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Highlights  Abstract  

▪ Utilize technologies such as SK and VMD to 

extract multi-domain features as feature sets. 

▪ Utilize monotonicity, trendiness, and 

robustness to select features for fusion and 

construct HI. 

▪ Combining SSAE with LSTM for condition 

assessment and residual life prediction. 

 The construction of health indicators (HI) for traditional deep learning 

requires human training labels and poor interpretability. This paper 

proposes an HI construction method based on Stacked Sparse 

Autoencoder (SSAE) and combines SSAE with Long short-term 

memory (LSTM) network to predict the remaining useful life (RUL). 

Extracting features from a single domain may result in insufficient 

feature extraction and cannot comprehensively reflect the degradation 

status information of mechanical equipment. In order to solve the 

problem, this article extracts features from time domain, frequency 

domain, and time-frequency domain to construct a comprehensive 

original feature set. Based on monotonicity, trendiness, and robustness, 

the most sensitive features from the original feature set are selected and 

put into the SSAE network to construct HI for state partitioning, and then 

LSTM is used for RUL prediction. By comparing with the existing 

methods, it is proved that the prediction effect of the proposed method 

in this paper is satisfied. 
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1. Introduction 

Planetary gearboxes have the advantages of small size, high 

load-bearing capacity and high transmission efficiency, and 

have been widely used in mechanical equipment such as 

helicopters, high-speed trains and heavy vehicles [5]. Due to the 

complex structure of planetary gearboxes is difficult to observe 

the health state directly, so the degradation state of the 

equipment needs to be modelled with the help of health 

indicators (HI) [6]. An appropriate and effective HI can directly 

and accurately reflect the degradation state of mechanical 

equipment and is helpful to the subsequent remaining useful life 

(RUL) prediction. Currently, the mainstream methods of HI 

construction mainly include: statistical parameter-based 

construction methods, multidimensional statistical feature 

fusion-based construction methods and deep learning-based 

construction methods [36]. 

The method of construction based on statistical parameters 

is to subject the monitored signal to statistical characterization 

to obtain HI(such as: root mean square (RMS), energy, peak 

value, etc). Malhi et al. [22] extracted RMS and peak values 

from the collected vibration signals by continuous wavelet 
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transform as HI to predict the RUL of the bearings. Chen et al. 

[7] used the relative root mean square (RRMS) as HI to describe 

the degradation characteristics of the bearing. Igba et al. [16] 

extracted the RMS and peak values of the raw vibration signals 

for fault detection of wind turbines and concluded that the RMS 

and peak values could better describe the health status of the 

equipment. Direct extraction of statistical parameter features is 

susceptible to interference from other signals and it is difficult 

to precisely characterize the degradation rules of the equipment. 

Therefore, the researcher performs signal processing on the raw 

vibration signal. Related research shows that the statistical 

features extracted by signal processing can extract weak fault 

features in the pre-fault period, which helps to find faults earlier 

and can better describe the degree of degradation of the 

equipment [26,27,30,4]. Theoretically, a single statistical 

feature may have some monotonicity and correlation, and it can 

reflect the degree of degradation of a fault and is simple to 

calculate. However, the fault information contained in a single 

statistical parameter may be less complete and does not provide 

a more comprehensive reflection of the degraded condition of 

the equipment. And each feature does not contribute equally to 

the HI construction [24], so the health of the equipment cannot 

be accurately depicted. 

In order to obtain more comprehensive fault information, 

some scholars have proposed a method based on the fusion 

construction of multidimensional features. Among them, 

dimensionality reduction using principal components analysis 

(PCA) to extract the first principal component as HI, which has 

received much attention from scholars. Widodo et al. [31] 

extracted multidimensional features from time-domain signals 

and used the PCA algorithm to construct HI, which were fed 

into a relevance vector machine (RVM) for training and 

prediction. The results obtained outperformed the single-feature 

prediction results. Liu et al. [18] used PCA to extract features 

from the original monitoring data so as to reduce the dimension 

and construct HI. Shi et al. [28] addressed the problem that PCA 

cannot effectively extract weak faults in time-varying signals. 

Deep recursive dynamic principal component analysis (RDPCA) 

was proposed for dimensionality reduction to construct HI. 

Subsequent scholars have improved on PCA and proposed a 

variety of new algorithms for feature fusion with reduced 

dimensionality, achieving good results in both diagnosis and 

prediction [1,8]. The existing research literature on 

multidimensional feature fusion for constructing HI has focused 

mainly on the study of fusion methods. Although such fusion 

methods are simple and easy to implement, they are likely to 

fuse features that are not applicable, which in turn affects the 

accuracy of health assessment and RUL prediction. 

With the rise of neural networks in recent years, many 

academics have used deep learning to construct HI. Luo et al. 

[19] used convolutional neural networks (CNN) for feature 

extraction. The features were then input into a Bi-directional 

long short-term memory (Bi-LSTM) network with an attention 

mechanism to construct HI and perform RUL prediction. Yoo et 

al. [33] converted the vibration signal into an image, which is 

input to CNN to construct HI, it was experimentally concluded 

that the image-based RUL prediction has higher accuracy and 

outperforms the conventional algorithm. Yu et al. [34] proposed 

a bidirectional recurrent neural network encoder decoder 

framework to build HI, and the results show that the proposed 

method has better performance. The use of deep learning to 

construct HI is an efficient way to assess and predict without the 

need for human or expert experience. However, the HI 

constructed by this method has poor interpretability and poor 

resistance to interference. 

It can be seen from the above research literature that the 

current structure of HI has a good degradation trend and high 

prediction accuracy. But the following questions still remain:  

(1) In the HI modelling process, the above literature does not 

take into account the monotonicity, correlation and robustness 

of HI. Therefore, it fails to accurately describe the degradation 

state of the mechanical equipment and obtain a more accurate 

model of health degradation. 

(2) The original vibration signal contains complex 

information, which can not directly reflect the working state of 

mechanical equipment. However, when extracting features from 

a single domain, it will lead to insufficient feature extraction, 

which can not reflect the degradation state information of 

mechanical equipment more comprehensively. Thus, the 

accuracy of assessment and prediction is reduced. 

To address these issues, this paper combines signal 

processing techniques to extract multi-domain features for 

fusion. In the process of data fusion, data fusion methods based 

on deep learning are widely used. In particular, deep learning 
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algorithms such as autoencoder (AE) have been recognized by 

experts in fusion and construction of HI due to their clear 

structure and strong feature extraction ability. Qin et al. [25] 

extracted multi-dimensional time-domain and frequency-

domain features, and then used the degradation trend 

constrained Variational autoencoder (DTC-VAE) to construct 

the HI. Zhou et al. [37] designed a distribution contact ratio 

metric (DCRM) to calculate the distribution distance of the 

original vibration signal of the Gaussian Mixture model as HI, 

and made RUL prediction, which achieved good prediction 

results. She et al. [29] used AE improved algorithm Sparse 

Autoencoder (SAE) to build HI. The constructed HI is used for 

RUL, and good results are obtained. SAE model adds a penalty 

factor to the hidden layer of the original AE model to achieve 

the sparsity limit [15]. The advantage of the SAE model over 

the AE model is that the non-linear features can be fully learned. 

It also reduces the input dimensionality making the calculation 

easy and simple. In view of this, in this paper, the SAE network 

model is stacked in order to more fully learn the non-linear 

features, constituting a Stacked Sparse Autoencoders (SSAE). 

The SSAE model retains the advantages of the SAE model and 

also more fully extracts the non-linear features. 

In terms of remaining life prediction, the mainstream RUL 

prediction methods currently available include: physical model-

based RUL prediction and data-driven RUL prediction-based 

methods. The RUL prediction method based on physical models 

can obtain more accurate prediction results [38,32]. However, 

for complex systems, it is more difficult to build mathematical 

models and requires a great deal of expert knowledge. As  

a result, an increasing number of scholars are adopting a data-

driven RUL prediction-based approach [9]. Fei et al. [14] 

achieved better prediction results using a Support Vector 

Machine (SVM). Cheng et al. [10] used the Hilbert-Huang 

transform to construct the HI of the vibration signal. Then used 

a deep CNN to predict the RUL of the bearing and achieved  

a high prediction accuracy. Lin et al. [20] first used the Fuzzy 

C-means algorithm (FCM) for state partitioning of the whole-

life data. Then the HI was constructed using the principal 

component analysis algorithm. Finally, the RUL was performed 

using RNN and validated on two different datasets and better 

prediction results were obtained. Although the above literature 

has achieved good prediction performance. However, the 

prediction results for the long time series aspect are still poor. 

Therefore, researchers have improved RNN and used LSTM 

algorithm for RUL prediction. Zhou et al. [39] proposed an 

entropy based sparsity metric criterion to address the sensitivity 

issue of constructing HI for mechanical equipment defect 

monitoring. And on this basis, LSTM is used for regularization 

prediction. The results are verified on several data sets and good 

prediction results are obtained. Zhou et al. [40] designed an 

LSTM based RUL prediction method and validated it on three 

different types of datasets, with better prediction results than 

other methods. LSTM can better solve the task in terms of long-

time sequences and alleviates the problems of gradient 

disappearance and explosion that exist in RNN [21]. 

This paper first uses signal processing techniques to extract 

multi-domain features. Then superior degradation features are 

selected by using monotonicity, correlation and robustness, and 

finally fed into a SSAE network to fuse and construct HI. Based 

on the HI curves, The period of severe degradation are 

determined and RUL is performed by using LSTM. The main 

contributions of this paper are as follows. 

(1) In order to more comprehensively depict the degradation 

status information of equipment, this paper extracts time-

domain, frequency-domain features by spectral kurtosis (SK) 

transformation, and multi-scale fuzzy entropy features by 

variational mode decomposition (VMD) transformation. 

Eliminating the drawbacks of traditional features allows for 

better extraction of fault sensitive features. 

(2) In order to be able to construct better HI, this paper 

selects excellent features with the help of monotonicity, 

correlation and robustness, and inputs them into the SSAE 

network model for fusion, getting rid of the shortcomings of the 

existing mainstream construction of HI. 

(3) In order to construct a suitable HI curve, SSAE, which 

has a clear structure and powerful capability of non-linear 

feature learning, was chosen for fusion construction of HI and 

combined with LSTM for RUL. the effectiveness of the 

proposed algorithm was verified using full-life data. 

The remaining chapters are arranged as follows: Section 2 

provides an overview of feature extraction in the time, 

frequency and time-frequency domains and the methods of 

feature selection; Section 3 describes the theoretical knowledge 

of the SSAE model and the LSTM model; Section 4 describes 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 4, 2023 

 

the general framework of the paper; Section 5 presents the 

experiments of this paper and the experimental analysis; Section 

6 is article conclusion. 

2. Feature extraction and selection 

The accuracy of feature extraction directly affects the accuracy 

of subsequent classification and regression prediction. In order 

to provide a more comprehensive portrayal of equipment 

degradation state information, multi-domain features are 

extracted as feature sets in this paper. The feature extraction and 

selection methods are described in detail below. 

2.1 Time domain feature extraction 

During the degradation of a planetary gearbox, the amplitude 

and probability distribution of the vibration signal changes, 

resulting in changes in the statistical parameters that measure 

the characteristics of the signal [23]. These statistical 

parameters are simple to understand and have a clear physical 

meaning, so in this paper 12 statistical features are selected for 

analysis in the time domain feature extraction, as shown in 

Table 1. Where 𝑥  is the sampled time signal, 𝑖  is the sample 

index, and 𝑁 is the number of samples.

Table 1 Statistical characteristics. 

 

2.2 Frequency domain feature extraction 

The authentic sign of a planetary gearbox includes a large 

amount of noise, resulting in that the impulse characteristics are 

often masked by signals such as noise and hard to extract in the 

early stages of a fault. Dwyer [41] found that the Kurtosis in its 

time domain index was sensitive to the shock signal, so in order 

to extract the transient information of the signal, the Kurtosis 

was introduced into the frequency domain and the concept of 

frequency domain Kurtosis was proposed. Subsequently, 

researcher Antoni [2] gave a definition of Spectrum Kurtosis 

(SK) and developed the fast SK algorithm. SK is also 

considered to be the most effective method for detecting 

impulse characteristics in planetary gearboxes. Reference [2] 

provides a specific formula for calculating spectral kurtosis. 

In this paper, when extracting frequency domain features, 

the authentic vibration signal is first analyzed by SK algorithm, 

and then the statistical features in Table 1 are extracted as 

frequency domain features. Compared with the statistical 

features directly extracted from the original vibration signal, the 

statistical features extracted through SK algorithm analysis and 

processing are more robust and can better extract fault sensitive 

features [3]. 

2.3 Time-frequency domain feature extraction 

This paper mainly uses Variational Mode Decomposition (VMD) 

to decompose the raw vibration signal to obtain multiple IMF 

components, and then extracts the fuzzy entropy of every IMF 

as time-frequency domain characteristics. The specific 

calculation process of VMD and multi-scale fuzzy entropy is as 

follows. 

(1) Variational Mode Decomposition 
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Common time and frequency domain signal processing 

methods mainly deal with steady state signals, but the collected 

planetary gearbox vibration signals are non-linear and non-

stationary. VMD [13] can effectively process non-stationary and 

nonlinear signals, and VMD algorithm overcomes the defects of 

Empirical Mode Decomposition (EMD), Ensemble Empirical 

Mode Decomposition (EEMD) and Local Mean Decomposition 

(LMD), such as modal aliasing and slow processing speed. 

Reference [13] provides a specific calculation process for 

solving time-frequency domain problems using VMD. 

(2) Multiscale fuzzy entropy 

Fuzzy entropy can measure the complexity of the signal time 

series and overcomes the disadvantages of sample entropy. The 

use of an affiliation function instead of a threshold improves the 

statistical stability of the algorithm. When a planetary gearbox 

is abnormal, its signal changes and exhibits a fuzzy entropy 

value that is different from the normal state. 

The specific calculation of fuzzy entropy is as follows [11]. 

Step1: Define the phase space dimension 

[𝑢(1), 𝑢(2),⋯𝑢(𝑀)] for the input time series 𝑛, reconstruct a 

set of 𝑛 dimensional vectors 𝑋𝑛(𝑖) based on the original series 

as: 

𝑋𝑛(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1),⋯ , 𝑢(𝑖 + 𝑛 − 1)] − 𝑢0(𝑖)        (1) 

𝑖 = 1,2,⋯ ,𝑀 − 𝑛 + 1   (2) 

𝑢0(𝑖) =
1

𝑛
∑ 𝑢(𝑖 + 𝑗)𝑛−1
𝑗=0   (3) 

Step2: Introduce the fuzzy entropy subordination function 

𝐴(𝑥) as: 

𝐴(𝑥) = {
1, 𝑥 = 0

𝑒𝑥𝑝[ − 𝐼𝑛2(
𝑥

𝑟
)2], 𝑥 > 0 (4) 

In the equation, 𝑟 is the similarity tolerance limit, defined as 

𝑘 times the standard deviation of the original one-dimensional 

time series. That is 𝑟 = 𝑘 ⋅ 𝑆𝐷 , 𝑆𝐷 is the standard deviation of 

the original data. 

Step3: Calculate the similarity 𝐴𝑖𝑗
𝑛   between vectors 𝑋𝑛(𝑖) 

and 𝑋𝑛(𝑗) as: 

𝐴𝑖𝑗
𝑛 = {

1, 𝑑𝑖𝑗
𝑛 = 0

𝑒𝑥𝑝 |−𝐼𝑛2(
𝑑𝑖𝑗
𝑛

𝑟
)2| , 𝑑𝑖𝑗

𝑛 > 0
 (5) 

𝑖 = 1,2,⋯ ,𝑀 − 𝑛 + 1   (6) 

In the equation: 𝑑𝑖𝑗
𝑛  is the maximum absolute distance 

between the vector 𝑋𝑛(𝑖) and 𝑋𝑛(𝑗). The expression is: 

𝑑𝑖𝑗
𝑛 = 𝑚𝑎𝑥

𝑝=1,2,⋯,𝑛
[ 𝑢(𝑖 + 𝑝 − 1) − 𝑢0(𝑖) ] − [ 𝑢(𝑗 + 𝑝 − 1) − 𝑢0(𝑗) ]      (7) 

Step4: For each dimensional vector i   ,taking the average 

value yields. 

𝐶𝑖
𝑛(𝑟) =

1

𝑀−𝑛
∑ 𝐴𝑖𝑗

𝑛𝑀−𝑛+1
𝑗=0,𝑗≠𝑖   (8) 

Definition: 

𝜙𝑛(𝑟) =
1

𝑀−𝑛+1
∑ 𝐶𝑖

𝑛(𝑟)𝑀−𝑛+1
𝑖=1   (9) 

Step5: Add 1 to the mode dimension and repeat Step1 to 

Step4 for 1 set of 𝑛 + 1 dimensional vectors to obtain. 

𝜙𝑛+1(𝑟) =
1

𝑀−𝑛
∑ 𝐶𝑖

𝑛+1(𝑟)𝑀−𝑛+1
𝑖=1  (10) 

Step6: The original time series fuzzy entropy 

𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑛, 𝑟) is: 

𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑛, 𝑟) = 𝐼𝑛𝜙𝑛(𝑟) − 𝐼𝑛𝜙𝑛+1(𝑟)       (11) 

From the above algorithm, it can be seen that the signal is 

decomposed by VMD to derive multiple IMF components, thus 

realizing the multiscale of the vibration signal. The fuzzy 

entropy is extracted from the IMF components, which is the 

multiscale fuzzy entropy of the original vibration signal. 

2.4 Normalization 

Because each feature has a different magnitude, each feature is 

normalized by the equation (21): 

𝐹𝑖 =
𝑓𝑖−𝑓

𝜎
   (12) 

In the equation, 𝐹𝑖 is the normalized feature; 𝑓 is the original 

mean of the feature; 𝜎 is the standard deviation of the feature. 

2.5 Feature selection 

The selection of feature quality has a direct impact on the 

accuracy of health state assessment and remaining life 

prediction. The selection of superior features reduces the 

dimensionality of the data, eliminates irrelevant data, and also 

improves prediction accuracy, among other things. Therefore, 

this paper first uses the locally weighted scatterplot smoothing 

(Loess) method [17] to smooth the time domain characteristic 

curves, the frequency domain characteristic curves and the 

fuzzy entropy curves of each IMF component. LOESS not only 

eliminates noise, but also captures important feature trends. 

Monotonicity, correlation and robustness are then selected as 

criteria for evaluating the goodness of the features. 
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2.5.1 Monotonicity 

Monotonicity measures the tendency of a feature to be 

monotonically increasing or monotonically decreasing. A good 

predictive feature should be monotonically related to the 

degradation process and is calculated as [12]. 

𝑀𝑜𝑛𝑖 = |
#𝑑𝐹𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇−1
−
#𝑑𝐹𝑖
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇−1
| (13) 

In the equation, 𝑀𝑜𝑛𝑖 is the monotonicity of the 𝑖 -th feature; 

#𝑑𝐹𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 is the number of positive derivatives of the feature; 

#𝑑𝐹𝑖
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 is the number of negative derivatives of the feature; 

and T  is the number of data points collected. 

2.5.2 Correlation 

Correlation indicates the correlation between characteristics and 

time, that is, how characteristics change with time. The linear 

curve has a strong correlation with time, while the nonlinear 

curve will reduce its correlation with time with the increase of 

nonlinearity. The specific calculation formula is [12]: 

𝐶𝑜𝑟𝑟𝑖 =
𝑁∑ 𝑓𝑛𝑡𝑛−∑ 𝑓𝑛 ∑ 𝑡𝑛

𝑁
𝑛=1

𝑁
𝑛=1

𝑁
𝑛=1

√𝑁∑ 𝑓𝑛
2−(∑ 𝑓𝑛

𝑁
𝑛=1 )

2𝑁
𝑛=1 √𝑁∑ 𝑡𝑛

2−(∑ 𝑡𝑛
𝑁
𝑛=1 )

2𝑁
𝑛=1

 (14) 

Equation: 𝐶𝑜𝑟𝑟𝑖  is the correlation of the 𝑖  -th feature; 𝑁  is 

the number of samples; 𝑓𝑛 is the 𝑖 -th feature of the 𝑛 -th feature; 

𝑡𝑛 is the time series. 

2.5.3 Robustness 

Robustness reflects the ability of a feature to maintain its 

original trend in the face of disturbances such as external 

perturbations and internal accuracy. After decomposing the 

feature into a trend component and a residual error component, 

the robustness of the feature is assessed using the residual error 

component [12]. 

𝑅𝑜𝑏𝑖 =
1

𝑁
∑ 𝑒𝑥𝑝( − |

𝑟𝑒𝑠𝐹𝑖

𝐹𝑖
|)𝑁

𝑛=1   (15) 

𝐹𝑖
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

= 𝐹𝑖
𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 + 𝑟𝑒𝑠𝐹𝑖   (16) 

In the equation, 𝑅𝑜𝑏𝑖  is the robustness of the 𝑖 -th feature; 

𝑟𝑒𝑠𝐹𝑖 is the residual error; 𝐹𝑖
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

、𝐹𝑖
𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑  is the feature 

vector before and after smoothing. 

In order to select the best feature to represent the degradation 

trend of the planetary gearbox, a comprehensive indicator (𝐶𝐼) 

was constructed using the three intrinsic attributes mentioned 

above. 0.4, 0.3 and 0.3 were assigned to the weights of 

monotonicity, correlation and robustness, respectively [12]. The 

ranking was then done in ascending order according to the size 

of 𝐶𝐼. 

𝐶𝐼𝑖 = 𝜔1𝑀𝑜𝑛𝑖 + 𝜔2𝐶𝑜𝑟𝑟𝑖 + 𝜔3𝑅𝑜𝑏𝑖   (17) 

𝑠. 𝑡. {
𝜔𝑛 > 0

∑ 𝜔𝑛 = 1, 𝑛 = 1,2,3𝑛
   (18) 

3. HI construction and life prediction 

3.1 SSAE Network 

In order to learn the non-linear features more fully, the SAE 

network model was stacked to form the SSAE, as shown in 

Figure 1. 

 

Fig. 1. SSAE structure. 

The SSAE model uses the hidden layer features of the first layer 

of the SAE model as input features for the second layer of the 

SAE model. Its training process focuses on inputting optimized 

features into the SSAE model and then learning the non-linear 

features of the full-life data layer by layer for global tuning. The 

parameters of SAE mainly include reconstruction error, weight 

regularization term and penalty factor, and the commonly used 

penalty factor is Kullback-Leibler (KL) scatter. The formula for 

SAE is as follows [35]: 

Reconstruction errors: 

𝐽𝑒𝑟𝑟𝑜𝑟 =
1

𝑍
∑ (𝑦𝑖

𝑧 − 𝑥𝑖
𝑧)2𝑧

𝑧=1   (19) 

KL scatter: 

𝐾𝐿(𝜌‖𝜌̂
𝑗
) = 𝜌 𝑙𝑜𝑔

𝜌

𝜌̂𝑗
𝐾𝐿(𝜌‖𝜌̂

𝑗
) = 𝜌 𝑙𝑜𝑔

𝜌

𝜌̂𝑗
+ (1 − 𝜌) 𝑙𝑜𝑔

1−𝜌

1−𝜌̂𝑗
     (20) 

Weight regularization term: 

𝐽𝑤𝑒𝑖𝑔ℎ𝑡 =
𝜆

2
∑ ∑ ∑ (𝑤𝑗𝑖

(𝑙)
)

𝐶𝑙−1
𝑗=1

𝐶𝑙
𝑖=1

𝐿
𝑙=1

2
 (21) 

Loss function: 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 4, 2023 

 

𝐽𝑙𝑜𝑠𝑠 = 𝐽𝑒𝑟𝑟𝑜𝑟 + 𝛽∑ 𝐾𝐿(𝜌‖𝜌̂𝑗) + 𝐽𝑤𝑒𝑖𝑔ℎ𝑡
𝑚
𝑗=1  (22) 

Where 𝑍 is the number of training samples, 𝐿 is the number 

of network layers, 𝐶𝑙  denotes the number of neuron nodes in 

layer 𝑙 . 𝜌  , 𝜌̂𝑗  denotes the sparsity coefficient and the average 

activation value of neurons in the hidden layer, respectively, 𝜆 

is the weight decay coefficient, 𝛽 is the sparsity penalty factor, 

and 𝑚 is the number of hidden neurons model. 

3.2 LSTM  

LSTM is a prediction of time series, by constructing storage 

units to store long-term memory information, especially in life 

span prediction, LSTM has been better used. The LSTM 

controls the state of the memory cell by linking the three cells 

of the oblivion gate, the input gate and the output gate through 

point multiplication. The forget gate 𝑓𝑡  is used to control 

whether information in the memory unit is saved or discarded. 

The function of the input gate 𝑖𝑡 is used to estimate whether to 

let the input information into the current memory cell state or 

not. The output gate 𝑂𝑡 serves much the same purpose as the 

input gate and is used to determine whether the current signal 

will be output to the next layer. The specific structure is shown 

in Figure 2. 

 

Fig. 2. LSTM structure. 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓)  (23) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)  (24) 

𝑂𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑖)  (25) 

𝐶̑𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎℎ𝑡−1 +𝑊𝑐𝑥𝑥𝑡 + 𝑏𝑐)  (26) 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̑𝑡   (27) 

ℎ𝑡 = 𝑂𝑡 ⋅ 𝑡𝑎𝑛ℎ( 𝐶𝑡)   (28) 

The above equations illustrate the principles of calculating 

forgetting, input and output gates, where 𝐶̑𝑡 is the memory cell, 

𝐶𝑡 is the memory cell and ℎ𝑡 is the hidden state. 𝑊 is the weight 

matrix of the three gate cells and 𝑏 is the threshold. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 

and 𝑡𝑎𝑛ℎ are the activation functions and "" represents the dot 

product. 

3.3 Predictive performance evaluation indicators 

For a more intuitive comparative analysis of the forecasting 

models, the Root Mean Square Error (RMSE) and the Mean 

Absolute Error (MAE) were chosen as evaluation metrics and 

defined as follows. 

𝑅𝑀𝑆𝐸 = √
∑ (𝐻𝐼𝑎𝑐𝑡𝑢𝑎𝑙

𝑘 −𝐻𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑘 )𝑘

𝐾=1

2

𝑘
  (29) 

𝑀𝐴𝐸 =
1

𝑘
∑ |𝐻𝐼𝑎𝑐𝑡𝑢𝑎𝑙

𝑘 −𝐻𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑘 |𝑘

𝑘=1   (30) 

In the equation, 𝐻𝐼𝑎𝑐𝑡𝑢𝑎𝑙  is the actual HI value; 𝐻𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

is the predicted HI value and 𝑘 is the sample size. 

3.4 Remaining useful life prediction framework based on 

health indicators 

This paper takes the perspective of HI construction. In order that 

the weak degradation features can be extracted more 

comprehensively and adequately, the full-life vibration signals 

from four sensors of the planetary gearbox were collected. Then, 

the degradation features of multiple domains were extracted 

using signal processing techniques, and finally the excellent 

features were selected by combining mathematical properties 

such as monotonicity, correlation and robustness to input into 

the SSAE network model to construct the HI. And the RUL 

prediction was carried out using LSTM. The specific 

implementation steps are as follows. 

Step1: Time domain feature extraction. 12 statistical 

features for each way of the original vibration signal are 

extracted. 

Step2: frequency domain feature extraction. In order to 

effectively detect and extract pulse features, the SK algorithm 

is first used to process each way of the original vibration signal, 

and then 12 statistical features are extracted as frequency 

domain features respectively. 

Step3: Time-frequency domain feature extraction. In order 

to extract the weak degradation features, the VMD algorithm is 

used to process each way of the original vibration signal, 

decompose it to obtain multiple IMF components, and then 

extract the fuzzy entropy of each IMF element as time-
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frequency domain features. 

Step4: Monotonicity, trending and robustness are used to 

select superior features in multiple domains for input into the 

SSAE network model for data fusion to construct suitable and 

accurate HI. 

Step5: Construction of HI. determination of thresholds and 

degradation times is based on HI curves. 

Step6: Input the constructed HI as input and labels into the 

LSTM for RUL prediction. 

Step7: Output the prediction results. 

The flow chart for the calculations in this paper, is shown in 

Figure 3.

 

Fig. 3. Structural framework of this paper.
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4. Experimental results and analysis 

4.1 Description of the experiment 

To investigate the performance degradation process of planetary 

gearboxes as well as to validate the proposed method of 

constructing HI based on SSAE and performing RUL prediction 

using LSTM in this paper. The group built a planetary gearbox 

test rig and carried out 1000 hours of accelerated degradation 

experiments on planetary gearboxes, collecting data on the 

entire process of performance degradation of planetary 

gearboxes from intact to wear failure. 

The planetary gearbox test stand consists of three speed 

control motors, a magnetic powder brake, a speed and torque 

sensor and a planetary gearbox. Four vibration sensors are 

arranged on the planetary gearbox. The sensor test stand and the 

layout of the sensors are shown in Figure 4. The planetary 

gearbox used in this experiment is a single-pole planetary 

gearbox, model NGW11. This single-pole planetary gearbox 

consists of a gear ring, a sun wheel and three planetary wheels, 

which are connected by a planetary carrier.

 

Fig. 4. Planetary gearbox test rig.

The vibration signal from the planetary gearbox was 

acquired at a sampling frequency (Fs) of 20 kHz; the sampling 

time was 12 s; the signal was acquired at 5 min intervals; the 

total duration of the acquisition was 1000 h. The speed and load 

current parameters during the experiments were: 1000 rpm and 

1A load current. The measured experimental results are shown 

in Figure 5. After the failure, the sun wheel, the gear ring and 

the planetary wheel all experienced wear to varying degrees. 

 

Fig. 5. Gear wear.

4.2 Lifetime data 

In this experiment, four raw vibration signals from the planetary 

gearbox were collected, as shown in Figure 6. The 4 sensors are 

in different locations but the performance degradation process 

is similar. Initially the acceleration values are relatively flat and 

gradually increase with the operation of the planetary gearbox. 

In addition, vibration signals are collected at different positions 

on the planetary gearbox. This gives a more complete reflection 

of the degree of degradation of the planetary gearbox.
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Fig. 6. Four full life vibration signals, (a) sensor 1; (b) sensor 2; (c) sensor 3; (d) sensor 4.

4.3 Feature extraction and selection 

In this paper, the signals from 4 sensors of the planetary gearbox 

are collected, and only the 1st sensor is used as an example for 

specific analysis. 

4.3.1 Time domain feature extraction and selection 

Directly extract 12 statistical features from the original 

vibration signal. Monotonicity, correlation and robustness were 

calculated for each feature as well as the overall value. This is 

shown in Table 2. The monotonicity of all 4 indicators, RMS, 

Peak2Peak, Energy and Std, is greater than 0.28, and the 

correlation and robustness indicators are greater than 0.8, which 

is higher than the other characteristics. The 𝐶𝐼  values for all 

four metrics are greater than 0.6, with larger values indicating 

better performance of the degraded features. Therefore, the first 

four excellent features with larger 𝐶𝐼  values were selected as 

input to the SSAE model. To further eliminate the volatility 

generated by noise and to obtain more intuitive information 

about the health of the equipment, LOESS is used to smooth 

each feature. In LOESS, points closer to the fitted point are 

given more weight and points further away are given less weight. 

The 4 sensitive time domain features and the smoothed feature 

curves are given in Figure 7. 

Table 2. Comparison of intrinsic properties of time-domain 

features. 

Features Monotonicity Correlation Robustness 𝐶𝐼 

RMS 0.282 0.885 0.838 0.630 

Peak2Peak 0.283 0.883 0.834 0.628 

Energy 0.282 0.836 0.832 0.613 

Std 0.280 0.823 0.842 0.612 

var 0.227 0.756 0.765 0.547 

marginfactor 0.226 0.754 0.752 0.542 

crestfactor 0.219 0.676 0.742 0.513 

shapefactor 0.230 0.622 0.758 0.506 

Kurtosis 0.231 0.612 0.664 0.475 

impulsefactor 0.116 0.596 0.566 0.395 

skewness 0.118 0.589 0.546 0.388 

Mean 0.124 0.566 0.493 0.367 
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Fig. 7. Time domain characteristic curves: (a) Std features; (b) RMS features; (c) Peak2Peak features; (d) Energy features.

4.3.2 Extraction and selection of frequency domain 

feature 

The 12 statistical features were extracted after the SK 

transformation. Monotonicity, correlation and robustness as 

well as overall 𝐶𝐼  values were calculated for each feature, as 

shown in Table 3. SK-Kurtosis, SK-impulsefactor, SK-

Peak2Peak and SK-crestfactor all had 𝐶𝐼 values greater than 0.5 

and were higher than the remaining features. Therefore, the first 

four excellent features with larger 𝐶𝐼  values were selected as 

inputs to the SSAE model. Figure 8 shows the results of the 

LOESS optimisation of the four excellent features, with the 

smoothing operation enabling a smoother degradation feature of 

the planetary gearbox to be obtained. A better overview of the 

current and future health of the planetary gearbox can be 

obtained. 

Table 3. Comparison of the intrinsic properties of the frequency 

domain features. 

Features Monotonicity Correlation Robustness 𝐶𝐼 

SK-Kurtosis 0.241 0.768 0.723 0.544 

SK-

impulsefactor 
0.235 0.754 0.705 0.532 

SK-Peak2Peak 0.232 0.775 0.682 0.530 

SK-crestfactor 0.246 0.752 0.605 0.506 

SK-var 0.219 0.744 0.621 0.497 

SK-Std 0.216 0.644 0.620 0.467 

SK-Mean 0.242 0.652 0.511 0.446 

SK-RMS 0.212 0.516 0.612 0.423 

SK-Energy 0.112 0.566 0.625 0.402 

SK-skewness 0.142 0.592 0.556 0.401 

SK-marginfactor 0.134 0.591 0.539 0.393 

SK-shapefactor 0.101 0.562 0.495 0.358 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 4, 2023 

 

 

Fig. 8 Frequency domain feature curves: (a) SKKurtosis feature; (b) SKimpulsefactor feature; (c) SKPeak2Peak feature; (d) 

SKcrestfactor feature.

4.3.3 Extraction of time-frequency domain feature  

In this paper, the signal is decomposed by VMD to derive 

multiple IMF components, and the fuzzy entropy of every IMF 

element is extracted as a time-frequency domain feature. The 

VMD decomposition requires that the value of the 

decomposition layer K be determined first. In this paper, the 

central frequency method is used to determine the value of K. 

Over-decomposition is considered to have occurred when the 

values of the centre frequencies are similar. After decomposing 

the signal by VMD, the centre frequencies of each modal 

component at different K values are shown in Table 4. When the 

number of modal components is 8, the centre frequencies 

4038Hz and 4498Hz are close to each other and modal mixing 

may occur, So the number of modes should be selected as 7. The 

fuzzy entropy of each IMF is calculated to form a subset of 

features: FuzzyEn1 to FuzzyEn7, where the spatial dimension 

is set to 𝑛 = 2 and 𝑟 = 0.2𝑆𝐷 is the similarity tolerance limit. 

Table.4. Center frequency corresponding to different K. 

Number of Modes Central Frequency /Hz 

2 703 2098        

3 450 1213 2735       

4 259 939 1550 3538      

5 253 909 1363 1979 3980     

6 251 901 1311 1711 3342 4335    

7 248 890 1245 1578 2128 3564 4386   

8 247 889 1237 1573 2132 3299 4038 4498  

9 238 851 1028 1328 1606 2133 3300 4045 4499 

Monotonicity, correlation and robustness and overall 

𝐶𝐼values were calculated for each IMF fuzzy entropy. As shown 

in Table 5. The g values of FuzzyEn2, FuzzyEn4, FuzzyEn3 and 

FuzzyEn6 were all greater than 0.5. Therefore, the first four 
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excellent features with larger 𝐶𝐼 values were selected as inputs 

to the SSAE model. Figure 9 shows that the features become 

smoother, eliminating the volatility generated by noise and 

obtaining more intuitive information on degraded features. In 

addition, the smooth time sequence is used as enter to the 

subsequent prediction mannequin to achieve more accurate 

RUL results. The validity of the prediction model is further 

improved. 

 

Table 5. Comparison of intrinsic properties of time-frequency 

domain features. 

Features Monotonicity Correlation Robustness 𝐶𝐼 

FuzzyEn3 0.278 0.845 0.687 0.571 

FuzzyEn2 0.273 0.754 0.576 0.508 

FuzzyEn4 0.276 0.739 0.582 0.507 

FuzzyEn6 0.269 0.734 0.577 0.500 

FuzzyEn5 0.238 0.661 0.549 0.458 

FuzzyEn7 0.171 0.664 0.535 0.428 

FuzzyEn1 0.132 0.637 0.526 0.402 

 

Fig. 9. Time-frequency domain feature curves; (a) FuzzyEn3 feature; (b) FuzzyEn2 feature; (c) FuzzyEn4 feature; (d) FuzzyEn6 

feature.

In order to prove the superiority of VMD decomposition for 

extracting time-frequency domain features of original vibration 

signals. This paper compares and analyses the signal processing 

methods of EMD, EEMD and CEEMD. Firstly, each signal 

processing method is used to decompose the original vibration 

signal to obtain multiple IMF components, and then the IMF 

component fuzzy entropy of each signal processing method is 

calculated. Finally, the top 4 superior features of each signal 

processing method were selected using monotonicity, 

correlation and robustness and the 𝐶𝐼  values were calculated. 

This is shown in Figure 10. The values of the first four excellent 

features selected by VMD decomposition are larger than those 

obtained by other signal decomposition, which verifies the 

superiority of the original vibration signal decomposed by 

VMD in this paper as time-frequency domain features. In 

addition, the EMD decomposition yields large values of 𝐶𝐼 for 
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the first excellent feature, but subsequent features start to 

become less good and may appear to be modally confounded. 

CEEMD decomposes the signal, and the 𝐶𝐼  values of the 

extracted time-frequency domain features are relatively stable, 

verifying that CEEMD can decompose the original vibration 

signal better. However, the 𝐶𝐼 value is still lower than that of 

the VMD method. Therefore, the VMD method is chosen to be 

better. 

 

Fig. 10 Comparison of values for different signal processing 

methods. 

In this paper, the 𝐶𝐼 value of each domain is calculated , and 

the 𝐶𝐼 values are ranked. The larger the 𝐶𝐼 value, the better the 

feature reflects the degradation state of the planetary gearbox 

and is more suitable for HI construction and prediction. In this 

experiment, the vibration signals of four sensors were collected. 

For each sensor, four time domain features, four frequency 

domain features and four time-frequency domain features were 

selected based on the above experimental analysis. As a result, 

12 superior features were extracted from each signal, and a total 

of 48 sensitive features were extracted from the 4-way signals 

for input into the SSAE model for fusion to construct the HI. 

4.4 HI construction and assessment 

4.4.1 HI construction 

This section uses the SSAE model to fuse superior features from 

multiple domains into one-dimensional features to construct HI. 

As the number of SSAE network layers is not more, the better. 

Too many layers will cause network instability and increase 

computing time. Too few layers will cause insufficient high-

dimensional feature extraction. Therefore, in this paper, a 2-

layer SSAE network was constructed, in which the number of 

nodes in the hidden layer was set to 48 and 1 respectively; the 

L2 regularization weight decay coefficients were both set to 

0.0002; the sparse penalty weight parameters were set to 0.0002 

and 0.002 respectively; and the sparsity parameters were both 

set to 0.01. 

To demonstrate the superiority of the SSAE model, it is 

compared with PCA, KPCA, AE and Isometric Mapping 

(Isomap) in the construction of HI curves. Figure 11 shows a 

graph of the five methods for constructing the HI method. While 

the PCA, KPCA, AE and Isomap models also obtained results 

that approximated those of SSAE, the health curves for PCA, 

KPCA and AE were more volatile compared to the SSAE model. 

In particular, the HI curves constructed by the KPCA and 

Isomap algorithms showed large fluctuations in the first 200 

hours. The model constructed by PCA is less volatile than the 

rest of the models, but still weak in monotonicity and correlation. 

The AE model fluctuates considerably after 400 hours, which 

seriously affects the accuracy of health assessment and life 

expectancy prediction. Therefore, through experimental 

analysis, the proposed HI based on SSAE fusion construction in 

this paper works best. 

 

Fig. 11 Comparison of curves for different methods of 

constructing HI. 

In addition, to further illustrate the advantages of the method 

SSAE proposed in this paper, a quantitative analysis of the five 

methods was carried out. Monotonicity, correlation and 

robustness and 𝐶𝐼 values were calculated for each model , as 

shown in Table 6. Of the four models, the SSAE model had a 𝐶𝐼 
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value of 0.69, the highest value relative to the remaining four 

algorithms, and higher than the 𝐶𝐼 value of any single feature. 

It shows that the SSAE model is more suitable for fusion 

building HI and better able to characterize the health of the 

equipment, further improving the accuracy and validity of 

subsequent predictive models. 

Table 6. Evaluation indicator scores for the HI construction 

method. 

Features Monotonicity Correlation Robustness 𝐶𝐼 

SSAE-HI 0.376 0.922 0.876 0.690 

AE-HI 0.198 0.714 0.820 0.539 

KPCA-HI 0.236 0.794 0.807 0.575 

PCA-HI 0.283 0.895 0.839 0.633 

Isomp-HI 0.279 0.823 0.831 0.608 

4.4.2 Health status classification 

The degradation deepens as the planetary gearbox is operated. 

But the HI curve, constructed on the basis of real experimental 

data, is not a completely idealized monotonically rising curve, 

but has certain fluctuations. This is because there are various 

influencing factors in the real operation of the equipment, such 

as the complexity of the working environment. HI curves 

constructed using SSAE fusion. As shown in Figure 12. In order 

to avoid phenomena such as false alarms, combined with the HI 

curve, two warning lines are set up in this paper, namely 

warning line ① and warning line ②. Based on the HI curve it 

can be concluded that below the warning line ①, the HI 

degradation curve is relatively smooth. Between the warning 

line ① and the warning line ②, there is a significant 

degradation of the HI curve. Above the warning line ②, the HI 

curve starts to accelerate and degenerate, and the slope increases 

until the HI value is 1, and the planetary gearbox suffers from 

wear failure. 

In this paper, the planetary gearbox is divided into 4 states 

from the beginning to the wear failure based on the HI curve 

constructed by fusion. They are normal operation (0-375 hours). 

At this time, the gearbox has experienced initial running in and 

can be used normally, with a long remaining service life; Initial 

recession (375-840 hours), when the gearbox can be used 

normally without any constraints; Severe recession (840 - 910 

hours), when the gearbox is no longer suitable for further use 

and it can only last for a limited period of time; Wear and tear 

failure (910-1000 hours), when the gearbox is already showing 

some wear and tear and could be damaged at any time. The 

SSAE model fusion constructs health indicators that first 

stabilize for a period of time and then gradually increase until 

the wear failure. The running time from the start of performance 

to normal, initial degradation is long, but the time from severe 

degradation to planetary gearbox wear failure is short. 

Therefore, if the health of the planetary gearbox can be 

accurately assessed and effective measures taken before serious 

degradation occurs, planetary gearbox failures can be avoided, 

reducing economic losses and avoiding safety incidents. 

 

Fig. 12. Health status classification. 

4.5 Remaining useful life prediction 

4.5.1 RUL prediction at different times 

After obtaining HI through SSAE model fusion, it is necessary 

to select an excellent prediction model for RUL prediction. In 

this paper, the LSTM network is chosen as the prediction model, 

and the details are shown in Table 7. The parameters of the 

LSTM neural network are initialized using standard 

initialization methods, and then the gradient descent algorithm 

is selected to update the parameters.

Table 7. LSTM model parameters. 

Parameters Number of hidden units Number of outputs Dropout Number of iterations Number of batches Learning Rate 

Numerical 300 1 0.2 100 16 0.002 
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To verify the excellence of the HI construction using SSAE 

fusion and the accuracy of the severe degradation time chosen 

as the prediction time. In this paper, HI points before 540h, 640h, 

740h and the severe degradation time of 840 hours established 

in this paper were chosen as the training set for prediction. The 

fault threshold is set to 1 and then the LSTM network is used to 

predict the unknown HI points that follow. This is shown in 

Figure 13. 

The predictions have been partially enlarged in order to 

show the results more clearly. It can be concluded from Figure 

13 that the prediction is poorer starting at 540h and 640h. This 

is because 540h and 640h belong to the early and middle stages 

of initial gearbox degradation, where gearbox wear is low and 

the degradation trend is relatively smooth, hence the poorer 

prediction results. As the prediction starts and the time point 

continues to pass backward, the LSTM model will constantly 

revise the prediction results, and its output HI curve is nearer to 

the actual health status of the Planetary gearboxes. At 740h the 

predictions are already close to the true HI curve. The best 

results are achieved at 840h, when the prediction curve and the 

true curve coincide almost perfectly, resulting in a more 

accurate prediction. Although the smaller the training set, the 

worse its predictions and the longer it takes to reach the failure 

threshold. However, the predicted HI curves starting at different 

moments have similar degradation trends to the true HI curves. 

Furthermore, the prediction times of 540h and 640h fall within 

the early and middle stages of initial gearbox degradation, so 

the errors present are acceptable in the early predictions. The 

excellence of the HI method constructed in this paper is verified.

 

Fig. 13. Plots of predicted effects at different times: (a) RUL at 540h; (b) RUL at 640h; (c) RUL at 740h; (d) RUL at 840h.

In order to quantify the life predictions at different times, 

RMSE and MAE were chosen for the quantitative analysis. The 

results of the quantitative analysis of the experiment are shown 

in Table 8. 840h had lower values than the rest of the time 

predictions in all respects, with values of only 0.027 and 0.022 

for RMSE and MAE, which validates the accuracy of the choice 
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of time of severe degradation as the prediction time. In addition, 

the 540h error is the largest because it is in the early stage of the 

initial recession of the gearbox, and the degradation trend is 

relatively smooth, so the prediction result is poor. 

Table 8 Quantitative analysis of comparative experiments 

Time RMSE MAE 

840h 0.027 0.022 

740h 0.491 0.349 

640h 1.154 0.968 

540h 1.379 1.162 

4.5.2 RUL prediction for different models 

To demonstrate the superiority of prediction using LSTM, 840h 

was chosen as the starting prediction point and the lifetime 

predictions of SVM, CNN and BP methods were compared. The 

comparison results are shown in Fig. 13. In order to see the 

predictions more clearly, the prediction results have been 

partially enlarged. 

As can be seen in Figure 14(a), the predicted HI values are 

close to the actual HI values and the degradation trend of the 

predicted HI curve is consistent with the degradation trend of 

the actual HI curve. The rest of the methods have relatively poor 

prediction results compared to the prediction methods proposed 

in this paper. However, the SVM life prediction algorithm can 

still achieve good results, and its prediction trend is consistent 

with the real HI curve, which can reach the failure threshold. 

Indirectly, it shows that the HI constructed in this paper using 

SSAE model fusion can help RUL prediction and can improve 

the accuracy of prediction results. The lifetime prediction 

methods of CNN and BP have a good prediction trend in the 

early stages. After 880 hours, the results started to deteriorate 

and did not reach the failure threshold. This may be due to the 

poor performance of the CNN in processing long sequences of 

one-dimensional signals. The BP neural network is less 

effective in prediction due to its simple structure and poor 

generalization performance. In addition, using the LSTM 

algorithm, the prediction results using the HI points up to 740 

hours ago as the training set are similar to the results of the BP 

neural network that chose the HI points up to 840 hours ago as 

the training set. This further validates the superiority of the 

LSTM algorithm in predicting long time series.

 

Fig. 14. RUL prediction comparison plots, (a) LSTM lifetime prediction; (b) SVM lifetime prediction; (c) CNN lifetime prediction; 

(d) BP lifetime prediction.
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For a more intuitive comparative analysis of the above 

models, the RMSE and MAE were chosen for quantitative 

analysis. The results of the quantitative analysis of the 

experiments are shown in Table 9. Among them, LSTM has 

lower values than SVM, CNN and BP in all aspects. this also 

confirms that LSTM is able to cope with time series prediction 

problems better than other deep network models, often looking 

for potential correlations and important features between data, 

thus achieving more accurate predictions. However, Table 9 

also shows that the RMSE and MAE values of other algorithms 

are still less than 0.5. It is verified that the SSAE-HI curve 

constructed in this paper still has a high comprehensive quality, 

which is helpful for lifetime prediction. 

Table 9. Quantitative analysis of comparative experiments. 

Models RMSE MAE 

LSTM 0.027 0.022 

SVM 0.139 0.114 

CNN 0.267 0.228 

BP 0.493 0.354 

5. Conclusion 

This paper takes an HI construction perspective. The signal 

processing techniques are combined with mathematical 

properties such as monotonicity, correlation and robustness. The 

excellent features in the multi-domain of the four vibration 

signals are extracted and selected respectively. They are then 

fed into a deep learning network model to fuse and construct HI. 

It gives a more comprehensive reflection of the state of 

degradation of the equipment and helps with subsequent RUL 

predictions. The main conclusions of this paper are as follows. 

(1) Using signal processing techniques such as SK and VMD, 

degradation features are extracted from the multi-domain 

respectively as feature sets, which can reflect the degradation 

state of the mechanical equipment in a more comprehensive 

manner. 

(2) Excellent features were selected with the help of 

monotonicity, correlation and robustness and input to the SSAE 

network model for fusion to construct HI, which has the best 

comprehensive quality and gets rid of the shortcomings of 

traditional construction of HI. 

(3) The HI constructed by the SSAE model with simple 

structure and strong feature extraction ability can better 

characterize the degradation state of the Planetary gearboxes. 

The RUL predictions was performed using the LSTM and 

validated on a full-life experimental dataset. The prediction 

results have minimal error. 

The method of RUL predictions presented in this paper is 

mainly applied to the same working conditions, whereas in real 

industrial production, machinery and equipment are often in 

different working conditions. Therefore, the next step of the 

work will be to investigate the prediction of RUL across 

different working conditions.
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