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Highlights  Abstract  

▪ Global metamodel quickly estimates the failure 

probability of the truss with sufficient 

accuracy. 

▪ Representative failure modes are obtained to 

deal with redundant failure members. 

▪ Local metamodels are constructed to calculate 

the system reliability index of the truss. 

▪ An adaptive method performs reliability 

analysis for truss structures with high accuracy 

and efficiency. 

 In practice, a truss consists of a large number of members which makes 

it a complex system. This leads to difficulties to estimate the system 

reliability due to computational costs. An adaptive method is thereby 

proposed to deal with this issue. It constructs a global metamodel to 

quickly estimate the rough reliability index of a truss. According to the 

estimated reliability index, the differential evolution algorithm is 

performed to generate more samples located in an expanded domain so 

that more representative failure modes can be identified. Combined with 

AK-SYSi, local metamodels of representative failure mods are built, and 

updated through active learning. When the convergence criterion is 

satisfied, the results of system reliability analysis can be obtained. 

Eventually, two examples of truss structures are studied to illustrate the 

superiority of the proposed method in balancing accuracy and efficiency. 

The results indicate that the proposed method makes a good balance 

between accuracy and efficiency when it is applied to analyze the system 

reliability of the truss. 
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1. Introduction 

A truss structure is usually a complex system due to its 

numerous members. Considering its failure modes to perform 

reliability evaluation is especially of great significance as this 

has better accuracy than the estimation in terms of component-

level reliability. The failure probability of the structure at the 

component level can be defined as [42]: 

𝑃𝑓 = 𝑃𝑟𝑜𝑏(𝑔 (𝑋) ⩽ 0) = ∫ 𝑓𝑋(𝑥)𝑑𝑥𝑔(𝑥)⩽0
 (1) 

where 𝑓𝑋(𝑥) is the joint probability density function (PDF) of 

the vector 

𝑋 = [𝑥1  , 𝑥2  , . . . , 𝑥𝑛]
𝑇and 𝑔(𝑋) denotes the performance 

function. However, it is difficult to calculate the failure 

probability directly according to Eq. (1) due to the multi-

dimensional integral it has. Thus, numerous approaches have 

been proposed to deal with this issue. One of the simulation-

based methods called Monte Carlo Simulation (MCS) [16; 30] 

is regarded as the most accurate method to estimate the failure 

probability. 

Although MCS can estimate the failure probability 

accurately, its large computational costs prompt researchers to 

make efforts to investigate more efficient methods. Many 

variance-reduction techniques were put forward such as subset 

simulation (SS) [36; 44], and importance sampling (IS) [9]. 
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These techniques can decrease the number of samples to 

estimate failure probability, but they have a limited degree of 

enhancement of efficiency. To further improve computational 

efficiency, numerous metamodels have been developed to 

approximately replace the real performance function. For 

example, polynomial chaos expansion (PCE) [2], Kriging [12; 

21; 22], deep neural networks(DNN) [18] and support vector 

machines [7] are commonly implemented in reliability analysis. 

Besides, many novel metamodels also were proposed in [3; 19; 

20; 27; 28; 29] to solve the issues of microwave components 

such as the nonlinearity of electrical characteristics and the 

curse of dimensionality. To improve the efficiency of 

electromagnetic (EM) simulations, different surrogates were 

proposed such as feature-based regression surrogates [25], 

response feature surrogates [26], and other novel surrogates [23; 

24; 37; 38; 39]. When only metamodels are applied to analyze 

the practical structures, there are still high computational costs. 

Therefore, metamodels combined with variance-reduction 

techniques were proposed continuously in recent years [5; 10; 

13; 31; 32; 35; 40; 41; 48; 50; 52]. Echard et al proposed an AK-

MCS method that combined the Kriging model and MCS and 

adopted the U learning function as well as the corresponding 

convergence criterion to perform an active learning algorithm 

to update the surrogate model so that the failure probability can 

be estimated efficiently and accurately. Based on AK-MCS, Sun 

et al put forward a new learning function called the least 

improvement function (LIF) to improve the accuracy of the 

estimated failure probability and developed a new method to 

deal with more complicated issues such as nonlinear 

performance function and high dimensional practical problem. 

Nevertheless, when the failure probability is very small, a large 

sample population is still needed since AK-MCS and other 

methods generate samples by MCS. To overcome this defect, 

Kriging models combined with other variance-reduction 

methods were proposed [13; 32; 41; 48]. AK-SS combined the 

Kriging model and SS [13] was developed to estimate the small 

failure probability. Xu et al developed a novel method named 

AK-MSS for the estimation of small failure probabilities. This 

approach made a sequence for the samples based on the 

distances between the samples and the original in the standard 

normal space to select new samples in the next level, rather than 

based on the predicted values of performance function in SS. 

Both AK-SS and AK-MSS made contributions to decrease the 

computational efforts of small failure probabilities. 

The above methods can estimate the component-level 

reliability, but they are hard to be applied to estimate the system 

reliability of a structure directly. Research on system reliability 

based on sampling-based methods also has been developed [6; 

11; 46; 49]. For example, Fauriat and Gayton proposed AK-SYS 

[11]] to conduct system reliability analysis. For AK-SYS, local 

metamodels were built for corresponding failure modes, and the 

failure probability was estimated according to the principle of  

a series system or parallel system. Three strategies were 

involved to proceed with the active learning process, and the 

local metamodel with the greatest influence on the failure will 

be updated which is determined as the strategy of AK-SYS. This 

method considers multiple failure modes and has high accuracy 

and efficiency for the estimation of system failure probability. 

Meanwhile, an improved method called AK-SYSi based on AK-

SYS was proposed by Yun et al [49]. It intends to identify the 

correct failure mode to be updated. Hence, a refined U learning 

function was defined and applied to some examples that verify 

the effectiveness of AK-SYSi. 

However, these methods of system reliability analysis are 

based on the failure modes that have been identified. For a truss, 

the failure modes as well as their performance functions are 

usually unknown and the reliability analysis usually takes  

a large number of computational costs to keep a high accuracy. 

Therefore, we intend to develop a general framework including 

the identification of failure modes to estimate the system 

reliability of the truss with a good trade-off between accuracy 

and efficiency. Xu [47] proposed a two-stage method to analyze 

the system reliability, which estimates the failure probability of 

a structure through the global metamodel and local metamodels. 

Inspired by this two-stage method, a novel adaptive method is 

proposed to estimate the system reliability of a truss structure 

and deal with the computational challenges. It firstly estimates 

a rough reliability index of a truss by the global metamodel, and 

according to the geometric meaning of the reliability index, the 

DE algorithm is conducted to expand the sample domain to 

identify more failure modes. Then the shortest failure modes are 

selected as the representative failure modes to represent the 

longer failure modes that include them. The last stage is 

constructing the local metamodel for each representative failure 
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mode to estimate the failure probability and reliability index of 

the truss and its representative failure modes. 

This paper is organized as follows. Section 2 provides the 

AK-SYSi method to illustrate the refined U learning function 

briefly. Section 3 introduces the proposed method for the system 

reliability analysis of the truss. It mainly contains the 

construction of the global metamodel, the identification of 

representative failure modes, and the construction of the local 

metamodel for system reliability estimation. Besides, two truss 

structures are discussed in Section 4 to validate the proposed 

method. Eventually, the conclusion is summarized in Section 5. 

2. Review of basic theory 

2.1. AK-SYSi method 

System reliability evaluation is a complicated issue as it has to 

consider many factors. It is effective to consider the structure as 

a series system or parallel system to estimate the failure 

probability. Consider 𝐸𝑖  to be a failure event with the failure 

domain 𝑔𝑖(𝑋) < 0, where 𝑔𝑖(⋅) is the performance function of 

the i-th failure event. Thus, for the series system, the failure 

probabilities can be expressed as Eq. (2), where the 𝐼𝐹
𝑠𝑒𝑟𝑖𝑒𝑠  is 

defined as Eq. (3). 

𝑃𝑓
𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑃𝑟𝑜𝑏 (⋃𝐸𝑖

𝑛

𝑖=1

) = 𝑃𝑟𝑜𝑏 (⋃𝑔𝑖(𝑋) < 0

𝑛

𝑖=1

) 

             = 𝐸(𝐼𝐹
𝑠𝑒𝑟𝑖𝑒𝑠) ≈

1

𝑁
∑ 𝐼𝐹

𝑠𝑒𝑟𝑖𝑒𝑠(𝑥𝑖)
𝑁
𝑖=1   (2) 

𝐼𝐹
𝑠𝑒𝑟𝑖𝑒𝑠 = {

1, min
𝑖=1,...,𝑛

𝑔𝑖(𝑋) < 0

0, min
𝑖=1,...,𝑛

𝑔𝑖(𝑋) ⩾ 0
  (3) 

And for the parallel system, its failure probabilities can be 

expressed as Eq. (4), where the 𝐼𝐹
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

  is defined as Eq. (5). 

𝑃𝑓
𝑝𝑎𝑟𝑎𝑙𝑙𝑒

= 𝑃𝑟𝑜𝑏 (⋂𝐸𝑖

𝑛

𝑖=1

) = 𝑃𝑟𝑜𝑏 (⋂𝑔𝑖 < 0

𝑛

𝑖=1

) 

= 𝐸(𝐼𝐹
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

) ≈
1

𝑁
∑ 𝐼𝐹

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑥𝑖)
𝑁
𝑖=1   (4) 

𝐼𝐹
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

= {
1, max
𝑖=1,...,𝑛

𝑔𝑖(𝑋) < 0

0, max
𝑖=1,...,𝑛

𝑔𝑖(𝑋) ⩾ 0
  (5) 

The AK-SYSi is an active learning method to estimate the 

failure probability, so the learning function plays a significant 

role. In AK-SYS, three strategies were proposed to estimate the 

system probability of failure. The composite criterion approach 

(#3) was determined to be applied to analyze system reliability 

due to its efficiency. However, the third strategy has some 

deficiencies in the identification of the minimum failure mode 

or the maximum failure mode. They might be misidentified 

sometimes. Considering improving the defects AK-SYS has, 

the AK-SYSi refined the learning function adopted in the AK-

SYS method. For the series and parallel system, the refined U 

learning function is expressed as Eq. (6) and Eq. (7) 

respectively. 

𝑈(𝑋) =

{
 
 

 
 |𝑔𝛩

 (𝑋)|

𝜎�̂�𝛩(𝑋)
= min

𝑖=1,...,𝑘

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)
𝑔𝑖(𝑋) > 0∀𝑖 = 1, . . . , 𝑘𝛩 = 𝑎𝑟𝑔 min

𝑖=1,...,𝑘

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)

|𝑔𝛩 (𝑋)|

𝜎�̂�𝛩(𝑋)
= max

𝑖=1̂,...,�̂�

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)
𝑔𝑖(𝑋) ⩽ 0∃𝑖 = 1, . . . , 𝑘𝛩 = 𝑎𝑟𝑔 max

𝑖=1̂,...,�̂�

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)

(6) 

𝑈(𝑋) =

{
 
 

 
 |𝑔𝛩

 (𝑋)|

𝜎�̂�𝛩(𝑋)
= min

𝑖=1,...,𝑘

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)
𝑔𝑖(𝑋) ⩽ 0∀𝑖 = 1, . . . , 𝑘𝛩 = 𝑎𝑟𝑔 min

𝑖=1,...,𝑘

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)

|𝑔𝛩 (𝑋)|

𝜎�̂�𝛩(𝑋)
= max

𝑖=1̂,...,�̂�

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)
𝑔𝑖(𝑋) > 0∃𝑖 = 1, . . . , 𝑘𝛩 = 𝑎𝑟𝑔 max

𝑖=1̂,...,�̂�

|𝑔𝑖  (𝑋)|

𝜎�̂�𝑖(𝑋)

(7) 

The refined U learning function in AK-SYSi considers the 

sign of the predicted value of the performance function so that 

it can decrease the misidentified probability of minimum or 

maximum failure modes to proceed with active learning. Once 

there is one mode in the failure domain, it leads to the failure of 

the system for the series system, while all modes are located in 

the failure domain, it results in the failure of the parallel system. 

For the series system, at one sample, if the predicted values of 

all modes are larger than zero, the mode 𝛩 with minimum 

learning function value is determined, otherwise, the value of 

the learning function is determined as the maximum value. For 

the parallel system, if the predicted values of all modes are 

smaller than or equal to zero, the mode 𝛩 with minimum 

learning function value is determined, otherwise, select the 

maximum value of the learning function. Meanwhile, the 

indicator 𝛩 of failure modes is also determined. 

2.2. PC-Kriging model 

The Polynomial-Chaos Kriging (PC-Kriging) model is the 

combination of polynomial chaos expansions and the Kriging 

model. It can be regarded as the universal Kriging with  

a specific form of the trend. The universal Kriging model 

comprises of a regression model and stochastic process, which 

is described as: 

𝐺(𝑥) = 𝐹(𝑥 , 𝛽) + 𝑧(𝑥) = 𝑓𝑇(𝑥)𝛽 + 𝜎2𝑧(𝑥)    (8) 
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where the first term is a realization of a regression function, 𝜎2 

is the variance of the Gaussian process, and 𝑧(𝑥) denotes  

a Gaussian stochastic process with zero-mean. The covariance 

between 𝑥𝑖 and 𝑥𝑗 is defined as: 

𝐶𝑜𝑣 (𝑧 (𝑥𝑖) , 𝑧 (𝑥𝑗)) = 𝜎2𝑅(𝑥𝑖  , 𝑥𝑗  ; 𝜃)  (9) 

where 𝜎2 is the process variance and 𝑅(𝑥𝑖  , 𝑥𝑗  ; 𝜃) is the 

correlation function between samples 𝑥𝑖  and 𝑥𝑗  with 

hyperparameter 𝜃. 

With regards to the correlation function, the Matern-5/2 

correlation function is adopted and expressed as: 

𝑅𝑀5/2(𝑥𝑖  , 𝑥𝑗  ; 𝜃) =

∏ (1 + √5 
|𝑥𝑖  − 𝑥𝑗|

𝜃𝑘

 + 
5|𝑥𝑖  −  𝑥𝑗|

2

3𝜃𝑘
2 )𝑀

𝑘=1 exp (− √5 
|𝑥𝑖  − 𝑥𝑗|

𝜃𝑘
)           (10) 

where 𝜃 = {𝜃𝑘  , 𝑘 = 1 , 2 , . . . , 𝑀}. Following, the estimates of 𝛽 and 

𝜎2 can be expressed as: 

�̂� = 𝛽(𝜃) = (𝐹𝑇  𝑅𝜃
−1  𝐹)

−1
𝐹𝑇𝑅𝜃

−1𝑌  (11) 

�̂�2 = 𝜎2(𝜃) =
1

𝑁
(𝑌 − 𝐹 𝛽)𝑇𝑅𝜃

−1(𝑌 − 𝐹 𝛽) (12) 

where 𝑅𝜃 denotes the correlation matrix with the term 𝑅𝜃,𝑖𝑗 =

𝑅𝑀5/2(𝑥𝑖  , 𝑥𝑗  ; 𝜃), 𝑖, 𝑗 = 1,2, . . . , 𝑁. Since �̂� and �̂�2 is related to 𝜃, 

the 𝜃 needs to be estimated. The maximum likelihood 

estimation is often utilized: 

𝜃 = argmin
θ
(det  𝑅𝜃)

1

𝑁�̂�2   (13) 

Finally, the response value of the sample can be predicted. 

For an unknown point 𝑥 with Gaussian distribution, its mean 

�̂�(𝑥) and variance �̂�2(𝑥) are respectively given as: 

�̂�(𝑥) = 𝑓(𝑥)𝑇𝛽 + 𝑟(𝑥)𝑇𝑅𝜃
−1(𝑌 − 𝐹 �̂�)  (14) 

�̂�2(𝑥) = �̂�2 (1 − 𝑟 (𝑥)𝑇  𝑅𝜃
−1  𝑟 (𝑥) + 𝑢 (𝑥)𝑇  (𝐹𝑇

𝑇  𝑅𝜃
−1  𝐹)

−1
 𝑢 (𝑥))           (15) 

where 𝑟(𝑥) = [𝑅𝑚5/2  (𝑥 , 𝑥1) , . . . , 𝑅𝑚5/2  (𝑥 , 𝑥𝑁)]
𝑇
 and 𝑢(𝑥) =

𝐹𝑇𝑅𝜃
−1𝑟(𝑥) − 𝑓(𝑥). 

Different from the Kriging model, PC-Kriging replaces the 

trend of the universal Kriging model with the polynomial chaos 

expansions. More details of PCE refer to [34]. Hence, the PC-

Kriging is given as: 

𝐺(𝑥) = ∑ 𝜓τ(𝑥)𝛽τ + 𝑧(𝑥)𝜏∈𝛩    (16) 

where 𝜓𝜏(𝑥) are the multivariate orthonormal polynomials, 𝛽𝜏  

denotes the corresponding coefficients. Two ways, namely the 

sequential and optimal approaches, are often utilized to 

determine the set of orthonormal polynomials in PC-Kriging. 

The former is adopted in this paper. To conveniently construct 

the PC-Kriging model, the UQLab toolbox [33] is used. 

2.3. Subset simulation 

Subset simulation (SS) is a variance-reduced technique for the 

estimation of the small failure probability. It is assumed that 𝐹 

is the final failure event, the failure can be defined as a product 

of sequential intermediate failure events 𝐹1 ⊃ 𝐹2 ⊃ ⋯ ⊃ 𝐹𝑚 =

𝐹. So, the failure probability is defined as: 

𝑃(𝐹) = 𝑃(𝐹𝑚) = 𝑃(𝐹𝑚  | 𝐹𝑚−1)𝑃(𝐹𝑚−1) = 𝑃(𝐹1)∏ 𝑃(𝐹𝑖+1  | 𝐹𝑖)
𝑚−1
𝑖=1     (17) 

During the implementation process of the SS, the modified 

M-H algorithm with delayed rejection is adopted to generate 

conditional samples of the next SS level [53]. The procedure of 

SS is as follows. 

(1) 𝑁initial samples are generated based on the distribution 

of each random variable. 

(2) Obtain the performance function values of 𝑁samples, 

and rank them in ascending order. 

(3) Set the conditional probability 𝑝0 that is suggested as 0.1 

[1], and the first 𝑝0𝑁 samples are selected to generate the next 

(1 − 𝑝0)𝑁 samples by the modified M-H algorithm with delayed 

rejection. 

(4) Repeat (2)(3) until the value of the 𝑝0𝑁-th sample is 

smaller than zero. 

(5) Calculate the failure probability via Eq. (17). 

3. An adaptive method for system reliability analysis of 

truss structures 

Herein, a method that intends to identify the failure modes and 

estimate the system failure probability for the truss structure is 

proposed. The global metamodel is constructed to 

approximately estimate the system reliability index of the truss 

firstly. Then based on the system reliability index estimated by 

the global metamodel, the dominant failure domain is expanded 

by the differential evolution algorithm so that the representative 

failure modes are determined. Finally, the local metamodel for 

each representative failure mode is built to estimate the system 

failure probability in terms of the principle of AK-SYSi. 

3.1.Construction of the global metamodel 

To quickly estimate the system reliability index of the truss,  

a global metamodel is first constructed to estimate the rough 
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reliability index so that the rough failure domain can be 

identified. Herein, a method called PCK-USS is proposed to 

quickly construct the global metamodel. It is based on the 

framework of PC-Kriging and SS. Meanwhile, three 

acceleration strategies are introduced to assure computational 

efficiency. 

3.1.1. Load factor of the performance function 

The aim of constructing the global metamodel is to estimate the 

system reliability roughly. It is of great significance to find  

a proper index to reflect the global failure of the structure for 

the construction of performance function. Zhao and Ono [51] 

proposed a method to establish the performance function via the 

load factor. And it is appropriate to construct the performance 

function of truss structures as well. The performance function is 

defined as: 

𝐺(𝑋) = 𝜆(𝑀 , 𝑃) − 1   (18) 

Where 𝜆 denotes the load factor that is the function of 𝑀 and 𝑃, 

𝑀 represents the capacities of members of the truss, and 𝑃 

represents the loads. The key to constructing the performance 

function focuses on the load factor. Once the load factor is 

determined, the performance function can be built. For a truss, 

its ultimate load can be obtained through the limit analysis of 

the truss in ANSYS, and calculate further its load factor. It is 

assumed that the loads (𝑃1  , 𝑃2  , . . . , 𝑃𝑛) are applied to a truss and 

the ultimate load is 𝐹lim. The loads (𝑃2  , . . . , 𝑃𝑛) can be given by 

𝑃1  shown in Eq. (9). 

(𝑃1  , 𝑃2  , … , 𝑃𝑛) = 𝑃1 × (1 , 
𝑃2

𝑃1

 , … , 
𝑃𝑛

𝑃1
) = 𝑃1 × (1 , 𝜉2  , . . . , 𝜉𝑛)(19) 

A very large value of 𝑃1  is denoted as F that can cause the 

failure of the truss, and the loads to conduct the limit analysis is 

(𝐹 , 𝐹 𝜉2  , . . . , 𝐹 𝜉𝑛). Set the iteration time 𝑇, and start limit analysis 

in ANSYS. The ultimate load 𝐹lim  can be obtained. The time to 

reach the limit state is 𝑡, so Eq. (10) can be built according to 

the principle of solving the ultimate load in ANSYS. 

𝐹lim

𝐹
=

𝑡

𝑇
    (20) 

Then the ultimate load is deduced as: 

𝐹lim =
𝑡

𝑇
× 𝐹    (21) 

After obtaining the ultimate load, the load factor is 

expressed as: 

𝜆 =
𝐹lim

𝑃1
    (22) 

Therefore, the performance function based on the load factor 

can be constructed. When 𝜆 is smaller than 1, the loads 

(𝑃1  , 𝑃2  , . . . , 𝑃𝑛) will lead to the failure of the truss as the ultimate 

load is not greater than 𝑃1. If 𝜆 is greater than 1, the truss is safe 

as the 𝑃1  does not reach the ultimate load. 

3.1.2. Acceleration strategies of active learning 

The first acceleration strategy is the uniform design (UD). It is 

an experimental design method that generates samples as 

uniformly as possible. The UD includes a uniform design table 

and a usage table. 𝑈𝑛(𝑞
𝑡) denotes the uniform design table, 

where ”𝑈” denotes the UD, ”𝑛” represents the number of 

experiments, ”𝑞” denotes the number of factor levels, and ”𝑡” is 

defined as the maximum number of columns of the table [14]. 

For the usage table, it is provided to determine samples that 

have the minimum error. To obtain the UD samples 

conveniently, programming of UD has been written via 

MATLAB, and the deviation uniformity measure of these UD 

samples is according to the centered L2-discrepancy (CD2) 

[32]. In this paper, UD is used to generate the initial DoE to 

construct the initial metamodel. 

The K-means++ clustering is the second acceleration 

strategy that is considered as an improvement of the K-means 

clustering. K-means++ clustering is different from K-means in 

the selection of the initial clustering centers. K-means++ 

clustering only selects the one initial clustering center randomly 

rather than selects the initial k clustering centers randomly like 

K-means clustering. Then it determines the next clustering 

centers which are farther from the present centers. The 

procedure of this algorithm can be concluded as follows. 

(1) Select one center 𝑢1 randomly from the whole sample 

points; 

(2) Calculate the distance from each rest sample point to the 

center; 

(3) Determine a new center in terms of a weighted 

probability distribution;  

(4) Repeat (2)(3) until obtaining k initial centers; 

(5) Search for k clustering centers according to the K-means 

algorithm. 

More details of the K-means clustering algorithm are in [43]. 

The last acceleration strategy is a convergence criterion 
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based on the failure probability. As for the U learning function, 

it can rapidly converge to an accurate failure probability in 

terms of the convergence criterion min(𝑈 (𝑥)) > 2. However, 

the value of min(𝑈 (𝑥)) is hard to reach the threshold for more 

complex performance function or more random variables even 

though the estimated failure probability is already close to the 

actual value. The convergence criterion min(𝑈 (𝑥)) > 2 of U 

learning function may not be appropriate at this time. Hence, 

Cui and Ghosn [6] proposed a more efficient and robust 

convergence criterion based on the estimated failure probability. 

When the failure probabilities of the last three iterations reach 

the convergence criterion, the active learning process will be 

terminated. In each SS level, the convergence criterion is given 

as:  

|
𝑃𝑓
𝑠−𝑃𝑓

𝑠−1

𝑃𝑓
𝑠 | & |

𝑃𝑓
𝑠−𝑃𝑓

𝑠−2

𝑃𝑓
𝑠 | < 𝜀   (23) 

where the 𝑃𝑓
𝑠, 𝑃𝑓

𝑠−1 and 𝑃𝑓
𝑠−2 represent the estimated failure 

probabilities of three successive iterations respectively. The 

error 𝜀 is determined as 0.01. 

3.1.3. Global metamodel construction 

To estimate the global failure probability, a method consisting 

of the PC-Kriging model, subset simulation, and the 

acceleration strategies of convergence is proposed. Combined 

with the performance function of the load factor 𝜆, the process 

to construct the global metamodel is concluded as six steps, as 

shown in Fig. 1.  

Step 1: Generate N samples via MCS in the first SS level 

and the initial design of experiments (DoE) by UD in the 

standard normal space. Here, the initial DoE to construct the 

initial PC-Kriging consists of sample points generated by UD. 

For samples generated by UD, they are located in the domain 

[𝜇 − 𝑘 𝜎 , 𝜇 + 𝑘 𝜎]. The number of sample points of the initial DoE 

is chosen as 31 in this paper. 

Step 2: Construct or update the PC-Kriging model. Input the 

initial DoE or updated DoE that includes newly added samples. 

The values of the performance function of DoE can be obtained 

based on the limit analysis as well as the corresponding 

computation introduced in subsection 3.1.1, and the global PC-

Kriging model can be constructed by the UQlab toolbox. 

Step 3: Compute the predicted values of the performance 

functions of N samples through the constructed PC-Kriging 

model, and estimate the failure probability in this SS level. 

Step 4: Judge whether the estimated failure probability 

meets the convergence criterion. If it does not reach the 

convergence criterion, enter step 5. Otherwise, determine the 

value of the 𝑝0𝑁-th sample, if it is smaller than 0, compute the 

final failure probability, i.e. step 6, if not, enter the next SS level, 

and repeat step 3 to step 4. 

Step 5: Determine the initial sample point with minimum 

learning function value for K-means++ clustering, and further 

obtain K samples to be added to DoE. The clustering number K 

is determined as 2. Following consider the sample which has 

minimum learning function value in each subdomain 

respectively to be added to the DoE. If the performance function 

values of K samples are half positive and half negative, the K 

samples are determined to be added to the DoE, otherwise, 

determine one sample with the minimum value of learning 

function in the whole sample domain to be added to the DoE. 

According to the above operation, the design of experiments 

would be updated. When the updated DoE is determined, return 

to step 2 to build a new PC-Kriging model. 

Step 6: Compute the global failure probability. 

Generate N samples by MCS in the first SS 

level and initial samples by uniform design

Construct or update global 

PC-Kriging model

Compute the PC-Kriging prediction values 

for N samples and estimate conditional 

failure probability         in this SS level

Identify  K 

sample points 

Compute the failure probability Pf 

Yes

K-means++ 

clustering 

Convergence criterion

No

   The predicted value of the 

       th sample < 0

Generate conditional 

samples of next SS 

level

No

Yes
Determine 

the updated 

DoE

Output stress of each 

member by ANSYS 

and system 

performance 

function value

 

Fig. 1. The flowchart of the method to construct the global 

metamodel. 

3.2. Identification of representative failure modes 

The reliability index estimated by the global metamodel helps 

to identify the rough failure domain of the truss. Considering 
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the identified failure domain may not contain the real failure 

domain. DE (Differential Evolution) algorithm is applied to 

expand the identified failure domain to make it closer to the real 

failure domain so that more representative failure modes may 

be identified. 

3.2.1. New samples for identifying more failure modes 

Since the number of samples to construct the global metamodel 

is small, fewer failure modes might be identified. In order to 

guarantee the accuracy of identified failure modes, the 

differential evolution (DE) algorithm [45] is applied to increase 

samples for searching more failure modes. The new samples 

generated by DE are named DE DoE in this research. 

In the standard normal space, the reliability index 𝛽 can be 

illustrated as the shortest distance from the original to the limit 

state surface [4]. And the reliability index can be obtained by 

the transformation 𝛽 = −𝛷−1(𝑃𝑓), where 𝑃𝑓 is calculated by 

the global metamodel. The range of DE DoE is limited in 

[𝛽 − ∆ , 𝛽 + ∆] where ∆ is a constant to determine the range of the 

failure domain. Note that the generation of DE DoE is based on 

the identified failure samples. The identified failure samples 

may not be on the surface of 𝛽, so it is essential to perform the 

unification of 𝛽 for the identified failure samples.  

Suppose a sample 𝑋(𝑥1  , 𝑥2  , . . . , 𝑥𝑛) is a failure sample. It is 

necessary to convert it to 𝛽. Like the normalization of 𝑋: 

𝑋′ = (
𝑥1

√𝑥1
2+...+𝑥𝑛

2

 , 
𝑥2

√𝑥1
2+...+𝑥𝑛

2

 , . . . , 
𝑥𝑛

√𝑥1
2+...+𝑥𝑛

2
) (24) 

the unification of 𝛽 for 𝑋 can be expressed as: 

�̂� = (
𝛽𝑥1

√𝑥1
2+...+𝑥𝑛

2

 , 
𝛽𝑥2

√𝑥1
2+...+𝑥𝑛

2

 , . . . , 
𝛽𝑥𝑛

√𝑥1
2+...+𝑥𝑛

2
)  (25) 

where �̂� is the sample converted to 𝛽. 

When the DE DoE is obtained, transform samples among it 

into the space of the identified failure samples so that the real 

DE DoE can be obtained. The process of generating DE DoE 

where ∆= 1 is shown in Fig. 2, where the red five-pointed stars 

denote the initial samples converted to 𝛽, and the blue circles 

represent the DE DoE.

 

Fig. 2. Illustration of the generation of DE DoE.

Representative failure modes 

Once the DE DoE is obtained, the global metamodel is used 

to select the failure samples from the DE DoE. Then, the limit 

analysis is initiated for these failure samples to identify new 

failure modes. If there are no new failure modes, add them to 

corresponding samples of failure modes so as to improve the 

accuracy of the initial local metamodels. There might be some 

redundant failure members identified by stress in the failure 

modes. To deal with this issue, we select representative failure 

modes that are the shortest failure modes to be on behalf of the 

failure modes with redundant members. As shown in Fig. 3, if 

the shortest failure modes are included in the longer failure 

modes, the longer failure modes are classified into the shortest 

failure modes. The representative failure modes of the truss are 

determined thereby. 

 

Fig. 3. Determination of the representative failure modes. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 3, 2023 

 

3.3. Local metamodel to estimate the system failure 

probability 

Once the representative failure modes have been identified, the 

system reliability analysis based on them initiates. According to 

AK-SYSi, local metamodels for all representative failure modes 

are built and updated via active learning to accurately estimate 

the system failure probability. 

3.3.1. Construction of the local metamodel 

When the representative failure modes as well as their 

corresponding samples have been identified, constructing local 

metamodels of failure modes becomes the key step to estimating 

the system failure probability. The stress-strength interference 

theory is usually performed to build the performance functions 

of failure modes. Suppose one failure mode has 𝑘failure 

components, and the performance function of each component 

is expressed as: 

𝑍𝑖 = 𝑅𝑖 − 𝑆𝑖(𝑖 = 1 , 2 , . . . , 𝑘)   (26) 

where 𝑅𝑖  denotes the yield strength of a component and 𝑆𝑖  is its 

corresponding response. A failure mode of the truss can be 

considered as a parallel system, and its performance function 

can be defined as: 

𝐺𝑙 = max{𝑍𝑖  , 𝑖  = 1 , 2 , . . . , 𝑘}   (27) 

Since the failure of a truss structure consists of a series of 

failure modes, it is regarded as a series system of multiple 

failure modes. Therefore, the performance function of the truss 

system is indicated as Eq. (17), where 𝑙 denotes the number of 

failure modes. 

𝐺𝑠 = min{𝐺𝑙  , 𝑙  = 1 , 2 , . . . , 𝑗}   (28) 

There are two strategies for estimating the failure probability 

of each failure mode. One is building a metamodel for each 

member, and calculating the failure probability through multiple 

metamodels. The other is constructing one metamodel directly 

for each failure mode according to its samples as well as the 

corresponding value of the performance function. The latter was 

demonstrated to be efficient and accurate in [47], so it is adopted 

to construct the local metamodels of failure modes in this 

research. 

It is found that the stresses of members are needed to 

construct Eq. (15). The nonlinear analysis is conducted to 

determine the failure sample. For the samples that lead to no 

failure of the truss, the stress of each member does not reach its 

yield strength. The stress of each failure member can be 

obtained by elastic analysis so that the performance function of 

a failure mode is built directly according to Eq. (16). However, 

for the samples that cause the failure of the truss, they will lead 

to the failure of the truss structure when the load reaches the 

ultimate load of the truss, and the stresses of failure members 

equal to their yield strength. Hence, the performance functions 

of failure members cannot be built as the stress is no more than 

the yield stress. To solve this issue, another elastic analysis of 

the finite element model is performed, which adopts the 

incremental load between the ultimate load and the real load 

applied to simulate the stress that is after the yield of a member. 

Then the real stress is defined as the sum of the stresses of 

nonlinear and elastic analysis. The local metamodel is thereby 

constructed. 

3.3.2. Active learning of the local metamodel 

Once the initial local metamodels of representative failure 

modes have been constructed, active learning initiates. In this 

stage, the refined U learning function of AK-SYSi is applied to 

determine which local metamodel corresponds to the sample 

among the population 𝑁𝑠  to be updated. Then the sample with  

a minimum value of learning function is selected as the best 

sample to update the local metamodel. Different from AK-

SYSi, the convergence criterion is the same as the global 

metamodel, which is in terms of the estimated system failure 

probability to terminate iteration. When the active learning 

reaches the convergence criterion, the iteration ends. 

Meanwhile, the system failure probability is also obtained 

according to Eq. (2). Then, the failure probabilities of 

representative failure modes are computed through their local 

metamodels. 

3.4. Procedure of the proposed method 

Based on the introduction above, the procedure of the proposed 

method is summarized in Fig. 4. This method mainly includes 

the construction of the global metamodel, identification of 

representative failure modes, and local metamodel to estimate 

the system failure probability. The stage of construction of the 

global metamodel aims to provide a rough reliability index of 

the truss. Then samples to identify more failure modes are 

expanded by the DE algorithm according to the rough reliability 

index for determining the representative failure modes. 
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Eventually, the local metamodels for representative failure 

modes are constructed via active learning to estimate the system 

failure probability and reliability index.

Generate N samples by MCS in the first SS 

level and initial samples by uniform design

Construct or update global 

PC-Kriging model
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Fig. 4. Flowchart of the proposed method.

4. Validation of the proposed method 

A plane truss and a space truss are discussed in this section to 

illustrate the applicability of the proposed method. Since this 

method is simulation-based, the results for the two examples are 

both performed for fifteen runs. Table 1 lists the parameters 

adopted for two examples. Besides, to make a quantitative 

evaluation of the efficiency of the proposed method, the number 

of calls to the performance function of the truss 𝑁𝑐𝑎𝑙𝑙  is 

considered as the evaluation standard. 

Table 1. Parameters of the proposed method for two examples. 

Example 𝑁 𝑃0 𝑘 K 𝜀 ∆ 

1 1000 0.1 5 2 0.01 1 

2 1000 0.1 4 2 0.01 1 

4.1. Example 1: truss bridge structure 

This example is a plane truss comprised of 25 members with 
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ideal elastic-plastic behavior [17]. As shown in Fig. 5, at the 9th 

and 10th nodes, loads P1 and P2 are applied respectively. The 

parameters of members are listed in Table 2, and twenty-seven 

random variables are considered, including the yield strength of 

25 members as well as two loads. The correlation of random 

variables is not considered, and the corresponding parameters 

about random variables are listed in Table 3. 

 

Fig. 5. Truss bridge of example 1. 

Table 2. Cross section areas of members of example 1. 

Members Cross section areas(m2) 

1-6 15×10−4 

7-12 14×10−4 

13-17 12×10−4 

18-25 13×10−4 

Table 3. Distribution types and statistical parameters of random 

variables. 

Random variables Distribution Mean c.o.v 

P1/(kN) Lognormal 160 0.1 

P2/(kN) Lognormal 160 0.1 

𝜎𝑦𝑖 , 𝑖 = 1,2, . . . ,25/(MPa) Normal 276 0.05 

During the process of system reliability analysis for this 25-

bar truss, the global metamodel has been completely 

constructed through averagely 103 iterations. Further, the rough 

global system reliability index β is calculated, and the domain 

to obtain DE DoE is determined as [𝛽 − 1 , 𝛽 + 1]. The failure 

samples among DE DoE and the failure samples included in the 

samples to construct the global metamodel are performed to 

identify the representative modes. For one of the runs, the 

failure modes 1, 1→3, 2→8, 3→9, 2→3→9, 3→4→9 have 

been identified. As the failure modes 1 and 3→9 are the shortest 

failure modes, they are selected as the representative failure 

modes of 1→3, and 2→3→9, 3→4→9 respectively shown in 

Fig. 6. Herein, three representative failure modes are identified 

and are denoted as 1, 2→8, and 3→9 respectively. Therefore, 

three local metamodels corresponding to the representative 

failure modes are built directly according to their samples.

 

Fig. 6. Representative failure modes of example 1.

The average results of reliability analysis for this example 

are summarized in Table 4 after the active learning of local 

metamodels. As shown in Table 4, the reliability index of this 

truss calculated by the proposed method is 2.6488 that only has 

a 2.93% relative error compared with MCS. Besides, it also has 

close results with the method of Xu [47] and the method of Kim 

et al [17]. This indicates that the proposed method has high 

accuracy in dealing with the plane truss. Meanwhile, the 

reliability index of each representative failure mode is 

computed as well. 
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In addition, the efficiency of this proposed method is another 

aspect concentrated on. We compare its efficiency with other 

methods from the perspective of the number of calls to the 

performance function. The results of the efficiency investigated 

are listed in Table 5. The method in [47] is an efficient approach 

to estimating the failure probability, which needs 271 calls to 

the performance function to obtain the final results of this 

example. Nevertheless, the proposed method in this research 

only needs 141 calls on average to reach convergence, which 

improves efficiency by 47.97%. The number of calls to the 

performance function of the proposed method is far less than the 

method in [17] and MCS. Compared with other methods, the 

proposed method has a higher computational efficiency. When 

the truss becomes more complex, this improved efficiency 

would be more significant. This indicates that the proposed 

method is efficient in estimating the failure probability of the 

truss structure. 

Table 4. Results of reliability indices analysis of example 1. 

Representative 

failure  

modes & system 

Proposed 
Method in 

[47] 

Method in 

[17] 
MCS 

Error 

(%) 

1 3.8497 3.6588 3.6334 3.6666 4.99 

2→8 4.5958 / / / / 

3→9 2.8527 2.5658 
2.5920(-

3→9) 

2.5865(-

3→9) 
10.29 

System 2.6488 2.5614 2.5478 2.5733 2.93 

Table 5. Comparisons of the number of calls to the performance 

function for example 1. 

Method Proposed 
Method in 

[47] 

Method in 

[17] 
MCS 

Ncall 103+38 271 51,344 460,330 

4.2. Example 2: a 25-bar space truss 

In this subsection, a 25-bar space truss [8; 15] is considered to 

investigate the applicability of the proposed method, as shown 

in Fig. 7. The horizontal load F1 and vertical load F2 that are 

random variables are applied at corresponding nodes 

respectively. Furthermore, the yield strength of each member is 

also regarded as a random variable. The section information of 

members and statistical parameters of random variables are 

listed in Table 6 and Table 7 respectively. It is assumed that the 

material of the truss is ideal elastic-plastic with an elastic 

modulus 2.06×105MPa. 

 

Fig. 7. A 25-bar space truss of example 2. 

Table 6. Cross section areas of members of example 2. 

Type 1 2 3 4 5 6 7 8 9 10 11 12 13 

No. 1 
2 3 6 7 10 12 14 15 18 19 22 23 

5 4 9 8 11 13 17 16 21 20 25 24 

Area/ 

cm2 
4.36 4.56 7.47 2.39 7.52 1.51 1.77 4.88 1.89 1.78 2.63 4.89 7.66 

Table 7. Distribution types and statistical parameters of random 

variables. 

Random variables Distribution Mean c.o.v 

F1/(kN) Normal 88.9 0.2 

F2/(kN) Normal 22.6 0.2 

𝜎𝑦𝑖 , 𝑖 = 1,2, . . . ,25/(MPa) Normal 276 0.05 

In order to analyze the reliability of this truss, the global 

metamodel is constructed at first, and the accurate global 

metamodel is obtained averagely through 156 iterations. Then 

the reliability index calculated by the global metamodel is used 

to expand the failure domain so that the DE DoE for identifying 

new failure modes is generated. It is observed that 3 → 6 and 4 

→ 9 are the representative failure modes during 15 runs. Fig. 8 

shows the process of some failure modes denoted by the 

representative failure modes. Further, two local metamodels of 

the representative failure modes are built to perform active 

learning for system reliability analysis. The results of the 

analysis for this example are summarized in Table 8. The system 

reliability computed by the proposed method is 4.6386 which is 

very close to the benchmark calculated by MCS and the relative 

error is only 1.76%. Meanwhile, this result is close to the 

method in [15]. Thus, it can be concluded that the proposed 

method can analyze the reliability of the truss with high 

precision.
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Fig. 8. Representative failure modes of example 2.

Furthermore, Table 8 shows that the failure probability of 

this space truss is very small as it has a large value of reliability 

index, so the efficiency of computation becomes an essential 

aspect to be considered. Once the failure probability is small, 

more samples are needed to obtain an accurate result, which will 

result in a large number of computational costs. Table 9 lists the 

number of calls to the performance function of different 

methods to investigate the performance of the proposed method 

in efficiency. It is a huge computational cost for MCS as it needs 

2 × 107 calls to the performance function to obtain the accurate 

reliability index. Nevertheless, this proposed method only needs 

172 calls on average to reach convergence. It is found that the 

method of Jiang et al has higher accuracy than the proposed 

approach. But there is no big gap between these two methods, 

and the proposed method might have higher accuracy when the 

analyzed truss is more complex due to the excellent 

performance of the PC-Kriging model. Besides, the proposed 

method has a smaller number of calls to the performance 

function than the method in [15], which indicates that it has  

a good trade-off between accuracy and efficiency.  

Table 8. Results of reliability indices analysis of example 2. 

Representative 

failure  

modes & system 

Proposed 
Method in  

[15] 
MCS 

Error 

(%) 

3→6 4.7315 / / / 

4→9 4.7790 / / / 

System 4.6386 4.6806 4.7216 1.76 

Table 9. Comparisons of the number of calls to the performance 

function for example 2. 

Method Proposed Method in [15] MCS 

Ncall 164+8 180 2×107 

5. Conclusion 

In this paper, we propose an adaptive method that makes a good 

trade-off between accuracy and efficiency to perform the system 

reliability analysis for truss structures. The proposed approach 

is an adaption of the method of Xu [47]. It adopts the PC-

Kriging model as the metamodel since the PC-Kriging merges 

the merits of Kriging and polynomial chaos expansions and 

constructs the global metamodel to estimate the global 

reliability index of the truss roughly and rapidly at first. Then, 

the DE algorithm is applied to generate more new samples 

located in the domain [𝛽 − ∆ , 𝛽 + ∆] so that more failure modes 

can be identified. But the determination of ∆ in this research is 

a little arbitrary, and it needs more research to determine the 

proper value in the future. This operation is beneficial to select 

more representative failure modes to improve the accuracy of 

estimation for the system reliability. Based on the identified 

representative failure modes as well as their corresponding 

samples, local metamodels are constructed. The active learning 

process of local metamodels is further initiated to compute the 

system reliability index of the truss and reliability indices of 

local failure modes. 

This proposed method provides a general framework to 
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analyze the system reliability of a truss structure and can 

accurately perform reliability analysis with efficiency. Two 

examples of trusses are investigated to illustrate the trade-off 

that the proposed method makes. MCS is considered as the most 

accurate method to generate the benchmark value of the 

reliability index. Compared with MCS, the relative errors of the 

two examples are 2.93% and 1.76% respectively. Moreover, the 

efficiency has been improved greatly. The analysis results verify 

that the proposed method makes a good trade-off between 

accuracy and efficiency and is applicative to analyzing the 

system reliability of the truss structure.
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