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Highlights  Abstract  

▪ A domain adaptive method for aligning multi 

feature spatial distributions is proposed. 

▪ A ResNet18_BiLSTM feature extraction 

model  is proposed to reduce signal 

fluctuations. 

▪ A soft threshold technique based on attention 

mechanism is proposed for informativeness. 

 Transfer learning (TL) has been successfully implemented in tool 

condition monitoring (TCM) to address the lack of labeled data in real 

industrial scenarios. In current TL models, the domain offset in the joint 

distribution of input feature and output label still exists after the feature 

distribution of the two domains is aligned, resulting in performance 

degradation. A multiple feature spatial distribution alignment (MSDA) 

method is proposed, Including Correlation alignment for deep domain 

adaptation (Deep CORAL) and Joint maximum mean difference 

(JMMD). Deep CORAL is employed to learn nonlinear transformations, 

align source and target domains at the feature level through the second-

order statistical correlations. JMMD is applied to improve domain 

alignment by aligning the joint distribution of input features and output 

labels. ResNet18 combining with bidirectional short-term memory 

network and attention mechanism is developed to extract the invariant 

features. TCM experiments with four transfer tasks were conducted and 

demonstrated the effectiveness of the proposed method. 
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1. Introduction 

Recent years, with the continual development of the machining 

process, the machining complexity and accuracy of products 

have been greatly improved, and the condition of tools during 

processing directly affects the surface quality of products 

processed. In order to obtain high precision machining products, 

it is necessary to establish an effective tool condition monitoring 

(TCM) system [6,18,41]. Generally, a tool’s condition is divided 

into three periods: grinding, steady, and failure. When a new 

tool starts to be used, it needs to go through a short break-in 

phase between the tool and the machined workpiece firstly, 

followed by a slow increase in wear and a long period of steady 

wear. Failure is the final sharp wear stage of the tool until the 

end of its useful life [22]. As the deterioration of the tool wear 

increases, the surface quality of the workpiece decreases. 

Therefore, a great deal of studies have been conducted by many 

researchers on TCM in order to achieve high quality machined 

products [5,8,35,43]. The results show that 10% to 40% of the 

process downtime is caused by tool fault, which often results in 
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50% to 80% of the effective tool life being used [24,39]. 

Therefore, an effective TCM method is of great importance to 

improve productivity, surface quality of machined products and 

cost savings [20]. 

Tool condition is difficult to describe using precise 

mathematical models because it is nonlinear, time-varying and 

continuous in actual industrial scenarios. Since the 1980s, TCM 

has been extensively studied [1], and many effective models 

have been proposed, including statistics, physical, data-driven, 

and hybrid models [16]. Data-driven models have been shown 

significant benefits in dealing with monitoring the tool 

condition due to the independence of the complex physical 

model and the systematic a priori knowledge [11,40]. It can 

effectively extract wear feature information from time or 

frequency domain signals of tools without the need for 

empirical knowledge [28,36]. Guan et al. proposed a method 

based on Hilbert edge spectrum to analyze the wear signals for 

effective feature extraction and achieve accurate classification 

of tool wear conditions [11]. Yan et al. used ResNet18 network 

to fuse the collected signals in multiple channels, which 

effectively improved accuracy in tool wear monitoring [36]. 

Nawrocki et al. utilized vibroacoustic signals obtained from 

spindle bearings in mass production machines in the automotive 

industry to diagnose the spindle and detect wear symptoms [28]. 

Jamshidi et al. employed machine tool spindle current and 

multi-scale analysis for tool condition monitoring [17]. Kasim 

et al. proposed the Z-rotation method to calculate the milling 

tool wear progress index based on variance across signal 

components [19]. Rizal et al. developed an embedded multi-

sensor system on a rotary dynamometer for real-time condition 

monitoring of milling tools [29]. Data-driven based condition 

monitoring methods require a large number of labeled training 

sets to learn the model [4,23], however, in actual machining 

process, machines are usually operating under different working 

conditions, and it is challenging to collect enough labeled 

samples for model training under each working condition  [25].  

Transfer learning (TL) tries to resolve this issue. Li et al. 

proposed an adaptive partial domain approach for implementing 

smart fault diagnosis [15,27,34]. Chen et al. proposed a method 

to calibrate data labels using a TL algorithm, which makes TL 

play a significant role for fault diagnostics of wind turbines [4]. 

Long et al. learned transfer network by aligning the joint 

distribution of multiple domain specific layers across domains 

(JMMD) to make the source and target domain distributions 

more distinguishable [26]. Marei et al. proposed a TL based 

Convolutional Neural Network (CNN) for TCM [27]. Long et 

al. proposed deep adaptation networks (DAN) that apply 

multiple linear kernels to multiple layers of a neural network to 

minimize the MMD [26]. Ross et al. applied transfer learning to 

tool condition monitoring in sustainable machining of nickel 

alloy under variable working conditions [30]. Gudelek et al. 

introduced a long-short-term memory depth multilayer 

perceptron method based on wavelets for tool state monitoring, 

considering operational variability [12]. Unver et al. devised a 

novel transfer learning framework by combining analytical 

solutions with CNN and performed tool milling experiments on 

CNC vertical milling machines to validate the effectiveness of 

the approach [37]. These above literature have partially revealed 

that in the feature extraction process of deep learning, deep 

features can be reduced from cross domain distribution 

differences, but cannot be eliminated [13,31,33,42]. The deep 

features of CNN ultimately transition from general features to 

specific features along the network’s layer, and the 

transferability of features and classifiers decreases with the 

increase of inter domain differences, although the source and 

target domain features are backward aligned in a specific feature 

space, However, deep networks with multiple layers of feature 

extraction still exhibit changes in the joint distribution of 

features and labels in the activation layer of higher-level 

networks. 

For data-driven methods, TCM is a time series problem that 

captures the nonlinear mapping relationship between the time 

series of previous and future tool conditions during the 

machining process [38]. Although recurrent neural network 

(RNN) can retain the input short-term memory and establish the 

mapping relationship between short-term memory and target 

vector [3], it cannot solve the long-term prediction problem. 

Long Short-Term Memory (LSTM) and Gate Recursive Unit 

Network (GRU), as variants of RNN, can capture long-term 

dependencies between cutting force signals and tool states 

[9,21]. However, due to the complexity of the model, the 

difficulty of training increases sharply with the increase of 

layers, and the demand for training data increases [10]. 

Moreover, performance is also affected by the number of hidden 
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layers and units. 

To solve the above problem, this paper proposes a novel 

multi-feature spatial distribution alignment (MSDA) network 

for TCM under variable working conditions, taking advantage 

of TL to reduce the requirement for feature distribution 

consistency between the training set and the test set, and reduces 

the dependence on labeled samples. A structure based on 

ResNet18 and BiLSTM is constructed for long-term and short-

term prediction of tool conditions to improve the feature 

extraction capability. In order to retain valuable features, the 

extracted features are subjected to an attention mechanism and 

soft thresholding to minimize noise-related information. The 

contributions of this paper are as follows:  

(1) A domain adaptive method for aligning multi-feature 

spatial distributions is proposed to achieve feature 

alignment in the source and target domains, considering the 

joint distribution of features and labels in the deeper levels 

of the aligned neural network. 

(2) A ResNet18_BiLSTM feature extraction model  is 

proposed to extract features from spatial and temporal 

dimensions to reduce the effects of signal fluctuations, in 

which the gradient disappearance and information loss are 

avoided through the residual network and preserve the 

integrity of signal features. 

(3) A soft threshold technique based on attention mechanism is 

proposed to effectively improve the value of information. 

2. Theoretical background  

When the datasets in the source and target domains have 

different feature distributions, traditional supervised learning 

algorithms are often unable to achieve effective classification, 

and domain adaptation is well suited for this situation.  

Since the data in the target and source domains obey the 

probability distributions of P and Q, respectively, and for 

domain adaptation, our goal is to construct a deep neural 

network that classifies unlabeled data in the target domain 

through feature learning that is amenable to transfer, as follows: 

𝑦̂ = 𝛽(𝑥)    (1) 

where 𝛽(⋅)  denotes DNN and 𝑦̂  is the output of the model 

prediction; therefore, the purpose of domain adaptation is to 

minimize the target domain risk 𝜀𝑡(𝛽) with supervision of the 

source data Błąd! Nie można odnaleźć źródła odwołania.. 

𝜀𝑡(𝛽) = Pr(𝑥,𝑦)∼𝑄 ⁡[𝛽(𝑥) ≠ 𝑦]   (2) 

We can write the total domain adaptation loss as： 

ℒ = ℒ𝑐 + 𝜆ℒTL   (3) 

where ℒ𝑐  is the maximal cross-entropy loss, 𝜆  is the trade-off 

parameter, ℒTL denotes partial loss to reduce the difference in 

characteristics between the two domains: 

ℒ𝑐 = −𝔼(𝑥𝑖
𝑠,𝑦𝑖

𝑠)∈𝒟𝑠
∑  𝐶−1
𝑐=0 𝟙[𝑦𝑖

𝑠=𝑐] log[𝛽(𝑥𝑖
𝑠)] (4) 

where 𝒄 is the count of all possible labels and 𝟙 is the indicator 

function.

 

Fig. 1. The overall framework of the methodology proposed in this paper.
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3. Proposed method  

The model proposed in this paper which uses several recently 

monitored sequential tool wear values to track the current 

condition of tool, while adding the proposed MSDA domain 

adaptive method, which can effectively perform monitoring of 

the condition of the tool under variable working conditions 

within the real machining process, which is important for 

achieving high precision part size machining and avoiding part 

scrap. 

The tool's condition monitoring modules mainly include 

feature extraction, feature normalization, design of 

Attention_ResNet_BiLSTM deep learning model, design of 

MSDA domain adaptive network, etc. The flow chart of the tool 

condition monitoring model designed in this paper is shown in 

Figure 1.  

3.1 Multi-feature spatial distribution alignment（MSDA） 

The approach of Deep CORAL is analogous to that of , DAN 

and Reverse Grad [14] methods, it adds another loss (CORAL 

loss) with the aim of minimizing the variance of the learned 

covariance matrix across domains, which is analogous to that of 

mini-mizing MMD in the case of a polynomial kernel, but it's 

more potent than DDC (which merely aligns the means of the 

sample) and more amenable to optimization than DAN, the 

ReverseGrad algorithm. It is easy to optimize, and its most 

salient feature is that it can be seamlessly integrated across 

different deep learning layers or architectures. For example, in 

the case of MMD and MK-MMD [7], solve the domain 

adaptation problem by considering the difference between the 

edge distributions 𝑃(𝑋𝑠)  and 𝑄(𝑋𝑡)  of the target and source 

domains, but do not take into account the joint distribution 

alignment of 𝑃(𝑋𝑠, 𝑌𝑠) , 𝑄(𝑋𝑡 , 𝑌𝑡)  of the deeper layers of the 

neural network. Many papers have also found that the 

distribution differences can be reduced, but do not disappear, 

means that the differences in joint distribution still exist in 

higher levels of the neural network despite the fact that the 

source and target domain data is fed and passed through a deep 

network with multi-layer feature extraction. 

Our method takes advantage of the advantages of Deep 

CORAL and JMMD, and offers the MSDA method applicable 

to monitoring the condition of tools under varying working 

conditions, the principle of which is shown in Figure 2. Firstly, 

in order to realize the alignment of the second order statistics 

and to initially approximate the distribution of the source and 

target domain features in the feature space is shown, we take 

advantage of the powerful compatibility of Deep CORAL and 

insert it into the shallower layer of the neural network in order 

to learn some sort of non-linear source and target domain 

transformations in the initial model stage. We insert JMMD into 

a deeper layer of the neural network, using the feature vectors 

already aligned by Deep CORAL as the input of JMMD, and 

use embedding in Hibert space to measure the distance from the 

joint distribution 𝑃(𝑋𝑠, 𝑌𝑠), 𝑄(𝑋𝑡 , 𝑌𝑡), but JMMD differs from 

MMD in that it imposes a uniform JMMD uses non-uniform 

weights, which captures the interaction between the different 

variables of the joint distribution 𝑃(𝑋𝑠, 𝑌𝑠), 𝑄(𝑋𝑡 , 𝑌𝑡), and takes 

a step closer to the distance between the two domains in the 

feature space.

 

Fig. 2. Process of Multi-feature spatial distribution alignment.
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3.1.1 Correlation Alignment for Deep Domain Adaptation  

Methods like MK-MMD and other domain adaptation 

approaches often perform feature alignment at the last layer of 

a neural network, which is more suitable for aligning overall 

feature distributions. On the other hand, the Deep CORAL 

method allows for consideration of feature representations at 

different layers by measuring the CORAL distance at arbitrary 

layers, enabling multi-layer feature alignment. Therefore, in this 

case, we choose Deep CORAL to achieve multi-layer feature 

alignment during the domain adaptation process. Its advantage 

lies in the fact that deep neural networks can learn feature 

representations with different semantic information and 

abstraction levels at different layers. Through multi-layer 

alignment, Deep CORAL can better capture the relationships 

between the source and target domains and align features at 

different abstraction levels. This facilitates the extraction of 

more diverse and robust feature representations, thereby 

improving the performance of domain adaptation. 

CORAL loss was first proposed by Sun et al. with the aim 

of align the second order statistics of source domain data and 

feature distributions of target domain data in order to achieve 

domain adaptation. Deep CORAL loss is defined as the distance 

between the second order statistics of the features in the source 

domain and those in the target domain, and Deep CORAL is 

expressed by the formula [32]： 

ℒCORAL⁡ =
1

4𝑑2
∥∥𝐶𝑆 − 𝐶𝑇∥∥𝐹

2   (5) 

where 𝐶𝑆  and 𝐶𝑇  denote in terms of the two dataset domains 

covariance matrices, respectively, 𝑑  is the dimension of each 

sample， ∥⋅∥𝐹
2   denotes the Frobenius norm between the 

covariance matrices. 

𝐶𝑠 ⁡=
1

𝑛𝑠−1
(𝑋𝑠

𝑇𝑋𝑠 −
1

𝑛𝑠
(𝟏𝑇𝑋𝑠)

𝑇(𝟏𝑇𝑋𝑠))

𝐶𝑡 ⁡=
1

𝑛𝑡−1
(𝑋𝑡

𝑇𝑋𝑡 −
1

𝑛𝑡
(𝟏𝑇𝑋𝑡)

𝑇(𝟏𝑇𝑋𝑡))

 (6) 

where 𝟏 denotes a column vector whose elements are all equal 

to 1. 

3.1.2 Joint Maximum Mean Discrepancy 

To introduce JMMD, we first introduce the concept of MMD, 

and many current methods implement domain adaptation by 

measuring the difference between the edge distributions 𝑃(𝑋𝑠) 

and 𝑄(𝑋𝑡)  of the source and target domains [2]. Maximum 

Mean difference (MMD), a two-core sample statistic, has been 

used extensively to measure the distribution of edges between 

𝑃(𝑋𝑠) and 𝑄(𝑋𝑡). However, MMD does not resolve the offset 

arising from the joint distribution 𝑃(𝑋𝑠, 𝑌𝑠), 𝑄(𝑋𝑡 , 𝑌𝑡) between 

the input and output, so the Hilbert space embedding is used to 

measure the distance between the joint distributions 𝑃(𝑋𝑠, 𝑌𝑠) 

and 𝑄(𝑋𝑡 , 𝑌𝑡)  between the source and target domains. The 

resulting distance metric becomes the joint maximum mean 

difference (JMMD) with the following equation： 

ℒJMMD(𝑃,𝑄) = ∥
∥𝔼𝑃 (⊗𝑙=1

|𝐿|
𝜙𝑙(𝑧𝑠𝑙)) − 𝔼𝑄 (⊗𝑙=1

|𝐿|
𝜙𝑙(𝑧𝑡𝑙))∥

∥
⊗𝑙=1

𝐿𝑙 ℋ𝑙

2

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

where 𝐿  is the set of top-level networks, |𝐿|  is the number of 

layers of the matching set, 𝑧𝑠𝑙 denotes the 𝑙-th level activation 

generated in the source domain, and 𝑧𝑡𝑙 the 𝑙-th level activation 

generated in the target domain.

 

Fig. 3. Attention_ResNet_BiLSTM model.
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3.1.3 MSDA loss definition 

Inspired by Deep CORAL and JMMD alignment domain offsets, 

we designed the MSDA loss to first aligning the distributions of 

features in the two dataset domains via second order statistical 

alignment, and then aligns the joint distribution of features and 

labels in deeper layers of the neural network through the joint 

maximum average difference, with the MSDA loss function as 

follows: 

ℒMSDA⁡ = 𝛽
1

4𝑑2
∥∥𝐶𝑆 − 𝐶𝑇∥∥𝐹

2 + 𝛾 (∥
∥𝔼𝑃 (⊗𝑙=1

|𝐿| 𝜙𝑙(𝑧𝑠𝑙)) −

𝔼𝑄 (⊗𝑙=1
|𝐿| 𝜙𝑙(𝑧𝑡𝑙))∥

∥
⊗𝑙=1

𝐿𝑙 ℋ𝑙

2

) = ⁡𝛽ℒCORAL⁡ + 𝛾ℒJMMD⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

We add it to the loss function to achieve domain adaptation 

for feature transfer between the target and source domains, as 

can be seen above, and the final loss function is set: 

ℒ = ℒ𝑐 + ℒMSDA⁡ = ℒ𝑐 + ⁡𝛽ℒCORAL⁡ + ⁡𝛾ℒJMMD ⁡⁡⁡⁡⁡⁡⁡⁡(9) 

As can be seen from the MSDA loss formula, the training 

process contains two trade-off parameters 𝛽 and 𝛾. These two 

trade-off parameters have an important impact on the accuracy 

of MSDA, and we will determine the settings of these two trade-

off parameters based on specific experimental data in Section 4. 

3.2 Attention_ResNet_BiLSTM model 

The key idea behind ResNet is adding directly connected 

channels to the network, the concept of identity short-cuts. The 

prior structure of the network is a non-linear transformation of 

the performance data, while identity shortcuts keep some 

percentage of the output from previous layers of the network 

that decrease the number of computations and parameters, and 

the gradient disappearance does not occur. BiLSTM employs 

forward and reverse bidirectional operations to improve 

learning of sequence features from known time series and 

reverse position sequences. Combining the advantages of 

ResNet and BiLSTM, a soft thresholding ResNet_BiLSTM 

deep learning model is proposed to be used as a feature extractor 

for milling tool condition monitoring, the principle of which is 

shown in Figure 3. The residual block in ResNet_BiLSTM 

differs from traditional residual network (Figure 4) in that it 

uses soft thresholding to remove noise-related features, and the 

attention-based mechanism of a soft thresholding layer is 

inserted in the form of a nonlinear into the the residual block, 

and the values of the thresholds can be automatically learned 

during the training of the network, as described in the following 

sections. It is found that the computation time increases when 

the complexity of the residual blocks increases and under 

different task conditions, the robustness of the model decreases 

slightly.  

Therefore, we have designed the ResNet_BiLSTM model, 

where BiLSTM serves as the temporal encoder built upon the 

prior knowledge of ResNet. By leveraging the excellent feature 

extraction capabilities of ResNet and the temporal modeling 

abilities of BiLSTM, this model effectively explores the 

spatiotemporal features of the signal, thus improving the 

accuracy and robustness of vibration signal diagnosis. In this 

model, ResNet acts as the frontend feature extractor to capture 

local features from the vibration signal. The extracted feature 

sequence is then mapped into the feature representation of 

BiLSTM. Two fully connected layers serve as the input to 

BiLSTM, enabling the modeling and prediction of temporal 

relationships. This further enhances the accuracy and robustness 

of vibration signal diagnosis. 

3.2.1 Traditional residual network 

ResNet is a deep-learning method that has received much 

attention in the past few years [14], and the residual block (RB) 

is its basic building block, as shown in Figure 4, the RB consists 

of two ReLu, two BN, two convolutional layers and a Shortcut 

Connection, the Shortcut Connection is what allows ResNet to 

outperform general ConvNets. In a general convolutional 

network, the cross-entropy error gradient is back-propagated 

layer by layer. By using identity shortcuts, the gradient can 

effectively fluxes to previous layers near the input layer, thus 

allowing for efficient parameter updates. Figure 4, shows the 

general structure of the ResNet, which is made up of one input 

layer, and convolution layers, many RB, a BN, a ReLu, a GAP, 

and outputs fully-connected layers, and serves as the basis for 

further improvements needed in this study.  

3.2.2 Soft thresholding based on attention mechanism 

The cutting force signal collected in the experiment contains 

rich information about the change of tool condition, but there is 

inevitably some noise in the cutting force signal, when the 

model extracts these features from the signal, it is not beneficial 

to monitor the tool condition, in order to retain the valuable 

features to remove the redundancy, these unimportant features 
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may be noticed through the attention mechanism, by soft 

threshold painting to make them zero [7]. thereby enhancing in 

terms of the neural network's ability to extract useful 

information from the cut-off force signal. The traditional soft 

thresholding operation often requires setting filters based on 

human experience, and the setting of filter thresholds requires a 

great deal of expertise. Deep learning changes this way of 

thinking, and instead of needing to think about setting 

thresholds, deep learning uses gradient descent to learn 

automatically, and the formula for soft thresholding is: 

𝑦 = {
𝑥 − 𝜏 𝑥 > 𝜏
0 −𝜏 ≤ 𝑥 ≤ 𝜏

𝑥 + 𝜏 𝑥 < −𝜏
  (10) 

where 𝑥 is the input feature, 𝑦 is the output feature, and 𝜏 is the 

threshold (a positive parameter). Soft thresholding preserves 

useful negative features by setting the features close to zero in 

the ReLu activation layer to zero. 

The soft threshold is inserted into the residual block as  

a nonlinear layer, as shown in Figure 5. The residual block is 

different from the classical residual block in Figure 4, and there 

is a special module dedicated to learning the threshold in Figure 

5. 

 

Fig. 4. Traditional residual network. 

 

Fig. 5. Residual network with added attention mechanism.

In gradient backpropagation, the absolute value of the feature 

mapping X is first subjected to the GAP operation to obtain a 

one-dimensional vector, which is then passed to the FC layer to 

obtain a scaling parameter, and the end uses the Sigmod 

function to its scaling to (0.1), the range is expressed as： 

𝛼 =
1

1+𝑒−𝑧
    (11) 

where 𝛼 is the scaling parameter and 𝑧 is the output of the FC 

layer, multiply 𝛼 based on the mean of | 𝑥 | in order to achieve 

the desired threshold value, and the threshold value is denoted 

as： 

𝜏 = 𝛼 ⋅ ⁡average⁡
𝑖,𝑗,𝑐

|𝑥𝑖,𝑗,𝑐|  (12) 

where 𝜏 is the threshold value, 𝑖, 𝑗, 𝑐 are the width, height and 

index of the channel of the extracted feature mapping, 

respectively. The iterative process of deep learning can keep the 

threshold value in a reasonable range of values so that the soft 

thresholding not all outcomes will be zero. 

3.2.3 Bi-directional long short term memory 

LSTM is a kind of RNN, RNN was found to have the vanishing 

of gradients, exploding gradients and poor dependencies over 
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long distances in practical application development, so LSTM 

was created. the main body of LSTM is similar to LSTM, and 

the key enhancement is the addition of three gating units to the 

hidden layer for learning long-term memory. The structure of 

BiLSTM is two independent LSTMs with input sequences in 

forward and inverse order are input to the two LSTMs in the 

case of feature extraction, and both output vectors, i.e., together 

with the extracted feature vectors, are sewn together and used 

as the final feature expression for that network.  

{

c𝑡 = f𝑡 ⊗ c𝑡−1 ⊕ i𝑡
⊗ (tanh(w𝑐x𝑡 + U𝑐h𝑡−1 + b𝑐))

h𝑡 = o𝑡 ⊗ tanh⁡(c𝑡)
 (13) 

where,  f𝑡 , ⁡i𝑡 , and⁡⁡0𝑡  mean the  input gate forgetting gate, 

input⁡gate , and⁡output⁡gate , respectively; c𝑡 , ⁡h𝑡   and ⁡h𝑡−1 

mean the long-term memory, short-term memory, and the 

feature information of the previous time series, respectively; b, 

w, and U mean the model parameters to be learned during the 

iterative process, respectively; ⊕ and ⁡⊗ denote multiplication 

and addition, respectively. 

The single-layer BiLSTM is actually two LSTMs, one 

forward processing sequence and one reverse processing 

sequence. After processing, the outputs of the two LSTMs are 

stitched together as the output of the BiLSTM, so that the 

obtained feature vector at time t has information between the 

past and the future at the same time, with the following equation： 

{

h𝑡
𝑅 = 𝑓𝑅(w1𝑥𝑡 +w2h𝑡−1

𝑅 )

h𝑡
𝐿 = 𝑓𝐿(w3𝑥𝑡 + w5h𝑡+1

𝐿 )

h𝑡 = 𝑓(w4h𝑡
𝑅 + w6h𝑡

𝐿)

  (14) 

where h𝑡
𝑅, h𝑡

𝐿, and h𝑡 denote the moment t, the forward LSTM, 

the reverse LSTM, and the final output of the feature vector, 

respectively. w  is the weight parameter of the BiLSTM to be 

learned. After the feature vectors are processed by the BiLSTM, 

two double tangent (tanh) functions are stacked as activation 

functions to monitor the current condition. 

3.3 Training setup 

To rationalize the testing process, we trained each model for 160 

iterations, and during the training process, for the first 50 

iterations, we only used model weight-sharing transfer to obtain 

the so-called pre-trained model, and then activated the MSDA 

domain adaptive strategy. The model training and testing 

process alternated, and during the training we used small 

batches of Adam for backpropagation, each batch size equal to 

64, using a "stepwise" strategy as the learning rate decay 

method, with an initial learning rate of 0.001, decaying at 80 

and 120, respectively, multiplied by 0.1. 

3.3.1 Normalization 

Data normalization is a fundamental step in migration learning 

that ensures the input values are within a specific range. It plays 

a crucial role in reducing differences in data distribution 

between the source and target domains, enhancing the model's 

generalization capability, and improving its adaptability to 

target domain data. In this study, we employ Z-score 

normalization, which is calculated using the following equation: 

𝑥𝑖
normalize⁡ =

𝑥𝑖−𝑥𝑖
mean⁡

𝑥𝑖
std⁡ , 𝑖 = 1,2, … , 𝑁  (15) 

where 𝑥𝑖 is the input data, 𝑥𝑖
mean  is the mean of 𝑥𝑖, and 𝑥𝑖

std  is 

the standard deviation of 𝑥𝑖. 

4. Experiment verification and research 

4.1. Experimental setup 

The TCM experiments were performed on a CNC (DMTG 

VDL850A) machining center as shown in Figure 6. The 

workpiece material was AISI 1045 steel with dimensions of 

L1300 mm × W100 mm × H80 mm. The tools used are three-

flute uncoated carbide end milling cutters with a diameter of 10 

mm and the chemical properties given in Table 1.

 
(a) 

 
(b) 
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(c)  

(d) 

Fig. 6. (a) CNC machine (b) data acquisition system (c) tool microscope (d) experimental platform. 

Tab. 1. Chemical properties of workpiece material. 

Carbon (%) Silicon (%) Manganese (%) Nickel (%) Chromium (%) Copper (%) 

0.42~0.50 0.17~0.37 0.50~0.80 ＜0.30 ＜0.25 ＜0.25 

We conducted TCM experiments under four operating 

conditions, each parameter in the experiment can be changed, 

in the machining process of the tool, the cutting force is often 

the most sensitive, and contains a wealth of information about 

the working conditions, and the dynamic cutting characteristics 

of the tool are closely linked to the dynamics of the 

dynamometer, a single dynamometer sensor has the advantages 

over the dynamometer in that it is inexpensive, easy to install, 

does not affect normal processing. We used a Kistler 9139AA 

dynamometer to collect cutting force signals during tool 

machining, as shown in Figure 6, and installed it under the 

workpiece being machined to collect data with a sampling 

frequency set to 12000 Hz. We collected and organized the 

cutting force signals from four simulated experiments to 

generate four experimental data sets, D1, D2, D3, D4 as shown 

in Table 2. 

Tab. 2. Experimental parameters. 

Domain 
Tool 

Number 

Spindle 

Speed(rpm) 

Feed 

speed(mm/min) 

Axia Cut 

Depth(mm) 

D1 1 2300 0.4 400 

D2 2 2300 0.5 450 

D3 3 2400 0.4 450 

D4 4 2400 0.5 500 

The tool and the workpiece in the experiment are dry cutting, 

and the wear and tear of the tool is relatively rapid, we will put 

the tool offline under the industrial microscope after each tool 

stroke to measure the distance of 1.5 meters for each stroke. 

ISO3685-1977 defines tool wear as the VB width of wear on the 

side of the tool, but in the actual experiment, our results indicate 

that the change in tool side wear width is not sufficiently 

obvious for an effective measurement and that measurement 

error is large. In the experiment, we positioned the microscope 

vertically and measured the length of wear on each slide, as 

shown in Figure 8. We took the maximum wear length of the 

tool section as the tool wear standard, VB = Max (VB1, VB2, 

VB3). In our experiments, we found that the tool tends to reach 

the end of life in the tenth stroke, so we performed 10 strokes of 

the tool for each working condition and made offline 

measurements each time, as shown in Figure 9 which shows the 

tool wear variation for the 10 offline measurements. We divided 

the data set into three conditions according to the tool wear 

length, slight wear (VB ≤ 0.8 mm), stable wear (0.8 mm < VB 

≤ 1.6 mm), and sharp wear (VB >1.6 mm). Figure 7 shows the 

cutting force signals on the three conditions. 
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Fig. 7. Time domain signals under different wear conditions. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Images of the three conditions of the tool: (a) Slight 

wear (b) Stable wear (c) Sharp wear

 

 

Fig. 9. Wear length variation of the three cutting edges during 

milling. 

4.2 Description of the data set 

According to the experiments, we collected a total of four 

different cutting force signals of milling tools under different 

working conditions, and to test the efficacy of the method 

proposed in this study, we designed four transfer tasks, which 

are task (D1→D2), task (D2→D1), task (D3→D4), and task 

(D4→D3), and the left and right of "→" denote the source 

domain dataset and the target domain dataset, respectively, and 

when transfer learning is performed, only the source domain 

data are labeled and the target domain is unlabeled, but data 

from the target domain also participates in training to achieve 

domain adaptation. In our experiments, we collect 1474560 

time points for each working condition, and we directly use the 

measured cutting force signals as the input to the model, with 

each sample set to 1024 time series. When training, we use 80 

percent of the total data set in both the source and target domains 

as the training set and the remaining 20 percent of the data set 

as the test set. 

4.2.1 Selection of cutting force 

In the process of milling tool condition monitoring, we use 

radial cutting force as the input to the model. The radial force is 

one of the primary components of the cutting force and directly 

reflects the interaction between the tool and the workpiece 

during the cutting process. Furthermore, the relationship 

between radial force and tool condition or workpiece material is 

more apparent. Additionally, the variation range of radial force 

is typically larger than that of axial force or tangential force 

because the relative motion between the tool and the workpiece 

primarily occurs along the radial direction during the cutting 

process. Therefore, the radial force exhibits higher sensitivity 

and provides more information for tool condition detection and 

monitoring. 
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4.3 Model hyperparameter analysis 

Grid search is a commonly used method for hyperparameter 

tuning. One of its advantages is its simplicity and intuitiveness. 

By exhaustively searching through predefined ranges of 

hyperparameters, grid search can cover all possible 

combinations in the hyperparameter space, avoiding the 

omission of potential optimal combinations. Another advantage 

of this method is its comprehensiveness, as it explores various 

scenarios in the hyperparameter space, including extreme 

values and boundary cases. This comprehensive search helps 

understand the impact of different hyperparameter values and 

find the best combination of hyperparameters. Additionally, the 

results of grid search provide a set of hyperparameter 

combinations that clearly demonstrate the influence of each 

hyperparameter on the model's performance. This offers 

interpretability and information to guide subsequent 

hyperparameter adjustments. 

As can be seen from Equation 11, the total loss function of 

MSDA contains two trade-off parameters, and the setting of the 

trade-off parameters has an important impact on the transfer 

ability of MSDA. We conduct experiments with D1 by the 

source domain and D2 as the target domain. After conducting 

initial attempts, we take 𝛽 ∈ [0.08, 1] and 𝛾 ∈ [0, 0.0000001] 

for domain adaptive experiments, respectively, and draw a 

three-dimensional plot of the accuracy change in the target 

domain, as shown in Figure 10. According to the three-

dimensional plot of accuracy, we can see that the test set 

accuracy of the target domain reaches a maximum of 98.26% 

when 𝛽 equals to 0.1 and 𝛾 equals to 0.00001, and the accuracy 

of the target domain is lower when 𝛽 = 0.2 and 𝛾 ∈ [0, 0.001]. 

According to the accuracy 3D plot we also found that when the 

value of 𝛾 is fixed and β is changed, the correct rate changes 

less, and when the value of 𝛽  is fixed and 𝛾  is changed, the 

accuracy rate changes significantly, thus indicating that the 

influence of 𝛾  on the MSDA domain adaption is greater than 

that of 𝛽. 

 

Fig. 10. The results of model hyperparameter analysis. 

4.4 Results and Discussion 

4.4.1 Attention_ResNet_BiLSTM 

In order to test the efficacy and superiority of our proposed 

model, four transfer experiments were conducted to compare 

several other models, mainly including AlexNet, BiLSTM, 

ResNet18, LeNet, and Attention_ResNet_ BiLSTM, using the 

MSDA domain adaptation framework proposed in. The 

prediction results of the transmission task of TCM are shown in 

The Figure 11 shows that the average classification accuracy of 

the four transmission tasks shows that the 

Attention_ResNet_BiLSTM model has more stable 

performance and can realize the monitoring of the condition of 

the tool under variable working conditions.  

 

Fig. 11. Correctness of different feature extraction models in 

four transfer tasks. 

The reasons are as follows: firstly, the deep feature extraction is 

performed by the residual network, which effectively prevents 

the gradient disappearance phenomenon, information useful to 

tool wear monitoring is then augmented by the attention 

mechanism and soft thresholds, and the redundant information 

is filtered and weakened, and finally the learning of sequence 

features is enhanced by BiLSTM based on the forward and 
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reverse position sequences of the time series, and more useful 

discriminative features are extracted to make the classification 

more accurate. It can be seen that the 

Attention_ResNet_BiLSTM achieves more than 85% correct 

rate in all four classification tasks, and the residual 18 network 

also shows comparable performance with the 

Attention_ResNet_BiLSTM in the D2→D1 transfer task, but in 

the other three transmission tasks, of the four experiments, The 

Attention_ ResNet_BiLSTM performs significantly better than 

the other methods and has the lowest fluctuations in error. 

4.4.2 MSDA Performance Evaluation 

 

Tables 3-6 show the performance of our proposed MSDA with 

the adaptive method and the benchmark model in four transfer 

tasks. To verify the effectiveness of MSDA, we all use 

Attention_ResNet_BiLSTM as the feature extractor, and use 

Network-based DTL, Instanced-based DTL (Adabn), MK-

MMD, JMMD, and DANN transfer learning methods for 

comparative analysis. From the results obtained in the table, the 

domain adaptive method MSDA for aligning multiple spatial 

domains proposed in this paper achieves the best results, 

especially on F1 SCORE for all four transfer tasks. Tables 3 and 

5 show that our method outperforms other methods by about 5 

percent in terms of correctness, and we find that the model is 

more likely to extract features from the vibration signals when 

the data set with lower feed rate is labeled source domain data, 

and the F1 SCORE of our method is about 10 percent lower than 

other methods in Tables 4 and 6, indicating that our method can 

effectively reduce interference from individual signals as well 

as efficiently close the distance between the source and target 

domains. 

Table 3. Performance of six methods for the classification task D1→D2. 

Method Accuracy Precision Recall F1 Score AUC Far 

Network 0.8708±0.0228 0.5081±0.0254 0.8012±0.0334 0.6815±0.0516 0.6445±0.0214 0.0145±0.0195 

Adabn 0.7850±0.0126 0.6912±0.0034 0.7433±0.0320 0.5986±0.0259 0.8732±0.0437 0.0851±0.0178 

MK-MMD 0.9159±0.0035 0.6912±0.0293 0.6786±0.0254 0.7092±0.0322 0.7903±0.0257 0.0751±0.0154 

JMMD 0.9085±0.0213 0.8415±0.0103 0.9515±0.0156 0.9124±0.0125 0.9541±0.0122 0.0145±0.0021 

DANN 0.9242±0.0198 0.9343±0.0050 0.9735±0.0110 0.9140±0.0084 0.9701±0.0025 0.0115±0.0024 

MSDA 0.9535±0.0111 0.9425±0.0145 0.9833±0.0096 0.9151±0.0067 0.9802±0.0017 0.0117±0.0005 

Table 4. Performance of six methods for the classification task D2→D1. 

Method Accuracy Precision Recall F1 Score AUC Far 

Network 0.8346±0.0398 0.8638±0.0254 0.7500±0.0360 0.7992±0.0191 0.8665±0.0079 0.0285±0.0064 

Adabn 0.6927±0.0450 0.7915±0.0126 0.6879±0.0245 0.7587±0.0231 0.6620±0.0048 0.0312±0.0150 

MK-MMD 0.8951±0.0186 0.9049±0.0304 0.8745±0.0256 0.9539±0.0051 0.9393±0.0231 0.0170±0.0121 

JMMD 0.8976±0.0200 0.9521±0.0103 0.8745±0.0122 0.9414±0.0191 0.9231±0.0021 0.145±0.0085 

DANN 0.8775±0.0358 0.9112±0.0301 0.9058±0.0161 0.9075±0.0120 0.8701±0.0231 0.0125±0.0108 

MSDA 0.9232±0.0170 0.9479±0.0159 0.8975±0.0301 0.9576±0.0085 0.9583±0.0156 0.0045±0.0144 

Table 5. Performance of six methods for the classification task D3→D4. 

Method Accuracy Precision Recall F1 Score AUC Far 

Network 0.9123±0.0048 0.7583±0.0147 0.7922±0.0282 0.5501±0.0158 0.8550±0.0413 0.0808±0.0051 

Adabn 0.8058±0.0335 0.5805±0.0337 0.8359±0.0362 0.5572±0.0373 0.7380±0.0251 0.1833±0.0188 

MK-MMD 0.9114±0.0140 0.9051±0.0161 0.9108±0.0323 0.8787±0.0154 0.9065±0.0051 0.0252±0.0228 

JMMD 0.9009±0.0101 0.9211±0.0054 0.8812±0.0145 0.9183±0.0121 0.8992±0.0097 0.0322±0.0085 

DANN 0.9011±0.0082 0.8951±0.0252 0.8554±0.0026 0.8037±0.0158 0.9214±0.0045 0.0421±0.0252 

MSDA 0.9271±0.0189 0.9024±0.0321 0.9402±0.0022 0.8965±0.0154 0.9045±0.0052 0.0145±0.0184 

Table 6. Performance of six methods for the classification task D4→D3. 

Method Accuracy Precision Recall F1 Score AUC Far 

Network 0.8638±0.0089 0.8135±0.0251 0.8216±0.0182 0.7714±0.0230 0.8565±0.0339 0.0193±0.0110 

Adabn 0.7986±0.0253 0.5481±0.0337 0.8016±0.0360 0.7296±0.0252 0.8232±0.0195 0.0225±0.0107 

MK-MMD 0.8591±0.0186 0.7270±0.0288 0.7825±0.0214 0.8359±0.0104 0.7524±0.0245 0.0121±0.0085 

JMMD 0.8752±0.0250 0.7735±0.0056 0.8835±0.0190 0.8154±0.0208 0.8013±0.0109 0.0202±0.0057 

DANN 0.8481±0.0101 0.8018±0.0082 0.8182±0.0135 0.7573±0.0026 0.8454±0.0252 0.0185±0.0144 

MSDA 0.8783±0.0094 0.8316±0.0150 0.8526±0.0154 0.8571±0.0104 0.8621±0.0025 0.0117±0.0078 

To verify the ability of our method to classify each class in the tool milling process, we draw the confusion matrix of the 
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MSDA method for four transfer tasks (Figure 12), and it can be 

seen in the confusion matrix that our model can effectively 

classify the milling signals of the tools, but it is often difficult 

to achieve good results when the tool signals are in the 

frequency bands adjacent to the classes, which is because tool 

milling is a gradual process, when the wear signal is at the 

critical point between classes, the signal features are less 

different, and the classification model is often difficult to 

perform effective classification, which leads to the second 

category signal classification accuracy is often difficult to 

achieve satisfactory accuracy, but for the first and third category 

our model achieves more than 98% correct rate on all four 

classification tasks, with only a small number of critical values, 

resulting in misclassification. 

In the training process we set the first 50 times to train only 

the transfer of model weights, the trained model as a pre-trained 

model, in the 51st time to introduce the MSDA domain adaptive 

way, in order to gain a clearer understanding of the training 

process, in all four transfer tasks, we plot the change curve of 

the source and target domain with the correct rate and the 

correct loss value, from the Figure 13, we can see that in the 

first 50 times of pre-training the correct rate and loss value float 

The correct rate and loss value fluctuate greatly in the first 50 

pretraining sessions, but after the introduction of the MSDA 

domain adaptive approach in the 51st session, the correct rate 

and loss value soon stabilize, which also shows the 

effectiveness of our method for the transfer task.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. Confusion matrix for four transfer tasks：(a)D1→D2 (b)D2→D1 (c) D3→D4 (d) D4→D3. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. Change in loss value for four transfer missions: (a)D1→D2 (b)D2→D1 (c) D3→D4 (d) D4→D3. The dashed line indicates 

the introduction of MSDA domain adaptation at the 51th.

In order to prevent the problem of small size of the training 

dataset, which leads to insufficient data volume to support the 

training and evaluation of the model, we expand the dataset by 

using data overlapping. Data overlapping refers to extracting the 

subsequences of a signal in such a way that the neighboring 

subsequences have a certain overlapping portion. A larger 
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percentage of overlap not only provides more training samples, 

but also the higher correlation between training samples 

increases the diversity of samples, which is conducive to 

increasing the learning ability and stability of the model. So we 

consider using 75% overlap ratio. From Fig. 13, it can be seen 

that the proposed framework has obvious accuracy and loss 

function jitter in the validation set during the migration task of 

D3→D4, and it requires many iterations to stabilize. So the D3

→D4 task was targeted for data expansion experiments. 

The experimental results are presented in Figure 14. By 

comparing Figure 14(a) with Figure 13(c), it is evident that with 

an increased amount of training data and under the same MSDA 

framework, the training process reaches stability in fewer 

iterations, and the fluctuations in loss and accuracy of the 

validation sets for both the source and target domains are 

significantly reduced. This indicates the critical impact of 

increasing the training data on the training process. After data 

augmentation, we further compared our approach with other 

methods as shown in Figure 14 and Table 5. The results 

demonstrate that all four domain adaptation methods achieved 

improved accuracy after data augmentation. By examining the 

loss curves of the four methods in Figure 14, it is clear that the 

MSDA method exhibits smoother loss variation. Although 

JMMD gradually stabilizes with deepening training, it initially 

experiences significant fluctuations in loss. Despite the enlarged 

training dataset, the Adabn method still performs poorly, 

indicating its ineffectiveness in the task of milling tool condition 

monitoring. DANN, excluding MSDA, performs the best 

among the four methods. However, it can be observed that as 

training progresses, the loss curve of DANN shows an upward 

trend accompanied by a slight decrease in accuracy, indicating 

overfitting. This demonstrates that MSDA not only achieves 

higher accuracy but also effectively avoids issues like vanishing 

or exploding gradients, ensuring stable changes in the loss 

function. This further validates the superiority of the proposed 

method in this study. 

 

 
(a) Propoesd 

 
(b) JMMD 

 
(C) Adabn 

 
(D) DANN 

Fig. 14. Comparison chart of methods for data expansion experiments. 

 

 

5. CONCLUSION 

This paper proposes a novel MSDA domain Adaptation method 

based on multi feature space alignment, integrating attention 

mechanism, BiLSTM and ResNet, to realize tool condition 

monitoring under variable working conditions. The 

experimental results show that the proposed 
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Attention_ResNet_BiLSTM method is superior to other four 

methods (AlexNet, BiLSTM, ResNet18, and LeNet) based on 

four transmission tasks. In terms of classification accuracy, the 

proposed MSDA domain adaptive method improves the average 

accuracy by about 5% compared to the other five classification 

methods. It has strong robustness to changes in variable 

working conditions and performs best in each classification task. 

Therefore, the proposed method is expected to be suitable for 

identifying tool wear in the actual machining process. 

In addition, our TCM experiment only considered variations 

in cutting parameters (spindle speed, axial depth of cut, and feed 

rate). The focus of future research will be on implementing TL-

based TCM for different tools and materials. There are 

limitations to consider and address in proposing the MSDA 

domain adaptation method: (1) If there are significant 

differences between the data or insufficient feature 

representations, it may result in poor alignment performance. (2) 

The method relies on a specific model architecture, and 

although the model performs well on specific tasks and datasets, 

its adaptability may be limited on other tasks or datasets. (3) 

Additionally, the method utilizes a dataset from milling tool 

experiments for condition monitoring. However, this dataset 

may only represent specific operating conditions and 

experimental settings, which may not generalize well to other 

operating conditions or real industrial environments. 

To further promote research on domain adaptation and 

milling tool condition monitoring, future studies can explore the 

following directions: First, it is possible to try combining other 

domain adaptation methods, such as MK-MMD or DANN, to 

further improve the effectiveness of feature alignment. Second, 

exploring more complex feature extractor model structures and 

attention mechanisms can be done to extract richer and more 

accurate feature representations. Additionally, considering the 

introduction of domain-specific prior knowledge or label 

information can further enhance the performance of condition 

monitoring.
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