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Highlights  Abstract  

▪ A Bayesian-based reliability analysis method 

fusing prior and test data is proposed. 

▪ The prior data are expanded using the neural 

network in combination with simulation data. 

▪ The mechanism kinematic accuracy reliability 

is quantified under small-sample conditions. 

▪ The key variables affecting the retraction 

mechanism reliability are identified. 

 Due to intricate operating conditions, including structural clearances and 

assembly deviations, the acquisition of test data for the landing gear 

retraction mechanism is limited, posing challenges for reliability 

analysis. To solve the problem, a Bayesian-based reliability analysis 

method fusing prior and test data is proposed, focusing on the 

mechanism kinematic accuracy under small-sample conditions. Firstly, 

a dynamic simulation model is established to collect prior data, and 

retraction tests are conducted to obtain test data. Then, based on 

Bayesian theory, the motion accuracy parameter estimation model 

integrating prior and test samples is established. To obtain accurate hyper 

parameters, the prior samples are expanded using the neural network. 

Finally, taking the retraction mechanism as the research object, the 

kinematic accuracy reliability is quantified, and the impact of 

uncertainty factors is analysed in depth. The results show that the 

proposed method is superior to the classical interval estimation method 

in stability and effectively mitigates the impact of uncertainty factors. 
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1. Introduction 

In order to verify the motion principle of the mechanism, expose 

the design defects and faults, and eliminate the potential failure 

factors, it is crucial to conduct reliability testing and motion 

reliability analysis of the landing gear retraction mechanism. 

The landing gear retraction system is a complex system that 

integrates mechanism dynamics, hydraulic dynamics, and 

electronic control [4]. However, due to cost and time limitations, 

the landing gear retraction test can only be performed with 

limited samples [10,18]. The kinematic accuracy of the 

retraction mechanism is influenced by various factors, such as 

joint clearance and assembly deviation, which introduce 

uncertainties in the process of design, manufacture, and use 

[17,28]. These uncertainties make it more challenging to 

accurately characterize the actual distribution of the kinematic 

accuracy parameters of the mechanism based on small-sample 

tests. Consequently, it can be tough to assess the accurate and 

stable reliability, and the credibility of the results is constrained. 

To address this issue, it is essential to develop a reliability 

estimation approach specifically tailored to the motion 

characteristics of the retraction mechanism under the condition 
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of small sample. 

In response to the challenge of limited test samples in 

mechanism reliability analysis, Yin et al. [27] constructed the 

response surface using sample data derived from the 

mathematical model and investigated the impact of key 

parameters on the reliability of the retraction mechanism. To 

improve the computational efficiency of reliability analysis, Hu 

et al. [13] introduced the advanced adaptive Kriging model 

based on the multi-body dynamic simulation model of the 

adjusting mechanism of tail nozzle. Wang et al. [25] proposed a 

robot reliability analysis method based on the dynamic 

mathematical model considering multiple failure modes, and 

fitted the experimental data by neural network to verify the 

validity of the theoretical analysis with the reliability results 

obtained. 

The above paper did not directly use experimental 

information, but relied on prior information (such as expert 

experience, historical data, and simulation data) to estimate the 

distribution of performance characteristic parameters. These 

estimates may not accurately capture the characteristics of new 

products, potentially affecting the accuracy of reliability 

estimation results. Furthermore, the classical interval estimation 

method estimates a range of possible values of performance 

characteristic parameters based on test data. Li et al. [12] 

proposed an improved interval estimation method based on 

Bootstrap and applied it to the interval estimation of reliability 

parameters of the NC machine tools under different working 

conditions. Similarly, Li et al. [16] utilized the parameter 

Bootstrap method for the interval estimation of reliability 

parameters in the context of rolling bearings within an 

intelligent tool changing robot system. However, it is important 

to note that due to the dynamics and uncertainty of the test 

process, the small sample test data may not belong to the same 

population in essence, resulting in considerable risk in the 

interval estimation results [15]. 

In order to enhance the analysis methodology, the Bayesian 

method is employed to fuse the experimental information and 

prior information, enabling more robust statistical inference of 

kinematic accuracy parameters. Consequently, the stability and 

accuracy of the kinematic reliability evaluation results for the 

mechanism under small-sample test conditions are improved. 

Aiming at the characteristics of the small sample test data of the 

orbital components and the residual life following the Weibull 

distribution, Zhao et al. [30] proposed a method that 

incorporates multi-source information (including historical 

lifetime data, degradation data, expert information, similar data, 

etc.) based on the Bayesian method to evaluate the residual life 

of the on-orbit satellite orbital components, which enhanced the 

robustness of the evaluation results. Based on the Bayesian 

method, Peng et al. [21] developed a reliability evaluation 

model for CNC system based on multi-source information 

fusion, thereby mitigating errors arising from small-sample 

conditions. Furthermore, utilizing failure data of different 

environmental characteristics, Wei et al. [22] established  

a failure rate prediction model for electrical meters under small-

sample conditions using the weighted hierarchical Bayesian 

approach. 

However, it is challenging to ensure the accuracy and 

robustness of the aforementioned methods when there is 

insufficient prior information. Additionally, the existing 

literature mainly focuses on the application of the Bayesian 

method in the field of product failure rate, lifetime, and 

degradation parameter prediction under small-sample 

conditions. There is currently a dearth of study on the accuracy 

and robustness of product kinematic accuracy parameters under 

small-sample conditions. 

In addressing the aforementioned issues, this paper 

contributes in the following ways: 1) This study extensively 

leverages information in the design and testing phases of the 

mechanism. By effectively integrating prior data with 

experimental data, this study offers a robust framework for 

evaluating the reliability of retraction mechanism under small-

sample conditions. 2) The prior information used in this 

research is derived from a high-precision dynamic simulation 

model. To enhance computational efficiency, the neural network 

method is employed to augment the simulation data. 

Additionally, the study ensures the accuracy and stability of 

prior data through rigorous stationarity analysis, thereby 

guaranteeing the quality of prior information. These 

contributions collectively advance the assessment of 

mechanism reliability under the constraints of small-sample 

testing conditions.  

In this paper, Section 2 focuses on establishing the dynamic 

simulation model that takes joint clearance and assembly 
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deviation into consideration. Retraction tests are conducted to 

verify the accuracy of the simulation model, providing data 

support for reliability estimation. Based on the failure 

characteristics of the retraction mechanism, the kinematic 

accuracy reliability model of the retraction mechanism is 

established. Moving to Section 3, a kinematic accuracy 

parameter estimation method is proposed, that integrates prior 

information and experimental data using the Bayesian approach. 

In Section 4, with the aid of the neural network, the prior data 

is expanded using simulation data to overcome the limitation of 

insufficient prior information. The kinematic accuracy 

reliability estimation process is then established by combining 

this approach with the reliability calculation method. In Section 

5, the proposed parameter estimation method is applied to 

obtain the kinematic accuracy parameter distribution for the 

retraction mechanism. The efficiency and stability of the 

proposed method are evaluated through a comparative analysis 

with the classical interval estimation method. Subsequently, the 

kinematic accuracy reliability of the retraction mechanism is 

calculated, and the key variables affecting reliability are 

identified. Conclusions are made in Section 6. 

2. Retraction mechanism dynamics and reliability model 

2.1. Function definition of retraction mechanism 

The present study focuses on the dynamic modeling of a novel 

and intricate landing gear retraction mechanism specifically 

designed to accommodate the rotatable wheel.  

 

Fig. 1. Landing gear retraction mechanism. 

The three-dimensional model of the retraction mechanism is 

shown in Fig. 1. During the retraction process, the actuator 

cylinder drives the main strut to rotate. Subsequently, the 

rotational motion is transmitted to the wheel via a series of 

interconnected components, including the lower foldable strut, 

upper foldable strut, upper link, rocker arm, and lower link. This 

coordinated motion enables the wheel, which is mounted on the 

buffer piston rod, to rotate accordingly. 

As depicted in Fig. 2(a), when the landing gear is fully 

retracted to its predetermined position, the primary objective of 

the retraction mechanism is to achieve a flat orientation of the 

wheel, ensuring a specific safety distance denoted as ‘d’ 

between the wheel and the cabin door. This configuration 

effectively minimizes the vertical space occupied by the landing 

gear within the aircraft cabin. It’s crucial to emphasize that the 

main strut of the retraction mechanism is locked in an upper 

position, meaning that the retraction angle remains fixed. 

Consequently, the distance between the wheel and the cabin 

door is directly correlated with the rotation angle of the buffer 

piston rod. The allowable maximum distance between the wheel 

and the cabin door corresponds directly to the rotation limit 

error of the buffer piston rod. It is through this relationship that 

the value of the kinematic accuracy threshold is determined. 

 

(a) Ideal state 

 

(b) Interference state 

Fig. 2. The relative position of the wheel and landing gear 

cabin door. 

Clearance 𝑥1 

Assembly 

deviation  𝑥5 

Clearance 𝑥4 

Clearance 𝑥3 

Clearance 𝑥2 

x 

y 

x 

y 
Assembly 

deviation 𝑥8 

Assembly 

deviation 𝑥7 

Assembly 

deviation 𝑥6 

Main strut 

Upper foldable strut 

Upper link 
Lower foldable strut 

Rocker arm 

Buffer piston rod 

Lower link 

Retraction mechanism 

Wheel 

Cabin door 

d 

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

Throughout the operation of the retraction mechanism, the 

motion trajectory of each component will inevitably be affected 

by uncertain factors such as joint clearance and initial assembly 

deviation, resulting in motion errors. Under the cumulative 

effect of motion errors generated by each individual component, 

when the landing gear is retracted to the designated angle, the 

motion error of the buffer piston rod exceeds the acceptable 

threshold. Consequently, an interference situation arises 

between the rotatable wheel and the cabin door, as depicted in 

Fig. 2(b). In this instance, the kinematic accuracy of the 

retraction mechanism fails to meet the specified requirements. 

2.2. Dynamics simulation model of retraction mechanism 

Using the LMS Virtual.Lab Motion simulation software, 

referred to as Motion, the dynamic model of the retraction 

mechanism is established based on the landing gear retraction 

principle. This process involves four key steps: simplify the 

landing gear retraction mechanism model; assign quality 

attributes to each component; establish motion pairs and the 

constraints between components; apply load. 

Considering the impact of structural clearances and 

assembly deviations on the kinematic accuracy of the retraction 

mechanism, the structural clearance model for the four critical 

clearance locations, as shown in Fig. 1, is developed. 

Additionally, the assembly deviation model for the mounting 

positions of the main strut and upper foldable strut is developed. 

The approach for modeling structural clearances involves using 

multiple sphere-to-plane contact models to simulate the 

clearances between holes and shafts. Furthermore, to constrain 

the axial freedom of the shafts at these contact points, point-

surface high pairs have been introduced. To simulate assembly 

deviations in both horizontal and vertical directions, dummy 

objects are introduced on the ear plate, the moving pairs 

between these objects and the ear plate are implemented, and 

the motion pair driver is applied. Both the structural clearances 

and assembly deviations are parameterized to capture their 

variability. The simulation diagram of the clearance between the 

upper link and the rocker arm is shown in Fig. 3, while the 

simulation diagram of the assembly deviation of the main strut 

is shown in Fig. 4. 

Taking into account the structural flexibility characteristics, 

the foldable strut, link, and rocker arm undergo a flexibility 

treatment using Hypermesh software. Subsequently, the 

flexibility files are imported into Motion. The rigid-flexible 

coupling dynamic simulation model is obtained, as depicted in 

Fig. 5. Utilizing this model for batch simulations provides the 

rotation angle of the buffer piston rod concerning changes in the 

retraction angle of the main strut under various operating 

conditions. With appropriate data preprocessing, the rotation 

output error of the buffer piston rod can be obtained. 

 

Fig. 3. The clearance between the upper link and the rocker arm. 

 

Fig. 4. The installation deviation of the main strut. 

 

Fig. 5. Dynamics simulation model of retraction mechanism. 
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2.3. Dynamics test of retraction mechanism 

The structural clearance of the retraction mechanism is 

simulated by replacing the bolts with different sizes, and the 

assembly deviation is simulated by setting the adjustable fixture. 

Subsequently, the retraction mechanism is subjected to testing 

under different working conditions to evaluate its performance. 

The experimental prototype of the retraction mechanism is 

shown in Fig. 6. 

 

Fig. 6. Retraction mechanism experimental prototype. 

As depicted in Fig. 1, there are eight key factors affecting 

the mechanism’s performance, namely four structural 

clearances and four assembly deviations. Three different sizes 

of structural clearances and assembly deviations need to be 

simulated in the test. If the full factorial design is used for the 

test, it needs to be carried out under 38 working conditions. Such 

a large-scale experiment would not only consume extensive 

testing time to disassemble and reassemble the retraction 

mechanism repeatedly but also introduce the potential for 

human-induced errors that could degrade the mechanism’s 

kinematic accuracy. To reduce the test cost, it becomes 

necessary to select a subset of representative working 

conditions for the test while collecting data. Consequently, the 

data obtained from this small-sample test may not accurately 

represent the actual distribution of the mechanism’s kinematic 

accuracy parameters. 

To address this issue, the experimental data is used to refine 

the dynamic simulation model of the retraction mechanism, 

ensuring the accuracy of the simulation model. Subsequently, a 

data fusion approach integrating the experimental data with 

simulation data is employed to estimate the distribution 

parameters of the mechanism’s kinematic accuracy. As shown 

in Fig. 7, the motion trajectory of the retraction mechanism 

obtained from simulation is compared with the experimental 

results in the initial state. The curve depicting the variation of 

the retraction angle of the mechanism with the rotation angle of 

the wheel shows a close agreement between the simulation and 

experimental data. The relative error between them is less than 

1 × 10-3, indicating that the accuracy of the simulation model 

meets the required level. 

 

Fig. 7. Comparison of simulation data and test data. 

2.4. Reliability model of retraction mechanism 

The retraction time of the mechanism is 4 to 7 seconds, and it 

accounts for a relatively small proportion of the entire landing 

gear lifecycle. Therefore, it is assumed that the mechanism does 

not experience performance degradation during this single 

retraction cycle. The performance function corresponding to the 

failure mode of the kinematic accuracy of the retraction 

mechanism is expressed as 

𝑍(𝑿) = 𝑔(𝑿) = Δ∗ − Δ  (1) 

wherein, 𝑿 = [𝑥1, 𝑥2, . . . , 𝑥𝑟]  is made up of random variables 

that affect the kinematic precision function of the retraction 

mechanism, the distribution information is shown in Table 1. 

The specific locations of the clearance at the joint of the 

components and the installation deviation at the connection 

between the components and the fuselage in the retraction 

mechanism are shown in Fig. 1. 𝛥∗ is expressed as the rotation 

limit error of the buffer piston rod, that is, the kinematic 

accuracy threshold given by the design. 𝛥 is expressed as the 

rotation output error of the buffer piston rod, that is, the 

kinematic accuracy parameter measured by the test data. When 

𝛥∗ ≥ 𝛥, the kinematic error of the retraction mechanism falls 

within the allowable range, it is concluded that the retraction 

mechanism meets the specified kinematic accuracy criteria.
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Table 1. The distribution of random variable. 

Parameters/(mm) Distributions Parameters/(mm) Distributions 

Joint clearance between lower link and 

rocker arm 𝑥1 
𝑁(𝑢𝑥1 = 0.039, 𝜎𝑥1

2 = 0.0072) 
Joint clearance between lower foldable 

strut and rocker arm 𝑥2 
𝑁(𝑢𝑥2 = 0.057, 𝜎𝑥2

2 = 0.0102) 

Joint clearance between upper link and 

rocker arm 𝑥3 
𝑁(𝑢𝑥3 = 0.039, 𝜎𝑥3

2 = 0.0072) 
Joint clearance between main strut and 

rocker arm 𝑥4 
𝑁(𝑢𝑥4 = 0.057, 𝜎𝑥4

2 = 0.0102) 

Horizontal assembly deviation of upper 

foldable strut 𝑥5 
𝑁(𝑢𝑥5 = 0, 𝜎𝑥5

2 = 0.022) 
Vertical assembly deviation of upper 

foldable strut 𝑥6 
𝑁(𝑢𝑥6 = 0, 𝜎𝑥6

2 = 0. 12) 

Horizontal assembly deviation of main 

strut 𝑥7 
𝑁(𝑢𝑥7 = 0, 𝜎𝑥7

2 = 0.022) 
Vertical assembly deviation of main strut 

𝑥8 
𝑁(𝑢𝑥8 = 0, 𝜎𝑥8

2 = 0. 12) 

According to the reliability design theory [14,20], the 

kinematic accuracy reliability of the retraction mechanism is 

expressed as 

𝑃𝑟 = 𝑃(𝑍 > 0) = 𝑃(Δ∗ − Δ > 0)  (2) 

It is assumed that the performance function 𝑍  obeys the 

normal distribution [9,26,28,29]. Based on the normal 

distribution characteristics, 𝛥∗  and 𝛥  also obey the normal 

distribution. Eq. (2) can be rewritten as 

𝑃𝑟 = 𝑃(Δ
∗ − Δ > 0) = ∫

1

√2𝜋𝜎𝑍
2
𝑒𝑥𝑝 [−

(𝑧−𝜇𝑍)
2

2𝜎𝑍
2 ] 𝑑𝑧

∞

0
 (3) 

in which, 

𝜎𝑍
2 = 𝜎Δ∗

2 + 𝜎Δ
2  and  𝜇𝑍 = 𝜇Δ∗ − 𝜇Δ   (4) 

𝛥 is the performance characterization, 𝜇𝛥 and 𝜎𝛥
2 are given 

by the statistical inference method based on the experimental 

data of the retraction mechanism. However, it should be noted 

that when dealing with small sample tests, the accuracy and 

stability of the inference results for 𝜇𝛥  and 𝜎𝛥
2  can be 

challenging to guarantee. This limitation directly affects the 

stability and reliability of the subsequent reliability calculation 

results. To overcome this challenge, it is essential to leverage 

the available prior data effectively to improve the stability of the 

calculation results. By incorporating prior information, the 

reliability estimation process can be enhanced, ensuring more 

dependable and robust results.  

3. Kinematic accuracy distribution parameters estimation 

under small sample 

It is difficult to guarantee the accuracy and stability of the 

inference results of the distribution parameters of performance 

characterization due to the limited number of retraction tests 

conducted. To address this issue, the Bayesian method is 

employed as a reliable approach to fuse prior data and test data. 

By incorporating prior information into the parameter 

estimation process, the impact of small sample test conditions 

on parameter estimation is mitigated, leading to improved 

stability in the estimation results.  

3.1. Bayesian formula 

According to the Bayesian formula [6], the parameter 

estimation expression of the mean 𝜇𝛥  and variance 𝜎𝛥
2  of the 

kinematic accuracy parameter 𝛥 is expressed as 

𝜋(𝜇Δ, 𝜎Δ
2|𝑻) ∝ 𝑝(𝑻|𝜇Δ, 𝜎Δ

2)𝜋(𝜇Δ, 𝜎Δ
2)  (5) 

wherein, 𝑻 = [𝑡1, 𝑡2, . . . , 𝑡𝑛] consists of all test sample values, n 

denotes the test sample amount, 𝑝(𝑻|𝜇𝛥, 𝜎𝛥
2)  represents the 

likelihood function, 𝜋(𝜇𝛥, 𝜎𝛥
2) represents the prior distribution, 

and 𝜋(𝜇𝛥, 𝜎𝛥
2|𝑻) represents the posterior distribution. 

3.2. Likelihood function 

𝛥  obeys the normal distribution, the likelihood function that 

combines the test sample information and the overall 

information can be expressed as 

𝑝(𝑻|𝜇Δ, 𝜎Δ
2) ∝ 𝜎Δ

2 𝑒𝑥𝑝 (−𝛼∑ (𝑡𝑗 − 𝜇Δ)
2𝑛

𝑗=1 ) =

𝜎Δ
−𝑛exp{−𝛼[(𝑛 − 1)𝑠2 + 𝑛(𝑡̄ − 𝜇Δ)

2]}                             (6) 

in which, 

𝛼 =
1

2
𝜎Δ
2，𝑡̄ =

1

𝑛
∑ 𝑡𝑗
𝑛
𝑗=1 ，𝑠2 =

1

𝑛−1
∑ (𝑡𝑗 − 𝑡̄)

2𝑛
𝑗=1          (7) 

3.3. Prior distribution 

In the case where the test sample obeys the normal distribution 

with the unknown mean and variance, the joint prior distribution 

of mean 𝜇𝛥 and variance 𝜎𝛥
2 can be assumed to be the normal-

inverse gamma distribution [2,3,11], as shown in Eq. (8). 

𝜋(𝜇Δ，𝜎Δ
2) = 𝜋(𝜇Δ|𝜎Δ

2)𝜋(𝜎Δ
2) = (𝜎Δ

2)−(𝛾0+1)𝑒
−(

𝛽0

2𝜎Δ
2)
     (8) 

in which, 

𝛾0 =
(𝑣0+1)

2
 and 𝛽0 = 𝑣0𝜎0

2 + 𝑘0(𝜇Δ − 𝜇0)
2 (9) 

with hyper parameters: 
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{
 
 
 

 
 
 

𝜇0 = 𝜇Δ𝑝

𝑘0 =
𝜎Δ𝑝
2

𝑆𝜇Δ𝑝
2

𝑣0 =
2(𝜎Δ𝑝

2 )
2

𝑆
𝜎2Δ𝑝
2 + 4

𝜎0
2 =

𝑣0−2

𝑣0
𝜎Δ𝑝
2

    (10) 

wherein, 

{
 
 

 
 
𝜇Δ𝑝 = ∑ 𝜇Δ𝑝𝑗

𝑚
𝑗=1 /𝑚

𝑆𝜇Δ𝑝
2 = ∑ (𝜇Δ𝑝𝑗 − 𝜇Δ𝑝)

2𝑚
𝑗=1 /(𝑚 − 1)

𝜎Δ𝑝
2 = ∑ 𝜎Δ𝑝𝑗

2𝑚
𝑗=1 /𝑚

𝑆𝜎2Δ𝑝
2 = ∑ (𝜎Δ𝑝

2 − 𝜎Δ𝑝
2 )

2
𝑚
𝑗=1 /(𝑚 − 1)

  (11) 

Here, 𝜧𝛥𝑝 = [𝜇𝛥𝑝1, . . . , 𝜇𝛥𝑝𝑚]  consists of the prior mean 

sample; 𝜮𝛥𝑝
2 = [𝜎𝛥𝑝1

2 , . . . , 𝜎𝛥𝑝𝑚
2 ]  consists of the prior variance 

sample; 𝑚 denotes the prior sample amount. 

Typically, hyper parameters can be estimated using 

historical data and expert knowledge [1,7,24]. In cases where 

historical data and expert experience are scarce and simulation 

data is limited, the neural network can be used to expand the 

simulation data and generate an adequate number of prior 

samples, thereby obtaining reliable hyper parameters. Section 4 

delves into the details of this process. 

The joint prior distribution of mean and variance is the 

normal-inverse gamma distribution, leading to the normal 

distribution as the prior distribution of 𝜇𝛥  conditioned on 𝜎𝛥
2 

and the inverse gamma distribution as the prior distribution of 

𝜎𝛥
2, as shown in Eq. (12). 

{
𝜇Δ|𝜎Δ

2~𝑁(𝑃𝑁𝜇, 𝑃𝑁𝜎2)

𝜎Δ
2~𝐼𝐺𝑎(𝑃𝐼𝛼, 𝑃𝐼𝛽)

    (12) 

with parameters: 

{
𝑃𝑁𝜇 = 𝜇0，𝑃𝑁𝜎

2 =
𝜎0

2

𝑘0

𝑃𝐼𝛼 =
𝑣0

2
 ，𝑃𝐼𝛽 =

𝑣0𝜎0
2

2

   (13) 

To ensure the validity and appropriateness of the prior 

distribution hypothesis, it is necessary to evaluate the goodness-

of-fit of the prior distribution, as detailed in Section 5. 

3.4. Posterior distribution 

The posterior distribution of mean 𝜇𝛥  and variance 𝜎𝛥
2  can be 

rewritten as 

𝜋(𝜇Δ, 𝜎Δ
2|𝑻) = (𝜎Δ

2)−(𝛾𝑛+1)𝑒−(𝛽𝑛/2𝜎Δ
2)  (14) 

in which, 

𝛾𝑛 = (𝑣𝑛 + 1)/2 and 𝛽𝑛 = 𝑣𝑛𝜎𝑛
2 + 𝑘𝑛(𝜇Δ − 𝜇𝑛)

2      (15) 

with posterior distribution parameters: 

{
 
 

 
 𝜇𝑛 =

𝑘0

𝑘0+𝑛
𝜇0 +

𝑛

𝑘0+𝑛
𝑡̄

𝑘𝑛 = 𝑘0 + 𝑛
𝑣𝑛 = 𝑣0 + 𝑛

𝑣𝑛𝜎𝑛
2 = 𝑣0𝜎0

2 + (𝑛 − 1)𝑠2 +
𝑘0𝑛

𝑘0+𝑛
(𝜇0 − 𝑡̄)

2

      (16) 

3.5. Point estimation based on posterior distribution 

The maximum likelihood estimation method is employed to 

estimate the posterior distribution integrating overall 

information, sample information, and prior information, as 

shown in Eq. (17). 

{

∂𝜋(𝜇Δ,𝜎Δ
2|T)

∂𝜇Δ
= 0

∂𝜋(𝜇Δ,𝜎Δ
2|T)

∂𝜎Δ
2 = 0

   (17) 

The point estimate values for the kinematic accuracy 

distribution parameters 𝜇̂𝛥 and 𝜎̂𝛥
2 are finally derived as 

{
𝜇̂Δ = 𝜇𝑛

𝜎̂Δ
2 =

𝑣𝑛𝜎𝑛
2

𝑣𝑛+3

    (18) 

By substituting 𝜇̂𝛥  and 𝜎̂𝛥
2  into Eq.  (3), the kinematic 

accuracy reliability of the retraction mechanism is obtained. 

4. Kinematic accuracy reliability estimation process 

fusing prior and test samples 

The kinematic accuracy reliability estimation process by 

integrating prior information and test information is depicted in 

Fig. 8. The following parts provide a detailed overview of the 

research methodology. 

 

Fig. 8. Reliability estimation flow chart under small sample.
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4.1. Hyper parameter determination method based on 

neural network 

Expert experience, historical data, and similar product data are 

commonly used to estimate hyper parameters. However, when 

these approaches are not feasible due to data scarcity, the data 

expansion capability of the neural network [8,19] can be 

leveraged as a complementary solution. In this research, the 

simulation data is used as the training sample for the BP neural 

network. The trained neural network is then utilized to generate 

prediction samples, which are used to generate prior mean and 

prior variance samples. These samples facilitate the estimation 

of hyper parameters, thereby overcoming the limitations 

imposed by insufficient prior information. 

The process of expanding prior samples and determining 

hyper parameters involves several steps. 

1) Random sample 𝑚0  sets of test points that conform to 

the distribution characteristics of the random variables 

and invoke the mechanism dynamic simulation model to 

perform batch simulations, resulting in corresponding 

response data for each set, which constitute the initial 

prior samples 𝑻0 = [𝑡1
0, 𝑡2

0, . . . , 𝑡𝑚0
0 ]. 

2) Design and train the BP neural network using the 𝑚0 sets 

of simulated data points and corresponding response 

results, as illustrated in Fig. 9. To ensure model fitting 

accuracy and prevent overfitting, various parameters 

such as activation functions, training algorithms, the 

number of hidden layers, the number of neurons in each 

hidden layer, the number of epochs, dataset proportions, 

learning rates, training objectives, and momentum 

factors can be adjusted to achieve an optimal neural 

network. The Mean Square Error (MSE) serves as the 

evaluation metric for neural network training 

effectiveness [5]. When MSE ≤ 1×10-6, the neural 

network is considered a high-precision surrogate model 

suitable for subsequent calculations of mechanism 

kinematic accuracy reliability.

 

Fig. 9. Neural network training flow chart.

3) Generate 𝑚𝑠 sets of prediction test points based on the 

distribution information of random variables, input them 

into the neural network, and obtain 𝑚𝑠  sets of 

corresponding response results, i.e., prediction samples 

𝑻𝑠 = [𝑡1
𝑠, 𝑡2

𝑠, . . . , 𝑡𝑚𝑠
𝑠 ]. 

4) Calculate the mean 𝜇𝛥𝑝𝑗  and variance 𝜎𝛥𝑝𝑗
2   of the 

prediction samples 𝑻𝑠. 

5) Repeat steps 3) - 4) m times. The prior mean samples 

𝜧𝛥𝑝  consist of m sets of means derived from the 

prediction samples, while the prior variance samples 𝜮𝛥𝑝
2  

consist of m sets of variances obtained from the 

prediction samples. The expansion of the prior sample 

data is now finalized. 

6) Solve the hyper parameter values based on the sample 

𝜧𝛥𝑝  and 𝜮𝛥𝑝
2  , determine the prior normal distribution 

parameter values and the prior inverse gamma parameter 

values, and then complete the hyper parameter 

estimation. 

7) Verify the rationality of the prior distribution hypothesis 

using the K-S goodness of fit test method. 

4.2. Kinematic accuracy reliability estimation process 

Based on the results of hyper parameter estimation, the 

determination process of the kinematic accuracy reliability 

estimation is as follows: 

1) Calculate the test statistic values 𝑡̄ and 𝑠2 based on the 

small sample test data 𝑻. 

2) Substitute the hyper parameter values containing prior 

information and the test statistic values containing test 

information into Eq. (16), and obtain the posterior 

distribution parameters 𝜇𝑛, 𝑘𝑛, 𝑣𝑛, and 𝜎𝑛
2. 

3) Substitute 𝜇𝑛, 𝑘𝑛, 𝑣𝑛, and 𝜎𝑛
2 into Eq. (18), and obtain 
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the point estimate values for kinematic accuracy 

distribution parameters 𝜇̂𝛥 and 𝜎̂𝛥
2. 

4) Substitute 𝜇̂𝛥 and 𝜎̂𝛥
2 into Eq. (3) to derive the kinematic 

accuracy reliability of the retraction mechanism. 

5. Kinematic accuracy reliability estimation of retraction 

mechanism 

The proposed method is verified for its feasibility and 

effectiveness by applying it to estimate the kinematic accuracy 

reliability of a new type of complex rotatable tire landing gear 

retraction mechanism. Through the utilization of prediction 

samples generated by the trained neural network and the 

Bayesian method, the challenges of difficult hyper parameter 

estimation and low stability in the estimation results of 

kinematic accuracy reliability, caused by factors such as limited 

field test data and insufficient prior information, are 

successfully addressed. 

5.1. Kinematic accuracy reliability estimation of 

retraction mechanism 

The parameters required for reliability evaluation of the 

retraction mechanism are presented in Table 2. To gather the 

necessary data for the analysis, both real and simulation tests of 

the retraction mechanism have been conducted. The test sample 

data are provided in Table 3, and the simulation data used to 

train the neural network are shown in Table 4. 

Table 2. Reliability evaluation parameters of retraction 

mechanism. 

𝑛 = 10 𝑚0 = 500 

𝑚𝑠 = 80 𝑚 = 3000 

𝛥∗~𝑁(0.2,0.022) / 

Table 3. Test sample data T. 

Serial number 𝑻/(°) Serial number 𝑻/(°) 
1 0.048 6 0.062 

2 0.023 7 0.009 

3 0.042 8 0.032 

4 0.026 9 0.002 

5 0.032 10 0.070 

Table 4. Simulation data 𝑻0. 

Serial number 𝑻0/(°) Serial number 𝑻0/(°) 
1 0.043 251 0.085 

…  …  

250 0.063 𝑚0 0.071 

(1) Train the neural network 

After generating 500 test points based on the distribution 

information in Table 1, the simulation model is invoked to 

perform batch simulations, resulting in corresponding rotation 

angle errors as shown in Table 4. Using structural clearances 

and assembly deviations as inputs and rotation angle errors as 

responses, a BP neural network with one hidden layer is created. 

To ensure model fitting accuracy, the Levenberg-Marquardt 

training algorithm is employed, and the number of neurons in 

the hidden layer is set to 10. The activation function for the 

hidden layer is the hyperbolic tangent sigmoid function, while 

the output layer employs a linear function. To avoid overfitting, 

the training data input into the network is divided into three 

groups, with 70% for the training sample set and 15% each for 

the validation and test sample sets. The regression performance 

of the neural network and the error histogram are illustrated in 

Fig. 10 and Fig. 11.  

 

Fig. 10. Comparison of true and predicted values. 

 

Fig. 11. Error histogram. 

The model’s regression coefficient is 0.99962, and the mean 

square error is 5.579×10-7, which falls below the threshold 1 × 

10-6. The majority of errors fall within the range of -0.009 to 

0.008, with a maximum error range between -0.050 and 0.035. 
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This model accurately reflects the landing gear retraction 

mechanism’s kinematic accuracy variations with changes in 

structural clearances and assembly deviations, thus indicating 

the successful completion of neural network training. 

(2) Generate prior sample data 

Using the random distribution information in Table 1, 𝑚𝑠 

groups of test points are generated and subsequently input into 

the neural network to generate a corresponding set of prediction 

samples. The mean 𝜇𝛥𝑝𝑗 and variance 𝜎𝛥𝑝𝑗
2  are then calculated 

based on these prediction samples. This process is repeated m 

times to generate the prior mean samples 𝜧𝛥𝑝  and prior 

variance samples 𝜮𝛥𝑝
2 , as presented in Table 5. 

Table 5. Prior sample data. 

Serial number Prior sample type Prior sample values 

1 
𝜇𝛥𝑝1 0.036 

𝜎𝛥𝑝1
2  3.691×10-4 

2 
𝜇𝛥𝑝2 0.034 

𝜎𝛥𝑝2
2  4.861×10-4 

… … … 

m 
𝜇𝛥𝑝𝑚 0.038 

𝜎𝛥𝑝𝑚
2  3.329×10-4 

Based on the data in Table 5, the frequency distribution 

histograms of the prior samples are depicted in Fig. 12. It can 

be seen that the frequency distribution of prior mean samples 

exhibits characteristics similar to the normal distribution, while 

the frequency distribution of prior variance samples 

demonstrates characteristics akin to the inverse gamma 

distribution. This qualitative assessment supports the 

reasonableness of the prior distribution hypothesis. 

 

(a) Frequency distribution histogram of mean 

 

(b) Frequency distribution histogram of variance 

Fig. 12. Frequency distribution histograms of prior samples. 

(3) Estimate hyper parameters 

The prior sample data in Table 5 are used to calculate the 

estimate values of the hyper parameters, as indicated in Table 6, 

by substituting into Eq. (10). In order to assess the goodness-of-

fit of the prior distribution hypothesis, a K-S (Kolmogorov-

Smirnov) goodness-of-fit test is conducted, and the results are 

displayed in Table 7. 

Table 6. The hyper parameters of the prior distribution. 

𝜇0 0.039 

𝑘0 82.775 

𝑣0 99.606 

𝜎0
2 4.078×10-4 

Table 7. The goodness of fit test of the prior distribution. 

Distribution P-value 
Test 

statistic 

Significance 

level 

Critical 

value 

𝑁(𝑃𝑁𝜇, 𝑃𝑁𝜎2) 0.662 0.013 5% 0.025 

𝐼𝐺𝑎(𝑃𝐼𝛼, 𝑃𝐼𝛽) 0.157 0.021 5% 0.025 

The P-values associated with the prior normal distribution 

and prior inverse gamma distribution are observed to exceed the 

significance level, and the corresponding test statistics are 

found to be smaller than the critical value. These results indicate 

that there is sufficient evidence to accept the hypothesis that the 

assumed distributions accurately represent the underlying 

parameters. By conducting a quantitative analysis, the 

rationality of the prior distribution hypothesis is further 

confirmed. 

The test sample data in Table 3 and the hyper parameters in 

Table 6 are brought into Eq. (16) to obtain the hyper parameters 

of the posterior distribution, as shown in Table 8. Substituting 

the hyper parameters in Table 8 into Eq. (18), the point estimate 
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values for the kinematic accuracy distribution parameters are 

obtained. 𝜇̂𝛥 = 0.0385, 𝜎̂𝛥
2 = 3.989 × 10−4. 

Table 8. The hyper parameters of the posterior distribution. 

𝜇𝑛 0.0385 

𝑘𝑛 92.775 

𝑣𝑛 109.606 

𝜎𝑛
2 4.098×10-4 

As depicted in Fig. 13 and Fig. 14, visual representations of 

the prior and posterior distributions, as well as the maximum 

posterior estimation for the mean 𝜇𝛥  and variance 𝜎𝛥
2 , are 

presented. 

 

Fig. 13. A schematic diagram of the prior distribution, 

posterior distribution, and maximum posterior estimation of 

mean. 

 

Fig. 14. A schematic diagram of the prior distribution, 

posterior distribution, and maximum posterior estimation of 

variance. 

It is evident that the incorporation of prior information has 

led to a discernible increment in the mean of kinematic accuracy 

mean, accompanied by a reduction in the standard deviation. 

However, the distribution pattern of kinematic accuracy 

variance exhibits relatively minor changes. These observations 

collectively underscore the influence and effectiveness of prior 

information on the estimation of kinematic accuracy parameters. 

(4) Kinematic reliability estimation of retraction mechanism 

The kinematic accuracy point estimate values 𝜇̂𝛥 and 𝜎̂𝛥
2 are 

brought into Eq. (3), in which 𝜇𝑍 = 0.1615 , 𝜎𝑍
2 = 7.989 ×

10−4. The resulting reliability of the kinematic accuracy of the 

retraction mechanism is determined to be 99.9999994%. 

5.2. Stationarity test 

(1) Stationarity test of prior sample values 

To assess the stability and accuracy of the generated prior 

samples and ensure the reliability of subsequent calculations, a 

quantitative analysis is conducted. The curves of the prior mean 

𝜇𝛥𝑝𝑗 and prior variance 𝜎𝛥𝑝𝑗
2  with the amount of prediction data 

are shown in Fig. 15. 

 

Fig. 15. Curve of prior sample values changing with the 

prediction data amount. 

It can be seen that the fluctuation amplitudes of 𝜇𝛥𝑝𝑗  and 

𝜎𝛥𝑝𝑗
2  gradually decrease as 𝑚𝑠 increases. When 𝑚𝑠 = [60,90], 

the fluctuation amplitudes of 𝜇𝛥𝑝𝑗 and 𝜎𝛥𝑝𝑗
2  become stable. The 

curves of the standard deviation 𝑆𝐷𝜇𝛥𝑝𝑗  of the prior mean 

sample and the standard deviation 𝑆𝐷𝜎𝛥𝑝𝑗
2  of the prior variance 

sample with the amount of prediction data are shown in Fig. 16. 

 

Fig. 16. Stationarity analysis of prior sample values. 

When 𝑚𝑠 ≥ 40 , it can be seen that 𝑆𝐷𝜇𝛥𝑝𝑗  and 𝑆𝐷𝜎𝛥𝑝𝑗
2  

exhibit a steady decrease as 𝑚𝑠  increases. When 𝑚𝑠 = 80 , 

̂

2̂
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𝑆𝐷𝜇𝛥𝑝𝑗 = 5.978 × 10−2 , 𝑆𝐷𝜎𝛥𝑝𝑗
2 = 8.781 × 10−3 , satisfying 

the requirements. 

Therefore, with the aim of maintaining stable calculation 

results while enhancing computational efficiency, 𝑚𝑠 is set to 

80. 

(2) Stationarity analysis of prior distribution parameters 

To assess the stationarity of the prior distribution parameters, 

a quantitative analysis is conducted using the example of the 

prior inverse gamma distribution parameters. The curves 

depicting the shape parameter 𝑃𝐼𝛼 and scale parameter 𝑃𝐼𝛽 of 

the prior inverse gamma distribution with the prior sample 

amount are shown in Fig. 17. 

 

Fig. 17. Curve of prior distribution parameters changing with 

the prior sample amount. 

It can be seen that the fluctuation amplitudes of 𝑃𝐼𝛼  and 

𝑃𝐼𝛽  decrease gradually as m increases. When 𝑚 =

[2500,5000], the curves exhibit stability. The variation curves 

of the standard deviation of the shape parameter 𝑆𝐷𝑃𝐼𝛼 and the 

standard deviation of the scale parameter 𝑆𝐷𝑃𝐼𝛽 with the prior 

sample amount m are shown in Fig. 18. 

 

Fig. 18. Stationarity analysis of prior distribution parameters. 

When 𝑚 ≥ 1100 , both 𝑆𝐷𝑃𝐼𝛼  and 𝑆𝐷𝑃𝐼𝛽  show a steady 

decrease as m increases. When 𝑚 = 3000 , 𝑆𝐷𝑃𝐼𝛼 = 1.771 , 

𝑆𝐷𝑃𝐼𝛽 = 7.49 × 10−4, which can satisfy the use requirement. 

As a result, m is set to 3000 in order to increase computation 

efficiency under the presumption of maintaining the stability of 

the calculation results. 

(3) Stationarity analysis of kinematic accuracy distribution 

parameters 

The estimate values of the kinematic accuracy distribution 

parameters and the variation in these parameters with changes 

in the number of test samples and prior samples are illustrated 

in Fig. 19 and Fig. 20. When the number of prior samples falls 

within the range of [2500, 4000], the estimation results for the 

kinematic accuracy distribution parameters exhibit minimal 

fluctuations. 

 

Fig. 19. Three-dimensional graph of mean estimation results. 

 

Fig. 20. Three-dimensional graph of variance estimation results. 

In order to assess the effectiveness of the proposed method, 

a comparison is made with the classical interval estimation 

method [23] using a confidence coefficient of 0.95. The analysis 

focuses on the variation trends of the kinematic accuracy 

distribution parameters, 𝜇𝛥 and 𝜎𝛥
2, of the retraction mechanism. 

The test sample amount is varied within the range of [5, 15]. 

The calculation results are presented in Fig. 21 and Fig. 22. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

 

Fig. 21. Curve of mean estimation results with the change in 

test sample amount. 

 

Fig. 22. Curve of variance estimation results with the change 

in test sample amount. 

As presented in Table 9, the fluctuation amplitudes of the 

kinematic accuracy distribution parameters are shown. It is 

evident that the fluctuation amplitude obtained through our 

proposed methodology is less than 10% of that acquired using 

the classical interval estimation method. 

Table 9. The fluctuation amplitudes of the estimation results. 

Estimation results 𝜇𝛥 𝜎𝛥
2 𝑝𝑓 

Proposed method 0.0024 4.015×10-5 5.900×10-9 

Upper limit of interval 

estimation 
0.0262 0.002 0.0034 

Lower limit of interval 

estimation 
0.0258 2.684×10-4 3.804×10-9 

The proposed method is significantly better than the 

classical interval estimation method in the stability of the 

estimation results of 𝜇𝛥  and 𝜎𝛥
2  by fusing prior samples. The 

robustness of the proposed method under the condition of small 

sample is proved. Furthermore, the amplitude variation of the 

estimation results obtained with the proposed method falls 

within the range of the amplitude variation observed in the 

interval estimation results, thereby attesting to the accuracy of 

the proposed method under the condition of small sample. 

In addition, the mean estimation results of the kinematic 

accuracy parameter calculated by the proposed method fall 

within the upper range of the mean estimation interval derived 

from the classical interval estimation method relying solely on 

the test data. Similarly, the variance estimation results fall 

within the lower range of the variance estimation interval. These 

findings suggest that the proposed method possesses a 

corrective effect on the estimation results of distribution 

parameters under small-sample test conditions. 

As illustrated in Fig. 23, the failure probabilities derived 

from this method fall within the range obtained through 

classical interval estimation, exhibiting minimal fluctuation. 

 

Fig. 23. Curve of failure probability with the change in test 

sample amount. 

It is evident that, due to the propagation of errors in the 

calculation process, the fluctuations in the results yielded by 

interval estimation become less tenable. This underscores the 

stability of the reliability analysis results obtained through this 

method, particularly under small sample conditions. 

5.3. Influences of uncertainty factors on kinematic 

accuracy reliability 

The joint clearances and assembly deviations undoubtedly have 

an impact on the kinematic accuracy of the retraction 

mechanism during its operational lifespan. In order to improve 

the kinematic accuracy reliability of the retraction mechanism, 

the influence analysis of the uncertainty factors of the retraction 

mechanism is carried out. The relationship between the 

distribution parameters of random variables and reliability is 

depicted in Fig. 24 and Fig. 25. 
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Fig. 24. The relationship diagram between the mean value of 

random variables and reliability. 

 

Fig. 25. The relationship diagram between the standard 

deviation of random variables and reliability. 

It is evident that the joint clearance between the rocker arm 

and the upper link 𝑥3 , the joint clearance between the rocker 

arm and the main strut 𝑥4 , and the horizontal installation 

deviation of the upper foldable strut 𝑥5 are the primary factors 

influencing the kinematic accuracy reliability of the retraction 

mechanism. Reducing the mean value of 𝑥5  and 𝑥4  can 

effectively improve the kinematic accuracy reliability of the 

retraction mechanism. Hence, during the design phase, it is 

crucial to ensure that 𝑥5 is controlled within the range of 0 ~ 

0.15 mm and 𝑥4  is limited to the range of 0 ~ 0.02 mm. 

Additionally, during the subsequent maintenance process, it is 

recommended to prioritize inspections and evaluations of the 

variations in 𝑥3, 𝑥4, and 𝑥5 to monitor and address any potential 

deviations from the desired values. By addressing these key 

factors, the overall kinematic accuracy reliability of the 

retraction mechanism can be improved and maintained at an 

optimal level. 

5.4. Limitations of kinematic accuracy reliability 

estimation method 

(1) Accuracy of simulation and neural network models 

The approach heavily relies on prior data. If the simulation 

model cannot accurately represent the real system, or if the 

neural network model fails to capture the system’s highly 

nonlinear behavior adequately, it can result in inaccurate prior 

samples. Consequently, this can lead to compromised reliability 

estimation results. 

(2) Prior distribution hypothesis for performance 

characteristics 

The Bayesian method assumes that the prior distribution 

accurately reflects prior knowledge. If the prior distribution 

lacks a clear specification or if the prior samples obtained 

through the neural network cannot qualitatively and 

quantitatively validate the rationality of the prior distribution 

hypothesis, it may introduce bias into the reliability estimation 

results. 

This methodology is particularly suitable for static 

reliability analysis of mechanisms under small-sample test 

conditions during the development of new products. Moreover, 

in the operational phase of the mechanism, this approach can be 

employed to assess reliability by means of detecting joint 

clearances and assembly deviations, thereby offering valuable 

insights to maintenance engineers. However, it requires further 

refinement and adaptation for time-dependent reliability 

analysis, especially for systems with complex nonlinear 

behaviors, during the operational phase. Further improvements 

are necessary to extend its applicability to complex, nonlinear, 

and time-dependent systems. 

6. Conclusion 

(1) The key innovations of this research lie in the integration of 

the data expansion capability of the neural network with the 

robust statistical foundation of the Bayesian method. This 

distinctive integration empowers the generation of an extensive 

array of prior samples characterized by their precision and 

stability, as assured through rigorous stationarity analyses. This 

approach effectively mitigates the challenges associated with 

acquiring sufficient prior information, such as expert experience 

and historical data, which are often elusive, particularly in the 

context of novel product development. 
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(2) In this study, a kinematic accuracy reliability estimation 

method based on the Bayesian method is proposed to analyze 

the kinematic accuracy reliability of the retraction mechanism. 

Through the analysis, it is observed that the joint clearance 

between the rocker arm and the upper link, the joint clearance 

between the rocker arm and the main strut, and the horizontal 

assembly deviation of the upper foldable strut significantly 

influence the kinematic reliability of the retraction mechanism. 

These findings highlight the critical factors that should be 

carefully controlled and monitored in order to enhance the 

overall kinematic accuracy reliability of the retraction 

mechanism. 

(3) The proposed parameter estimation method, which 

incorporates prior information, demonstrates its ability to 

improve the estimation results compared to the classical interval 

estimation method under the condition of small sample. 

Furthermore, the stability of the estimation results obtained 

through the proposed method is significantly superior to that of 

the classical interval estimation method. These findings 

highlight the effectiveness of incorporating prior information in 

improving estimation accuracy and stability under small sample 

conditions, offering valuable insights for reliable parameter 

estimation in various fields of research and application. 

(4) The proposed method presents a valuable approach for 

estimating the kinematic accuracy reliability of similar products 

in situations where there is a scarcity of test samples and limited 

availability of expert experience and historical data. Future 

research endeavors will extend to explore and validate the 

applicability of this method in analyzing the static reliability 

and time-dependent reliability of other performance 

characteristics in mechanisms. This will facilitate more precise 

and reliable performance reliability estimation for similar 

products under conditions of constrained data resources.
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