo simulation 

method to study the influence of random crane movement 

considering radiation effect on the reliability of rail beam 

structure. Wang [7] proposed a fast reliability evaluation 

method for backup redundant systems based on survival 

signature. Zhu [8] proposed a reliability probabilistic modeling 

method based on Markov model and subset simulation to solve 

the reliability problem of wind turbine long-term fatigue. On the 

basis of zero failure data lifetime reliability evaluation method, 

Chen [9] proposed a reliability evaluation method and 

simulation test method which fused numerical simulation with 

zero failure data. The prediction accuracy of aero-engine 

compressor disc life is improved. Yu [10] proposed a numerical 

analysis method based on computer simulation and Monte Carlo 

method to solve the problem of reliability life prediction of 

power systems composed of units with different life 

distributions. Denkena [11] proposed a hierarchical Bayesian 

change-point regression model to estimate the distribution type 

of fault time and constructed a parameter estimation method 

based on the Gibbs sampling algorithm. Siju [12] combined  

a parameter degradation model and a Bayesian method to 

evaluate the reliability of components. Yalcinkaya [13] used the 

Bayes method to estimate the parameter interval for small-

sample problems and then verified the effectiveness of this 

method by simulation. Wang [14] proposed a small-sample fault 

data reliability modeling method based on the Bootstrap–Bayes 

method, which improved the reliability of cycloidal grinding 

machines, reduced the machine failure rate, and shortened the 

maintenance time. Maskura [15] proposed a reliability growth 

model with a bathtub fault detection rate and compared it with 

a classical model. The results demonstrate its advantages in 

terms of reliability prediction. 

Reliability simulation refers to the process of completing 

reliability analysis using simulation technology. Huang [16] 

simulated the reliability of repaired mechanical equipment 

based on the failure time density function of parts and 

reevaluated the reliability of the equipment, which is of great 

significance for the later formulation of the corresponding 

maintenance strategy. Hoseinie [17] used the Kamat-Riley 

Monte carlo simulation method to simulate the reliability of  

a shearer water system and completed a reliability evaluation of 

the system according to the obtained reliability curve. Li [18] 

combined a reliability growth coefficient with a Monte carlo 

simulation model to predict the reliability of a spinning machine. 

Xiao [19] proposes an efficient reliability method based on 

adaptive agent model, which solves the problem that the 

existing reliability methods of adaptive sequence sampling are 

limited to Kriging model and Monte Carlo simulation reliability 

methods based on Kriging model produce random results 

without considering the uncertainty of initial samples. Sun [20] 

proposes a reliability analysis method based on Kriging model 

combined with least improvement function (LIF), Markov 

Chain Monte Carlo and Monte Carlo simulations to deal with 

nonlinear performance functions, small probabilities, complex 

limit states and high-dimensional engineering problems. 

Fault detection refers to determining whether a fault exists 

in the product through detection and testing, and fault diagnosis 

is used to locate the fault on this basis. Currently, the main 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

research directions are model-based fault detection and 

diagnosis, data-based fault detection and diagnosis, and deep 

learning-based fault detection and diagnosis [21-23]. Mathur 

[24] used Variational Modal Decomposition (VMD), Empirical 

Mode Decomposition (EMD), and Ensemble Empirical Mode 

Decomposition (EEMD) to detect faults in rolling bearings and 

then used the k-nearest neighbor, Support Vector Machine 

(SVM), and naive Bayesian classifier to classify the faults and 

compare their accuracies. Talhaoui [25] proposed a method to 

diagnose the broken-bar fault of an induction motor rotor using 

fuzzy logic technology and detected, identified, and predicted 

the fault of the machine in the running state using wavelet 

packet decomposition. Lundgren [26] proposed a data-driven 

fault classification algorithm to deal with imbalanced datasets, 

class overlap, and unknown faults and evaluated the 

practicability of this method. Wang [27] performed finite 

element modal analysis on a rotary vector (RV) reducer, 

determined the frequency distribution and deformation of each 

order of the component by analyzing the frequency and 

arrangement distribution of the component, and established  

a transmission performance test platform for the RV reducer, 

which improved its transmission characteristics. 

According to current research trends, reliability research on 

CNC machine tools and their key components is mainly based 

on system engineering, including fault analysis, reliability 

modeling and evaluation, reliability simulation, and fault 

diagnosis. However, in reliability simulation technology, there 

are few studies on the failure distribution of failure modes, and 

most are simplified by an exponential distribution. In fault 

detection, it is difficult to obtain a characteristic fault signal 

owing to noise interference or other factors. Therefore, this 

study investigates the fault analysis and reliability evaluation of 

the motorized spindle of a cycloid gear grinding machine using 

various methods and provides new ideas and references for the 

development of reliability technology. 

2. Fault analysis and reliability evaluation of motorized 

spindle 

Various types of faults may occur during the operation of the 

motorized spindle of a cycloid gear grinding machine. It is 

necessary to analyze the faults of the motorized spindle to 

improve the average trouble-free working time and equipment 

level. By analyzing the reasons that may lead to equipment 

failure, a maintenance and repair plan is formulated in advance, 

the hidden danger of failure is eliminated, and the fault-free 

working time of the equipment is prolonged to improve its 

reliability. This section analyzes the fuzzy fault tree of  

a motorized spindle and studies the key factors leading to its 

failure of the motorized spindle. A structural diagram is shown 

in Figure 1. The mechanical structure, which is composed of  

a ball screw and ball guide rail, is responsible for the feed in the 

X-, Y-, and Z-directions. The grinding wheel, motorized spindle, 

and diamond grinding wheel are responsible for the 

modification and processing of the cycloidal gear. The grating 

and grating ruler is responsible for the closed-loop control of 

the cycloid gear grinding machine for achieving high-precision 

control of the cycloidal gear. 
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b) Motorized spindle. 

Fig. 1. Structure and motion axis diagram of cycloidal gear 

grinding machine. 
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A. MOTORIZED spindle fault data acquisition 

Reliability data reflect the working conditions of the equipment, 

which is of great significance for fault analysis and reliability 

research [28,29]. According to the source of the fault data, they 

can be roughly divided into reliability test data, trial operation 

data, and maintenance data. Reliability test data are generally 

obtained from life tests, which are characterized by high costs 

and small sample sizes. The trial operation data are obtained 

from the trial operation fault record, which is prone to early 

failure, and the maintenance data are obtained from the 

maintenance station fault record, which has the characteristics 

of multiple source fault types. In this study, maintenance records 

were selected as reliability data, and the fault maintenance 

records of a motorized spindle production company were 

collected. The fault records of motorized spindle are shown in 

table 1.

Table 1. Fault records of motorized spindle. 

Model Numbering Turn the shaft Strike Motor Bearing Leaking Precision 

Model 1 2022-007-083 Difficulty turning No Normal Damage No Inner diameter runout 5 
 2022-007-121 Rotatable Yes Normal Damage No Inner diameter runout 3 
 2022-004-037 Difficulty turning No Normal Damage No Inner diameter runout 3 
 2022-004-034 Difficulty turning No Normal Damage No Inner diameter runout 3 

Model 2 2022-004-015 Rotatable No Normal Damage No Inner diameter runout 3 
 2015-012-020 Rotatable No Normal Damage No Inner diameter runout 5 
 2015-011-045 Unable to turn No Damage Damage No Inner diameter runout 4 

Model 3 2015-012-020 Rotatable No Normal Damage No Inner diameter runout 3 

Model 4 2021-110-003 Unable to turn No Normal Damage No Inner diameter runout 4 

 2021-110-002 Rotatable No Normal Damage No Inner diameter runout 3 

According to the fault records of the motorized spindle, the 

type and number of faults are sorted out. The results of the 

classification of the fault data for the motorized spindle are 

listed in Tabel 2. 

Table 2. Failure data rectification table. 

Failure type Number of failures Failure frequency 

Shaft failure 58 0.1191 

Strike 1 0.0021 

Motor failure 42 0.0862 

Bearing failure 205 0.4209 

Plug a leak or blockage 8 0.0164 

Accuracy failure 173 0.3552 

Among the fault types of motorized spindles, bearing 

damage accounts for a large proportion, approximately 42%, the 

accuracy accounts for the second, approximately 35%, and the 

damage proportion of rotating shaft and motor is similar, which 

is approximately 10%. The remaining fault factors are less 

affected, all below 2%. 

B. Fault tree modeling of motorized spindle system 

The motorized spindle system of the cycloid gear grinding 

machine was divided according to the tree-building rules, and 

fault events at all levels were defined. The fault in a motorized 

spindle is defined as a top event (T). The main phenotypic form 

of motorized spindle failure is defined as an intermediate event 

(M).  

The most direct factor causing failure was defined as the 

bottom event (X), and the results are listed in Table 3. The fault 

tree of the motorized spindle system is shown in Figure.2.

Table 3. Event code of motorized spindle failure 

Code Event Code Event Code Event 

M1 The motorized spindle heats up X1 The built-in motor overheats X13 The air gap is too small 

M2 The spindle rotates abnormally X2 Bearing damage X14 Poor lubrication 

M3 High vibration and noise X3 Insufficient bearing lubrication X15 
The air gap between the stator and 

rotor is uneven 

M4 Difficulty starting X4 Improper bearing preload X16 Poor spindle dynamic balance 

M5 Other X5 The cooling water path is not smooth X17 
The motor parameters are set 

incorrectly 

Code Event Code Event Code Event 
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M6 Bearing failure X6 The water jacket is leaking X18 
The stator lead wire is connected 

incorrectly 

M7 Cooling system failure X7 Improper assembly X19 
The stator and rotor air gap is too 

small 

M8 
The spindle speed error is too 

large 
X8 Sensor failure X20 The stator windings are damaged 

M9 Spindle speeder X9 Servo cable failure X21 The power supply is out of phase 

M10 The spindle speed is unstable X10 The rotor is out of magnetism X22 The seal is not tight 

M11 Sweep X11 The supply voltage is unstable   

M12 Motor failure X12 Impurities invade, bearing wear   

X1

M1 M3 M4

M7

M2

M8M6 M9 M10 M6 M12

X15 X17X2 X3 X4 X5 X6 X8 X9X7 X11X10 X2 X3 X4 X18 X19 X20

T

X14 X21

M5

X22

M11

X12 X13 X16
 

Fig. 2. Fault tree of motorized spindle of cycloid gear grinding machine.

C. spindle fuzzy quantitative analysis 

1) Bottom event fuzzy probability 

The fault tree structure of a motorized spindle is complex, 

and the number of bottom events is large. However, obtaining 

relevant statistical data on certain events is difficult. Therefore, 

this section uses the expert investigation method to perform a 

fuzzy evaluation and converts the fuzzy language into a fuzzy 

probability to evaluate the fault tree of the motorized spindle. 

The fuzzy probability of each bottom event is obtained using 

an expert scoring method. Owing to the uncertainty in the 

occurrence of fault events, different experts have different 

degrees of fuzzy descriptions of the probability of an event. 

Generally, the fuzzy evaluation language can be divided into 

five levels. The fuzzy interval number corresponding to each 

evaluation language value and its membership function are 

listed in table 4, and the order of magnitude of the membership 

function is 10-4. 

Table 4. Language variable transformation rules. 

Term 
Language 

variables 
Membership function (a,m,b). 

Very small VS (0,0,0.3) 

Small S (0.1,0.3,0.5) 

Medium M (0.3,0.5,0.7) 

High L (0.5,0.7,0.9) 

Very high VL (0.7,1.0,1.0) 

The evaluation coefficient and proportion of evaluations 

were calculated according to the industry education level and 

working hours of the survey experts. The results are listed in 

table 5. 

Table 5. Rating Weight Table. 

Grade R 
Number of 

experts MR 

Evaluation 

coefficient VR 

Evaluation 

weight 𝑤𝑟 

1 2 0.8 0.1084 

2 4 0.7 0.0964 

3 3 0.6 0.0843 

4 2 0.5 0.0723 

The fuzzy probability value of an event can be obtained by 

using a fuzzy evaluation language. The process is as follows: 
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 𝑃𝑥𝑗 = ∑ 𝑤𝑉𝑆𝑖

l

i=1
× (𝑎, 𝑚, 𝑏)𝑉𝑆 + ∑ 𝑤𝑆𝑖

𝑘
𝑖=1 × (𝑎, 𝑚, 𝑏)𝑆 

+ ∑ 𝑤𝑀𝑖

𝑡

𝑖=1

× (𝑎, 𝑚, 𝑏)𝑀 + ∑ 𝑤𝐿𝑖

𝑞

𝑖=1

× (𝑎, 𝑚, 𝑏)𝐿 

+ ∑ 𝑤𝑉𝐿𝑖

𝑝
𝑖=1 × (𝑎, 𝑚, 𝑏)𝑣𝐿                        (1) 

Where 𝑙 + 𝑘 + 𝑡 + 𝑞 + 𝑝 = 11and l, k, t, q and p are used to 

evaluate the number of experts whose language is VS, S, M, L 

and VL, wVSi, wSi, wMi, wLi and wVLi representing the weight of 

each expert whose evaluation value is VS, S, M, L and VL. 

Considering event X5 as an example, the evaluation 

languages were S, M, S, M, VS, VS, S, S, H, S, and VS. The fuzzy 

probability can be calculated using Formula (1) as (1.58E-

05,3.05E-05,5.31E-05). The fuzzy probabilities of all bottom 

events were calculated and summarized. The results are listed 

in Table 6.

Table 6. Bottom event fuzzy probability table. 

The bottom event 

code 
Fuzzy probability values 

The bottom event 

code 
Fuzzy probability values 

X1 (2.28E-05,4.28E-05,6.28E-05) X12 (3.05E-05,5.05E-05,7.05E-05) 

X2 (4.73E-05,6.93E-05,8.54E-05) X13 (1.37E-05,3.01E-05,5.19E-05) 

X3 (3.92E-05,5.91E-05,7.91E-05) X14 (1.72E-05,3.34E-05,5.53E-05) 

X4 (4.06E-05,6.06E-05,8.06E-05) X15 (6.39E-06,1.92E-05,4.28E-05) 

X5 (1.58E-05,3.05E-05,5.31E-05) X16 (1.81E-05,3.06E-05,5.43E-05) 

X6 (1.12E-05,2.40E-05,4.76E-05) X17 (2.82E-05,4.52E-05,6.51E-05) 

X7 (1.75E-05,2.98E-05,5.36E-05) X18 (2.34E-05,3.70E-05,5.85E-05) 

X8 (1.20E-05,2.89E-05,5.05E-05) X19 (2.06E-05,3.43E-05,5.75E-05) 

X9 (2.70E-05,4.34E-05,6.52E-05) X20 (3.40E-05,5.33E-05,7.22E-05) 

X10 (1.33E-05,2.24E-05,4.78E-05) X21 (3.52E-05,5.63E-05,7.16E-05) 

X11 (2.46E-05,4.19E-05,6.18E-05) X22 (1.57E-05,3.20E-05,5.39E-05) 

2) Top event fuzzy probability calculation 

The fuzzy OR gate output formula of fault tree structure 

function is as follows: 

𝑃̃𝑂𝑅 = [1 − ∏ (1 − 𝑎𝑖),1 − ∏ (1 − 𝑚𝑖),1 − ∏ (1 − 𝑏𝑖)𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1 ]        (2) 

Where 𝑃̃𝑂𝑅  is the output of the fuzzy OR gate, 𝑛  is the 

number of bottom events contained in intermediate event. ai, mi 

and bi correspond to the membership function of the i-th event 

respectively 

Combined with Formula (2), the fuzzy probability table of 

the intermediate and top events can be calculated. The results 

are listed in Table 7.

Table 7. Intermediate event fuzzy probability table. 

Event code Fuzzy probability values Event code Fuzzy probability values 

M1 (1.77E-04,2.86E-04,4.09E-04) M7 (1.58E-05,3.05E-05,5.31E-05) 

M2 (1.39E-04,2.47E-04,4.01E-04) M8 (1.75E-05,2.98E-05,5.36E-05) 

M3 (1.69E-04,2.72E-04,3.97E-04) M9 (3.90E-05,7.23E-05,1.16E-04) 

M4 (1.41E-04,2.26E-04,3.25E-04) M10 (2.46E-05,4.19E-05,6.18E-05) 

M5 (1.57E-05,3.20E-05,5.39E-05) M11 (4.42E-05,8.06E-05,1.22E-04) 

M6 (1.27E-04,1.89E-04,2.45E-04) M12 (7.79E-05,1.25E-04,1.88E-04) 

The fuzzy probability of the top-event motorized spindle 

fault can then be obtained using Formula (2). 

𝑃𝑇 = (0.64𝐸 − 03,1.06𝐸 − 03,1.58𝐸 − 03)      (3) 

As shown in Formula (3), the minimum probability of 

failure of the motorized spindle is 0.64𝐸 − 03, the maximum is 

1.58E 03− , and the possibility of its value being 1.06𝐸 − 03 is 
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the highest. 

The form of λ cut set for PT is as follows: 

𝑃𝑇𝜆 = (
((1.06𝐸 − 03) − (4.22𝐸 − 04)) + (4.22𝐸 − 04)𝜆

, ((1.06𝐸 − 03) + (5.22𝐸 − 04)) − (5.22𝐸 − 04)𝜆
)  (4) 

When λ=0, the fault probability of motorized spindle is 

fuzzy interval: 𝑃𝑇𝜆 = (6.41𝐸 − 04,1.58𝐸 − 03)  ; when λ=0, 

𝑃𝑇𝜆 is a fixed value: 𝑃𝑇𝜆=1.06𝐸 − 03 . When the value interval 

is 0.1, the fuzzy probability of the top event changing with the 

confidence level is obtained, as listed in table 8.

Table 8. Fuzzy probability of top event changing with confidence level. 

Confidence level λ α=β Confidence level λ α=β 

0.1 (6.83E-04,1.53E-03) 0.6 (8.94E-04,1.27E-03) 

0.2 (7.25E-04,1.48E-03) 0.7 (9.36E-04,1.22E-03) 

0.3 (7.68E-04,1.43E-03) 0.8 (9.78E-04,1.17E-03) 

0.4 (8.10E-04,1.38E-03) 0.9 (1.02E-03,1.12E-03) 

0.5 (8.52E-04,1.32E-03) 1.0 (1.06E-03,1.06E-03) 

3) Bottom event fuzzy importance calculation 

The fuzzy probability of the top event is (0.64E-03,1.06E-

3,1.58E-03), where mid-value mTe=1.09E-3. Assuming that the 

occurrence probability of X1 is 0, the fuzzy probability of the 

top event can be calculated as: (0.61E-03,1.02E-03,1.52E-03), 

where the mid-value is mTe=1.05E-3. Subsequently, the fuzzy 

importance of bottom event X1 is. Similarly, by calculating the 

other 21 bottom events, the fuzzy importance of each event can 

be obtained, as listed in Table 9, and drawn as a vertical diagram, 

as shown in Figure 3.

Table 9. Bottom event fuzzy importance table. 

The bottom event 

code 
Fuzzy importance 

The bottom event 

code 
Fuzzy importance 

The bottom event 

code 
Fuzzy importance 

X1 4.27E-05 X9 4.47E-05 X17 4.58E-05 

X2 1.36E-04 X10 2.64E-05 X18 3.89E-05 

X3 1.18E-04 X11 4.25E-05 X19 3.66E-05 

X4 1.21E-04 X12 5.04E-05 X20 5.31E-05 

X5 3.24E-05 X13 3.14E-05 X21 5.48E-05 

X6 2.66E-05 X14 3.48E-05 X22 3.34E-05 

X7 3.26E-05 X15 2.18E-05   

X8 3.01E-05 X16 3.34E-05   

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22

3.0E-5
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Fig. 3. Fuzzy probability vertical diagram of motorized spindle bottom event.

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

The fuzzy importance of each bottom event is sorted as 

follows: X2 > X4 > X3 > X21 > X20 > X12 > X17 > X9 > X1 > 

X11 > X18 > X19 > X14 > X22 > X16 > X7 > X5 > X13 > X8 > 

X6 > X10 > X15. From the results, the main factors causing the 

failure of the motorized spindle were X2 bearing scuffing, 

improper preload of the X4 bearing, insufficient lubrication of 

the X3 bearing, lax sealing of X21, and damage to the X20 stator 

winding. Among them, X2, X4, and X3 are bearing damages 

that must be considered in the process of production and use. 

Improving or solving such faults will improve the reliability of 

motorized spindles more effectively. 

3. Reliability simulation of motorized spindle 

With the development of CNC machine tool technology, its 

internal structure has become more complex, and the factors 

leading to failure have become increasingly complex. This 

increases the difficulty in determining the reliability and 

performance of the entire equipment through physical tests and 

mathematical models. To solve this problem, it is becoming 

increasingly important to study reliability simulation 

technologies.  

In this section, the fault tree model is used to optimize the 

Monte Carlo simulation. The fault tree of the motorized spindle 

was used as the logic of the reliability simulation to complete 

the reliability simulation of the motorized spindle and verify its 

effectiveness and rationality. 

A. Fuzzy Fault Tree-Monte Carlo Introduction 

This section introduces the tree-Monte Carlo reliability 

simulation. The fault-tree model of the motorized spindle 

described in Section 3 was used as the logical relationship in the 

reliability simulation. The analysis process is as follows: 

1) Establish simulation model 

In the simulation model, T was used to represent the system 

state of the motorized spindle, where there were n bottom events. 

The state of each bottom event can be represented by 𝑥𝑖(𝑖 =

1,2, ⋯ , 𝑛) , and the failure probability function can be 

represented by 𝐹𝑖(𝑡). It is assumed that these bottom events are 

independent of each other, and each bottom event has only two 

states of ' happening ' and ' not happening ', represented by 𝑥𝑖. 

The rules are as follows: 

𝑥𝑖(𝑡) = {

0,Indicates that the 𝑖 th bottom 
    event did not occur at 𝑡
1,denotes that the 𝑖 th bottom 
    event has occurred at 𝑡

       (5) 

There are only two working states of the motorized spindle, 

namely failure and no failure, which are expressed by T(t). The 

rules are as follows: 

𝑇(𝑡) = {
0,Electric spindle failure at time 𝑡
1,The motorized spindle is normal at time 𝑡

  (6) 

The structural function of the fault tree of the motorized 

spindle system can be expressed as T[X(t)] 

{
𝑇(𝑡) = 𝑇[𝑋(𝑡)]

𝑋(𝑡) = [𝑥1, 𝑥2, ⋯ 𝑥𝑖 , ⋯ , 𝑥𝑛]
  (7) 
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Fig. 4. Fault tree-Monte Carlo simulation flow chart. 
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2) Simulation parameter setting 

First, the maximum working time of the motorized spindle 

is set to Tmax. Note that the simulation life of most motorized 

spindles should be less than Tmax, which is to ensure that the 

simulation results are relatively complete.  

Then (0,Tmax) is divided into m stages, namely:[0,t1],[t1,t2],…,[tr-

1,tr],…[tm-1,tm], then each stage is represented as follows: 

Δ𝑡 =
𝑇𝑚𝑎𝑥

𝑚
    (8) 

The number of simulations was set to N. In general, the 

larger the number of simulations, the more accurate the 

simulation results; however, the larger the number of 

simulations, the longer the calculation time. Therefore, it needs 

to be determined after multiple calculations. 

3) Bottom event failure sampling 

First, the cumulative failure distribution function 𝐹𝑖(𝑡)  is 

obtained for each bottom event. The time-sampling 𝑡𝑖  of the 

failure of the i-th bottom event is as follows: 

𝑡𝑖 = 𝐹𝑖
−1(𝜂)    (9) 

where 𝐹𝑖
−1(𝜂)  is the inverse function of 𝐹𝑖(𝑡) , and 𝜂  is a 

random number in [0, 1]. 

In the j-th run, the time sampling for the failure of the i-th 

bottom event is as follows: 

𝑡𝑖𝑗 = 𝐹𝑖
−1(𝜂𝑖𝑗)   (10) 

where 𝜂𝑖𝑗 is a random number for the i-th bottom event during 

the j-th run. 

The working state of the i-th bottom event at time t is 

represented by 𝑥𝑖(𝑡) as follows: 

𝑥𝑖(𝑡) = {
0, 𝑡 < 𝑡𝑖𝑗

1, 𝑡 ≥ 𝑡𝑖𝑗
   (11) 

After j runs, a set of time-sampling data for the failure of 

each bottom event is generated:  t1j, t2j, …, tij, …, tnj, and the data 

are sorted in ascending order: tij(1)< tij(2)<…tij(f)<…tij(n). 

4) Test the structure function 

According to the sorted events, the failure of the motorized 

spindle xf was judged, and the bottom event that caused the 

failure was identified. The failure time tij(f) and the 

corresponding bottom event number i are included in T. After N 

runs, a set of matrices N×2[i,ti1(f); i,ti2(f);…; i,tij(f); …; i,tiN(f)] 

is obtained, which is the failure time of the motorized spindle in 

this simulation. The first column number in the matrix was 

counted, and the number of times each bottom event caused the 

failure of the motorized spindle was obtained. 

5) Reliability index calculation method 

(1) MTBF 

The system failure time obtained in N simulations is retained 

in the matrix, and the Mean Time Between Failure (MTBF) of 

the motorized spindle can be obtained as follows: 

MTBF = (∑ 𝑡𝑖𝑗(𝑓)𝑁
𝑗=1 )/𝑁  (12) 

(2) Unreliability and reliability   

For the failure number 𝛥𝑚𝑟 of the motorized spindle in each 

interval [𝑡𝑟−1, 𝑡𝑟] (𝑟 = 1,2, … 𝑚) , the failure number of the 

motorized spindle in [0, 𝑡𝑟]  is 𝑚𝑟 = ∑ 𝛥𝑚𝑖
𝑟
𝑖=1 ，When the 

running time reaches 𝑡𝑟，the point estimation value 𝐹̂(𝑡) of the 

failure probability of the motorized spindle can be expressed as 

follows: 

𝐹̂(𝑡𝑟) = ∑ Δ𝑚𝑖
𝑟
𝑖=1 /N   (13) 

The reliability point estimate 𝑅̂(𝑡)  can be expressed as 

follows: 

𝑅̂(𝑡𝑟) = 1 − 𝐹̂(𝑡𝑟)          (14) 

(3) Failure probability density 𝑓(𝑡) 

𝑓(𝑡)  represents the probability of top event failure at a 

certain time, and represents the trend of system failure 

probability changing with time. The point estimate can be 

expressed as follows: 

𝑓(𝑡𝑟) = Δ𝑚(𝑟)/𝑁   (15) 

(4) The importance of each bottom event 

In the Monte Carlo simulation, the frequency of the i-th 

bottom event that causes the failure of the motorized spindle is 

considered important in the entire system; that is, 

𝑊(𝑥𝑖) =
Number of system failures caused by event 𝑖

Total number of system failures
  (16) 

B. Fault tree-Monte Carlo simulation results analysis 

1) Mean time between failures 

The maximum running time was set to 10,000 h, and the 

time interval was 10,000. The average fault-free time of the 

motorized spindle was obtained through 100 times, 1000 times, 

5000 times, 10,000 times, 50,000 times, and 100,000 times of 

simulations, as listed in Table 10.  

With an increase in the number of simulations, the average 

fault-free time of the motorized spindle gradually stabilized. 

Considering the calculation time and accuracy of the results, the 

results of 50,000 simulations were selected for the analysis, and 

the estimated value of the motorized spindle MTBF was 
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approximately 2817.7 h. 

Table 10. Multi-source Bayes-Monte Carlo simulation results. 

NS MTBF 

100 3073.0775 

1000 2803.6337 

5000 2835.5511 

10000 2851.4475 

50000 2817.6716 

100000 2820.5793 

2) Failure probability density curve 

The change in the system failure rate over time is described, 

which can provide ideas for the prediction and analysis of 

failure probability. The failure probability density curves for 

different periods are shown in Figure.5. It can be observed that 

as the number of simulations increases, the trend of the curve 

gradually stabilizes.
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Fig. 5. Fault probability density curve of motorized spindle.

C. Analysis of bottom event 

The simulation importance of the 22 bottom events was 

calculated using formula. The results are listed in table 11; the 

fuzzy importance must be converted into a percentage when 

performing an error comparison. As shown in Figure 6, the 

results of the simulation importance were approximately the 

same as those of fuzzy fault tree quantitative analysis, and the 

more important factors were X2, X4, X3, X21, and X20. Among 

them, X2, X4, and X3 are the bearing damages, and their 

importance in the simulation was higher than that in the 

evaluation. Therefore, attention should be paid to the production 

and use processes. Improving these problems will improve the 

reliability of motorized spindles. The error between the results 

and the fuzzy importance was small, and the order of 

importance of the bottom event was almost consistent with the 

theoretical calculation results, which verified the accuracy of 
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the Monte Carlo simulation program in predicting the 

importance of the bottom event. 
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Fig. 6. Comparison of bottom event importance. 

Table 11. Importance comparison table of bottom event 

simulation. 

Bottom 

event 

number 

Fuzzy 

importance 

Simulation 

importance 
Error 

X1 4.27E-05 0.0358 0.35% 

X2 1.36E-04 0.1596 -3.45% 

X3 1.18E-04 0.1223 -1.38% 

X4 1.21E-04 0.1308 -1.95% 

X5 3.24E-05 0.0285 0.13% 

X6 2.66E-05 0.0259 -0.14% 

X7 3.26E-05 0.0281 0.19% 

X8 3.01E-05 0.0254 0.23% 

X9 4.47E-05 0.0353 0.58% 

X10 2.64E-05 0.0252 -0.09% 

X11 4.25E-05 0.0357 0.34% 

X12 5.04E-05 0.0433 0.30% 

X13 3.14E-05 0.0284 0.05% 

X14 3.48E-05 0.0307 0.13% 

X15 2.18E-05 0.0249 -0.49% 

X16 3.34E-05 0.0263 0.44% 

X17 4.58E-05 0.0355 0.66% 

X18 3.89E-05 0.0297 0.61% 

X19 3.66E-05 0.0202 1.35% 

X20 5.31E-05 0.0405 0.83% 

X21 5.48E-05 0.0456 0.48% 

X22 3.34E-05 0.0284 0.23% 

4. Vibration experiment of motorized spindle  

A motorized spindle is a core component of a cycloid gear 

grinding machine, and its performance and reliability directly 

affect the machining quality of the machine tool [30]. The 

reliability of a motorized spindle in long-term processing 

gradually declines, its remaining life gradually decreases, and 

the possibility of failure gradually increases. Failure of  

a motorized spindle directly affects the quality of the product 

and causes serious economic losses. Therefore, it is important 

to determine the problem of motorized spindle failure promptly 

and select an appropriate maintenance method [31] to reduce 

the impact of motorized spindle failure on normal production. 

This section considers a motorized spindle bearing as the 

research object to study the fault feature extraction method 

based on wavelet packets and empirical mode decomposition. 

The motorized spindle produces many vibration signals 

containing characteristic information during the working 

process, which must be collected before fault analysis and 

diagnosis. Rolling bearings are commonly used in motorized 

spindles [32]. The vibration-signal test platform is shown in 

Figure.7(a). It mainly includes a cycloid gear grinding machine 

spindle, an M+P VibPilot measuring instrument, and an 

acceleration sensor. 

Vibration 
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acquisition 

platform

electrical 

spindle for 

machine tool

acceleration 

transducer

M+P VibPilot

measuring 

apparatus  

(a) Vibration signal acquisition device of motorized spindle 

z-axis

y-axis

x-axis

 

(b) Sensor arrangement 

Fig. 7. The vibration signal test platform. 
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1) Introduction of experimental equipment 

(1) By querying the instruction manual of the cycloid gear 

grinding machine, it is known that the motorized spindle model 

is HGE-MD230Z3. 

(2) The experimental equipment M+P VibPilot can support 

up to 204.8 kHz, 24-bit synchronous sampling, and eight analog 

input channels. The acceleration sensor sensitivity range is 90-

105 mv / g, the sampling frequency is 2048 Hz, and the 

sampling time is 5 s. 

2) Experimental steps 

The experimental equipment was connected, and an 

appropriate position on the motorized spindle was selected to 

fix the acceleration sensor. The sensor measuring points are 

arranged in the axial and radial directions of the motorized 

spindle, as shown in Fig.7(b), and the relevant parameters are 

set in the software to check whether each channel is working 

properly. The speed of the motorized spindle is adjusted and, 

vibration signals are collected after its stable operation. The 

motorized spindle speed is adjusted to 1000 rpm, 1400 rpm, 

1800 rpm, 2200 rpm, 2600 rpm, and 3000 rpm, and step (3) is 

repeated. 

3) Vibration signal denoising 

Considering 2600 rpm as an example, the time-domain 

diagram is shown in Figure.8.  
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Fig.8. Time domain diagram of vibration signal at 2600 rpm. 

The horizontal and vertical axes represent the sampling time 

and vibration acceleration, respectively. Three wavelet packet 

decomposition layers were selected, and the obtained signal 

decomposition diagram is shown in Figure 9. As can be seen 

from Figure 9, the wavelet packet decomposition results 

corresponding to the G-graph have higher energy than other 

results. The signal of the energy distribution of all the nodes in 

the last layer was calculated, and the value is shown in  

Figure 10.
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Fig. 9. Signal reconstruction by wavelet packet decomposition.
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Fig. 10. Fault data type. 

Figure 10 shows that the signal energy corresponding to the 

node [3,6] accounts for 84.07%, and the remaining signal 

energy accounts for less than 10%. It can be observed that the 

frequency of the original signal is distributed in this node, and 

the other nodes are the frequency distribution of the noise signal. 

Therefore, the node signal is regarded as a component of 

wavelet packet reconstruction. 

This method was used to process vibration signals at 

different speeds, and the results are shown in Figure 11. It can 

be seen from Figure 11 that the strength of vibration has  

a certain correlation with the speed of rotation.
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Fig. 11. Wavelet packet decomposition and reconstruction signals at different speeds.

4) Empirical mode vibration signal decomposition 

Considering the vibration signal at 2600 rpm as an example, 

the signal denoised by the wavelet packet was decomposed 

using EMD, and the fault characteristics of the signal were 

extracted. After completing the EMD iteration, eight IMF 

components and one residual component were obtained. Here, 

the first five IMF components were used for spectrum 

processing to obtain the IMF time-frequency diagram, as shown 

in Figure 12. 
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Fig. 12. The first to fifth IMF components of EMD decomposition.

The peak characteristic components of the different 

frequency bands in the vibration signal are reflected in the first 

fifth-order IMF components. From the IMF spectrum diagram 

shown in Figure 12, it can be observed that there are peaks at 

the points of the double shaft frequency in the fifth-order IMF, 

523 Hz in the third-order IMF, and 1032 Hz and 1543 Hz in the 

second-order IMF. By comparing the peak information with the 

fault characteristic frequency of the motorized spindle structure, 

it was observed that the peak information was highly correlated 

with the frequency-doubling relationship of the fault 

characteristic frequency 514.97 Hz of the motorized spindle, 

and the bearing fault could be diagnosed accordingly.  

Therefore, the fault diagnosis method based on wavelet 

packets and empirical mode decomposition can be used to 

detect the state of the motorized spindle bearing, identify the 

bearing fault in advance, arrange the motorized spindle to return 

to the factory for timely maintenance, prolong the effective life 

of the motorized spindle, and improve its reliability level. 
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5. CONCLUSION 

Based on field investigations and relevant literature, a fuzzy 

fault tree analysis of the motorized spindle of a cycloid gear 

grinding machine was conducted. After the calculation, the 

fuzzy failure probability of the motorized spindle top event and 

the three faults with higher fuzzy importance were all bearing 

faults. An FTA-Monte Carlo simulation model of a motorized 

spindle was established. Considering the bearing fault as an 

example, the comprehensive posterior distribution is calculated 

using the multi-source Bayes method and is taken as the 

parameter distribution of the bearing in the reliability simulation.  

The reliability simulation was performed several times, and 

the simulation results of 50,000 times were selected. The 

estimated value of the MTBF of the motorized spindle was 

approximately 2817.7 h, and the reliability, unreliability curves, 

and probability density curves were drawn. Comparing the 

results with those in the third chapter, it was observed that the 

error was small, and the feasibility and accuracy were verified. 

Finally, a vibration test of the motorized spindle bearing was 

conducted. Considering 2600 rpm as an example, the collected 

initial signal was denoised using the wavelet packet transform, 

and nodes with higher energy were selected as the denoised 

signals. Subsequently, the EMD method is used to decompose 

and reconstruct it, and the fault characteristics of the motorized 

spindle bearing in the signal are analyzed to complete the fault 

feature extraction.
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