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Highlights  Abstract  

▪ A novel phase-type (PH) fitting method is 

developed for time-dependent reliability. 

▪ A reliability model of reinforced concrete 

beams is formulated by considering the time-

dependent chloride diffusion coefficient. 

▪ A new strategy is incorporated with 

Expectation Maximization algorithm to simply, 

efficiently and scientifically obtain the 

parameters of the PH method. 

▪ The proposed method shows excellent 

computational efficiency and accuracy. 

 It remains an important challenge to quantitatively describe the 

corrosion of reinforced concrete (RC) structures under chloride 

penetration. When considering the uncertainties encountered throughout 

the life cycle of RC structures exposed to a corrosive environment and 

evaluating their safety and reliability, the complexity of the problem 

intensifies. To address these issues, this paper focuses on the time-

dependent reliability analysis of corroded RC beams, utilizing the phase-

type (PH) fitting method. Initially, a model for the time-dependent 

reliability of corroded RC beams is established, incorporating the time-

dependent chloride diffusion coefficient. Subsequently, a novel PH 

fitting method is proposed. The effectiveness of this new method is 

demonstrated through numerical examples. Furthermore, the time-

dependent reliability analysis of corroded RC beams is compared using 

both the PH fitting method and the Monte Carlo simulation. The results 

reveal that the proposed method can accurately and efficiently deal with 

time-dependent reliability problems. 

  Keywords 
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1. Introduction 

The corrosion of steel bars in concrete stands as a prominent 

determinant leading to the failure of reinforced concrete (RC) 

structures. The resultant damage to these structures can be 

categorized into two distinct types: concrete carbonation and 

chloride penetration [3, 18, 42, 53]. However, in practical 

engineering, the rate of chloride ion penetration surpasses that 

of concrete carbonation [63]. Hence, the chloride penetration 

has stronger impact on reinforcement corrosion and structural 

deterioration. 

Two primary sources of chloride ions have been identified 

[22]: the first source involves the addition of chloride during the 

mixing and pouring phase, including calcium chloride and 

sodium chloride. The second source originates from the external 

environment during the service period, encompassing deicing 

salts used in winter, seawater, and sea breeze. Chlorides 

infiltrate the concrete through diffusion, driven by 

concentration gradients. Once the chloride concentration at the 

depth of a steel bar exceeds the chloride threshold level, the 
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protective passivation film on the surface of the steel bar 

deteriorates due to the combined effects of water, oxygen, and 

chloride [40, 46, 50]. Subsequently, corrosion occurs within the 

bar. The corrosion of steel reinforcements can lead to concrete 

fractures through cracking, delamination, and spalling of the 

concrete cover. Moreover, it results in a reduction in the cross-

sectional area of both the concrete and reinforcements, 

significantly compromising the serviceability, strength, safety, 

and lifespan of concrete structures [44]. 

Fick's second law provides an effective description of 

chloride penetration in concrete. In 1972, Collepardi et al. [10] 

introduced a method for calculating the chloride diffusion 

coefficient based on Fick's second law, which subsequently 

gained widespread adoption [4, 8, 9, 13, 36, 56]. The chloride 

diffusion coefficient plays a pivotal role in the transportation of 

chlorides within concrete. Many diffusion models, rooted in 

Fick's second law, assume a constant value for the chloride 

diffusion coefficient [2, 10, 18, 44, 23]. However, in practical 

scenarios, particularly in marine environments, the diffusion of 

chloride ions into concrete exhibits nonlinear and time-

dependent behavior [24, 61]. Consequently, the actual chloride 

diffusion coefficient varies over time, rather than remaining 

constant. 

The performance of RC structures is influenced by various 

factors, including material properties and environmental 

conditions. Given the material heterogeneity, environmental 

complexity, and uncertainties associated with both,  

a probabilistic approach is necessary to study the corrosion 

damage of RC structures [62]. Additionally, when considering 

the time-dependent chloride diffusion coefficient and stochastic 

characteristics of loads, it is essential to perform time-

dependent reliability analysis of RC structures. Saassouh and 

Lounis [44] used the first-order reliability method (FORM) and 

second-order reliability method (SORM) to predict the time-

dependent probability of a RC highway bridge deck. El Hajj 

Chehade et al. [14] proposed a simplified time-dependent 

reliability model for a set of 21 simply supported RC T-beam 

bridges under variable traffic load considering the concrete 

creep and shrinkage. Some other related studies include Bagheri 

et al. [5], Guo et al. [20], Fan et al. [17] and Yang and Li [65]. 

Reliability is quantified as the integration of the irregular 

region in multidimensional space, and direct integration 

methods exhibit limited feasibility. For intricate reliability 

analysis problems, Monte Carlo simulation (MCS) [7, 67] 

stands as a potent and versatile technique. Its advantage lies in 

obtaining precise numerical solutions directly based on 

simulation test results. However, MCS entails a significant 

computational burden, which poses a major drawback. The 

FORM [66] and SORM [71] offer a relatively lower 

computational cost compared to MCS for evaluating reliability. 

Nonetheless, as the nonlinearity of the limit state function (LSF) 

increases, the approximate accuracy of these methods cannot be 

guaranteed [29]. 

The phase-type (PH) fitting method presents a substantial 

reduction in computational cost while ensuring reliability 

accuracy. Furthermore, this method possesses the advantageous 

property that any positive dataset can be approximated as a PH 

distribution using the Expectation Maximization (EM) 

algorithm. As a result, the PH fitting method has gained 

widespread usage in the field of reliability engineering [1, 12, 

33, 57, 58]. However, previous studies have relied on trial 

methods [31] to determine relevant parameters, which involve 

a complex, inefficient, and unscientific operational process. 

Different from the original PH fitting method [31, 43, 55], the 

proposed novel method identifies the parameters in an 

automatic, efficient, and scientific iterative manner. The 

stopping criterion is adopted to simplify the process of 

parameter estimation. 

Considering the limitations of the aforementioned research, 

this paper focuses on the time-dependent reliability analysis of 

corroded RC beams using the PH fitting method. The paper 

aims to achieve three primary objectives: 1) developing  

a reliability model for RC structures that incorporates the time-

dependent chloride diffusion coefficient; 2) proposing a novel 

approach to obtain the parameters of the PH fitting method in a 

simple, efficient, and scientifically rigorous manner; 3) 

demonstrating the accurate and efficient application of the novel 

PH fitting method in handling time-dependent reliability 

analysis of corroded RC beams. 

The paper is organized as follows. Section 2 establishes the 

framework for the time-dependent reliability analysis of 

corroded RC beams. Section 3 introduces the novel PH fitting 

method. In Section 4, the proposed methodology is validated 

through numerical examples and a case study involving 
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corroded RC beams. Finally, Section 5 presents the conclusions 

derived from this study. 

2. Time-dependent reliability analysis of corroded RC 

beams 

2.1. Review of time-dependent reliability analysis 

In engineering applications, a multitude of uncertainties arises 

throughout the life cycle of structures, spanning the stages of 

design, construction, and operation. These uncertainties are 

commonly represented by random variables or stochastic 

processes. In the context of time-dependent reliability analysis, 

the general form of a LSF can be expressed as G(X, Y(t), t), 

where X represents a vector of random variables, Y(t) denotes 

a vector of stochastic processes, and t signifies the time 

parameter. Over a specified time interval [0, TL], failure occurs 

if there exists a specific time instant t within [0, TL] where the 

LSF value falls below zero [26]: 

∃𝑡 ∈ [0, 𝑇𝐿], 𝐺(𝐗, 𝐘(𝑡), 𝑡) ≤ 0   (1) 

As a result, the time-dependent probability of failure Pf (0, 

T) over a time period [0, T] (0≤T≤TL) is a monotonically 

increasing function with respect to T. It can be defined as: 

𝑃𝑓(0, 𝑇) = 𝑃𝑟(∃𝑡 ∈ [0, 𝑇], 𝐺(𝐗, 𝐘(𝑡), 𝑡) ≤ 0) , 0 ≤ 𝑇 ≤ 𝑇𝐿   (2) 

And time-dependent reliability is given by: 

𝑅(0, 𝑇) = 𝑃𝑟(∀𝑡 ∈ [0, 𝑇], 𝐺(𝐗, 𝐘(𝑡), 𝑡) > 0) , 0 ≤ 𝑇 ≤ 𝑇𝐿  

             = 1 − 𝑃𝑓(0, 𝑇), 0 ≤ 𝑇 ≤ 𝑇𝐿    (3) 

2.2. Modeling of time-dependent reliability analysis for 

corroded RC beams 

To simplify the problem, only the corrosion model for steel 

reinforcement bars is considered, without considering the 

corrosion model for concrete. This research is the foundation of 

our further works when the corrosion model for concrete is also 

taken into account. 

The primary focus of this paper revolves around the 

corrosion phenomenon in RC beams caused by chloride ion 

attack. To describe the process of chloride penetration in 

concrete, Fick's second law is employed [44]: 

∂𝐶(𝑥,𝑡)

∂𝑡
=

∂

∂𝑥
(𝐷

∂𝐶(𝑥,𝑡)

∂𝑥
)   (4) 

where x is the depth from the concrete surface; C(x, t) is the 

concentration of chlorides at depth x and time t; D is the chloride 

diffusion coefficient. 

In the case of a constant chloride diffusion coefficient D, and 

considering the following initial and boundary conditions, the 

Crank's solution can be derived [11]: 

𝐶(0, 𝑡) = 𝐶𝑠 , 𝐶(𝑥, 0) = 0  (5) 

𝐶(𝑥, 𝑡) = 𝐶𝑠 [1 − 𝑒𝑟𝑓 (
𝑥

2√𝐷𝑡
)]  (6) 

𝑒𝑟𝑓(𝑧) = 2Φ(𝑧√2) − 1  (7) 

where Cs is the surface chloride concentration, erf () is the error 

function or Gauss error function. 

In practical scenarios, the chloride diffusion coefficient may 

vary with time. For modeling the time-dependent chloride 

diffusion coefficient, a power law relationship is commonly 

recommended [32]: 

With the cement hydration proceeding, the concrete pore 

structure is refined and the connectivity of pores significantly 

decrease. As the result, the chloride diffusion coefficient 

decreases with time [48]. Based on the data from long-term field 

and laboratory studies, a power law relationship is proposed by 

Thomas and Bamforth [54], and the function is conmmonly 

adopted in the later researches [32, 59].  

𝐷(𝑡) = 𝐷𝑟𝑒𝑓 (
𝑡𝑟𝑒𝑓

𝑡
)

𝑚

   (8) 

where m is the age factor and Dref is the chloride diffusion 

coefficient at reference time tref =28 days. However, the defect 

of this model is that the historic change of the diffusion 

coefficient for a given exposure duration is not considered, 

which may lead to an erroneous judgment on chloride ingresses 

and thus the risk of chloride-induced corrosion [41]. 

To estimate the crucial parameter m, one can refer to the 

experimental study conducted by Mangat and Molloy [35]: 

𝑚 = 2.5(𝑊/𝐶) − 0.6   (9) 

where W/C denotes water cement ratio. It appears that the value 

of m directly depends on the mix proportion [34], which is 

represented by W/C. The Eq. (9) is derived by a linear regression 

analysis with limited data of m and W/C, and the accuracy of 

predicted relationship can be improved using more data [35]. 

According to reference [44], the serviceability limit state 

imposes restrictions on the normal use of a structure, which may 

involve excessive deformation, vibration, and localized damage 

such as cracking, spalling, and corrosion. It is widely 

recognized that when the chloride concentration at the steel 

location exceeds the chloride threshold level, corrosion of the 

reinforcement occurs, subsequently leading to cracking and 
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spalling of the concrete cover. Hence, the LSF for corrosion 

initiation can be formulated as [68, 69]: 

𝐺(X, Y(𝑡), 𝑡) = 𝐶𝑐𝑟 − 𝐶(𝑐, 𝑡) = 𝐶𝑐𝑟 − 𝐶𝑠 [1 − 𝑒𝑟𝑓 (
𝑐

2√𝐷(𝑡)𝑡
)]       (10) 

where Ccr is the chloride threshold level; c represents the depth 

of the concrete cover over the steel; C(c, t) denotes the 

concentration of chlorides at depth c and time t. 

By considering the LSF as G(X, Y(Tin), Tin)=0, the time at 

which corrosion initiation occurs, denoted as Tin, can be 

determined by solving the equation: 

𝑇𝑖𝑛 = {
𝑐2

4𝐷𝑟𝑒𝑓𝑡𝑟𝑒𝑓
𝑚 [𝑒𝑟𝑓−1 (1 −

𝐶𝑐𝑟

𝐶𝑠
)]

−2

}

1

1−𝑚
 (11) 

Since parameters Ccr, Cs, c, Dref are all random variables, Tin 

is also a random variable, and the LSF can be rewritten as: 

𝐺(X, Y(𝑡), 𝑡) = 𝑇𝑖𝑛 − 𝑡 = {
𝑐2

4𝐷𝑟𝑒𝑓𝑡𝑟𝑒𝑓
𝑚 [𝑒𝑟𝑓−1 (1 −

𝐶𝑐𝑟

𝐶𝑠
)]

−2

}

1

1−𝑚

− 𝑡        (12) 

Utilizing the MCS method, the time-dependent reliability 

can be computed based on the aforementioned LSF. Notably, the 

random variable Tin and the time parameter t are completely 

separated in Eq. (12). 

By substituting Eq. (12) into Eq. (2), the time-dependent 

probability of failure can be determined as: 

𝑃𝑓(0, 𝑇) = 𝑃𝑟(∃𝑡 ∈ [0, 𝑇], 𝑇𝑖𝑛 − 𝑡 ≤ 0) 

             = 𝑃𝑟(∃𝑡 ∈ [0, 𝑇], 𝑇𝑖𝑛 ≤ 𝑡) = 𝐹𝑇𝑖𝑛
(𝑇) (13) 

It is evident that the essence of the above formula lies in the 

cumulative distribution function (CDF) of Tin. In other words, 

the time-dependent probability of failure Pf (0, T) can be 

evaluated by analyzing FTin(T). 

3. A novel PH fitting method 

In view of the limitations inherent in existing reliability analysis 

methods (such as MCS, FORM, SORM, etc.), it is necessary to 

address the challenges of accuracy and efficiency. To overcome 

these challenges, a novel PH fitting method is proposed to 

accurately and efficiently handle time-dependent reliability 

problems. 

The PH fitting procedure involves estimating the parameters 

of a PH distribution based on sample data or with respect to 

another known distribution [55]. The concept of PH 

distributions was initially introduced by Erlang [16] and later 

extended by Neuts [37, 38]. 

PH distributions can be regarded as a generalization of the 

exponential and Erlang distributions [45]. The representations 

of PH distributions are depicted in Fig. 1. 

 

 

Fig. 1. Representations of PH distributions. (a) Exponential 

distribution. (b) Erlang distribution. (c) Hyper-Erlang 

distribution. 

As shown in Fig. 1 (a), the exponential distribution is the 

simplest PH distribution with an order of 1, characterized by a 

single parameter λ1. In Fig. 1 (b), the Erlang distribution is 

featured with two parameters: the rate parameter λ1 and the 

shape parameter r1. 

The state transition graph of a hyper-Erlang distribution 

(HErD) is presented in Fig. 1 (c). The parameters of a HErD 

include the number of Erlang branches M, the initial 

probabilities [α1, α2, …, αM], the rate parameters [λ1, λ2, …, λM], 

and the shape parameters [r1, r2, …, rM], where α1+α2+…+αM=1. 

Moreover, the order of the HErD, represented by N, is 

determined by the sum of the shape parameters: 

N=r1+r2+…+rM. 

When M=α1=1, the HErD degenerates into the Erlang 

distribution. Moreover, the exponential distribution is a special 

case of the HErD with M=α1=r1=1. Hence, the HErD can be 

considered as the generalization of the exponential and Erlang 

distributions. The key of the PH fitting method lies in the 

determining the parameters of the HErD. Once the relevant 

parameters are determined, the probability density function 

(PDF) and CDF of a hyper-Erlang random variable can be 

expressed as [64]: 

𝑓(𝑥) = ∑ 𝛼𝑚
(𝜆𝑚𝑥)𝑟𝑚−1

(𝑟𝑚−1)!
𝜆𝑚𝑒−𝜆𝑚𝑥𝑀

𝑚=1   (14) 
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𝐹(𝑥) = 1 − ∑ 𝛼𝑚 ∑
(𝜆𝑚𝑥)𝑖

𝑖!
𝑒−𝜆𝑚𝑥𝑟𝑚−1

𝑖=0
𝑀
𝑚=1  (15) 

The steps of the novel PH fitting method are outlined as 

follows: 

1) Initialization 

Step 1: Set the initial order as N=1, and initialize the global 

maximum log-likelihood value as Lmax= -105. 

2) Integer splitting method 

Step 2: Determine the number of possible branches as M=1, 

2, ..., N. 

Step 3: Employ the integer splitting method to calculate the 

number of possible cases of state transition SN and obtain the 

corresponding shape parameters RN : {r1, r2, ...,𝒓𝑆𝑁
}. 

For instance, if N=4, the possible values for M are 1, 2, ..., 

4. Consequently, S4=5. The partitions of 4 can be represented as 

{4}, {3, 1}, {2, 2}, {2, 1, 1}, and {1, 1, 1, 1}, as exemplified in 

Fig. 2. 

 

Fig. 2. State transition graphs for N=4, M=1, 2, ..., 4. 

3) EM algorithm 

The EM algorithm is a valuable tool for estimating 

parameters from a given data trace [43]. Thus, it is suitable to 

utilize the EM algorithm to determine the parameters of the 

HErD. The EM algorithm is executed as follows for a given 

rn=[r1, r2, …, rM] (n=1, 2, ..., SN): 

Step 4: Initialize parameters n=1, �̂�𝑛 =

(�̂�1, �̂�2, ⋯ , �̂�𝑀, �̂�1, �̂�2, ⋯ , �̂�𝑀). 

Step 5: Based on the existing dataset DS={x1, x2, ..., xK}, 

where K is the number of sample data, compute 

𝑝𝑚(𝑥𝑘|�̂�𝑚) = �̂�𝑚 𝑒𝑥𝑝[ (𝑟𝑚 − 1) 𝑙𝑛( �̂�𝑚𝑥𝑘) − 𝑙𝑛( 𝑟𝑚 − 1)! − �̂�𝑚𝑥𝑘]        (16) 

𝑞(𝑚|𝑥𝑘 , �̂�𝑛) =
�̂�𝑚⋅𝑝𝑚(𝑥𝑘|�̂�𝑚)

∑ �̂�𝑖⋅𝑝𝑖(𝑥𝑘|�̂�𝑖)𝑀
𝑖=1

   (17) 

where m=1, 2, ..., M, k=1, 2, ..., K, 𝑙𝑛( 𝑟𝑚 − 1)! =

∑ 𝑙𝑛 𝑖
𝑟𝑚−1
𝑖=1 . 

Step 6: Update the parameters using 𝜽𝑛 =

(𝛼1, 𝛼2, ⋯ , 𝛼𝑀, 𝜆1, 𝜆2, ⋯ , 𝜆𝑀), expressed as 

𝛼𝑚 =
1

𝐾
∑ 𝑞(𝑚|𝑥𝑘 , �̂�𝑛)𝐾

𝑘=1    (18) 

𝜆𝑚 =
𝑟𝑚⋅∑ 𝑞(𝑚|𝑥𝑘,�̂�𝑛)𝐾

𝑘=1

∑ 𝑞(𝑚|𝑥𝑘,�̂�𝑛)𝐾
𝑘=1 ⋅𝑥𝑘

   (19) 

Step 7: If 𝑚𝑎𝑥( |𝜽𝑛 − �̂�𝑛|) ≤ 𝜀 = 10−6, output the 

parameters 𝜽𝑛 and go to Step 8; otherwise, set �̂�𝑛 = 𝜽𝑛, and 

return to Step 5. 

Step 8: If n≤ SN, set n=n+1, and return to Step 5; otherwise, 

continue to Step 9. 

After repeating Steps 5-8 of the EM algorithm several times, 

the corresponding output parameters 𝜣𝑁: {θ1, θ2, ..., 𝜽𝑺𝑵
} 

towards RN: {r1, r2, ...,𝒓𝑆𝑁
} are got. 

Step 9: The log-likelihood values at θi (i=1, 2, ..., SN) can be 

calculated as 

𝑙𝑜𝑔 𝐿 (𝜽𝑖|𝐷𝑆) = 𝑙𝑜𝑔 ∏ 𝑝(𝑥𝑘|𝜽𝑖)
𝐾
𝑘=1 = ∑ 𝑙𝑜𝑔(∑ 𝛼𝑚 ⋅𝑀

𝑚=1
𝐾
𝑘=1

𝑝𝑚(𝑥𝑘|𝜆𝑚)) = ∑ 𝑙𝑜𝑔(∑ 𝛼𝑚 ⋅ 𝜆𝑚 𝑒𝑥𝑝[ (𝑟𝑚 −𝑀
𝑚=1

𝐾
𝑘=1

1) 𝑙𝑛( 𝜆𝑚𝑥𝑘) − 𝑙𝑛( 𝑟𝑚 − 1)! − 𝜆𝑚𝑥𝑘])                               (20) 

And then, the current maximum log-likelihood value LN, the 

current optimal output parameters θ*
N, the optimal index ID, and 

corresponding optimal r*
N can be given by 

𝐿𝑁 = 𝑚𝑎𝑥
1≤𝑖≤𝑆𝑁

𝑙𝑜𝑔 𝐿 (𝛉𝑖|𝐷𝑆)  (21) 

𝛉𝑁
∗ = 𝑎𝑟𝑔

𝛉
 𝑚𝑎𝑥
1≤𝑖≤𝑆𝑁

𝑙𝑜𝑔 𝐿 (𝛉𝑖|𝐷𝑆)  (22) 

𝐼𝐷 = 𝑎𝑟𝑔
𝑖

 𝑚𝑎𝑥
1≤𝑖≤𝑆𝑁

𝑙𝑜𝑔 𝐿 (𝛉𝑖|𝐷𝑆)  (23) 

𝐫𝑁
∗ = 𝐫𝐼𝐷   (24) 

4) Stopping criterion 

Step 10: If LN ≤ Lmax, set N=N+1, and return to Step 2; 

otherwise, continue to Step 11. 

Step 11: If (LN - Lmax)/|Lmax|≤𝛿 = 10−3, the algorithm 
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terminates and output the global optimal parameters θ*=θ*
N, 

r*=r*
N; otherwise, set Lmax=LN, N=N+1, and return to Step 2. 

The flowchart of the PH fitting method is shown in Fig. 3.

 

Fig. 3. Flowchart of the PH fitting method.

4. Illustrative examples 

In the field of reliability, conventional distributions commonly 

used include the lognormal, normal, gamma, exponential, 

Weibull, and type I extreme value (also known as the Gumbel) 

distributions [6, 21, 25, 27, 28, 30, 39, 49, 51, 52]. In this 

section, these six typical distributions are employed to validate 

the effectiveness of the novel PH fitting method. Additionally, 
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the proposed method is applied to an example involving 

corroded RC beams. 

4.1. Numerical examples 

In the first example, four datasets with sample sizes of K=50, 

250, 500 and 104 are generated from the lognormal distribution, 

where the mean value is μ=2 and the standard deviation is σ=1. 

The iterative process of the PH fitting method for this example 

is presented in detail in Table 1.

Table 1. Iterative process of the PH fitting method for the lognormal distribution dataset. 

Lognormal distribution dataset with K=50 

N SN Lmax LN 

𝐿𝑁 − 𝐿𝑚𝑎𝑥

|𝐿𝑚𝑎𝑥|||
 ID r*

N 
θ*

N 
M 

α*
N λ*

N 

1 1 -105 -81.492 0.9992 1 [1] [1] [0.5327] 1 

2 2 -81.492 -67.2944 0.1742 1 [2] [1] [1.0654] 1 

3 3 -67.2944 -61.5918 0.0847 1 [3] [1] [1.5980] 1 

4 5 -61.5918 -59.1726 0.0393 1 [4] [1] [2.1307] 1 

5 7 -59.1726 -58.5038 0.0113 1 [5] [1] [2.6634] 1 

6 11 -58.5038 -58.475 0.0005 2 [5, 1] 
[0.9876, 

0.0124] 

[2.6900, 

0.2974] 
2 

Lognormal distribution dataset with K=250 

N SN Lmax LN 

𝐿𝑁 − 𝐿𝑚𝑎𝑥

|𝐿𝑚𝑎𝑥|||
 ID r*

N 
θ*

N 
M 

α*
N λ*

N 

1 1 -105 -414.1856 0.9959 1 [1] [1] [0.5185] 1 

2 2 -414.1856 -347.3264 0.1614 1 [2] [1] [1.0371] 1 

3 3 -347.3264 -322.9418 0.0702 1 [3] [1] [1.5556] 1 

4 5 -322.9418 -314.974 0.0247 1 [4] [1] [2.0742] 1 

5 7 -314.974 -313.8942 0.0034 2 [4, 1] 
[0.9863, 

0.0137] 
[2.1124,0.2253] 2 

6 11 -313.8942 -311.8361 0.0066 2 [5, 1] 
[0.9695, 

0.0305] 

[2.6790, 

0.2562] 
2 

7 15 -311.8361 -310.0493 0.0057 3 [5, 2] 
[0.9345, 

0.0655] 

[2.7353, 

0.5946] 
2 

8 22 -310.0493 -309.312 0.0024 4 [5, 3] 
[0.9127, 

0.0873] 

[2.7819, 

0.9094] 
2 

9 30 -309.312 -309.312 - - - - - - 

10 42 -309.312 -308.7658 0.0018 9 [6, 3, 1] 
[0.8271, 

0.1729, 0.0000] 

[3.4580, 

1.0513, 0.3417] 
3 

11 56 -308.7658 -308.3769 0.0013 10 [6, 4, 1] 
[0.8195, 

0.1805, 0.0000] 

[3.5275, 

1.3506, 0.3129] 
3 

12 77 -308.3769 -308.3653 3.762×10-5 12 [6, 5, 1] 
[0.8487, 

0.1513, 0.0000] 

[3.5301, 

1.5565, 0.3005] 
3 

Lognormal distribution dataset with K=500 

N SN Lmax LN 

𝐿𝑁 − 𝐿𝑚𝑎𝑥

|𝐿𝑚𝑎𝑥|||
 ID r*

N 
θ*

N 
M 

α*
N λ*

N 

1 1 -105 -840.2996 0.9916 1 [1] [1] [0.5063] 1 

2 2 -840.2996 -703.9033 0.1623 1 [2] [1] [1.0126] 1 

3 3 -703.9033 -652.4565 0.0731 1 [3] [1] [1.5189] 1 

4 5 -652.4565 -633.8432 0.0285 1 [4] [1] [2.0253] 1 

5 7 -633.8432 -632.7352 0.0017 1 [5] [1] [2.5316] 1 

6 11 -632.7352 -628.396 0.0069 2 [5, 1] 
[0.9723, 

0.0277] 

[2.6006, 

0.2622] 
2 

7 15 -628.396 -624.9534 0.0055 3 [5, 2] 
[0.9368, 

0.0632] 

[2.6555, 

0.5986] 
2 
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8 22 -624.9534 -623.3381 0.0026 4 [5, 3] 
[0.9112, 

0.0888] 

[2.7019, 

0.9224] 
2 

9 30 -623.3381 -620.94 0.0038 4 [6, 3] 
[0.8321, 

0.1679] 

[3.3490, 

1.0402] 
2 

10 42 -620.94 -620.94 - - - - - - 

11 56 -620.94 -619.9419 0.0016 10 [6, 4, 1] 
[0.8145, 

0.1855, 0.0000] 

[3.4244, 

1.3542, 0.3639] 
3 

12 77 -619.9419 -619.4968 0.0007 11 [7, 4, 1] 
[0.6886, 

0.3114, 0.0000] 

[4.1880, 

1.5114, 0.3563] 
3 

Lognormal distribution dataset with K=104 

N SN Lmax LN 

𝐿𝑁 − 𝐿𝑚𝑎𝑥

|𝐿𝑚𝑎𝑥|||
 ID r*

N 
θ*

N 
M 

α*
N λ*

N 

1 1 -105 -16927 0.8307 1 [1] [1] [0.5002] 1 

2 2 -16927 -14168 0.163 1 [2] [1] [1.0004] 1 

3 3 -14168 -13108 0.0748 1 [3] [1] [1.5006] 1 

4 5 -13108 -12705 0.0307 1 [4] [1] [2.0008] 1 

5 7 -12705 -12651 0.0043 1 [5] [1] [2.5010] 1 

6 11 -12651 -12585 0.0052 2 [5, 1] 
[0.9829, 

0.0171] 

[2.5464, 

0.2471] 
2 

7 15 -12585 -12540 0.0036 3 [5, 2] 
[0.9552, 

0.0448] 

[2.5884, 

0.5816] 
2 

8 22 -12540 -12517 0.0018 4 [5, 3] 
[0.9289, 

0.0711] 

[2.6303, 

0.9137] 
2 

9 30 -12517 -12479 0.003 4 [6, 3] 
[0.8406, 

0.1594] 

[3.2687, 

1.0482] 
2 

10 42 -12479 -12479 - - - - - - 

11 56 -12479 -12457 0.0018 10 [6, 4, 1] 
[0.8112, 

0.1888, 0.0000] 

[3.3508, 

1.3817, 0.3036] 
3 

12 77 -12457 -12451 0.0005 11 [7, 4, 1] 
[0.6836, 

0.3164, 0.0000] 

[4.0861, 

1.5284, 0.2624] 
3 

For the dataset with the sample size K=50, after 6 iterations, 

it is apparent that the global optimal parameters are identified 

as r*=[5, 1], α*=[0.9876, 0.0124], λ*=[2.6900, 0.2974]. And 

after 12 iterations, the optimal parameters are obtained as r*=[6, 

5, 1], α*=[0.8487, 0.1513, 0.0000], λ*=[3.5301, 1.5565, 0.3005] 

for K=250. 

Regardless of whether the sample size K is 500 or 104, it is 

evident from the provided table that the maximum log-

likelihood value LN for N=10 (i.e., L10) satisfies the condition 

L10 ≤ Lmax. This implies that L10 does not contribute to the 

improvement of Lmax. Therefore, this iteration (N=10) is 

considered invalid, and the next iteration (N=11) is necessary. 

After 12 iterations, the iterative process terminates and the 

global optimal parameters are determined as r*=[7, 4, 1], 

α*=[0.6886, 0.3114, 0.0000], λ*=[4.1880, 1.5114, 0.3563] for 

K=500, and r*=[7, 4, 1], α*=[0.6836, 0.3164, 0.0000], 

λ*=[4.0861, 1.5284, 0.2624] for K=104. Once the optimal 

parameters of the HErD are obtained, the PDF and CDF can be 

derived using Eqs. (14) and (15). 

The empirical PDF (i.e., the outer contour of the frequency 

histogram), the PDF obtained through kernel density 

estimation, as well as the PDF resulting from Gaussian fitting 

and PH fitting, are compared with the PDF of the lognormal 

distribution with μ=2 and σ=1. The results are presented in Fig.4 

 

a) 

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

x

P
D

F
 o

f 
x

K=50

 

 

Empirical

Kernel density estimation

Gaussian fitting

PH fitting

Lognormal (=2, =1)



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 4, 2023 

 

 

b) 

 

c) 

 

d) 

Fig. 4. Comparison of the fitting results for the lognormal 

distribution dataset. (a) K=50. (b) K=250. (c) K=500. (d) 

K=104. 

 

Furthermore, the PH fitting results with different sample 

sizes of K=50, 250, 500, 104 and the true PDF of the lognormal 

distribution are plotted in Fig. 5. 

 

Fig. 5. Comparison of the fitting results with different sample 

sizes. 

It can be seen from Fig. 5 that the fitting results for different 

sample sizes of K=50, 250, 500 and 104 are all close to the true 

PDF of the lognormal distribution, showing the accuracy and 

robustness of the PH fitting method towards the data with 

different sample sizes. 

The other five distributions will be discussed next. A dataset 

with sample size of K=500 is generated from the normal 

distribution, where the mean value is μ=3 and the standard 

deviation is σ=1. And another dataset with the same sample size 

is generated from the gamma distribution with shape parameter 

A=0.4 and scale parameter B=0.25. The datasets from the 

exponential distribution with mean value μ=5, the weibull 

distribution with shape parameter A=3 and scale parameter 

B=3, and the type I extreme value (or gumbel) distribution with 

mean value μ=2 and standard deviation σ=1 are also 

investigated. The optimal parameters for distribution datasets 

and the fitting results are displayed in Table 2 and Fig. 6, 

respectively. 
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Table 2. The optimal parameters for different distribution datasets with K=500. 

Distribution dataset with K=500 

Distribution N SN Lmax LN 
max

max

NL L

L

−
 ID r*

N 
θ*

N 
M 

α*
N λ*

N 

Normal 18 385 -695.4227 -694.8141 0.0009 5 [14, 4] 
[0.8561, 

0.1439] 

[4.3271, 

2.0465 ] 
2 

Gamma 18 385 936.322 936.7508 0.0005 167 
[7, 4, 3, 2, 

1, 1] 

[0.1727, 

0.2061, 

0.1601, 

0.3724, 

0.0443, 

0.0443] 

[177, 305, 

1626, 9, 

10543, 

10543] 

6 

Exponential 3 3 -1302.8 -1302.5 0.0002 2 [2, 1] 
[0.3995, 

0.6005] 

[0.2428, 

0.3554] 
2 

Weibull 17 297 -676.7212 -676.0782 0.0010 6 [12, 5] 
[0.7387, 

0.2613] 

[4.0582, 

2.5307] 
2 

Type I 

extreme 

value (or 

Gumbel) 

9 30 -651.2021 -651.1546 0.0001 4 [6, 3] 
[0.6282, 

0.3718] 

[3.0368, 

1.4339] 
2 
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e) 

Fig. 6. Comparison of the fitting results for different 

distribution datasets with K=500. (a) Normal. (b) Gamma. (c) 

Exponential. (d) Weibull. (e) Type I extreme value (or 

Gumbel). 

It can been seen from Fig. 5 that the PDF obtained by 

different methods are close enough, indicating the effectiveness 

of the PH fitting method. 

4.2. An example of time-dependent reliability analysis of 

corroded RC beams 

To further illustrate the application of the PH fitting method, an 

example involving corroded RC beams is presented. The LSF 

for this example focuses on the corrosion initiation of the 

reinforced steel. The parameters utilized in the example are 

derived from relevant literature [15, 47, 60, 70] and are 

summarized in Table 3. 

Table 3. Distribution of random parameters for the corroded RC 

beams. 

Parameter Distribution Mean 
Coefficient of 

variation 
Source 

Ccr Uniform 0.9 kg/m3 0.2 [15] 

Cs Lognormal 3.5 kg/m3 0.2 [70] 

c Normal 30 mm 0.2 [60] 

Dref Lognormal 
12×10-12 

m2/s 
0.2 [47] 

As indicated in Eq. (9), the age factor m is determined by the 

water cement ratio (W/C). In this particular example, the value 

of W/C is selected as 0.35, 0.4, or 0.45. Consequently, the 

corresponding values of m are calculated using Eq. (9) as 0.275, 

0.4, or 0.525, respectively. Assuming Dref =12×10-12 m2/s, the 

relationships between the chloride diffusion coefficient D(t) and 

time t are plotted in Fig. 7. 

 

Fig. 7. The variation of D(t). 

It is illustrated that D(t) exhibits a rapid decrease during the 

early stages and a slower decline in the later period. To ensure 

that D(t) decreases with t [61], it is necessary to limit the value 

of m within the range of 0 to 1. Gjorv [19] suggested setting m 

to 0.4, a value consistent with the empirical formula [34]. 

Therefore, m=0.4 (corresponding to W/C =0.4) is adopted in this 

study. Subsequently, the LSF in Eq. (12) can be expressed as 

follows: 

𝐺(𝑋, 𝑌(𝑡), 𝑡) = 𝑇𝑖𝑛 − 𝑡 = {
𝑐2

4𝐷𝑟𝑒𝑓(
28

365
)

0.4 [𝑒𝑟𝑓−1 (1 −
𝐶𝑐𝑟

𝐶𝑠
)]

−2

}

1

1−0.4

− 𝑡           (25) 

where t represents the time parameter varying within [0, 100] 

years, X=[Ccr, Cs, c, Dref]T denotes the random variables. Since 

Y(t) does not appear in this case, one can obtain W=[X, 

Y(t)]=[X, Z]=[Ccr, Cs, c, Dref]T. Both the PH fitting method 

described in Section 3 and the MCS method are employed to 

calculate the time-dependent reliability. 

In the PH fitting method, 500 random samples of W are 

initially generated according to their respective distributions. 

Based on these random samples, 500 corrosion initiation times 

Tin can be computed using Eq. (25). The PDF of Tin is then 

approximated using kernel density estimation, Gaussian fitting, 

and PH fitting methods. These approximations are compared 
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with the empirical PDF, and the results are presented in Fig. 8. 

Figure 8 clearly demonstrates that the corrosion initiation 

time Tin can be effectively approximated using the PH fitting 

method. The reason why the PH fitting method outperforms 

other methods is that the PH method can make full use of the 

positive dataset, accurately capture its distribution 

characteristics and efficiently estimate relevant parameters. 

Directly approximating to some conventional distributions may 

ignore the features of the dataset, and result in significant errors. 

The iterative process to obtain the optimal parameters for the 

PH fitting method is outlined in Table 4. 

 

Fig. 8. Comparison of different approximation methods for 

PDF.

Table 4. Iterative process of corroded RC beams. 

N SN Lmax LN 
max

max

NL L

L

−

 
ID r*

N 
θ*

N 
M 

α*
N λ*

N 

1 1 -105 -1930 0.9807 1 [1] [1] [0.0573] 1 

2 2 -1930 -1869.2 0.0315 1 [2] [1] [0.1145] 1 

3 3 -1869.2 -1866.4 0.0015 2 [2, 1] 
[0.9716, 

0.0284] 

[0.1191, 

0.0246] 
2 

4 5 -1866.4 -1866.4 - - - - - - 

5 7 -1866.4 -1865.4 0.0005 3 [3, 2] 
[0.0302, 

0.9698] 

[0.0595, 

0.1217] 
2 

After 5 iterations, the iterative process of the PH fitting 

method concludes, and the optimal parameters are determined 

as r*=[3, 2], α*=[0.0302, 0.9698], and λ*=[0.0595, 0.1217]. 

With these optimal parameters, the CDF of Tin can be calculated 

using Eq. (15). According to Eq. (13), it is known that the time-

dependent probability of failure Pf (0, t) (t[0, 100] years) can 

be evaluated through the CDF of Tin, i.e., FTin(t). 

In the MCS [7, 67] method, the time interval is discretized 

with Δt set as 1 year, resulting in a total of s=101 time nodes. 

105 MCS samples of W are generated, and the corresponding 

values of the LSF are computed at each time node. Therefore, 

the MCS method requires Ncall=101×105 function calls in total. 

For the t-IRS [30] method, 30 initial samples are first generated 

to construct an initial instantaneous response surrogate model. 

And extra 54 samples are then selected to update the surrogate 

model. The comparison results of the three different methods 

are presented in Fig. 9 and Table 5. 

 

 

Fig. 9. Comparison of the MCS, PH fitting and t-IRS methods.
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Table 5. Failure probability results for the MCS, PH fitting and t-IRS methods. 

Time interval MCS [23, 24] 
PH fitting t-IRS [54] 

Pf Error (%) Pf Error (%) 

[0, 10] 0.3471 0.3338 3.8317 0.3193 8.0092 

[0, 20] 0.7020 0.6814 2.9345 0.6794 3.2194 

[0, 30] 0.8665 0.8607 0.6694 0.8757 1.0617 

[0, 40] 0.9396 0.9389 0.0745 0.9419 0.2448 

[0, 50] 0.9709 0.9714 0.0515 0.9724 0.1545 

[0, 60] 0.9859 0.9853 0.0609 0.9873 0.1420 

[0, 70] 0.9921 0.9917 0.0403 0.9935 0.1411 

[0, 80] 0.9960 0.9950 0.1004 0.9973 0.1305 

[0, 90] 0.9977 0.9968 0.0902 0.9989 0.1203 

[0, 100] 0.9988 0.9980 0.0801 0.9999 0.1101 

Ncall 101×105 500 - 30+54 - 

As mentioned previously, the MCS method is so accurate 

that the result is often taken as the reference one. The efficiency 

and accuracy of the PH fitting method are compared in terms of  

Ncall and Error (%). 

In terms of computational efficiency, it can be seen from 

Table 5 that the MCS method requires 101×105 function calls to 

obtain the reliability. In comparison, the proposed PH fitting 

method only necessitates 500 function calls, showing its 

efficiency in reducing the computational burden significantly. 

Furthermore, when considering the reliability accuracy, the 

errors of the PH fitting method for all time intervals are 

consistently below 5%, and in some cases, even below 0.1%. 

This demonstrates that the PH fitting method maintains the 

accuracy of reliability assessment. Compared with the MCS 

method, it can be concluded that the PH fitting method achieves 

a remarkable reduction in computational burden while ensuring 

the reliability accuracy. 

However, the efficiency of the proposed method is lower 

than that of t-IRS, but its accuracy is always better than t-IRS. 

The PH fitting method is a universal method for solving 

reliability problems with positive dataset. For more complex 

structural systems, the proposed method is required to 

incorporate with other system reliability strategies. 

Furthermore, the sensitivity analysis of the mean for 

different parameters (Ccr, Cs, c and Dref) are investigated. The 

corresponding reliability results with different means are 

displayed in Fig. 10. 
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c) 

 

d) 

Fig. 10. Failure probability results with different means. (a) 

Ccr. (b) Cs. (c) c. (d) Dref. 

It can be seen from the sensitivity analysis that the means of 

random parameters have great effects on the final reliability 

results. With the increase of Ccr and Dref or the decrease of Cs 

and c, the failure probability of the RC structure will increase. 

Therefore, it is vital to accurately determine relevant statistical 

information of parameters and quantitatively define the 

parameter uncertainties. 

5. Conclusions 

This paper studies the time-dependent reliability analysis of 

corroded RC beams based on the PH fitting method. A reliability 

model of RC structures is first formulated by taking the time-

dependent chloride diffusion coefficient into consideration. 

Next, a new strategy is cooperated with EM algorithm to simply, 

efficiently and scientifically obtain the parameters of PH fitting 

method. The effectiveness of the new method is then 

demonstrated using several numerical examples. Finally, the 

novel PH fitting method is applied to an example of corroded 

RC beams. The proposed method is shown to be an useful way 

in calculating the time-dependent reliability, and the results 

show excellent computational efficiency and accuracy 

compared with the MCS method. 

The main contributions of this paper are threefold: 1) 

formulating a reliability model of RC structures by taking into 

account the time-dependent chloride diffusion coefficient; 2) a 

new strategy is utilized to simply, efficiently and scientifically 

obtain the parameters of PH fitting method; 3) using the novel 

PH fitting method to accurately and efficiently deal with time-

dependent reliability analysis of corroded RC beams. 

The new method is limited to the property of PH distribution 

that only the positive support can be approximated as the PH 

distribution. In other words, the PH distribution is inapplicable 

to approximate the dataset with negative numbers. 

Further studies will include: 1) considering the corrosion 

model for concrete; 2) taking into account the correlations 

between random variables; 3) applying the new method to more 

complex civil engineering problems; 4) integrating the proposed 

method with different optimization algorithms to optimize 

practical engineering problems.
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