Predicting the overall equipment efficiency of core drill rigs in mining using ANN and improving it using MCDM

Kirubakaran Balakrishnana,*, Ilangkumaran Manib, Durairaj Sankaranc

a AVS College of Technology, Department of Mechanical Engineering, Chinnagoundapuram, Salem, Tamil Nadu, India
b Department of Mechanical Engineering, Knowledge Institute of Technology, NH544, Kakapalayam, Salem, India
c Department of Electrical Engineering, Annaporana Engineering College, Salem, India

Highlights

- Combined Box Jenkins and artificial neural network model was used to improve Overall Equipment Efficiency of Core Drill rigs.
- Combined model achieved better prediction of overall equipment effectiveness, compared to auto regressive moving average and non linear auto regressive neural network model.
- Response surface methodology was found to be effective in optimizing and improving the overall equipment efficiency.

Abstract

In this manuscript, an attempt has been made to predict and improve the overall equipment effectiveness of core drill rigs. A combined Box–Jenkins and artificial neural network model was used to develop a three parameter model (drill pushing pressure, drill penetration rate & average pillar drill pit cycle time) for predicting effectiveness. the overall equipment efficiency of core drill rigs. The values of mean average percentage error, root mean square error, normalized root mean square error, mean bias error, normalized mean biased error and coefficient of determination values were found to be 9.462\%, 17.378\%, 0.194, 0.96\% , 0.0014 and 0.923. Empirical relationships were developed between the input and output parameters and its effectiveness were evaluated using analysis of variance. For attaining 74.9\% effectiveness, the optimized values of pushing pressure, penetration rate and average pillar drill pit cycle time were predicted to be 101.7 bar, 0.94 m/min and 272 min, which was validated. Interactions, perturbations and sensitivity analysis were conducted.

Keywords

artificial neural network, response surface methodology, core drill, overall equipment efficiency, Box-Jenkins

1. Introduction

In mining sectors, selection of equipments is important for ensuring hassle free production \[80\]. Important operations in mining involve drilling, loading and hauling. Core drill rigs are being used in tough terrain and mining locations. Drilling operations should be optimized for improving the utilization of the drill rigs \[75\]. It is important to identify the priority factors pertaining to drill rigs. Effective usage of equipment depends on its availability and age \[78\]. Identification of the important equipment factors pertaining to drill rigs help in reducing the maintenance and repair costs \[101\]. Steps should be taken for improving the economic feasibility of using core drills in unknown and tough terrains \[69\]. The importance of mining has increased in recent years due to enormous demand for metal ores. Attempts to improve the overall equipment effectiveness are welcomed as they help to improve production without standby and repairs \[66\]. The life cycle of mining equipments can be improved by ensuring proper maintenance of important parts and components \[79\]. In addition to increased working

(*) Corresponding author.
E-mail addresses: K. Balakrishnan (ORCID: 0000-0002-9218-0664) kirubabalu@gmail.com, I. Mani (ORCID: 0000-0001-7378-6313) mikkmech@kiot.ac.in, D. Sankaran (ORCID: 0000-0001-6455-3913) durairajeebe@gmail.com
Design modifications, attachments and process alterations have been done to improve the existing functioning of core drillers. The efficiency of core drillers was studied on conducting orthogonal experiments [95]. Intermittent characteristics of mining operations make its workability limited and hence, predicting the efficiencies of the equipments is well sought for [76]. Researchers have used different artificial neural network (ANN) models and Box Jenkins for predicting the output of systems. Box Jenkins Linear Auto-Regressive Moving Average (LARMA) models are successfully used for prediction of complex systems as they are very flexible [12].

Researchers found a lot of similarities between ANN and Box Jenkins model. Non stationery time series is the criteria differentiating ANN and Box Jenkins [98]. For adjusting and predicting stationary time series, autoregressive integrated moving average was found to be better, compared to other traditional models [62]. For increasing the accuracy of the prediction models, regression model was combined with Auto Regressive Moving Average (ARMA) technique [37]. ARMA model was not accurate in predicting non-linear models. On combining ANN techniques with ARMA model, even with non-linear data, the prediction was very high. ANN models are highly recommended for predicting system efficiencies [14]. ANN models use different non-linear and independent variable factors to accurately predict the desired responses. Researchers found fuzzy logics incorporated ANN models to be effective in predicting OEE and performance assessment [24]. Stability of rock surrounded tunnels was identified by combining auto-regressive algorithm with firefly algorithm [74]. Prediction accuracy indicators such as mean bias error, determination coefficient and relative root mean square error were used for identifying the accuracy of developed artificial neural network models [86]. In mining, adaptive neuro-fuzzy interference systems were incorporated with multiple regression algorithms for improving the drilling efficiency of core drillers using diamond bits [6]. Support vector machine algorithm was used to identify geographical locations rich in mineral ores [1]. The important technological process parameters involved in core drilling of mining rocks were identified by using fuzzy based least square support vector machine algorithm [111]. On comparing the prediction accuracy of models developed by using support vector machine algorithm with other artificial
neural network algorithms, the coefficient of determination and root mean square error values indicated that fuzzy based least square support vector machine algorithm was better [16]. Genetic algorithm improved using fuzzy logic helped in improving the control on back pressure on wellheads [53]. Statistical indicators were found to be efficient for comparing the efficiencies of Adaptive Neuro-Fuzzy Inference System (ANFIS) and ANN models [85]. It was observed that the prediction accuracy of single forecasting models were relatively lower than the prediction accuracy of combined models [56]. Time delay neural networks (TDNN) were found to be effective for monitoring wear of drilling tools. Non linear evaluation of systems was efficient on using TDNN [88]. Dynamic forecasting was found to be effective on combining neuro-fuzzy model with Kalman filter model and ARMA model [11]. For extraction and clustering of data from time-series, k-means method was effective. Non linear auto-regressive neural networks were combined with k-means clustering for improving the prediction accuracy [77]. Research on developing complex predictions in isolated regions indicated that machine learning algorithms with artificial intelligence had very accurate predictions [41].

Optimization techniques help in achieving the desired goal with minimum number of experiments. Response surface methodology (RSM) technique was effective in removing uranium rich mine water [70]. RSM was used for reducing erosion wear of ocean mining pump [40]. For optimizing the explosion and drill pattern in rock tunneling, RSM was used [2]. Three variables such as profit, physical and economic life determines the overall equipment life. Physical and economic life calculations are important for identifying the replacement time of that equipment [82]. For evaluating the profit life of equipment, the important factors taken into consideration are repairs, time-offs, devaluation and maintenance costs [84]. The cost of procurement of new equipment should be justified before replacement. The profit earned by the equipment before its replacement should cover its associated productivity, repair and maintenance costs during its effective operational period [102]. Thus, in mining, knowledge and operation sequences help in predicting the overall effective working time of equipment [108]. This helps in arranging repairs or replacement of the equipment. During continuous working of equipments in mining areas, apart from recorded data, a lot of considerations should be taken care of, for hassle free working. Identification and prediction of equipment efficiency is useful in remote mining operations. Even though lot of studies has been conducted in mining equipments, overall equipment effectiveness is a very important aspect for ensuring safety and productivity. On conducting an exhaustive literature survey, it was observed that literatures on estimation and improving overall equipment effectiveness of mining equipments were nil. Hence, in this investigation, an attempt has been made to develop Box Jenkins combined ANN model for predicting the Overall Equipment Effectiveness (OEE) of core drill rigs. Using RSM the drilling parameters were optimized for improving OEE of the core drill rigs.

2. MATERIALS & METHODS

2.1 Mining equipment and parameters for evaluating Overall Equipment Effectiveness of drill rigs

The mining equipment considered in this research was core drill rigs used in Vermiculite and Quartz mines near Salem, Dharmapuri, Namakkal and Tiruchirappalli districts of Tamil Nadu, India. The core drill rigs were associated with M/s. Tamil Nadu Magnesite Ltd., Salem, Tamil Nadu, India. The drill rigs were heavy type, with toughened steel drill bits. The drilling equipment is shown in Figure 1.

![Core drill rig equipment used in mining.](https://example.com/core-drill-rig.jpg)

Figure 1. Core drill rig equipment used in mining.

For evaluating OEE, physical, economic and profit life of the core drill rigs were used. The service life of drill rigs were taken as its physical life. All forms of repairs and maintenance affect the physical life of the equipment. Preventive maintenance, routine servicing and proper working conditions help to increase the physical life of equipment [81]. Profit life is the duration till which the equipment earns more than its
repair and maintenance expenditures. It helps the owners to determine when to repair and when to replace the equipment. It is the period in which profits are booked while operating the equipment. After this period, it is advisable to replace the equipment, as it is no longer profitable. This helps mining companies to predict and improve production efficiency [68]. Economic life of equipment is the working duration when the purchase and maintenance costs are equal to the cost of operation. Expiry of economic life is an indication to replace the equipment [48]. For evaluating life cycle of the drill rigs, operational costs were considered. For core drill rigs, the operational costs included labor charges of drill operators, maintenance costs, fuel, tire, drill bit breakage replacement and repair costs [99]. For determining OEE of the core drill rigs, a modified Nakajima equation developed by Samatemba et al 2019 [65], has been used. The equation developed by Samatemba et al 2019, is shown below

\[\text{OEE} = A \times UR \times PE \] (1)

In the above equation, A is availability, UR is the Utilization Rate of the equipment and PE is the Production Efficiency of the equipment. The equations for availability (A), Utilization Rate (UR) and Production Efficiency (PE) are shown as follows

\[A = \frac{PAT - TD}{TAT} \times 100 \] (2)

In Eq. 2., PAD is the planned available time, TD is the total downtime and TAT is the total available time.

\[UR = \frac{T_o - IT - TD}{T_o - TD} \times 100 \] (3)

In Eq. 3., T_o is the total output, IT is the idle time in hrs.

PE was evaluated after taking the hole deviations and ruptures into consideration.

\[PE = \frac{APT}{(ART - I_H) \times R_c} \times 100 \] (4)

In Eq. 4, APT is the actual production time, I_H is the idle hours and R_c is the rated capacity.

For evaluating equipment availability, three shifts of 8 hrs per day were considered. The actual data record (record sheet) from the drill operators were taken for evaluation. Equipment utilization was recorded from the equipment gate pass in and out registers. During a shift, 7 rigs were used and one equipment was placed in standby. The time lag between starting of equipment, replacing and repair were recorded to evaluate the mean time between shutdowns and failures. For the collected data, production efficiency was calculated. The primary data (questionnaires to operators, mining and maintenance engineers) and secondary data (checklists, trip sheets) were collected and used in this investigation. Drilling operation starts when the pillar drill tip touches the top surface of the mining area. After evaluating the data collected, Overall Maintenance Index (OMI) was calculated between 0 and 1. It comprised of planned maintenance shutdown, damage assessment, maintenance time, breakdown maintenance, oil maintenance, tire maintenance and frame body maintenance. Other variables considered for this investigation for the drill rigs were Pushing Pressure (PP) in bar, Rotational Pressure (RP) in bar, Penetration Rate (PR) in m/min, Idle Time (IT) in hrs, Operated Time (OT) in hrs, Utilization Rate (UT), Average Pillar Drill Pit Cycle Time (APDPCT) in mins, Average Time to Pillar Drill One Face Hole (ATPDFH), Average Time for Drilling One Stope Hole (ATDSH) in mins, Mean Time Before Failure (MTBF) in hrs, Productive Time (PT) in hrs, Availability (A) in %, Utilization Rate in %, Production Efficiency in % and Overall Equipment Effectiveness (OEE) in %. During drilling the pit, support fixtures were extended to prevent equipment vibration. After drilling, the pillar drilling bit was retracted. Before moving the equipment to another place, the support fixtures were also retracted. The Average Pillar Drill Pit Cycle Time (APDPCT) [97] was calculated according to the following equation

\[\text{APDPCT} = ATD_1 + AST + D \] (5)

In Eq. 5, ATD_1 is the average time taken for drilling one hole, ACT is the Average Settling Time and D is delay

The Average Time to Pillar drill one Face Hole (ATPDFH) was calculated according to Eq. 6 and the Average time taken for drilling on Stope hole (ATDSH) was calculated according to Eq. 7.

\[\text{ATPDFH} = ADT_1 + ST + D \] (6)

\[\text{ATDSH} = \frac{\sum_{n}^{n} TTDH + ST + D}{n} \] (7)

In the above equations, ST is settling time, TTDH is the total time taken for drilling holes and n is the number of holes.

2.2 Box-Jenkins Auto Regressive Moving Average model for predicting OEE

For predicting OEE of core drill rigs, Auto Regressive Moving
Average (ARMA) model was developed with Box-Jenkins technique. Hybridization has been successful in improving the prediction accuracies. Accurate predictions with non-linear and non-compensatory relationships [96] could be obtained by using hybridization. Hybridization of ANN with other models helps in improving the performance of the neural networks [83]. Increase in flexibility was observed on using hybrid models in ANN [94]. ARMA model consists of two components. The first one is the auto-regressive component and the second one is the moving average component. In combined form, they are represented as ARMA (a, b), where a & b are order of autoregressive component and moving average component respectively. The general equation of ARMA model is given below

\[R_t = \sum_{i=1}^{p} \phi_i R_{t-i} - \sum_{j=1}^{q} \theta_j e_{t-j} + e_t \]

(8)

In Eq. 8, autoregressive parameters are indicated as \(\phi_i \) and the moving average parameters are indicated as \(\theta_j \). Noise of the equation is denoted as \(e_t \). ARMA model was developed in three stages. In the first stage, identification of the best fit on time series was done according to Auto-Correlation Function (ACRF) and Partial Auto-Correlation Function (PACRF) [28]. Auto-Correlation function is used for identifying the relationship between the present set and preceding set of data points. It also helps in measuring self similarity [104]. Partial Auto-Correlation function helps in identifying the partial correlation between the present and past observations under its own regressive lags [61]. Depending on the pattern variations in ACRF values, time series values are considered to be stationary or non stationary [64]. If sudden decrease and flattening of ACRF values was observed, the time series were considered to be non-stationery. On the other hand, if ACRF values do not flatten quickly, then the time series were considered to be non-stationary. Depending on the behavior of ACRF and PACRF values, the choice of ARMA model is indicated in Table 1.

The first stage is completed after identification of the model. In the second stage, estimation of the parameters is done. The third stage of Box Jenkins method is verification. There are different testing methods available for verification. Breusch–Godfrey test is used for validity assessment of modeling assumptions [4]. Durbin Watson test is used for evaluating autocorrelation in residuals of a statistical model. From 0 to 4, Durban-Watson statistic is used for detecting autocorrelation between the samples [59]. Ljung-Box test is used for determining whether the autocorrelations of a time series varies from zero. Durbin Watson can be used only for identifying auto regression of the first order and lag of 1. For lag value greater than 1, Ljung Box test can be effectively used. Ljung-box technique uses null hypothesis for checking if there are no residual autocorrelations. Hence, in this investigation, Ljung-Box test was used [38]. The Ljung-box equation for identifying nil residual auto-correlations is shown below

\[L = n(n+2) \sum_{k=1}^{b} \frac{\sigma_k^2}{n-k} \]

(9)

In Eq. 9, auto-correlation coefficient at lag k is denoted as \(\rho_k \). With degree of freedom \(f \) of \(\chi^2 \) distribution, rejection of hypothesis is done when the value of \(Q \) is greater than 95% of \(\chi^2 \) distribution. The sequence of operations in Box Jenkins is shown in Figure 2 (a).

2.3 Artificial Neural Network model for predicting OEE

For prediction model development, advanced neural networks such as Artificial Neural Networks and Polynomial Neural Networks are used. Artificial Neural Network (ANN) is an advanced methodology used for predicting the responses of complex and non-linear systems. ANN models use intelligent human like decision making strategies for evaluation of input data without biased assumptions and imposing [30]. Polynomial Neural Networks is a self organizing network, which can be used for developing prediction models [17]. It consists of dynamic layers. Growth of layers and its structure depends on the learning process. On using polynomial models, a reduction in interpolation and extrapolation aspects were observed [55].

<table>
<thead>
<tr>
<th>Model</th>
<th>ACRF</th>
<th>PACRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (a)</td>
<td>When projection diminishes toward zero and oscillations in coefficients occur</td>
<td>When projection diminishes after lag a</td>
</tr>
<tr>
<td>MA(b)</td>
<td>When projection diminishes to zero after lag q</td>
<td>When projection diminishes towards zero and oscillations in coefficients occur</td>
</tr>
<tr>
<td>ARMA(a,b)</td>
<td>When projection diminishes to zero after lag b</td>
<td>When projection diminishes to zero after lag a</td>
</tr>
</tbody>
</table>

Table 1. Decision factors for ARMA model based on the behavior of PACRF and ACRF values.
For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).

For predicting OEE, a lot of dynamic parameters are involved. The relationship between the processes parameters are complex. For analyzing such complex models, ANN was found to be accurate. Hence, in this investigation, ANN was used for developing the prediction model. Neural networks have input layers for receiving data and output layers for delivering the processed data. Hidden layers are used for linking input with output layers [47]. Hidden layers help in improving the performance of a model. Even for highly complex models, hidden layers improve the predictability and accuracy to a great extent [105]. The consecutive layers are connected to each other by using neurons. Schematic representation of ANN model for estimating OEE of the core drill rigs is shown in Figure 2 (b).
implemention [43]. Quasi-Newton method is an alternative to Newton method for identifying local zeros, maxima and minima. It is mandatory that the Hessian matrix should be positive and the function should be differentiable twice. Only then, Quasi-Newton method can be applied [39]. At higher dimensions and for solving minimization bases problems, Levenberg Marquardt (LM) algorithm is generally used. This LM algorithm involves both the concepts of Newton and gradient algorithm. For training and adjustment of weights, LM algorithm was found to be better than other algorithms [57]. Hence, in this investigation, for NLARN model, LM algorithm was used.

2.3 Combined Box-Jenkins with ANN model

For improving the prediction and estimation accuracy, a combination of linear and non-linear systems was done. In this investigation, for capturing linear information, Auto Regressive Moving Average model was used and for capturing non-linear information, ANN model was used. A combined model was developed by Gairaa et al. 2016 [31], and the expressions are given below

\[Y_t = LC_t + NLC_t \] \hspace{1cm} (11)

In Eq. 11, the original time series is shown as \(y_t \). In Eq. 11, the linear component is denoted as \(LC_t \) and the non linear component is denoted as \(NLC_t \). In the first stage, ARMA was performed for modeling the linear aspects of the core drill rig process variables. The non-linear aspects were accumulated in the residuals. From linear fit, the residuals \(r_t \) was evaluated from the following equation

\[r_t = y_t - |EV|_t \] \hspace{1cm} (12)

In the above equation, the estimation value of ARMA is denoted as \(EV_t \). In the next stage, the residuals of ARMA model were modeled by using NLARNN technique. Equation for representing ARMA models using NLARNN is shown below

\[r_t = f(r_{t-1}, r_{t-2}, \ldots, r_{t-a}) + e_t \] \hspace{1cm} (13)

In Eq.13, the non linear function is shown as \(f \) and random error is shown as \(e_t \). The equation of combined hybrid (CH) model developed for integrating the linear and non-linear components is shown below

\[|CH| = |EV| + |NLC| \] \hspace{1cm} (14)

The sequence of the combined hybrid model is shown in Figure 3.

2.4 Evaluating the performance of the developed hybrid model

By using statistical indicators, the accuracy of the developed model was ascertained. The performance indicators such as coefficient of determination (R²), mean bias error (MBE), normalized MBE (n-MBE), root mean square error (RMSE), normalized root mean square error (n-RMSE) and mean average percentage error (MAPE) were used [34]. The equations for evaluating the performance indicators are shown below

\[R^2 = \frac{\sum_{i=1}^{P} (e_{vi} - m_{vi})^2}{\sum_{i=1}^{P} (e_{vi} - \overline{m_{vi}})^2} \] \hspace{1cm} (15)

\[RMSE = \sqrt{\frac{\sum_{i=1}^{P} (e_{vi} - m_{vi})^2}{D}} \] \hspace{1cm} (16)

\[nRMSE = \frac{\left[\sum_{i=1}^{P} (ev_i - mvi)^2 \right]/M}{mv} \] \hspace{1cm} (17)

\[MBE = \frac{\sum_{i=1}^{P} (ev_i - mvi)}{D} \] \hspace{1cm} (18)

\[nMBE = \frac{\sum_{i=1}^{P} (ev_i - mvi)^2}{D\overline{ev}^2} \] \hspace{1cm} (19)

\[MAPE = \frac{\sum_{i=1}^{P} ((ev_i - mvi)^2)}{Dmv_i \times 100} \] \hspace{1cm} (20)

In the above equations, the estimated values are indicated as \(ev_i \) and the measured values are indicated as \(mv_i \). The average of the estimated and the measured values are indicated as \(\overline{ev} \) and \(\overline{mv} \) respectively.

2.5 Optimizing the important drill rig process parameters for improving OEE

For developing empirical relationship between the input parameters and output responses, different models such as Box Behnken and Central Composite Design models are used. Box Behnken models are used for generating response surfaces of higher orders, during optimization [18]. While using Box Behnken, if there are any missing runs, the dependability of the model reduces drastically. Central composite design is found to be a reliable method for building a quadratic model of second order [89]. There are different techniques which can be used for multi criteria decision making. Genetic algorithm uses natural selection criteria for identifying the best [15]. Hill climbing uses
the concept of moving towards elevation for identifying the optimum solution [3]. Vikor algorithm uses ranking to identify important process variables according to the initially assigned weights [21]. Travelling salesman is a graphical computation method for utilizing all the given routes with minimal distance [35]. Response surface methodology uses statistical and mathematical techniques for identifying the relationship between dependent variables and output responses [100]. For improving OEE to the maximum possible limit, the important core drilling process parameters should be identified for achieving the desired results. The range of the variables is high and minimization of error should be given priority for improving the accuracy of the prediction. Since response surface methodology uses advanced mathematical techniques for identifying the parameters to improve response, it was selected for this investigation. In this investigation RSM was used to optimize the important drill rig process parameters by developing central composite design model. Using experimental trials, the feasible limits of the important drill rig process parameters were identified. Within the feasible limits of process parameters, twenty different combinations were developed by using central composite design model. The twenty combinational runs were developed by using 8 design, 6 star and central points. With each process parameter combinations, core drilling experiments were conducted and from the results obtained, OEE was calculated and recorded. In the twenty process parameter combinations, six repetitive experiments were used for eliminating errors induced during the core drilling experiments. Second order regression equations were used to establish empirical relationships between the input variables and OEE. The closeness between the predicted and actual OEE was identified. For identifying the differences in variances, techniques such as analysis of variance (ANOVA), Kruskal-Wallis and Mann Whitney U tests are being used. Kruskal-Wallis testing is a non-parametric method for determining the origin of the samples and comparing independent samples [46]. Analysis of variance (ANOVA) method is used to determine the differences in mean values of more than two groups [9]. For evaluating samples with multiple scales, independent factors, within a particular range, ANOVA is found to be better than other methods. The significance of the developed core drill rig performance improvement model was evaluated by using Analysis of Variance (ANOVA). Two way type III ANOVA was used for evaluation.

Mann Whitney U method is a non-parametric testing method for understanding the relationship between values of two populations [49]. For evaluating the closeness between the predicted OEE and the actual OEE values, Mann Whitney U and ANOVA method was used. Mann Whitney U test was conducted in two steps. In the first step, the values are sorted from the smallest to largest. In the second step, summation of the rank scores for each group is done. Using the following equation, the score value is calculated

\[E(U) = \frac{n_u(N+1)}{2} \]

(21)

In the above equation, \(E(U) \) is the expectation value of \(U \), the total number of examined samples is denoted as \(n_u \), the total samples is denoted as \(N \), where

\[N = n_1 + n_2 \]

(22)

A score value of \(z \) is calculated using the following equation

\[z = \frac{U_{\text{max}}}{\sqrt{n_1n_2(N+1)}} \]

(23)

In the above equation, the value of maximum rank is denoted as \(U_{\text{max}} \), the number of independent samples of the two categories is denoted as \(n_1 \) and \(n_2 \). Contours and 3-D surface plots were developed by using RSM to optimize the input variable to predict maximum possible OEE. Using validation experiments, the predictability of the developed core drill rig model was validated. Interactions and perturbation plots were developed and sensitivity analysis was conducted to rank the core drill parameters.

3. RESULTS AND DISCUSSIONS

3.1 Estimation and prediction of OEE using Box-Jenkins ANN hybrid model

For core drilling, the data collected for the process variables such as Overall Maintenance Index (OMI), Pushing Pressure (PP) in bar, Rotational Pressure (RP) in bar, Penetration Rate (PR) in m/min, Idle Time (IT) in hrs, Operated Time (OT) in hrs, Average Pillar Drill Pit Cycle Time (APDPCT) in mins, Average Time to Pillar Drill One Face Hole (ATPDFH), Average Time for Drilling One Stope Hole (ATDSH) in mins, Mean Time Before Failure (MTBF) in hrs, Productive Time (PT) in hrs, Availability (A) in %, Utilization Rate (UR) in %,
Production Efficiency (PE) in % and Overall Equipment Effectiveness (OEE) in % are shown in Figure 4.

As the data obtained regarding OEE of core drill rigs are not stationary, ratio of Absolute Total Effective Equipment Performance (TEEP_a) and OEE was taken as the Effectiveness Index (EI) ratio. As TEEP$_a$ identifies the actual production capacity, it was used to convert the time series into a stationary one. The time series should be stationary if ARMA has to be implemented. Auto Regressive Moving average (ARMA) was chosen over Auto Regressive integrated Moving Average (ARIMA) because, in ARIMA differencing should be incorporated for converting non-stationary to stationary time series model. In certain cases, second differencing should be done for conversion to stationary time series. In this investigation, the data collected and evaluated (APDPCT, OT, IT, PR, RP, OMI, OEE, PE, UR, A, PT, MTBF, ATDSH, ATPDFH) were collected from defined sources. As conversion of non-stationary time series to stationary series was done by calculating the effectiveness index, ARMA method was selected in this investigation for quick and accurate prediction with high convergence [60].

The equation for EI has been shown below

$$EI = \frac{\text{TEEP}_a}{\text{OEE}}$$ \hspace{1cm} (24)

In the above equation the Absolute Total Effective Equipment Performance is denoted as TEEP$_a$. The formula for evaluating TEEP$_a$ is shown below

$$\text{TEEP}_a = \frac{\text{P} \times \text{Q} \times \text{APT}}{\text{AT}}$$ \hspace{1cm} (25)

In the above equations, Quality is termed as Q, Actual Production Time is denoted as APT and All Time is denoted as AT. The variations in EI are shown in Figure 5. The corresponding Auto-Correlation Function (ACRF) and Partial Auto Correlation Function (PACRF) were plotted for EI and are
shown in Figure 6 (a) and Figure 6 (b) respectively.

On evaluating ACRF plots (Figure 6 (a)), after the first lag, the curve diminished, indicating the stationary nature. On observing PACRF plots (Figure 6 (b)), the curve diminished after a few lags. The variations were found to be with a confidence level of 95%. For satisfying the stationary time series of the Auto Regressive (AR) component, an important criterion has to be satisfied. The criterion is that, in the Partial Auto-Regressive Correlation Function (PACRF), the non-zero value should satisfy the order of the Auto Regressive (AR) model. If the criterion is not satisfied, selection of higher order is preferred for the AR model. In Box-Jenkins methodology, determination of the order of the model cannot be done, based only on PACRF variations. Hence, an appropriate criterion is necessary for selecting the order for the AR model. For estimating the prediction error, Akaike information criterion [42] was found to be better suited for this investigation as compared to Bayesian Information Criterion which requires a specific Bayesian setup [29]. Akaike information criterion helps in estimating the relative distance between the fitted and unknown likelihood function of a model. For choosing the optimal order for the AR model, Akaike Information Criterion (AIC) was used. The expression for AIC is given below

\[AIC = \log(v) + \frac{2m}{N} \]

(26)

In the above equation \(m=a+b\) and the likelihood function is indicated as \(v\). The calculated AIC for various orders of the model are shown in Figure 7.

Many ARMA (a,b) models were evaluated for identifying...
the ideal model. From Figure 7, when the order was 3, AIC value reached the minimum value and then increased on increasing the order of the model. Hence, for core drill rig performance, the ideal model selected was ARMA (3, 0). The values the model parameters (P-value, Estimate, Standard Error and t-Static) are shown in Table 2.

Table 2. Parameters of ARMA(3,0) model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-Value</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t-Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMA(1)</td>
<td>0.0021</td>
<td>0.3654</td>
<td>0.0412</td>
<td>7.31</td>
</tr>
<tr>
<td>ARMA(2)</td>
<td>0.1402</td>
<td>0.1924</td>
<td>0.0395</td>
<td>2.54</td>
</tr>
<tr>
<td>ARMA(3)</td>
<td>0.0001</td>
<td>0.0687</td>
<td>0.0362</td>
<td>1.84</td>
</tr>
</tbody>
</table>

Before choosing a model and estimating its parameters, the residues are subjected to diagnostic testing for verifying if the model fits with the data-series. By conducting diagnostic test, it was verified if the residuals of the chosen model from ACRF and PACRF plots were independent and normally distributed. ACRF and PARCF plots of ARMA (3, 0) residuals are shown in Figure 8 (a) and Figure 8 (b), respectively.

On evaluating the peaks of ARMA (3, 0) residuals in ACRF plots (Figure 8 (a)) and in PACRF plots (Figure 8 (b)), it was found within the confidence level of 95% (upper and lower boundaries). From this evaluation, it was found that the residuals of the models were not correlated. The developed ARMA (3, 0) model was subjected to Ljung-box evaluation and the results are shown in Table 3. From Table 3, it was observed that for all lags, the value of Q-static was lesser than χ² value and “p-value” was greater than 0.05. It indicates that the test was insignificant and the residuals are not correlated. The non-correlation looks like random white noise. The scatter plot indicating the relationship between the observed and estimated OEE of the drill rigs are shown in Figure 9. The correlation factor (R²) value of the scatter was found to be 0.724.

Table 3. Ljung-box test results for ARMA (3, 0) model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lag (k)</th>
<th>Degree of Freedom</th>
<th>Q-static</th>
<th>Chi square</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>36.2</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.8</td>
<td>34.6</td>
<td>51.3</td>
<td>64.8</td>
<td>0.564</td>
</tr>
<tr>
<td></td>
<td>0.291</td>
<td>0.336</td>
<td>0.427</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A three layered non-linear autoregressive neural network (NLARNN) model was developed with MLP for estimating the effectiveness index (EI), using feed forward back propagation learning method. For attaining best prediction results, empirical studies indicated that 70 to 80% of the collected data should be used for training and 20 to 30% of the collected data should be used for testing [86]. Out of the collected data 75% was used for...
training and 25% was used for testing. According to the number of lagged observations, the number of input neurons was identified. This was determined according to PACRF values [103]. By analyzing PACRF plots from Figure 6 (b), the delay was identified as 3. This was considered as input to the neurons in MLP. Using prediction accuracy indicators, the performance of the individual process parameters such as Overall Maintenance Index (OMI), Pushing Pressure (PP) in bar, Rotational Pressure (RP) in bar, Penetration Rate (PR) in m/min, Idle Time (IT) in hrs, Operated Time (OT) in hrs, Average Pillar Drill Pit Cycle Time (APDPCT) in mins, Average Time to Pillar Drill One Face Hole (ATPDFH), Average Time for Drilling One Stope Hole (ATDSH) in mins, Mean Time Before Failure (MTBF) in hrs and Productive Time (PT) in hrs were identified and the results are shown in Table 4. An incremental progressive method was used for identifying the best combination of inputs for predicting OEE. After conducting a number of trials, network with 3 inputs, one hidden layer with four neurons and one output was chosen for NLARNN model comprising PP, PR & APDPCT. The scatter diagram between the estimated and observed OEE values for NLARNN model is shown in Figure 10. Compared to ARMA (3, 0) model, the R² value of NLARNN model was found to be 0.812. Compared to ARMA model, a significant improvement was identified in NLARNN model.

Table 4. Performance indicator values for the individual parameters.

<table>
<thead>
<tr>
<th>S No</th>
<th>Up variables</th>
<th>Performance Indicator values</th>
<th>MAPE (%)</th>
<th>RMSE (%)</th>
<th>a-RMSE (%)</th>
<th>MBE (%)</th>
<th>n-MBE</th>
<th>R² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PP</td>
<td></td>
<td>22.36</td>
<td>31.46</td>
<td>0.029</td>
<td>1.42</td>
<td>0.00251</td>
<td>78.84</td>
</tr>
<tr>
<td>2</td>
<td>RP</td>
<td></td>
<td>36.89</td>
<td>28.64</td>
<td>0.027</td>
<td>-1.41</td>
<td>-0.00142</td>
<td>63.22</td>
</tr>
<tr>
<td>3</td>
<td>PR</td>
<td></td>
<td>34.31</td>
<td>46.45</td>
<td>0.031</td>
<td>1.83</td>
<td>-0.00274</td>
<td>76.29</td>
</tr>
<tr>
<td>4</td>
<td>OMI</td>
<td></td>
<td>39.24</td>
<td>31.26</td>
<td>0.058</td>
<td>-0.48</td>
<td>-0.00587</td>
<td>59.42</td>
</tr>
<tr>
<td>5</td>
<td>IT</td>
<td></td>
<td>31.08</td>
<td>42.64</td>
<td>0.069</td>
<td>3.12</td>
<td>0.00452</td>
<td>46.41</td>
</tr>
<tr>
<td>6</td>
<td>OT</td>
<td></td>
<td>34.81</td>
<td>28.33</td>
<td>0.084</td>
<td>1.33</td>
<td>0.00544</td>
<td>49.64</td>
</tr>
<tr>
<td>7</td>
<td>APDPCT</td>
<td></td>
<td>38.42</td>
<td>29.57</td>
<td>0.028</td>
<td>1.86</td>
<td>0.00219</td>
<td>77.49</td>
</tr>
<tr>
<td>8</td>
<td>ATPDFH</td>
<td></td>
<td>29.89</td>
<td>35.21</td>
<td>0.019</td>
<td>0.94</td>
<td>0.00195</td>
<td>69.17</td>
</tr>
<tr>
<td>9</td>
<td>ATDSH</td>
<td></td>
<td>32.08</td>
<td>31.72</td>
<td>0.022</td>
<td>-0.27</td>
<td>-0.00211</td>
<td>69.29</td>
</tr>
<tr>
<td>10</td>
<td>MTBF</td>
<td></td>
<td>39.28</td>
<td>28.79</td>
<td>0.065</td>
<td>3.03</td>
<td>0.00346</td>
<td>51.29</td>
</tr>
<tr>
<td>11</td>
<td>PT</td>
<td></td>
<td>63.84</td>
<td>32.54</td>
<td>0.071</td>
<td>2.06</td>
<td>0.00412</td>
<td>56.42</td>
</tr>
</tbody>
</table>

As the value of R² was greater than the R² value of ARMA and NLARNN model, the predictability of the combined hybrid model was attributed to be very high. Using statistical
prediction accuracy indicators, the predicted OEE from ARMA, NLARNN and combined hybrid models were determined and are shown in Table 5. From Table 5, it was found that the predicted data was not in agreement with the measured values. The data predicted using NLARNN was acceptable. Comparing the prediction accuracies of ARMA and NLARNN models, the prediction accuracies of the combined hybrid model was very high. The scatter plot between the predicted and measured OEE values for ARMA, NLARNN and combined hybrid model are shown in Figure 12 (a), Figure 12 (b) and Figure 12 (c), respectively. The prediction accuracy of this method was compared with other AI based estimations conducted by other researchers. The R^2 values obtained by different models are compared in Table 6.

Table 5. Prediction accuracy indicators of the different models

<table>
<thead>
<tr>
<th>Models</th>
<th>Performance Indicator values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMA</td>
<td>MAPE (%)</td>
</tr>
<tr>
<td>NLARNN</td>
<td>12.415</td>
</tr>
<tr>
<td>Combined Hybrid</td>
<td>9.642</td>
</tr>
</tbody>
</table>

Table 6. Comparison of the present hybrid model with other AI based models.

<table>
<thead>
<tr>
<th>Investigators</th>
<th>Models</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Study</td>
<td>Combined ARMA- NLARNN</td>
<td>0.923</td>
</tr>
<tr>
<td>Marey et al. (2020) [63]</td>
<td>Feed forward ANNs and error-back propagation</td>
<td>0.8467</td>
</tr>
<tr>
<td>Hajihassani et al. (2015) [36]</td>
<td>ANN-Particle Swarm Optimization</td>
<td>0.88</td>
</tr>
<tr>
<td>Faradonbeh and Monjezi (2017) [23]</td>
<td>Cuckoo Optimization Algorithm – Gene Expression Programming</td>
<td>0.874</td>
</tr>
<tr>
<td>Sheykhi et al. (2018) [87]</td>
<td>Fuzzy C-Means Clustering – Support Vector Regression</td>
<td>0.853</td>
</tr>
<tr>
<td>Patraa et al. (2016) [73]</td>
<td>ANN</td>
<td>0.648</td>
</tr>
</tbody>
</table>

Figure 12. Plot of obtained OEE values over predicted OEE values by (a) ARMA (3,0) model, (b) NLARNN model, (c) Combined Hybrid model.

From Figure 12, it was found that precision of the combined hybrid model was better than other two models. Hence ANN model with three parameters such as PP, PR & APDPCT were considered for optimization. From this evaluation, the decision hierarchy diagram developed for the OEE prediction model is shown in Figure 13.
3.2. Optimizing the core drill process parameters by using Response Surface Methodology.

In core drilling process, for accurate control over the running time, improving production and utilization, three important factors such as Pushing Pressure (PP), Penetration Rate (PR) & Average Pillar Drill Pit Cycle Time (APDPCT) were found to be important. Hence, in this investigation an attempt was made to improve OEE by optimizing PP, PR & APDPCT.

3.2.1. Identifying feasible core drill rig parameters

Using the optimized values of the three factors, availability, utilization rate and production efficiency were evaluated and from that OEE was found. Other core drilling process parameters were maintained constant within the permissible range. On conducting experimental trials, the following observations were recorded.

a. On conducting core drilling experiments with pushing pressure less than 30 bar, the operation was more of abrasive protrusion. It resulted in excessive wear of the drill surfaces and damaged the outer components.

b. On conducting core drilling experiments with pushing pressure greater than 120 bar, damage to the drill rigs were more due to impulsive contact between the drilling region and the drill bit. Erosive wear was excessive leading to equipment damages.

c. On conducting core drilling experiments with penetration rate lesser than 0.5 m/min, the drilling operation was very slow. This caused the drill bits to get heated up. Heat wear caused more damage to the equipment parts and fuel consumption was more.

d. On conducting core drilling experiments with penetration rate greater than 2.5 m/min frequent drill bit damages were observed. It caused a lot of labor and cost to replace or service and reuse the drilling equipments.

e. On conducting core drilling experiments with average pillar drill pit cycle time lesser than 80 mins, setup time was not sufficient to handle the vibrations induced
during drilling. Quick drilling often resulted in equipment malfunction and damage.

f. On conducting core drilling experiments with average pillar drill pit cycle time greater than 320 mins, slow drilling was observed. This drastically reduced the production efficiency.

Hence, it was observed that within pushing pressure from 30 bar to 120 bar, drill penetration rate from 0.5 m/min to 2.5 m/min and APDPCT from 80 mins to 120 mins, functioning of the core drill rigs were feasible.

3.2.2. Developing central composite design model

For further evaluation, the three important core drilling process parameters such as PP, PR & APDPCT were used to identify OEE. The feasible limits of the core drilling process parameters are shown in Table 7.

<table>
<thead>
<tr>
<th>No</th>
<th>Parameters</th>
<th>Unit</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PP</td>
<td>Bar</td>
<td>-1.682</td>
</tr>
<tr>
<td>2</td>
<td>PR</td>
<td>m/min</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>APDPCT</td>
<td>mins</td>
<td>80</td>
</tr>
</tbody>
</table>

For optimizing, a central composite design model was developed with five levels. The lower most variable was assigned as -1.682 and the upper most variable was assigned as +1.682. The intermediate values were identified according to the equation developed by Montgomery [67]

\[B_i = 1.682 \left[2B - (B_{\text{max}} + B_{\text{min}}) \right] \div (B_{\text{max}} + B_{\text{min}}) \] (27)

In the above equation, \(B \) is assigned values from \(B_{\text{min}} \) to \(B_{\text{max}} \). \(B_{\text{max}} \) is the maximum value, a variable can be assigned and \(B_{\text{min}} \) is the minimum value, a variable can be assigned. The intermediate values are calculated and are shown in Table 7. The central composite design developed for core drill rig performance improvement model is shown in Table 8.

Table 7. - Values of core drilling process parameters.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Parameters</th>
<th>Unit</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PP</td>
<td>Bar</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>PR</td>
<td>m/min</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>APDPCT</td>
<td>mins</td>
<td>80</td>
</tr>
</tbody>
</table>

With the values of the process parameters indicated in the design model core drilling experiments were conducted and the relevant A, UR and PR were identified. Using the values, OEE was calculated and recorded in Table 8. Six repetitive experiments were used to eliminate errors. The standard error of the developed design is shown in Figure 14.
3.2.3. Developing empirical equations between core drill rig process parameters and OEE

The output response in the form of OEE was attributed to be a function of the three core drill rig process parameters such as PP, PR and APDPCT. According to the relationship developed by Paventhan et al. (2012) [72], the following equation was developed

\[OEE = f(PP, PR, APDPCT) \]

(28)

The response surface (RS) of the core drill rig performance enhancement model has been indicated as second order regression equation as follows

\[RS = g_0 + \sum g_i w_i + \sum g_{ij} w_i w_j \]

(29)

For three input variables such as PP, PR and APDPCT, the second order regression equation is shown as follows

\[OEE = \left(w_0 + w_1(PP) + w_2(PR) + w_3(APDPCT) + w_{12}(PP \times PR) + w_{13}(PP \times APDPCT) + w_{23}(PR \times APDPCT) + w_{11}PP^2 + w_{22}PR^2 + w_{33}APDPCT^2 \right) \]

(30)

In Eq. 29 and Eq. 30, \(g_0 \) is termed as the average of response (OEE). The coefficients of the regression equations are \(g_1, g_2, g_3, \ldots, g_n \). These coefficients depend on the linear, square and interaction terms. The coefficients were evaluated by Design Expert. Student t tests and p values were used for evaluating the values of individual coefficients. Using Mann Whitney U test, the Z-score value was identified as -0.1488 and the other important results of Mann Whitney U test are shown in Table 9.

Table 9. Results of Mann Whitney U test.

<table>
<thead>
<tr>
<th>Source</th>
<th>N</th>
<th>Min</th>
<th>Median</th>
<th>Max</th>
<th>Mean Rank</th>
<th>Sum Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted OEE</td>
<td>20</td>
<td>64.14</td>
<td>71.62</td>
<td>87.55</td>
<td>74.9875</td>
<td>404</td>
</tr>
<tr>
<td>Actual OEE</td>
<td>20</td>
<td>64.14</td>
<td>71.62</td>
<td>87.55</td>
<td>74.9965</td>
<td>416</td>
</tr>
</tbody>
</table>

Test Statistics

\[U = 194 \]

\[Z = -0.1488 \]

\[\text{Asymp. Prob}>|U| = 0.88171 \]

On evaluating the model at 0.05 level, there were no significant difference in distribution of the two. Hence, from Mann Whitney U test analysis, a very close relationship between the predicted and actual values of OEE was ascertained. The significance of the developed model was ascertained using type III analysis of variance. The analysis of variance results of the core drill rig performance improvement model is shown in Table 10.

Table 10. Analysis of variance results of core drill rig performance improvement model.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares (SS)</th>
<th>Degree of freedom (df)</th>
<th>Mean square (MS)</th>
<th>F - ratio</th>
<th>p-value</th>
<th>Prob>F</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>113.86</td>
<td>9</td>
<td>12.49</td>
<td>581.39</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>8.41</td>
<td>1</td>
<td>8.41</td>
<td>363.48</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>7.39</td>
<td>1</td>
<td>7.39</td>
<td>348.62</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APDPCT</td>
<td>31.24</td>
<td>1</td>
<td>31.24</td>
<td>1344.02</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP x PR</td>
<td>21.46</td>
<td>1</td>
<td>21.46</td>
<td>982.31</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP x APDPCT</td>
<td>1.08</td>
<td>1</td>
<td>1.08</td>
<td>53.54</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR x APDPCT</td>
<td>13.62</td>
<td>1</td>
<td>13.62</td>
<td>699.59</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP²</td>
<td>7.41</td>
<td>1</td>
<td>7.41</td>
<td>334.17</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR²</td>
<td>13.36</td>
<td>1</td>
<td>13.36</td>
<td>246.41</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APDPCT²</td>
<td>14.48</td>
<td>1</td>
<td>14.48</td>
<td>375.69</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.26</td>
<td>10</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On evaluating the model at 0.05 level, there were no significant difference in distribution of the two. Hence, from Mann Whitney U test analysis, a very close relationship between the predicted and actual values of OEE was ascertained. The significance of the developed model was ascertained using type III analysis of variance. The analysis of variance results of the core drill rig performance improvement model is shown in Table 10.

![Figure 14. Standard error of the core drill rig performance improvement model.](image-url)
Using ANOVA, sum of squares, mean square, F-ratio and p-values for PP, PR, APDPCT, PP x PR, PP x APDPCT, PR x APDPCT, PP², PR² and APDPCT² were evaluated. The value of sum of squares and F-ratio of the model was found to be 113.86 and 581.39 respectively. From the value of F-ratio, it was inferred that the developed core drill rig performance improvement model was significant. As the “Prob>F” values were lower than 0.0001, the model was significant. Lack of fit was insignificant as its value was 0.8635. As the value of R², Adjusted R² and predicted R² values were 0.9853, 0.9854 and 0.9795, the significance of the developed model was ascertained to be very high. The empirical equation developed for establishing the relationship between the input and output values are shown below

\[
OEE = \{+26.18 + 0.29(PP) + 23.60(PR) +
0.13(APDPCT) - 0.104(PP \times PR) + 2.06(PP \times APDPCT) - 0.03(PR \times APDPCT) - 9.95P² - 2.62PR² -
2.07APDPCT²\}
\]

(31)

The scatter diagram indicating the correlation between the actual and predicted OEE is shown in Figure 15. On studying the scatter graph, a high level of correlation was observed with the predicted and actual values.

3.2.4 Optimizing core drilling process parameters using response surface methodology

Using response surface methodology, the important core drilling process parameters such as PP, PR and APDPCT were optimized. The goal of this optimization method is to improve OEE of core drill rig to the maximum possible limit. The response surface equation for optimization is given below

\[
R = \Phi (u₁, u₂...uₖ) ± er.
\]

(32)

In Eq. 29, the response is indicated as R, residual error is denoted as er and the quantitative factors are denoted as u₁, u₂ ... uₖ. For predicting OEE, a characteristic surface was developed using the independent variables. Response surface was prepared by varying the values of the process parameters from -1.682 to +1.682. The developed surface was fitted into regression equations. Contours were developed using two of the process variables and keeping the third as constant. The changes in output response (OEE) were plotted with varying the two process parameters. From the developed contours, the optimal area was identified. Simple contours can be created using first order equations. On increasing the complexity of contours, the order of the equations increases. Within the optimal surface region, the stationary point was observed. The stationary point was identified as saddle, maximum or minimum. Using design expert software, contour plots were developed. Circular shapes of contours indicate that there is no interaction between the independent factors. Elliptical shapes of contours indicate interactions. 3-D surface plots were developed by using two of the input process parameters while maintaining the third as constant. The shape of the 3-D surface plots was evaluated and the optimum region was identified. Using Design Expert, 3-D surface plots were developed, compared with the contours to identify the optimized core drill rig process parameters. The developed contour plots are shown in Figure 16. Contour plot of PP vs PR at constant APDPCT of 271.28 mins is shown in

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares (SS)</th>
<th>Degree of freedom (df)</th>
<th>Mean square (MS)</th>
<th>F - ratio</th>
<th>p-value</th>
<th>Prob>F</th>
<th>Adeq precision</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of fit</td>
<td>0.042</td>
<td>5</td>
<td>0.008</td>
<td>0.8635</td>
<td>Not</td>
<td>significant</td>
<td>101.024</td>
<td></td>
</tr>
<tr>
<td>Std. Dev</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td>0.9853</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>71.25</td>
<td></td>
<td></td>
<td></td>
<td>Adj</td>
<td>0.9854</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V. %</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td>Pred</td>
<td>0.9795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td>Adeq</td>
<td></td>
<td>57.0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 15. Scatter plot of predicted and actual OEE values.
Figure 16 (a). Contour plot of PP vs APDPCT at constant PR of 0.91 m/min is shown in Figure 16 (b). Contour plot of PR vs APDPCT at constant PP of 101.24 bar is shown in Figure 16 (c).

The developed 3-D surface plots are shown in Figure 17. 3-D surface plot of PP vs PR at constant APDPCT of 271.28 mins is shown in Figure 17 (a). 3-D surface plot of PP vs APDPCT at constant PR of 0.91 m/min is shown in Figure 17 (b). 3-D surface plot of PR vs APDPCT at constant PP of 101.24 bar is shown in Figure 17 (c).

Figure 16. Contour plots of core drill rig parameters optimization model.
On evaluating the developed contours and 3-D surface plots, the maximum possible OEE was predicted to be 74.99%. The corresponding predicted core drill rig process parameters were pushing pressure of 101.7 bar, penetration rate of 0.94 m/min and average pillar drill pit cycle time of 272 min. For validation of the optimization model, validation experiments were conducted. Three experiments were conducted with the optimized values of process parameters and the corresponding OEE was calculated. The difference between the predicted and actual values of OEE was calculated and recorded in Table 11. From validation experiments, it was found that the error between the predicted and actual values were lesser than 5%. This indicated that the model was developed with very high accuracy.

Table 11. Results of validation experiments.

<table>
<thead>
<tr>
<th>Exp No</th>
<th>OEE of core drill rigs</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted OEE (%)</td>
<td>Experimental OEE (%)</td>
</tr>
<tr>
<td>1</td>
<td>74.99</td>
<td>73.41</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>72.96</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>71.89</td>
</tr>
</tbody>
</table>

3.2.5 Interactions, perturbation and sensitivity analysis

Interaction plots are used for identifying the dependence of one variable with another in multi criteria optimization models. Perturbation plots are used for identifying the effect of all input factors in a system on the response within the design space [58]. Sensitivity analysis is used to identify the most important input variable affecting the output response in a design model [45]. Interactions between the three input variables of the core drill rigs such as pushing pressure, drill penetration rate and average pillar drill pit cycle time were identified by developing interaction plots. The effect of variations in two of the drill rig process parameters and the corresponding changes in OEE was plotted. The interaction plots are shown in Figure 18. Interaction plots between PP and PR against OEE at constant APDPCT of 270.10 is shown in Figure 18 (a). Interactions were observed at lower side of the feasible range. Interaction plots between PP and APDPCT against OEE at constant PR of 2.0 m/min is shown in Figure 18 (b). Interactions were observed at the lowermost edge of feasible range. Interaction plots between PR and APDPCT against OEE at constant PP of 53.31 bar is shown in Figure 18 (c). Interactions were observed at upper side of the feasible range.

![Figure 18](image)

Figure 18. Interaction plots between core drill parameters on OEE.

Perturbation plots were developed at PP of 75.72 bar, PR of 1.37 m/min and APDPCT of 201.9 min and is shown in Figure 19. OEE variations were identified on increasing and decreasing the core drill process parameters. On studying the perturbation plots, it was observed that APDPCT variations had a greater

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 3, 2023
effect on OEE, than the other two core drilling process parameters.

Figure 19. Perturbation plots of core drill process parameters.

Table 12. Sensitivity values of the developed OEE improvement model.

<table>
<thead>
<tr>
<th>S No</th>
<th>PP</th>
<th>PR</th>
<th>APDPCT</th>
<th>dOEE/dPP</th>
<th>dOEE/dPR</th>
<th>dOEE/dAPDPCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>0.5</td>
<td>80</td>
<td>-27431.9</td>
<td>14.02</td>
<td>-269.285</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0.9</td>
<td>80</td>
<td>-45830.0</td>
<td>9.844</td>
<td>-228.097</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>1.5</td>
<td>80</td>
<td>-68827.5</td>
<td>4.1</td>
<td>-176.615</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>2</td>
<td>80</td>
<td>-91825.1</td>
<td>-1.12</td>
<td>-125.13</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>2.5</td>
<td>80</td>
<td>-110223.1</td>
<td>-5.82</td>
<td>-83.945</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0.5</td>
<td>130</td>
<td>-27328.9</td>
<td>11.62</td>
<td>-476.285</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>0.9</td>
<td>130</td>
<td>-45727.0</td>
<td>7.444</td>
<td>-435.097</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>1.5</td>
<td>130</td>
<td>-68724.5</td>
<td>1.7</td>
<td>-383.615</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>2</td>
<td>130</td>
<td>-91722.1</td>
<td>-3.52</td>
<td>-332.13</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>2.5</td>
<td>130</td>
<td>-110120.7</td>
<td>-8.22</td>
<td>-290.945</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>0.5</td>
<td>200</td>
<td>-27184.7</td>
<td>8.26</td>
<td>-766.085</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>0.9</td>
<td>200</td>
<td>-45582.8</td>
<td>4.084</td>
<td>-724.897</td>
</tr>
<tr>
<td>13</td>
<td>75</td>
<td>1.5</td>
<td>200</td>
<td>-68580.3</td>
<td>-1.66</td>
<td>-673.415</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>2</td>
<td>200</td>
<td>-91577.9</td>
<td>-6.88</td>
<td>-621.93</td>
</tr>
<tr>
<td>15</td>
<td>120</td>
<td>2.5</td>
<td>200</td>
<td>-109975.0</td>
<td>-11.58</td>
<td>-580.745</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>0.5</td>
<td>270</td>
<td>-27040.5</td>
<td>4.9</td>
<td>-1055.885</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>0.9</td>
<td>270</td>
<td>-45438.6</td>
<td>0.724</td>
<td>-1014.697</td>
</tr>
<tr>
<td>18</td>
<td>75</td>
<td>1.5</td>
<td>270</td>
<td>-68436.1</td>
<td>-5.02</td>
<td>-963.215</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>2</td>
<td>270</td>
<td>-91433.7</td>
<td>-10.24</td>
<td>-911.73</td>
</tr>
<tr>
<td>20</td>
<td>120</td>
<td>2.5</td>
<td>270</td>
<td>-109831.7</td>
<td>-14.94</td>
<td>-870.545</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>0.5</td>
<td>320</td>
<td>-26937.5</td>
<td>2.5</td>
<td>-1262.885</td>
</tr>
<tr>
<td>22</td>
<td>50</td>
<td>0.9</td>
<td>320</td>
<td>-45335.6</td>
<td>-1.676</td>
<td>-1221.697</td>
</tr>
<tr>
<td>23</td>
<td>75</td>
<td>1.5</td>
<td>320</td>
<td>-68333.1</td>
<td>-7.42</td>
<td>-1170.215</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>2</td>
<td>320</td>
<td>-91330.7</td>
<td>-12.64</td>
<td>-1118.73</td>
</tr>
<tr>
<td>25</td>
<td>120</td>
<td>2.5</td>
<td>320</td>
<td>-109728.7</td>
<td>-17.34</td>
<td>-1077.545</td>
</tr>
</tbody>
</table>

From the sensitivity values, sensitivity graphs were developed and are shown in Figure 20. Graph for variations in sensitivity on OEE for variations in PP is shown in Figure 20 (a). Similarly, the sensitivity graphs for variation in sensitivity on OEE for variations in PR and APDPCT are shown in Figure 20 (b) and Figure 20 (c). Sensitivity for the output response is...
highest for that parameter, which varies the output response to the maximum extent (positive to negative or negative to positive). On evaluating the sensitivity graphs, variations in PR was found to affect the output OEE to a greater extent, compared to the variations in PP and APDPCT. Hence, a slight modification in PR affected OEE to a greater extent than PP and APDPCT.

The decision hierarchy for indicating the optimization model is shown in Figure 21.

4. CONCLUSIONS

Hence, in this investigation an attempt was successfully made to improve the overall equipment effectiveness of core drill rig. A combined approach using Box Jenkins (Auto Regressive Moving Average) model combined with non-linear auto regressive based artificial neural network model was used for prediction. Before implementing auto-regressive moving average model, the values of overall equipment effectiveness values were modified into effectiveness index for converting it into stationary data. Statistical accuracy indicators such as coefficient of determination, root mean square error, normalized root mean square error, mean bias error, normalized mean bias error and mean average percentage error was used to ascertain the prediction accuracy of the developed models. On studying the values of prediction accuracy indicators, the accuracy of combined hybrid model was found to be better than auto regressive moving average model and non-linear auto regressive based artificial neural network model and artificial neural network model with three parameters such as PP, PR &
APDPCT were considered for optimization. Feasible limits were identified for the core drilling process parameters and central composite design model was used for conducting optimization studies. Empirical relationships were developed between the three important core drill parameters such as pushing pressure, penetration rate and average pillar drill pit cycle time and overall equipment efficiency. The significance of the empirical relationships was evaluated to a confidence level greater than 95% using analysis of variance. Using contours and 3-D surface plots, the core drilling parameters were optimized for achieving highest possible overall equipment effectiveness of 74.9%. Interactions between the process parameters were analyzed and the perturbation ranked the priority of average pillar drill pit cycle time higher than the other two parameters. Sensitivity analysis indicated that overall equipment effectiveness was more sensitive to variations in drill penetration rate than the other two process parameters.

Acknowledgement:

The authors thank the assistance rendered by M/s. Vikram Engineering Industry, Tiruchirappalli, Tamil Nadu, India for their assistance in modeling and optimization studies.

References

18. de Oliveira WB, Lisboa TP, da Silva GC, Oliveira RS, de Souza CC, Matos MA, de Oliveira MA, Matos RC. Box-Behnken Factorial Design Applied to Electrodeposition of Silver Nanoparticles in 3D-Printed Disposable Device for the Determination of Sulfamethoxazole in Different Samples by Differential Pulse Voltammetry. Available at SSRN 4436897, https://dx.doi.org/10.2139/ssrn.4436897
28. Flores JHF, Engel PM, Pinto RC. Autocorrelation and partial autocorrelation functions to improve neural networks models on univariate time series forecasting. In The 2012 International Joint Conference on Neural Networks (IJCNN) 2012; 1-8, http://dx.doi.org/10.1109/IJCNN.2012.6252470
33. Geier N, Davim JP, Szalay T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A
53. Liang H, Zou J, Zuo K, Khan MJ. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure

Eksplotacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 3, 2023
74. Pan Y, Chen L, Wang J, Ma H, Cai S, Pu S, Duan J, Gao L, Li E. Research on deformation prediction of tunnel surrounding rock using the

84. Sarah Sarwar S. Comparison between the previous and current method of copex distribution and optimization of Robi Axiata Limited 2013, Brac University, Ayesha Abled Library.

Eksploracija i Niezawodność – Maintenance and Reliability Vol. 25, No. 3, 2023

