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Highlights  Abstract  

▪ A three-step algorithm based on statistical 

prognostic models was used to implement 

diesel engine reliability improvements. 

▪ The creation of a prolific and effective 

ANCOVA prognostic model. 

▪ ANCOVA was exceedingly accurate in 

predicting 95% of the studied parameters. 

 The reliability of internal combustion engines becomes an important 

aspect when traditional fuels with biofuels. Therefore, the development 

of prognostic models becomes very important for evaluating and 

predicting the replacement of traditional fuels with biofuels in internal 

combustion engines. The models have been made to model AVL 5402 

engine emission, vibration, and sound pressure parameters using a three-

stage statistical regression models. The fifteen parameters might be 

accurately predicted by a single statistic presented here. Both fuel type 

(diesel fuel and HVO) and engine parameters that can be adjusted were 

considered, since this analysis followed the symmetry of the methods. 

The data analysis process included three distinct steps and symmetric 

statistical regression testing was performed. The algorithm examined the 

effectiveness of various engine settings. Finally, the optimal fixed engine 

parameter and the optimal statistic were used to construct an ANCOVA 

model. The ANCOVA model improved the accuracy of prediction for all 

fifteen missing parameters. 
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1. Introduction 

Process reliability reduces process internal combustion engine’s 

failures. Process reliability is defined, evaluated, and is very 

important to prognoze the internal combustion engine's 

performance [27]. In addition to this, it makes it possible to 

acquire reliability estimates as well as a hierarchy [6]. Another 

aspect is the reliability of the internal combustion engine when 

using biofuels. The main advantage of such fuels is lower 

exhaust gas emissions [42]. Therefore, when evaluating the 

reliability of engines, it is necessary to take into account not 

only engine operating parameters, but also exhaust emissions. 
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Requirements for engine emissions are becoming increasingly 

stringent for environmental benefits [47]. Decarbonization 

programs have been implemented for using clean, low-carbon 

fuels [37]. Ambitious goals to reduce the concentrations of 

hazardous compounds in the exhaust gases were supplemented 

by strict requirements for the reduction of the concentration and 

volume of solid particles [16], which have already been 

transferred to the legal basis (requirements of Euro Standard 6) 

[15]. A new technique of measurement employing random 

measurement sections that achieves these objectives. The 

proposed method corresponds to the random nature of road 

traffic situations while maintaining the similarity of hazardous 

exhaust component emissions [9]. 

The harmfulness of exhaust gases is limited by using 

alternative fuels [4]. The engine runs noisier and performs 

worse as the amount of ethanol additive in the fuel mixture is 

increased. This problem has been addressed using a variety of 

exhaust gas regulation (EGR) situations, where increasing the 

EGR rate led to a reduction in thermal efficiency [33]. Another 

method is the supply of hydrogen, but the simultaneous supply 

of ethanol and hydrogen increased the concentration of soot [13, 

44]. The usage of oxygen-diesel mixtures is an efficient 

technique to minimize soot concentrations because it allows the 

harmfulness of exhaust gas components to be reduced [19] 

(except for NOX, whose concentration increases at higher 

temperatures [28]. These can be various dibutyl maleate and 

diesel [34] and biodiesel mixtures (starting with palm oil [29], 

fats [5], rapeseed oil [31] and ending with diesel esters. Another 

option is to use hydrogenated vegetable oil (HVO) blends with 

diesel and soybean oil methyl ester with diesel. The qualities of 

HVO mixtures with diesel not only improve the environmental 

indicators of the engine, but also allow for improved 

performance characteristics [1, 45], especially by optimizing 

the main fuel injection time [12]. The environmental impact of 

soybean oil methyl ester mixes with diesel has also been 

emphasized, highlighting the stability and tarability of such 

blends [32]. Another key issue is the viscosity of soybean oil 

methyl ester, which is ten times that of diesel, and its use is 

restricted, particularly at subzero ambient temperatures [2]. 

Various machine learning algorithms, including artificial 

neural networks, relevance vector method, support vector 

machine, genetic algorithm, response surface method, and gene 

expression programming, are extensively employed in the 

prediction of internal combustion engine performance [20].  

A novel approach for assessing the dependability of aeroengine 

cooling blades by employing a multivariate ensembles-based 

hierarchical linking strategy there was presented. The proposed 

methodology aims to improve the accuracy and efficiency of 

computations by developing machine learning models [25]. The 

DLR-SS method, which is a deep learning approach, 

successfully addresses the challenges posed by high 

nonlinearity and correlated interactions in the probabilistic 

evaluation of CCF damage. This is achieved by the utilization 

of fatigue life models and synchronous mapping-based models 

[23]. 

Over the past decades, researchers have introduced  

a number of prognostic models for engine emissions, one of the 

first comprehensive reviews of the models [10]. Predictive 

maintenance improves the availability, cost, and dependability 

of high-value assets. A novel prognostic function monitors 

diesel fuel injector deterioration. The feature value is 

determined using the thermodynamics of the engine and data 

from the engine controller to provide a simple and accurate two-

stage hybrid linear regression model for the temperature of the 

exhaust gas [40]. When compared to the temperature that is 

produced by the statinary heating device, the flame temperature 

that is produced by the combustion engine is on average two 

times higher [38]. Using a new engine sensor and an exhaust 

gas temperature sensor, an artificial neural network identifies 

knocks. Turbocharged gasoline-powered automobile test travels 

yield 5 million data sets. Filtered data reduce network errors 

[17]. The Six-Sigma method can be applied to numerical data 

that violates the assumption of normal distribution. The power 

transformation is proposed using multiple criteria decision 

analysis (MCDA) for the asymmetry coefficient and kurtosis 

coefficient. To test distribution normality, the Jarque-Bera 

statistic was minimised [7]. A method of using statistical models 

to investigate and predict the outcomes of ongoing processes. In 

some cases, the available classical approaches cannot produce 

information of a sufficient level of reliability [8]. Single-LSTM 

(long-short-term memory) models predict gas-path 

performance for each aero-engine. Operating conditions and 

time series are modelled together. SALNT (LSTM neural tree), 

a new prognostic model, incorporates decision trees and LSTM. 
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SALNT helps the sample find its best predicted gas-path 

performance model [26]. Gaussian process regression predicted 

engine performance and exhaust emissions. Bayesian 

hyperparameter optimisation improved predictive model 

training. Prophetic models successfully anticipated engine 

performance and exhaust emissions. Bayesian optimised 

Gaussian process regression creates a reliable engine 

performance and emission prognostic model [3]. 

ANOVA models are most commonly used for predicting 

how engine emission levels depend on fixed engine parameters 

such as fuel type, engine power and loads, rpm, etc. ANOVA 

model is a simple and convenient statistical method when it is 

necessary to evaluate various individual qualitative parameters 

and their interactions to predict engine emissions. 

Sivaramakrishnan and Ravikumar [36] conducted ANOVA 

models for brake thermal efficiency, brake specific fuel 

consumption, HC, CO, and NOX. Compression ratio, fuel 

mixtures and engine power were selected as independent 

variables. The adapted R2 of the realized models was extremely 

high and reached >90%, while the adapted R2 of brake thermal 

efficiency, specific brake fuel consumption and nitrogen oxides 

were equal to 100%. In the conclusions, the authors additionally 

note that the experimental design including statistical analysis 

accelerated the data analysis and reduced the number of 

experiments. Ramachander et al. [30] publication contains 

prognostic models based on ANOVA methodology. For more 

than ten different engine parameters, prognostic models were 

built with engine load, fuel injection pressure and time input 

parameters. The constructed ANOVA model showed that engine 

load was statistically significant for almost all predicted 

parameters (only NOX was non-significant). Fuel injection 

pressure and timing as prognostic factors were significant for  

a smaller number of predicted parameters. When creating  

a prognostic model, the authors additionally included pairwise 

interactions of all input parameters and quadratic expressions of 

the input parameters themselves. The values of the model 

parameter estimates indicated that not all interactions are 

affected by the model output. In this case, it is recommended 

that non-significant interaction factors should be removed from 

the model, but it is not clear in the publication whether this was 

done by the authors. Two-factor ANOVA model was 

investigated to evaluate the biodiesel blends that would generate 

the lowest vibrations [39]. The output parameter of the model 

was the RMS of the vibration signal, and the input parameters 

(or factors) were two: fuel type (9 variants of the biodiesel 

mixture) and engine speed (7 variants). Vibration data was 

obtained for two engine conditions, before and after technical 

inspection. The ANOVA model showed that regardless of 

whether the engine was pre- or post-maintenance, fuel type, rpm 

and the interaction of both of these factors were statistically 

significant in predicting vibration RMS values (p < 0.001). The 

study further revealed that the highest RMS values of vibration 

are achieved at 1800 and 2000 rpm. for engine speed. It is also 

important to note that the RMS of the vibration signal was 

reduced by 12% after the engine was inspected. 

A similar study was conducted to evaluate the biodiesel 

blends that would generate the lowest vibrations by Uludamar 

et al. [41]. Linear and non-linear regression models for 

predicting engine vibration and sound pressure were presented. 

During the experiment, three types of fuel mixtures (low-

sulphur diesel mixed with sunflower, rapeseed and corn oils) 

were used, and the engine speed was varied (1200, 1500, 1800, 

2100 and 2400 rpm). According to the authors, the root mean 

square deviation is the most important measure of the vibration 

and sound pressure value, so it was used as the output parameter 

of the model. The input parameters of the predictive models 

were fuel density, ketone number, viscosity, and minimum 

heating value. The goodness-of-fit of the constructed models 

was assessed using the mean absolute percentage error (MAPE). 

The RMS values of the vibration signal were found to be 

slightly worse predicted than the RMS of the sound pressure, 

but overall the models were accurate and MAPE was less than 

1% in all cases. 

Khurana et al. [21] reviewed the recent research performed 

since last decade (2008 to 2020) which investigated machine 

learning approaches for modeling engine emissions. Authors 

identified that during research period these advanced techniques 

as K-nearest neighbor, Bagged Decision Trees, Neural Network, 

Support Vector Machine, CHAID model, adaptive neuro-fuzzy 

approach, back-propagation with Levenberg–Marquardt 

algorithm, and other ANN were the most popular for predicting 

of engine emissions. A double-layer perceptron neural network 

for predicting as many as 12 output parameters was compiled 

and described by Hosseini et al. [18]. The input parameters were 
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fuel mixture, engine speed, ambient air pressure, relative 

humidity, oil temperature, exhaust oxygen content, fuel 

consumption, intake manifold pressure, lower heating value, 

exhaust gas temperature, fuel density and fuel viscosity. The 

output parameters were: engine performance (power and 

torque), emissions (CO, CO2, UHC and NOx) and vibration. 

The R2 for training, validation and testing of the constructed 

model was as high as 99.99%, 99.94% and 99.95%, 

respectively. The authors conclude that the constructed two-

layer perceptron is a powerful tool for predicting engine 

performance, emissions, and vibration characteristics. 

Several other machine learning models were investigated by 

Zhang et al. [43]. Random forest, support vector regression, and 

artificial neural networks were used for prediction of engine 

efficiency and emission performance. Authors conclude that 

machine learning models can help to predict engine 

performance and emissions, however, it required heavy tuning 

of the hyperparameters, such as the net structure. 

Direct injection diesel engines were improved ANN 

(Artificial Neural Network) to estimate emissions and 

performance. For some parameters, the model agreed with the 

experimental data on engine performance and emissions [11]. 

Using experimental data and a multilayer perceptron 

architecture, an ANN-based prediction framework for engine 

functioning and exhaust parameters was developed. 5% of the 

experimental predictions were inaccurate [35]. 

An increasing number of publications on this topic shows 

that prediction of engine performance and emission is not 

completely solved. According to a survey of the literature, 

developing statistical prediction models for exhaust emission of 

ignition engines is still difficult. As prognostic models have 

continued to evolve, accuracy results have reached little 

improvement, moreover the complexity of algorithms has 

grown exponentially. It has been observed that researchers 

hardly use vibration data in the development of predictive 

models and rely only on fixed engine parameters. 

During this study, vibration and sound pressure data were 

included in the developing of prognostic model of engine 

performance and emissions. Several ANOVA prognostic models 

were developed using statistical optimization process. RMS 

values of vibration and sound pressure data in combination with 

injection and EGR ratio were used as prediction model input 

parameters. The primary objective of this study was to 

investigate the optimal prediction model for engine 

performance and emissions parameters dependent from 

vibration, sound pressure changing injection timing, and EGR 

rate. 

2. Methodology and Data Description 

2.1. Experimental Engine 

The test object was a single-cylinder, four-stroke AVL type 5402 

CR DI compression ignition (CI) engine. Detailed 

specifications of the test engine are given in Table 1. 

Table 1. Research engine AVL 5402 specifications. 

Displacement 510.5 cm3 

Compression ratio 17:1 

Bore / Stroke 85 mm / 90 mm 

No. of valves 4 

Combustion type Direct injection 

Max. fuel pressure 180 MPa 

Injection system Common Rail CP4.1 

Engine management AVL-RPEMS, ETK7-Bosch 

Valve open close 

Intake 712 °CA 226 °CA 

Exhaust 488 °CA 18 °CA 

 

The displacement volume was 510 cm3 and the compression 

ratio was 17:1. The engine had an internal combustion chamber 

with four valves. The valves were inclined at an angle of 3.5 ° 

Fuel was supplied by a seven-hole electromagnetic injector 

and a Bosch CP4.1 high-pressure fuel system. Injection 

parameters were controlled by a fully open Bosch engine 

https://en.wikipedia.org/wiki/Artificial_neural_network
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controller and Etas INCA software. The tests were performed at 

med-load regime and the engine was run as naturally aspirated. 

The amount of exhaust gas from the recirculation was regulated 

by a butterfly valve. In addition, an exhaust gas cooler was 

installed on the bench to keep the temperature of EGR supplied 

to the intake manifold constant. To enable high EGR rates,  

a backpressure valve was installed on the exhaust pipe. 

2.2. Engine Testing System 

The research engine was mounted on the test stand equipped 

with an asynchronous motor dynamometer suitable for AVL 

single cylinder research engines series 540. The AVL 733S 

dynamic fuel meter was used to measure fuel consumption. The 

fuel temperature was obtained with an AVL 753C fuel 

temperature conditioner. In addition, sensors TP-361 and TP-

204 were used to measure air, exhaust gas, cooling liquid and 

lubricating oil temperatures.

 

Fig. 1. Diagram of the experimental test stand.

The AVL Sesam FTIR multi-compound gas analysis system 

was used to determine the composition of exhaust gases (CO, 

HC, and NOx). A Maha MPM-4 analyser was used to assess 

exhaust particulate concentrations. The extra air factor was 

determined using the ETAS LA4 lambda meter and a Bosch 

LSU 4.2 wideband lambda probe. 

2.3. Conditions of the Tests and Engine Outcome 

Parameters 

The tests performed at a CI engine rotational speed of 1500 rpm 

and the net IMEP for non-EGR operation was around 4.8 bar. 

The engine run uncharged at ambient pressure in the intake 

system. At each operating point the engine was thermally 

stabilized. The lube oil, engine coolant and EGR temperatures 

were maintained at the same 85 °C. In addition, the fuel 

temperature was maintained at 30 °C in all experiments and the 

fuel rail pressure was 80 MPa. In addition, the series of 

experiments consisted of different strategies and single and split 

injection as well as EGR sweeps shown in Table 2.  

During the experiment, various engine output parameters 

were measured, including cylinder pressure, heat release rate, 

mass fraction burnt, and emissions of PM, CO, HC, and NOX. 

The cylinder pressure was recorded for 100 consecutive engine 

cycles at each engine operating point and then averaged. 

Additionally, pressure was recorded at a fixed crank angle 

resolution of 0.1 °CA using a piezoelectric transducer installed 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 4, 2023 

 

directly on the engine.  

AVL Boost specialized software was used to accurately 

process the pressure data. The heat release rate was calculated 

using the first law of thermodynamics, and the cumulative HRR 

was used to calculate mass fraction burnt (MFB), which allowed 

for combustion timing indicators such as the 5, 50, and 95% 

MFB location (CA5, CA50, and CA95). The start of combustion 

angle was taken as the 5% MFB, and the combustion time was 

calculated as the angle between 5% and 95% MFB. 

Table 2. Scope of the experiments. 

Combustion mode 
SOI1 

[°CA] 

SOI2 

[°CA] 

Injection timing 

strategy 

EGR ratio 

[%] 

EGR ratio 

strategy 

Experiment number 

(DF) 

Experiment number 

(HVO) 

Split injection PPCI 

338 356 0 0-42 1-9 1-9 37-45 

342 356 1 0-42 1-9 10-18 46-54 

346 356 2 0-42 1-9 19-27 55-63 

Single-pulse CDC - 354 3 0-42 1-9 28-36 64-72 

CO was measured with an accuracy of 0.36%, HC with an 

accuracy of 0.1-0.49% (depending on type of hydrocarbon 

species) and NOx with an accuracy of 0.31%. However, the 

accuracy of PM measurement was 0.1 mg/m3. 

2.4. Type of Fuel 

The research was conducted for two test fuels: pure diesel fuel 

(DF) and and hydrotreated vegetable oil (HVO). Table 3 shows 

the key physicochemical parameters of the fuels along with the 

methods of determination and accuracy. 

In the case of HVO, that the cetane number is slightly lower 

DF than HVO. However, the gross and lower heating values are 

comparable for both fuels.

Table 3. Fuel properties of mixture HVO and DF. 

Properties Device Method Accuracy 
Fuel 

HVO DF 

Gross heating value [MJ/kg] 
IKA C 5000 calorimeter DIN 51900-2 130 J/g 

47.194 45.894 

Lower heating value (LHV) [MJ/kg] 43.737 42.825 

Dynamic viscosity at 40 °C [mPa × s] 

Anton Paar SVM 

3000/G2 Stabinger 

Viscometer 

ASTM D7042 

0.1% 2.198 2.412 

Kinematic viscosity at 40 °C [mm2/s] 0.1% 2.876 2.940 

Density at 40 °C [g/ml] 0.0002 g/cm3 0.781 0.820 

Flash point [°C] 
FP93 5G2 Pensky-

Martens analyser 
ISO 2719 0.03 °C 66.3 70.5 

Cetane number (CN) [-] PetroSpec analyser ASTM D613 0.05% 74.5 54.1 

2.5. Vibrations and Sound Measurement System 

A GRAS 46AE microphone (Frequency range: 3.15 Hz to 20 

kHz; Dynamic range: 17 dB (A) to 138 dB; Sensitivity: 50 mV 

/ Pa) was used to measure sound pressure (Fig. 2b (position 1)). 

Engine vibrations were measured at 3 points (Fig. 2c (positions 

2, 3 and 4)) in the vertical (Z), longitudinal (Y) and transverse 

(X) directions using four Bruel&Kjear 8341 CCLD 

accelerometers (Frequency range: 0.3 – 10000 Hz; Sensitivity: 

10 mV/ms-2) [22]. Data on noise and vibrations were obtained 

using the Bruel&Kjear Machine Diagnostic Toolbox. The 

Machine Diagnostics Toolbox consists of Machine Diagnostics 

Toolbox Type 9727 and the versatile Machine Diagnostics 

Toolbox Software Bundle Type 7910. Type 9727 includes the 

multichannel PULSE data acquisition unit Type 3560-B (5-

channel) [46]. 

2.6. Vibration and sound pressure of the engine 

Determining vibrations and noise emitted by components of  

a diesel engine is one of the most difficult environmental tasks, 

because each engine mechanism affects vibrations and noise 

separately. 
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For each experiment, vibration and sound pressure data were 

collected from the engine unit with a 6.4 kHz sampling 

frequency for 1 s. 

Figure 3 illustrates vibration accelerations and sound 

pressure using D100 and HVO fuels, respectively, under 

planned conditions (Table 1). The data received were used in 

further statistical analysis.

 

Fig. 2. Points of measurement of vibrations and sound pressure: a) general view of the engine being analyzed and points of 

measurement of vibrations; b) a microphone to measure sound pressure (point 1); c) accelerometers to measure vibrations (poin t 2, 3 

and 4) in X, Y and Z directions.

2.7. Statistical Analysis 

Univariate linear regression model (LRM) was used to identify 

statistically significant prognostic factors for engine outcome 

parameters: 

𝑌𝑖
𝐸 = 𝛼 + 𝛽𝑇𝑖 + 𝜀, 

where 𝑌𝑖
𝐸  – engine outcome variable (dependent variable), 𝐸 – 

type of engine outcome variable, 𝑖 – number of experiment, 

𝑇𝑖
RMS – independent prognostic factor, 𝛼 – regression intercept 

value, 𝛽 – regression parameter for independent prognostic 

variable, 𝜀 – random error. 

Independent prognostic factor (main predictors) of LRM 

were type of fuel, injection timing, EGR ratio, sound pressure 

(SP), vertical vibration (VV), horizontal vibration at point 1 

(HV1) and horizontal vibration at point 2 (HV2). Dependent 

LRM variables were engine outcome parameters: max_press, 

max_press_loc, HRRmax, CA05, CA50, CA05_95, CA95, PM. 

P, VV, HV1 and HV2 were aggregated with root mean 

square (RMS) estimate for each experiment: 

RMS𝑗
𝑖 = √

1

𝑁
∑𝑥𝑛

2

𝑁

𝑛=1

, 

where 𝑗 – experiment number, 𝑖 – defines measured parameter 

(i.e., SP, VV, HV1 and HV2), 𝑁 – measured parameter sample 

size, 𝑥 – value of measured parameter. 

In addition, a three-step multivariate LRM algorithm was 

a) c) 

 

 

b) 

 

 

1 – Sound pressure 

Vibration of engine 

2 – Vertical 

direction 

4 – Horizontal 

transverse direction 

3 – Horizontal 

longitudinal direction 

X 

Z 

Y 
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investigated to clarify independent prognostic factors for engine 

outcome parameters. The first step called the full prognostic 

model was performed to evaluate the prognostic impact of the 

parameters interactions, the second step called the complete 

prognostic model was performed to evaluate the prognostic 

impact of the main predictors after eliminating the interactions 

of statistically not significant parameters, and the third step 

called the optimal prognostic model was performed to evaluate 

the prognostic impact of statistically significant parameters and 

their significant interactions. 

Multivariate LRM were based on analysis of covariance 

(ANCOVA) model: 

𝑌𝑖
𝐸 = 𝛼 + 𝛽𝑇𝑖

RMS + 𝛾𝑍𝑗 + µ(𝑇𝑖
RMS ∗ 𝑍𝑗) + 𝜀, 

where 𝑌𝑖
𝐸  – engine outcome variable (dependent variable), 

𝐸 – type of engine outcome variable, 𝑖 – number of experiment, 

𝑇𝑖
RMS – RMS estimate of sound pressure or vibration data 

(covariate), 𝑍𝑗 – categorical variable with 𝑗 levels (independent 

factor), 𝛼 – regression intercept value, 𝛽 – regression parameter 

for covariate, 𝛾 – regression parameter for independent variable, 

µ - regression parameter for covariate and independent variable 

interaction, 𝜀 – random error. 

Accuracy between the optimal prognostic model and real 

data was evaluated using mean absolute percentage error 

(MAPE): 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑅𝑖
𝐸 − 𝑌𝑖

�̂�

𝑅𝑖
𝐸 |

𝑁

𝑖=1

, 

where 𝑅𝑖
𝐸  – real engine outcome parameter value for 𝑖th 

experiment, 𝑌𝑖
�̂� – prognostic engine outcome parameter value 

for 𝑖th experiment, 𝐸 – engine outcome parameter.

D100 HVO 

 
a) 
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c) 

 
c1) 

 
d) 

 
d1) 

Fig. 3. Typical results of measurement of sound pressure (a and a1) and vibrations (b and b1, c and c1, d and d1) respectively, 

marking: red - D100 EGR00 and HVO EGR00; blue - D100 EGR03 and HVO50 EGR03; green - D100 EGR07 and HVO50 EGR07.

Before LRM analysis descriptive statistical analysis was 

performed for all dependent and independent variables. Mean 

and standard deviation were presented in total sample size and 

separately in fuel type, injection timing, and EGR ratio 

subgroups. Statistical differences between subgroups were 

evaluated using t-test (if 𝑘 = 2) and ANOVA (𝑘 > 2) statistical 

tests. 

A two-tailed p-value < 0.1 was considered to be statistically 

significant threshold for independent regression model 

parameters. 

3. Results and Discussion 

3.1.Descriptive Statistics of Exhausted Emission 

Parameters 

Descriptive analysis performed for engine outcome parameters, 

sound pressure and vibration data in type of fuel, injection 

timing and EGR ratio subgroups. 

The mean values of engine outcome parameters and sound 

pressure RMS were not different in DF and HVO fuel subgroups 

(Table 4). Statistically significantly higher mean estimates were 

observed in DF for VV, HV1, and HV2. Average of VV and 

HV2 RMS were 1.7 and 2.8 times higher (p < 0.001) in DF 

group, while HV1 RMS was only 1.3 times higher in DF group, 

but the difference remained statistically significant. 

Most engine outcome parameters, sound pressure and 

vibration data were distributed differently in injection timing 

subgroups (Table 5). The mean values of max_press, max_press_loc, 

CA50, CO, HC and NOX were though all injection timing 

subgroups. The major impact for mean values had 3rd subgroup 

of injection timing. The average of HRRmax and vibration data 

were doubled in 3rd injection timing subgroup compared with 

the rest three subgroups (0, 1 and 2). On the contrary, CA05-95 

was three times lower in 3rd injection timing subgroup then in 

others. Interestingly, average PM estimates were non-stable 

going though all injection timing subgroups, i.e., mean (SD) of 

PM in 0, 1, 2, and 3 injection timing subgroups were 8.7 (2.85), 

7.8 (2.45), 25.9 (7.97) and 14.9 (30.32) (p = 0.003), 

respectively. 
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Table 4. Descriptive statistics of engine outcome parameters and vibration data in fuel subgroups. 

Parameter 
Total 

Mean (SD) 

DF 

Mean (SD) 

HVO 

Mean (SD) 
P value 

Max pressure, Mpa 5.6 (0.73) 5.6 (0.73) 5.7 (0.73) 0.587 

Max press location, °CA 369.3 (3.09) 369.3 (3.20) 369.2 (3.02) 0.847 

HRR max, J/°CA 70.7 (31.47) 69.0 (30.89) 72.4 (32.40) 0.650 

CA05, °CA 362.1 (4.66) 362.2 (4.90) 362.0 (4.48) 0.857 

CA50, °CA 368.2 (4.47) 368.5 (5.10) 368.0 (3.80) 0.591 

CA05-95, °CA 25.8 (11.84) 26.7 (12.23) 25.0 (11.55) 0.549 

CA95, °CA 388.0 (11.42) 388.9 (12.22) 387.0 (10.65) 0.487 

PM, mg/m3 14.3 (17.07) 14.8 (17.01) 13.8 (17.35) 0.810 

CO, ppm 943.3 (936.54) 981.4 (1010.03) 905.2 (869.57) 0.732 

HC, ppm 391.3 (418.16) 423.9 (545.13) 358.8 (235.31) 0.514 

NOX, ppm 329.0 (278.61) 333.9 (282.91) 324.1 (278.17) 0.882 

Sound pressure RMS 0.8 (0.09) 0.8 (0.09) 0.8 (0.10) 0.945 

Vertical vibration RMS 4.9 (2.72) 6.2 (3.07) 3.6 (1.42) <0.001 

Horizontal vibration 1 

RMS 
26.6 (9.70) 29.6 (7.51) 23.6 (10.74) 0.007 

Horizontal vibration 2 

RMS 
7.4 (6.82) 10.9 (8.08) 3.9 (2.06) <0.001 

Table 5. Descriptive statistics of engine outcome parameters and vibration data in injection timing subgroups.  

Parameter 
0 

Mean (SD) 

1 

Mean (SD) 

2 

Mean (SD) 

3 

Mean (SD) 
P value 

Max pressure [Mpa] 5.6 (0.54) 5.6 (0.72) 5.6 (0.42) 5.8 (1.09) 0.717 

Max press location [°CA] 369.8 (2.62) 369.2 (2.08) 369.4 (2.28) 368.6 (4.76) 0.728 

HRRmax [J/°CA] 54.6 (11.96) 69.1 (12.85) 51.8 (11.48) 107.5 (40.15) <0.001 

CA05 [°CA] 360.4 (4.19) 360.9 (4.51) 360.6 (4.03) 366.7 (2.60) <0.001 

CA50 [°CA] 367.5 (2.81) 367.9 (4.07) 367.3 (2.62) 370.2 (6.80) 0.169 

CA05-95 [°CA] 29.4 (1.09) 29.1 (2.47) 34.7 (1.53) 10.1 (14.37) <0.001 

CA95 [°CA] 389.8 (4.01) 389.9 (4.89) 395.3 (5.05) 376.9 (16.86) <0.001 

PM [mg/m3] 8.7 (2.85) 7.8 (2.45) 25.9 (7.97) 14.9 (30.32) 0.003 

CO [ppm] 772.2 (745.77) 978.0 (859.24) 787.3 (888.28) 1235.7 (1196.33) 0.418 

HC [ppm] 324.3 (177.68) 357.3 (238.18) 295.7 (150.31) 588.1 (750.16) 0.137 

NOX [ppm] 288.6 (217.33) 296.0 (225.71) 265.2 (210.95) 466.3 (392.90) 0.112 

Sound pressure RMS 0.7 (0.02) 0.7 (0.03) 0.7 (0.03) 0.9 (0.10) <0.001 

Vertical vibration RMS 3.7 (0.89) 4.6 (1.67) 3.6 (0.90) 7.6 (3.91) <0.001 

Horizontal vibration 1 RMS 21.7 (4.47) 24.2 (4.93) 21.9 (4.69) 38.6 (10.99) <0.001 

Horizontal vibration 2 RMS 4.9 (1.99) 6.3 (3.28) 4.9 (2.30) 13.6 (10.92) <0.001 

Descriptive analysis in EGR ratio subgroups revealed 

contrary tendency for parameter distributions than it was 

observed injection timing subgroups (Table 6). max_press, 

max_press_loc, CA05, CA50, CA95, CO, HC and NOX parameters 

had statistically different distributions in EGR ratio subgroups. 

Only CA05 mean estimate was statistically significantly 

different in between injection and EGR ratio subgroups. The 

major impact for higher mean values of CA50 and PM was 

observed in 42 EGR ratio subgroup. Mean of PM was almost 3 

times higher in 42 EGR ratio subgroup but statistical 

significance was not reached due to high level of scattering of 

raw values. The same findings with high level scattering of raw 

values were observed in HRRmax and CA05-95. 

3.2. Univariate regression analysis 

Univariate LRM analysis were performed for engine outcome 

parameters as dependent parameter and type of fuel, injection 

timing, EGR ratio and RMS of vibration and sound pressure 
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data as independent factors (Table 7). Type of fuel had no 

statistically significant impact for all dependent parameters with 

R2 lower than 1 and p-value > 0.1. 

Table 6. Descriptive statistics of engine outcome parameters and vibration data in EGR ratio subgroups.  

Parameter 
0 

Mean (SD) 

3 

Mean (SD) 

7 

Mean (SD) 

10 

Mean (SD) 

14 

Mean (SD) 

21 

Mean (SD) 

28 

Mean (SD) 

35 

Mean (SD) 

42 

Mean (SD) 

P 

value 

           

Max pressure 

[Mpa] 
6.1 (0.38) 6.1 (0.36) 6.1 (0.34) 6.0 (0.31) 6.0 (0.27) 5.8 (0.16) 5.6 (0.20) 5.1 (0.38) 4.0 (0.43) <0.001 

Max press location 

[°CA] 

368.0 

(0.56) 

368.1 

(0.39) 

368.2 

(0.27) 

368.3 

(0.32) 

368.4 

(0.48) 

368.9 

(0.96) 

370.4 

(1.75) 

373.0 

(2.32) 

370.3 

(7.81) 
0.010 

HRRmax [J/°CA] 
70.9 

(43.73) 

72.0 

(43.26) 

72.9 

(40.82) 

72.9 

(34.43) 

77.2 

(35.66) 

80.1 

(24.21) 

79.3  

(11.00) 

69.7  

(5.27) 

41.7 

(13.94) 
0.389 

CA05 [°CA] 
358.7 

(3.59) 

358.7 

(3.85) 

359.1 

(3.66) 

359.7 

(3.55) 

360.5 

(3.22) 

362.1 

(2.92) 

364.5 

(1.97) 
366.5 (1.5) 

369.4 

(2.23) 
<0.001 

CA50 [°CA] 
365.5 

(0.23) 

365.7 

(0.29) 

365.8 

(0.39) 

366.0 

(0.56) 

366.3 

(0.66) 

367.1 

(1.04) 

368.5 

(1.47) 

371.2 

(2.00) 

378.1 

(6.19) 
<0.001 

CA05-95 [°CA] 
22.8 

(12.87) 

24.0 

(12.60) 

24.1 

(13.03) 

24.6 

(13.03) 

24.6 

(13.32) 

25.5 

(13.20) 

25.2  

(11.11) 

26.3  

(7.61) 

35.5  

(9.75) 
0.613 

CA95 [°CA] 
381.6 

(9.45) 

382.6 

(8.91) 

383.2 

(9.51) 

384.4 

(9.64) 

385.1 

(10.20) 

387.5 

(10.57) 

389.7 

(9.44) 

392.8 

(6.46) 

405.0 

(11.56) 
<0.001 

PM [mg/m3] 
10.6  

(5.29) 

10.6  

(5.75) 

11.9  

(6.85) 

13.0  

(8.09) 

14.2 

(11.06) 

14.8 

(13.88) 

12.7 

(13.75) 

11.2  

(12.81) 

30.0 

(42.19) 
0.443 

CO [ppm] 
287.2 

(66.10) 

318.8 

(85.15) 

356.1 

(100.75) 

408.8 

(134.54) 

484.2 

(163.70) 

715.5 

(226.46) 

1090.3 

(286.15) 

1713.8 

(315.44) 

3114.8 

(739.07) 
<0.001 

HC [ppm] 
210.1 

(7.34) 

220.1 

(14.48) 

228.8 

(19.12) 

242.0 

(23.89) 

261.5 

(38.36) 

295.1 

(71.40) 

364.5 

(108.97) 

520.9 

(167.11) 

1179.0 

(916.76) 
<0.001 

NOX [ppm] 
759.1 

(223.55) 

622.9 

(170.57) 

520.0 

(151.03) 

420.5 

(114.33) 

320.2 

(92.01) 

172.9 

(35.00) 

89.1 

(14.72) 

41.1 

(10.85) 

15.3  

(4.29) 
<0.001 

Sound pressure 

RMS 

0.8  

(0.14) 

0.8  

(0.14) 

0.8  

(0.12) 

0.8  

(0.11) 

0.8  

(0.11) 

0.8  

(0.06) 

0.8 

 (0.02) 

0.7 

 (0.02) 

0.7  

(0.05) 
0.852 

Vertical vibration 

RMS 

5.7  

(3.79) 

5.5  

(3.67) 

5.7  

(3.94) 

5.1  

(2.84) 

5.2  

(2.68) 

5.3  

(2.60) 

4.5  

(1.26) 
4.0 (1.00) 

3.2  

(0.65) 
0.648 

Horizontal 

vibration 1 RMS 

30.1 

(13.22) 

29.3 

(12.60) 

29.2 

(12.12) 

28.6 

(11.19) 

28.3 

(10.38) 

26.3  

(7.69) 

24.4  

(4.56) 

22.3  

(4.55) 

20.9  

(6.12) 
0.489 

Horizontal 

vibration 2 RMS 

9.4  

(9.89) 

9.0  

(9.92) 

8.8  

(9.51) 

8.3  

(8.19) 

8.1  

(6.89) 

7.3  

(4.59) 

6.3  

(3.11) 

5.3  

(2.63) 

4.2  

(1.89) 
0.837 

           

Table 7. Univariate regression model for engine outcome parameters. 

Independent factor 

Dependent parameter 

Max press 

 

R2, 

p-value 

Max press loc 

R2, 

p-value 

HRR max 

 

R2, 

p-value 

CA05 

 

 

R2, 

p-value 

CA50 

 

 

R2, 

p-value 

CA05-95 

 

R2, 

p-value 

CA95 

 

 

R2, 

p-value 

PM 

 

 

R2, 

p-value 

CO 

 

 

R2, 

p-value 

HC 

 

 

R2, 

p-value 

NOX 

 

 

R2, 

p-value 

Fuel 
<1, 

0.587 

<1, 

0.847 

<1, 

0.650 

<1, 

0.857 

<1, 

0.591 

<1, 

0.549 

1, 

0.487 

<1, 

0.810 
<1, 0.732 <1, 0.513 <1, 0.882 

Injection timing 
2, 

0.717 

2, 

0.728 

50, 

<0.001 

33, 

<0.001 

7, 

0.169 

63, 

<0.001 

36, 

<0.001 
18, 0.003 <1, 0.418 8, 0.137 8, 0.112 

EGR ratio 
82, 

<0.001 

26, 

0.010 

12, 

0.389 

62, 

<0.001 

77, 

<0.001 

9, 

0.613 

37, 

<0.001 
11, 0.463 90, <0.001 50, <0.001 84, <0.001 

Sound pressure RMS 
23, 

<0.001 

3, 

0.137 

79, 

<0.001 

13, 

0.002 

1, 

0.502 

67, 

<0.001 

49, 

<0.001 

3, 

0.133 
1, 0.357 <1, 0.690 31, <0.001 

Vertical vibration RMS 
22, 

<0.001 

1, 

0.374 

54, 

<0.001 

4, 

0.090 

3, 

0.133 

44, 

<0.001 

37, 

<0.001 

6, 

0.043 
4, 0.108 2, 0.194 27, <0.001 

Horizontal vibration 1 RMS 
27, 

<0.001 

2, 

0.212 

68, 

<0.001 

5, 

0.050 

3, 

0.153 

59, 

<0.001 

49, 

<0.001 

6, 

0.046 
4, 0.097 1, 0.328 36, <0.001 

Horizontal vibration 2 RMS 
16, 

<0.001 

1, 

0.434 

41, 

<0.001 

4, 

0.092 

2, 

0.252 

34, 

<0.001 

27, 

<0.001 

4, 

0.114 
2, 0.200 1, 0.314 23, <0.001 
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Six independent prognostic factors (i.e., all independent 

prognostic factors except type of fuel) had prognostic impact for 

CA05 and CA95 in univariate LRM. Five statistically 

significant independent prognostic factors had max_press, 

HRRmax, CA05-95, and NOX. However, max_press_loc, 

CA50, and HC had only one prognostic factor EGR ratio with 

R2 = 26 (p = 0.010), R2 = 77 (p < 0.001), and R2 = 50 (p < 0.001), 

respectively. There were no prognostic factors which had 

statistically significant impact for all of engine parameters. 

3.3. Multivariate regression model building 

Optimal multivariate LMR should contain minimal number of 

independent factors due to reduction of model errors. For this 

reason, multivariate model should contain only these 

independent prognostics have the major impact for dependent 

variable. Multivariate LRM building is stepwise statistical 

procedure with following steps: (1) evaluation of prognostic 

impact of parameters interaction (Full prognostic model), (2) 

evaluation of prognostic impact of parameters (main predictors) 

after elimination of statistically non-significant parameters’ 

interactions (Complete prognostic model) and (3) evaluation of 

prognostic impact of parameters after elimination of statistically 

non-significant parameters from complete prognostic model 

(Optimal prognostic model).  

Type of fuel was not included in multivariate LRMs because 

it showed no evidence to have any impact for all engine 

outcome parameters. Multivariate LRMs contained interactions 

composed from sound pressure and vibration data interactions 

with injection timing and EGR ratio subgroups. 

Full prognostic model 

The main goal of full regression model is to evaluate 

prognostic impact for engine outcome parameters. Only 6 

interactions between injection timing and vibration parameters 

were observed to be statistically significant (Table 8). Much 

more statistically significant interactions identified between 

EGR ratio and vibration parameters. Four and three interactions 

between EGR ratio and vibration parameters were statistically 

significant for Max_press, HRRmax, and NOX prognostic 

models, respectively.  

In summary, engine outcome parameters CA05, CA50, 

CA95, PM, CO, and HC prognostic models had no influence 

from any interaction parameters, max_press_loc, CA05-95 models 

had only one statistically significant interaction parameter and 

max_press with HRRmax and NOX models had high impact from 

interacting parameters (Table 8). 

Complete prognostic model 

In the second step called complete prognostic model there 

were eliminated statistically non-significant (i.e., without 

prognostic impact) interactions from the full regression model 

(Table 9). Complete prognostic models revealed that high 

number of statistically non-significant interaction parameters 

increased model errors and main predictors showed very mild 

impact for engine parameters. High prognostic influence 

increment in all engine parameter models observed for injection 

timing after elimination of statistically non-significant 

interactions. EGR ratio and sound pressure data also showed 

high prognostic increment for most of prognostic models. Only 

vertical and horizontal vibration data remained statistically 

significant in max_press and HHRmax prognostic models (Table 

9). Almost all (except NOX) interaction parameters with 

prognostic impact from the previous step remained with slightly 

higher prognostic impact in complete prognostic model. 

Optimal prognostic model 

The last third step was optimal prognostic models building 

and estimation of models’ parameters. Optimal prognostic 

models were made of statistically significant independent 

factors from complete prognostic models. None of the 

parameters became without prognostic impact after elimination 

of statistically non-significant parameters from the complete 

prognostic models.  

Optimal models for max_press, HRRmax and CA05 showed 

very high goodness-of-fit level with R2 > 90%. Also, high level 

of model goodness-of-fit was estimated for max_press_loc, CA50, 

CA05-95 and CA95 with R2 between 70%-90%.  
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Table 8. Multivariate regression model for engine outcome parameters: full prognostic model. 

 

Max press 

 

p-value 

Max press 

loc 

p-value 

HRR max 

 

p-value 

CA05 

 

 

p-value 

CA50 

 

 

p-value 

CA05-95 

 

p-value 

CA95 

 

 

p-value 

PM 

 

 

p-value 

CO 

 

 

p-value 

HC 

 

 

p-value 

NOX 

 

 

p-value 

Model R2 100 96 100 100 98 98 97 91 99 89 100 

Injection timing 0.179 0.237 0.991 0.395 0.772 0.753 0.734 0.581 0.691 0.656 0.130 

EGR ratio 0.170 0.160 0.798 0.796 0.992 0.923 0.891 0.552 0.993 0.988 0.121 

Sound pressure RMS 0.673 0.237 0.857 0.850 0.812 0.659 0.680 0.434 0.994 0.949 0.973 

Vertical vibration RMS 0.003 0.010 0.064 0.092 0.141 0.185 0.134 0.102 0.902 0.888 0.839 

Horizontal vibration 1 

RMS 
0.005 0.307 0.049 0.619 0.959 0.560 0.606 0.526 0.457 0.712 0.725 

Horizontal vibration 2 

RMS 
<0.001 0.035 0.010 0.072 0.141 0.386 0.283 0.196 0.509 0.954 0.922 

Injection timing interaction with 

Sound pressure RMS 0.472 0.245 0.904 0.467 0.702 0.677 0.611 0.521 0.689 0.596 0.026 

Vertical vibration RMS 0.252 0.650 0.778 0.417 0.643 0.087 0.114 0.623 0.299 0.227 0.058 

Horizontal vibration 1 

RMS 
0.016 0.253 0.049 0.673 0.678 0.841 0.790 0.563 0.886 0.996 0.135 

Horizontal vibration 2 

RMS 
0.626 0.348 0.612 0.573 0.608 0.129 0.158 0.356 0.394 0.359 0.098 

EGR ratio interaction with 

Sound pressure RMS 0.046 0.042 0.026 0.246 0.322 0.756 0.629 0.488 0.756 0.662 0.039 

Vertical vibration RMS 0.007 0.119 0.161 0.609 0.833 0.672 0.611 0.387 0.963 0.998 0.097 

Horizontal vibration 1 

RMS 
<0.001 0.791 0.045 0.837 0.978 0.963 0.960 0.974 0.981 0.991 0.012 

Horizontal vibration 2 

RMS 
<0.001 0.163 0.005 0.421 0.403 0.671 0.569 0.314 0.961 0.970 0.311 

Table 9. Multivariate regression model for engine outcome parameters: complete prognostic model.  

 

Max press 

 

p-value 

Max press 

loc 

p-value 

HRR  max 

 

p-value 

CA05 

 

 

p-value 

CA50 

 

 

p-value 

CA05-95 

 

p-value 

CA95 

 

 

p-value 

PM 

 

 

p-value 

CO 

 

 

p-value 

HC 

 

 

p-value 

NOX 

 

 

p-value 

 

Model R2 100 71 99 97 98 87 77 37 96 64 100 

Injection timing <0.001 0.079 <0.001 <0.001 <0.001 0.002 0.008 0.002 <0.001 0.001 0.003 

EGR ratio 0.811 <0.001 0.001 <0.001 <0.001 0.021 <0.001 0.719 <0.001 <.001 0.762 

Sound pressure RMS 0.890 0.096 0.181 0.001 0.017 0.034 0.097 0.525 0.007 0.118 0.082 

Vertical vibration RMS 0.003 0.357 0.529 0.987 0.186 0.343 0.508 0.618 0.479 0.279 0.793 

Horizontal vibration 1 

RMS 
<0.001 0.920 <0.001 0.656 0.759 0.314 0.639 0.393 0.965 0.972 0.557 

Horizontal vibration 2 

RMS 
<0.001 0.476 0.022 0.589 0.165 0.304 0.446 0.605 0.403 0.325 0.801 

Injection timing interaction with 

Sound pressure RMS - - - - - - - - - - 0.002 

Vertical vibration RMS - - - - - <0.001 - - - - 0.276 

Horizontal vibration 1 

RMS 
<0.001 - <0.001 - - - - - - - - 

Horizontal vibration 2 

RMS 
- - - - - - - - - - 0.378 

EGR ratio interaction with 

Sound pressure RMS 0.001 <.0001 <0.001 - - - - - - - 0.376 

Vertical vibration RMS 0.011 - - - - - - - - - 0.448 

Horizontal vibration 1 

RMS 
<0.001 - 0.006 - - - - - - - 0.770 

Horizontal vibration 2 

RMS 
<0.001 - 0.001 - - - - - - - - 
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Developed models showed high level performance and 

accuracy. The least MAPE values (<1%) was observed in 

max_pressure, max_pressure_loc, CA05, CA50, and CA95 (Fig. 4). In 

model realization graphs it can be seen that these 5 dependent 

parameters real and optimal (prognostic) value have very high 

coincidence. Moderate MAPE were evaluated in HRRmax, 

CA05-95, CO, and HC, the values were 5.1%, 17.8%, 13.1%, 

13.1%, and 28.4%, respectively. The worst MAPE (>100%) was 

observed in PM and NOX (Fig. 4).

 

Fig. 4. Mean absolute percentage error for engine outcome parameters calculated from ANCOVA model.

According the literature the XGBoost-based PIDM 

technique has higher performance in terms of computational 

efficiency and accuracy, hence establishing its dominance in 

this domain [24]. Realization of optimal prognostic model and 

real engine parameter values shown in Fig. 5.
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Fig. 5. Engine outcome parameters real and prognostic values: a) Max pressure, MPa; b) Max press location, °CA; c) HRR max, 

J/°CA; d) CA05, °CA; e) CA50, °CA; f) CA05-95, °CA; g) CA95, °CA; h) PM, mg/m3; i) CO, ppm; j) HC, ppm; k) NOX, ppm..

The given Experiment number corresponds to the data 

presented in Table 1. It can be seen that by drawing the 

prognostic model and real values neither the injection timing 

nor the EGR ratio had any major negative effect on the 

prediction of max_press, max_press_loc, HRRmax, CA05, CA50, 

CA05-95, CA95, CO, and HC. 

PM prognostic values could be treated as acceptable, 

however prognostic model was not able to correctly predict PM 

at highest injection and EGR ratio (Fig. 5h). NOX remained 

unpredictable using optimal prognostic model. The study 

suggests that AI-based virtual sensors can improve NOx 

monitoring precision in diesel engines, potentially reducing 

emissions and improving air quality [14]. 

4. Conclusion 

The reliability of engine assessment was related to the selection 

of optimal prediction model for exhausted emission parameters 

and to identify the best predictable exhausted emission 

parameters for single-cylinder four-stroke engine, respectively. 

Statistical analysis of experimental data revealed that optimal 

prediction model was able to predict the majority of engine 

emissions with high level of prediction accuracy: max_press, 

max_press_loc, HRRmax, CA05, CA50, CA05-95, CA95, CO, and 

HC. Prediction accuracy level was extremely high with MAPE 

< 1% for max_press, max_press_loc, CA05, CA50, and CA95. NOX 

remained unpredictable using optimal prediction model. 

Interestingly, in the full prediction model 6 out of 8 interactions 

were statistically significant in NOX predictive model. After 

elimination of non-significant interactions in NOX complete 

prediction model only interaction between injection timing and 

sound pressure has left as statistically relevant. These unstable 

results implies that such prediction model building cannot be 

applied for NOX and needs to investigate new prediction model 

building techniques. 

Subgroup analysis showed that engine emissions between 

DF and HVO50 remained statistically not different. Higher 

trend of mean (DF vs. HVO50) values for PM (14.8 vs. 13.8), 

CO (981.4 vs. 905.2), HC (423.9 vs. 358.8), and NOX (333.9 vs. 

324.1) were observed in DF, but statistical significance was not 

reached. On the contrary, the mean of VV, HV1, and HV2 were 

extremely higher in DF with strong statistical significance. 

Injection timing had more influence for engine emissions 

parameters distribution. HRRmax, CA05, CA05-95, CA95, and 

PM had statistically different means in different injection timing 

subgroups (p < 0.1). There was also demonstrated that 

emissions’ mean values were not a monotonic function of 

injection timing. Sound pressure and vibration data had 

statistically different RMS mean values in injection timing. The 

largest mean values were observed in 3° injection timing and it 

was 1.3, 2.1, 1.8, and 2.8 times higher than at 0° for sound 

pressure, VV, HV1, and HV2. 

EGR ratio had major influence for engine emissions 

parameters distribution. Only means of HRRmax, CA05-95, and 

PM remained statistically not different through all EGR ratio 

subgroups. Increased EGR ratio was related to the decreased 

NOX values while other emission parameters increased together 
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with higher EGR ratio. Neither sound pressure nor vibration 

data were related with the EGR ratio subgroup (p > 0.1). 

The study found that incorporating sound pressure and 

vibration data in predictive models improves emission 

prediction accuracy for biodiesel fuels. Optimal linear 

regression models can accurately predict emissions by 

considering fixed engine parameters. The results provide  

a reliable and cost-effective method to evaluate alternative fuel 

mixtures on diesel engine parameters. 
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