Aircraft Bleed Air System Fault Prediction based on Encoder-Decoder with Attention Mechanism

Siyu Su*, Youchao Sun*, Chong Peng*, Yifan Wang*

* Nanjing University of Aeronautics and Astronautics, China

Abstract

The engine bleed air system (BAS) is one of the important systems for civil aircraft, and fault prediction of BAS is necessary to improve aircraft safety and the operator's profit. A dual-stage two-phase attention-based encoder-decoder (DSTP-ED) prediction model is proposed for BAS normal state estimation. Unlike traditional ED networks, the DSTP-ED combines spatial and temporal attention to better capture the spatiotemporal relationships to achieve higher prediction accuracy. Five data-driven algorithms, autoregressive integrated moving average (ARIMA), support vector regression (SVR), long short-term memory (LSTM), ED, and DSTP-ED, are applied to build prediction models for BAS. The comparison experiments show that the DSTP-ED model outperforms the other four data-driven models. An exponentially weighted moving average (EWMA) control chart is used as the evaluation criterion for the BAS failure warning. An empirical study based on Quick Access Recorder (QAR) data from Airbus A320 series aircraft demonstrates that the proposed method can effectively predict failures.

Keywords

bleed air system, fault prediction, attention mechanism, deep learning, EWMA control chart

1. Introduction

The engine bleed air system (BAS) is a type of aircraft air source system that provides compressed air with regulated pressure and temperature for user systems (engine starting, air conditioning, wing ice protection, hydraulic reservoir pressurization, and pressurized water). BAS failure has a greater impact on the flight of the aircraft, which may lead to the abnormality of the cabin pressurization system, the performance degradation of the air conditioning system, etc. If the double-engine BAS failure occurs, it will often lead to homeward flight. Advanced failure prediction technology is urgently needed to reduce aircraft operation and maintenance costs due to performance degradation and system failures. Predictive maintenance with early identification of BAS malfunctions can reduce the number of aircraft stops and reduce airline operating costs.

BAS failure prediction can be achieved by a modeling approach based on systematic principles and a data-driven approach. But building a sufficiently accurate analytical model based on system principles is challenging, especially for nonlinear and complex systems. With the increasing availability of system monitoring data, data-based techniques have become an essential complement to model-based methods for fault prediction and diagnosis [10, 22, 40]. The data-driven approach
simply uses the collected operational data to derive the model without requiring much knowledge of the system degradation mechanisms. Currently, data-driven fault prediction methods have been widely used in industrial systems and are classified into statistical methods (e.g., autoregressive models [36], statistical process techniques [21, 33], and mathematical morphology spectrum entropy [39], etc.) and machine learning (such as neural networks [26, 41], support vector machines [34, 37], and fuzzy methods [8, 35]). Aircraft have accumulated a large amount of sensor monitoring data during the operation, which can be classified as FDR (Flight Data Recorder), QAR (Quick Access Recorder), and ACARS (Aircraft Communications Addressing and Reporting System) data [30], according to the type of records. These data can reflect the operational status of aircraft systems and can be used to build models for condition monitoring, fault detection, etc. In the field of commercial aviation, predictive analytics for the exponentially growing number of operations and maintenance data generated on aircraft is full of promise [13, 38, 42]. However, there are limited studies on BAS in the published literature. Shang et al. [27, 28] developed a fault detection method for BAS's temperature sensors and valve actuators. Abdelrahman et al. [1] used backpropagation algorithms to model the faults of the most important bleed air system valves of the B-737 aircraft under desert conditions. Peltier et al. [23, 24] conducted an experimental investigation of the performance of different BASs. These studies focused on design improvements and component-specific troubleshooting while ignoring BAS operational data. Su et al. [31] established a risk warning model for BAS based on QAR data, but the adopted method did not consider the time-series relationship between the data, and there was a risk of masking failures.

The selection of feature variables, regression model, and pre-warning thresholds of the BAS fault prediction model all affect the results of fault prediction. And the main difficulty of BAS fault prediction research is selecting an effective prediction model to solve the BAS high-dimensional, nonlinear, and other fault prediction problems. The autoregressive integrated moving average model (ARIMA) [2] is a well-known method for temporal predictive analysis, with the advantage of a simple model that requires only endogenous variables and no other exogenous variables. However, ARIMA is only applicable to smooth time-series data, which can only capture linear relationships by nature, and the data used must be autocorrelated. Support vector regression (SVR) [18] is an application of support vector machines for regression problems. SVR is more concerned with the spatial correlation of data, which is effective in solving problems with high-dimensional features, but ignores the temporal correlation between data. The recurrent neural network (RNN) [9] is a class of neural networks for processing time-series data, where the current output of the series is related to the previous output. It is more suitable for short-term memory-type tasks and cannot address long-term dependency problems, and the gradient disappearance becomes more severe as the network complexity increases. Long short-term memory (LSTM) solves the gradient disappearance and explosion problem during long sequence training and is widely used in machine translation, speech recognition, and image processing [3, 11, 15]. The encoder-decoder (ED) framework was first introduced by Cho et al. [6] in sequence-to-sequence recurrent neural networks and is popular in machine translation [32]. However, since the context vector C of the encoder-decoder network is fixed, the model still does not work well for longer sequences [5]. To address this problem, Bahdanau et al. [3] proposed the attention mechanism, which has now been applied to natural language processing, time series prediction, etc [4, 7, 12]. Qing et al. [25] and Liang et al. [17] used a dual-stage attention-based RNN for time series forecasting, which solved the problem of long-term dependence but ignored the spatial association between the driving and target sequences.

Therefore, this paper adopts a dual-stage two-phase attention-based encoder-decoder model (DSTP-ED) for BAS fault prediction [14, 19], which can better capture the spatial-temporal relationships between data and performs well on various datasets. The “dual-stage” refers to using spatial and temporal attention mechanisms to obtain the spatiotemporal correlation between the driving and target sequences. The “two-phase” means that the spatial attention mechanism is composed of two attention modules for capturing the spatial correlation of the driving sequence and the target sequence. The main contributions of this paper are as follows:

1. A data-driven failure prediction method is developed to monitor the condition of the BAS and identify its impending failures. The fault prediction method consists of a state.
prediction model based on DSTP-ED and an anomaly criterion based on EWMA (Exponentially Weighted Moving Average) control chart. This organic combination of deep learning and statistical process control can effectively identify anomalies in BAS and detect faults in advance.

(2) The DSTP-ED model integrates spatial attention and temporal attention mechanisms that can adaptively select the most relevant input features as well as better capture long-term dependencies, effectively improving the accuracy of BAS state prediction. Compared with the four algorithms, ARIMA, SVR, LSTM, and ED, DSTP-ED has the optimal model performance.

(3) Fault prediction results may be disturbed due to changes in the operating environment and sensor noise. The EWMA control chart incorporates historical information from previous observations, which can well eliminate these anomalous effects and reduce false alarms. Real aircraft operational data verify that EWMA detects BAS anomalies earlier and with fewer false alarms than other statistical methods.

The remaining sections of this paper are organized as follows: Section 2 presents the fault prediction theory in detail, including the DSTP-ED model, the training procedure, the fault diagnosis criteria, and the fault prediction process. Section 3 provides an application case of BAS fault prediction based on QAR data and presents the proposed method’s comparative analysis. The conclusion is shown in the final section.

2. Fault prediction theory

This section describes the framework for fault prediction and the detailed algorithms, specifically the DSTP-ED prediction model and the fault monitoring methods. The fault prediction framework of BAS is shown in Fig. 1.

In Fig. 1, the BAS fault prediction framework consists of two components: the offline modeling process of the prediction model and the online warning process based on residuals. Aircraft operation data are transmitted back to the ground through the air-ground data link and obtained after being decoded by professional decoding software. Firstly, collected historical operational data are preprocessed, then the prediction models of the system feature variables are trained and the ones with the best prediction results are selected. In the online warning process, the EWMA control charts are used as the judging criteria for fault warning according to the prediction residuals of the prediction model after new operational data are obtained. If the prediction residuals exceed the limits, an alarm is generated to alert operating personnel to take measures to ensure the safety of aircraft operations.

2.1. Prediction problem statements

To accurately determine the abnormal state of BAS in time, the state values of BAS feature variables are estimated based on normal historical operating data, and the following time series model is established:

\[
\hat{y}_{T+1} = F(y_1, \ldots, y_T, x_1, \ldots, x_T)
\]

where \(\hat{y}_{T+1} \in \mathbb{R}\) denotes the predicted value of the target variable for the next moment. \(T\) is the size of the time window. \(y_t\) denotes the true value of the target variable at moment \(t\). \(Y = (y_1, \ldots, y_T) \in \mathbb{R}^T\) denotes the previous value of the target sequence within the time window \(T\). \(X = (x^1, \ldots, x^n)^T = (x_1, \ldots, x_T) \in \mathbb{R}^{n \times T}\) stands for a matrix of \(n\) relevant variables within the time window \(T\). \(x^k = (x^k_1, \ldots, x^k_T) \in \mathbb{R}^T\) denotes the
driving series of the kth variable within the time window \(T \). \(x_t = (x_t^1, \ldots, x_t^n)^T \in \mathbb{R}^n \) means a vector of \(n \) other relevant variables at moment \(t \). \(x_t^k \) means the value of the kth variable at moment \(t \). \(f(\cdot) \) is a nonlinear mapping function, which takes the historical observation value \(Y \) of the target variable as well as other related variables \(X \) in the past as input to obtain the predicted value \(\hat{y}_{T+1} \) of the target variable.

2.2. DSTP-ED model

The DSTP-ED model consists of an encoder-decoder and attention mechanisms, and both the encoder and decoder adopt LSTM. In the encoder, a two-phase attention mechanism is utilized to obtain the spatial association between the target and driving sequences. In the decoder, a temporal attention mechanism is employed to improve the response of the decoder to the long-term encoding vector.

2.2.1. Encoder with two-phase attention

Set the input sequence \(X = (x_1, \ldots, x_T) \in \mathbb{R}^{nT} \), where \(n \) is the number of driving sequences, and \(T \) is the time window size. LSTM units are used for encoding to extract the feature expressions of the input sequence. Fig. 2 illustrates the structure of the encoder.

![Fig. 2. The structure of the encoder.](image)

In Fig. 2, the light green box is the LSTM neuron, while RNN and gated recurrent unit [6] can also be used as encoder neurons. The advantage of using LSTM neurons is that the gradient vanishing problem during the training of network parameters can be avoided and long-term dependencies can be better captured. Each LSTM unit has a hidden layer state \(h_t \) at time \(t \), and there is also a memory state \(C_t \) for storing the hidden layer state information of the LSTM unit before time \(t \). The hidden layer states within the time window \(T \) together form the encoding vector. The inner architecture of the LSTM cell is described in Fig. 3.

![Fig. 3. The inner architecture of an LSTM cell.](image)

The LSTM has a single storage unit and three gates to govern the information flow. Each LSTM cell receives the current moment's input \(x_t \), the last moment's hidden layer state \(h_{t-1} \) and the last moment's memory state \(c_{t-1} \). The following equation illustrates how the LSTM unit stores information and selectively lets it pass through:

\[
\begin{align*}
 f_t &= \sigma(W_f[h_{t-1}; x_t] + b_f) \quad (2) \\
 i_t &= \sigma(W_i[h_{t-1}; x_t] + b_i) \quad (3) \\
 o_t &= \sigma(W_o[h_{t-1}; x_t] + b_o) \quad (4) \\
 c_t &= f_t c_{t-1} + i_t \tanh(W_c[h_{t-1}; x_t] + b_c) \quad (5) \\
 h_t &= o_t \tanh(c_t) \quad (6)
\end{align*}
\]

Eq. (2) - (4) respectively represent the forget gate \((f_t) \), the input gate \((i_t) \) and the output gate \((o_t) \) of the LSTM unit, respectively, which control the input and output of information. Eq. (5) - (6) describes how the cell state \(c_t \) and the currently hidden state \(h_t \) are updated. Where \([; ;]\) is a concatenation operation. \(W_f, W_i, W_o, W_c, b_f, b_i, b_o, b_c \) are the trainable parameters, and \(\sigma \) is a sigmoid function.

1. **First phase attention module**

This attention module belongs to the spatial attention mechanism used to obtain the spatial correlation between the driving sequences. Given the input driving sequence \(x^k = (x_1^k, \ldots, x_T^k)^T \in \mathbb{R}^T \) of the kth variable, the softmax function is adopted to normalize the attention weights of all variables. The first phase attention mechanism is constructed as follows:

\[
\begin{align*}
 e_t^k &= V_t^T \tanh(W_c[h_t^k C_t^k]; C_t^k + U_k x^k + b_c), 1 \leq k \leq n \quad (7) \\
 a_t^k &= \frac{\exp(e_t^k)}{\sum_{j=1}^{n} \exp(e_t^j)} \quad (8)
\end{align*}
\]
where \(h_{t-1}^c \in \mathbb{R}^m \) and \(C_{t-1}^c \in \mathbb{R}^m \) are the previous hidden state and cell state of LSTM in the first phase attention mechanism of the encoder, respectively, and \(m \) is the size of the hidden state. \(W_e \in \mathbb{R}^{r \times m} \), \(U_e \in \mathbb{R}^{r \times m} \), \(V_e \in \mathbb{R}^r \), \(U_h \in \mathbb{R}^r \) are the network parameters that can be trained. \(e_t^k \), \(\alpha_t^k \) are the attention score and weight of the \(k \)th input driving sequence at time \(t \), respectively. With the first phase attention weights, the input sequence is redefined as:

\[
\tilde{x}_t = (\alpha_t^1 \tilde{x}_t^1, \alpha_t^2 \tilde{x}_t^2, ..., \alpha_t^p \tilde{x}_t^p)^T
\]

(9)

Then, the hidden state \(h_t^c \) is updated to:

\[
h_t^c = f_c(h_{t-1}^c, \tilde{x}_t)
\]

(10)

where \(f_c \) is the LSTM unit, \(h_t^c \) can be calculated according to Eq. (2) - (6), \(h_{-1} \) needs to be replaced by \(h_{-1}^c \), \(x_t \) by \(\tilde{x}_t \).

(2) Second phase attention module

This attention module also belongs to the spatial attention mechanism, which is used to obtain the spatial correlation between the driving and the target sequences. The output \(\tilde{x}_t \) of the first phase attention mechanism is connected with the target sequences \(y_t \) at the same moment to obtain \(z_t^k = [\tilde{x}_t^k; y_t^k] \in \mathbb{R}^{r \times T} \), which is employed as an input to the second phase attention mechanism. The second phase attention weights are calculated as follows:

\[
s_t^k = v_t^k \tanh(W_s[h_{t-1}^c; C_{t-1}^c] + U_s[\tilde{x}_t; y_t] + b_s), 1 \leq k \leq n
\]

(11)

\[
\beta_t^k = \frac{\exp(s_t^k)}{\sum_{j=1}^{n} \exp(s_j^k)}
\]

(12)

where \(h_{t-1}^c \in \mathbb{R}^n \) and \(C_{t-1}^c \in \mathbb{R}^n \) are the previous hidden state and cell state of LSTM in the second phase attention module of the encoder, respectively, and \(p \) is the size of the hidden state of this attention module. \(s_t^k, \beta_t^k \) are the attention score and weight of the matrix \(z_t \) at time \(t \), respectively. \(W_s \in \mathbb{R}^{r \times 2p}, U_s \in \mathbb{R}^{r \times r} \) and \(v_s, b_s \in \mathbb{R}^r \) are the trainable parameters. The output of the second phase attention mechanism is:

\[
\tilde{z}_t = (\beta_t^1 z_t^1, \beta_t^2 z_t^2, ..., \beta_t^p z_t^{p+1})^T
\]

(13)

Then, the hidden state \(h_t^c \) is updated as:

\[
h_t^c = f_c(h_{t-1}^c, \tilde{z}_t)
\]

(14)

where \(f_c \) is the LSTM unit, \(h_t^c \) can be calculated according to Eq. (2) - (6), \(h_{-1} \) needs to be replaced by \(h_{-1}^c \), \(x_t \) by \(\tilde{z}_t \).

2.2.2. Decoder with temporal attention

The decoder also adopts LSTM neurons, which use abstract features of the original input sequence obtained from the encoder to predict the output \(\hat{y}_{t+1} \). A temporal attention mechanism is employed to improve the decoder’s response to the long-time sequence encoding vectors by adaptively selecting the hidden states most relevant to the predicted target values. The specific temporal attention mechanism is calculated as the following:

\[
l_t^i = v^i_d \tanh(W_d[d_{t-1}; c_{t-1}^o] + U_d h_t^c + b_d), 1 \leq i \leq T
\]

(15)

\[
g_t^i = \frac{\exp(l_t^i)}{\sum_{j=1}^{T} \exp(l_j^i)}
\]

(16)

where \(d_{t-1} \in \mathbb{R}^p \) and \(c_{t-1}^o \in \mathbb{R}^p \) are the previous hidden state and cell state of LSTM in the decoder, respectively, and \(q \) is the size of the hidden state in the temporal attention module. \(h_t^c \) is the hidden state of the \(t \)th encoder of the second phase attention module. \(l_t^i, g_t^i \) are the attention score and weight of the hidden state \(h_t^c \), respectively. The attention weight \(g_t^i \) indicates the significance of the \(t \)th encoder hidden state for the prediction. \(V_d, b_d \in \mathbb{R}^q, W_d \in \mathbb{R}^{q \times 2q} \) and \(U_d \in \mathbb{R}^{q \times q} \) are the trainable parameters. Summing over different encoder-weighted hidden states produces:

\[
c_t^n = \sum_{i=1}^{T} g_t^n h_t^c\]

(17)

Where \(g_t^n h_t^c \) denotes the weighted hidden state. \(c_t^n \) is the context vector that represents the fusion information of hidden states of the encoder. And \(c_t^n \) is different at each time step. Combining \(c_t^n \) with the target series \(Y \) gives:

\[
\hat{y}_t = \tilde{w}^T [y_t; c_t^n] + \tilde{b}
\]

(18)

where \(\tilde{w} \in \mathbb{R}^{r \times 1} \) and \(\tilde{b} \in \mathbb{R} \) are the parameters that map the concatenation to the decoder input. \(\hat{y}_{t-1} \) is employed to update the hidden state \(d_t \) of the decoder, as follows:

\[
d_t = f_d(d_{t-1}, \hat{y}_{t-1})
\]

(19)

where \(f_d \) is the LSTM cell, \(d_t \) can be calculated according to Eq. (2) - (6), \(h_{-1} \) needs to be replaced by \(d_{-1}, x_t \) by \(\hat{y}_{t-1} \).

Finally, the context vector \(c_t^n \) is connected to the decoder hidden state \(d_t \) as the new hidden state, and the linear function generates the prediction result:

\[
\hat{y}_{t+1} = v_t^y (w_y [d_t; c_t^n] + b_y) + b'_y
\]

(20)

The parameters \(w_y \in \mathbb{R}^{q \times (q+p)} \) and \(b_y \in \mathbb{R} \) map the concatenation to the size of the decoder hidden state, and the parameters \(v_y \in \mathbb{R}^r \) and \(b_y \) are the weights and deviations of the linear function. The complete structure of the DSTP-ED model is depicted in Fig. 4. The parameters for training this encoder-decoder network are the learning process of the normal historical behavior. The decoder eventually predicts the next moment state of the target variable based on the relevant variables’ historical and current information, as well as the historical data of the target variable.
2.3. Training procedure

The proposed DSTP-ED model is smooth and differentiable, so the standard backpropagation algorithm is adopted to train the model. The learning rate is a significant hyperparameter to be tuned while training the model. A novel cyclic learning rate is used in the training process, allowing the learning rate to vary cyclically between reasonable boundary values instead of decreasing monotonically [29]. Training with a cyclic learning rate rather than a constant value improves training accuracy without tuning and with fewer iterations. The batch size is set as 128. The minibatch stochastic gradient descent (SGD) [16] is employed to minimize the mean squared error (MSE) between the true value of the target variable \(y_t \) and the predicted value \(\hat{y}_t \):

\[
\theta(y_t, \hat{y}_t) = \frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2
\]

where \(n \) is the sample size.

2.4. Residuals-based monitoring method

The normal historical operational data from BAS are utilized for training the DSTP-ED model. When the health status of BAS changes, it will lead to an increase in the prediction error of the target variable, so such patterns can be identified by the residuals between the predicted and actual values, which is important for the prevention of BAS failures. The EWMA control chart is employed to draw criteria for detecting BAS anomalies to eliminate the influence of operating conditions, sensor noise, etc., on the fault prediction results. The EWMA assigns different weights to the residual values at different moments to obtain the influence of the data at different moments on the current state. The closer the data are to the current moment, the larger the weighting factor. In addition, the EWMA is sensitive to small offsets and can quickly detect anomalies.

The statistic \(z(t) \) of the EWMA control chart is expressed as:

\[
z(t) = \lambda \Delta y_t + (1 - \lambda) z(t - 1) \tag{22}
\]

where \(\Delta y_t \) is the predicted residual of the DSTP-ED model at time \(t \). \(\lambda \in (0,1) \) is the smoothing parameter. The smaller the \(\lambda \), the smaller the bias can be detected, \(\lambda \) is generally set at 0.2-0.3 [20].

The initial value and standard deviation of the variable \(z(t) \) are:

\[
z_0 = \mu_0, \quad \delta z(t) = \delta \frac{\lambda}{(2-\lambda)N} [1 - (1 - \lambda)^{2t}] \tag{23}
\]

where \(\mu_0, \delta \) are the mean and standard deviation of the normal data prediction residuals, respectively, and \(N \) is the sample size. When \(z(t) \) exceeds the control limits, an anomaly is considered to occur. The central and upper/lower control limits (CL, UCL, LCL) of the EWMA control chart are shown below:

\[
CL(t) = \mu_0 \tag{24}
\]

\[
UCL(t) = \mu_0 + L\delta \frac{\lambda}{(2-\lambda)N} [1 - (1 - \lambda)^{2t}] \tag{25}
\]

where \(L \) determines the control limit range, which is usually set...
to 3 [20]. The anomaly detection effectiveness of the EWMA control chart depends on the standard deviation δ, L, and λ. If the process mean is not drifting too fast, EWMA with suitable λ would be a good ahead predictor.

2.5 Fault prediction process

The complete fault prediction process includes three modules: data preparation, prediction model training and online warning, as shown in Fig. 5.

Data preparation

Health data from BAS are collected and preprocessed in the data preparation phase, mainly involving missing value additions (due to different sensor sampling frequencies). Based on systematic principles and engineering experience, the modeling variables are screened and features are extracted to improve modeling efficiency. Since different parameters of BAS have different magnitudes, a normalization algorithm is used to transform the eigenvalues of BAS to between 0 and 1 to eliminate the effect of magnitudes. Finally, the processed data are divided into training and validation sets for input into the prediction model training module.

Prediction model training

For the model training phase, the DSTP-ED model consists of a spatial attention module, an encoder, a temporal attention module and a decoder. After the training data are input to the model, the model parameters are initialized, the model is trained using the backward propagation algorithm, and the loss function of the validation set is calculated. When the training times reach the set Epoch, judge whether the loss function of the validation set reaches the accuracy requirement, if it does, the training is completed, otherwise, the training continues.

Online warning

In the online warning stage, the test set data (new run data) are processed and input to the trained DSTP-ED model to obtain the prediction error of target variables. The EWMA control chart is employed to determine whether the prediction error exceeds the control limit and to alert flights that exceed the limit. Thus, BAS abnormalities are detected in advance and fault prediction is realized.

3. Application examples and result Analysis

3.1 Case study description

This study selects the BAS of the Airbus 320 series aircraft as an application case. A schematic of the BAS is depicted in Fig. 6.

Fig. 6. Schematic drawing of the BAS.
Note: No. 1 and No. 2 are pressure sensors, and No. 3 is a temperature sensor. No. 1 sensor monitors the upstream of the PRV (pressure downstream of the HPV) and determines the HPV operating status. No. 2 sensor monitors the pressure downstream of the PRV. No. 3 monitors the temperature downstream of the PCE. HP stands for high pressure and IP stands for intermediate pressure.

For pressure regulation, the control components include the high-pressure bleed valve (HPV), intermediate-pressure bleed check valve (IPCV), over-pressure valve (OPV), and pressure regulator bleed valve (PRV) commanded by the temperature limitation thermostat (TLT). For temperature regulation, the control components include the pre-cooler exchanger (PCE), and fan air valve (FAV) commanded by the temperature control thermostat (TCT). The high temperature and pressure air from the engine compressor is reduced to a constant pressure of about 40 PSI and a constant temperature of about 200 degrees Celsius by the pressure and temperature regulator in the BAS, which is sent to the air intake manifold to provide to the downstream customers. The BAS is controlled by two bleed monitoring computers (BMCs) and the related information is sent to the central fault display system.

3.2. Data description and preprocessing

The experimental data are the real monitoring data (QAR data) generated during the operation of an Airbus A320 series aircraft. QAR is an airborne flight data recorder that can continuously record up to 600 hours of raw flight information and collect hundreds or even thousands of different flight parameters at the same time. The data recorded by QAR covers aircraft flight parameters (altitude, speed, acceleration, etc.), environmental parameters (temperature, air pressure, wind speed, etc.) and system performance parameters, etc. The number of QAR parameters exceeds three thousand. QAR data is the most comprehensive data recorded on aircraft today and has been widely used for flight quality analysis and aircraft equipment condition monitoring.

Each aircraft has two identical BASs, namely, the left BAS and the right BAS. The data sampling frequency for a single flight is 1 Hz, and the sampling time is the entire flight cycle. Historical data cover all operational states of BASs between November 2018 and October 2019, and its maintenance records are presented in Table 1.

<table>
<thead>
<tr>
<th>Aircraft type</th>
<th>Maintenance records</th>
<th>Period</th>
<th>Total number of flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left BAS A320-214</td>
<td>July 8th, 2019</td>
<td>Replacement of TCT</td>
<td>November 1st, 2018, to October 31st, 2019</td>
</tr>
<tr>
<td>Right BAS</td>
<td>No records</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The maintenance record excludes general maintenance work, but only refers to the maintenance record after the failure.

Since QAR data are measured by sensors of airborne systems and the sampling frequency varies from sensor to sensor, some missing values exist in some parameters of the data, which need to be supplemented. According to the QAR data characteristics of BAS, this study uses linear interpolation to complement the data:

$$L(t) = y_u + \frac{y_v - y_u}{v - u} (t - u) \quad (26)$$

where t is the point of missing data, u and v are the points without missing data before and after t, respectively; y_u and y_v are the values of u and v points; $L(t)$ is the result after interpolation.

3.3. Modeling variable selection

The main characteristic variables of BAS include bleed air pressure and bleed air temperature, and the influence brought by the external environment should also be considered. Based on the system operation mechanism and engineering experience, the following parameters are chosen as the feature variables of BAS, as shown in Table 2.

Table 2. List of BAS feature variables.

<table>
<thead>
<tr>
<th>Variable attributes</th>
<th>Parameters</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related variables</td>
<td>ALT, N1, N2, SAT, TAT, MACH</td>
<td>The flying altitude of the aircraft, Engine low-pressure rotor speed, Engine high-pressure rotor speed, Static air temperature, Total air temperature, Flight Mach number</td>
<td>ft, % rpm, % rpm, °C, °C, /</td>
</tr>
<tr>
<td>Target variables</td>
<td>BAT, BAP</td>
<td>Bleed air temperature, Bleed air pressure</td>
<td>psi, °C</td>
</tr>
</tbody>
</table>

3.4. Feature extraction

Fig. 7 shows the variation of two feature variables, BAT and BAP, over time for a single flight. BAT and BAP have different variation characteristics at different flight phases (other
parameters are similar). Therefore, BAS needs to be modeled in stages to improve the predictive performance of the DSTP-ED model. The flight phases are divided into four phases: ground, takeoff, cruise, and descent, depending on the flight altitude, engine speed, and Mach number. In this paper, QAR data are selected when the aircraft is on the cruise and flying at an altitude higher than 20,000 feet, the anti-icing system is off, and the left and right air conditioning components are on.

3.5. DSTP-ED model validation

Since the difference in the order of magnitude of the original data will introduce errors to the prediction model, which will easily cause the neurons to saturate and decrease network expression, the eigenvariables are normalized and reduced to [0,1]. The normalized equation is:

$$\hat{x} = \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}$$ \hspace{1cm} (27)

where x is the original value of the sample data, x_{max} and x_{min} are the maximum and minimum values of the sample data, respectively, and \hat{x} is the value after normalization.

The normalized eigenvalue data of all flight cruise phases in Table 1 are classified as the training set, validation set, and test set. The healthy data from November 2018 to June 2019 are used for the training set with 1038 flights; the data from September to October 2019 are taken as the validation set with 268 flights; the data containing faults from July to August 2019 are utilized for the test set with 279 flights.

There are four key parameters in the DSTP-ED model, including the time window size (T), the size of the hidden state of the encoder (m and p), and the size of the hidden state of the decoder (q). To simplify the complexity of the model, let $m = p = q \in \{16, 32, 64, 128, 256\}$, $T \in \{10, 20, \ldots, 100\}$ and use grid search to find the parameters with the best model performance on the validation set. When $m = p = q$ is constant, the prediction results of BAP show the best performance at $T = 50$, and the prediction results of BAT perform best at $T = 40$, which is illustrated in Fig. 9. It can be seen that the model performance is worse when the time window is too long or too short. BAP and BAT are best predicted when T is fixed at $m = p = q = 16$, as described in Fig. 10.
Experiments are performed on data from the right BA of the test set and compared with four other baseline algorithms (ARIMA, SVR, LSTM, ED) to verify the validity of the DSTP-ED model. ARIMA, in determining the model parameters, first requires differencing the non-stationary time series and converting them to a stationary series. Then, the autocorrelation and partial autocorrelation functions of the differenced series are analyzed to determine the order of autoregression and moving average [2]. The SVR, LSTM, and ED models use a grid search algorithm to determine the model parameters. The parameters mainly adjusted for SVR are "Penalty factor" and "Kernel parameter"; the parameters mainly adjusted for LSTM are "Number of neurons" and "Time window size"; the parameters mainly adjusted for ED are "Size of the hidden state of the encoder/decoder" and "Time window size". The parameter settings of each model are shown in Table 3 -Table 7.

Table 3. ARIMA model parameter settings.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>BAP</th>
<th>BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoregressive order</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Difference order</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Moving average order</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4. SVR model parameter settings.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>BAP</th>
<th>BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penalty factor</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Insensitive loss factor</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kernel function</td>
<td>Radial basis function</td>
<td>Radial basis function</td>
</tr>
<tr>
<td>Kernel parameter</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5. LSTM model parameter settings.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>BAP</th>
<th>BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM layers</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Number of neurons</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Time window size</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Epochs</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Batch size</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Loss function</td>
<td>MSE</td>
<td>MSE</td>
</tr>
<tr>
<td>Optimization algorithm</td>
<td>Adaptive moment estimation</td>
<td>Adaptive moment estimation</td>
</tr>
</tbody>
</table>

Table 6. ED model parameter settings.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>BAP</th>
<th>BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of the hidden state of the encoder</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Size of the hidden state of the decoder</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Time window size</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Epochs</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Batch size</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Loss function</td>
<td>MSE</td>
<td>MSE</td>
</tr>
<tr>
<td>Optimization algorithm</td>
<td>Adaptive moment estimation</td>
<td>Adaptive moment estimation</td>
</tr>
</tbody>
</table>

Table 7. DSTP-ED model parameter settings.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>BAP</th>
<th>BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of the hidden state of the encoder</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Size of the hidden state of the decoder</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Time window size</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Base learning rate</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Maximum learning rate</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Epochs</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>Batch size</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Loss function</td>
<td>MSE</td>
<td>MSE</td>
</tr>
<tr>
<td>Optimization algorithm</td>
<td>SGD</td>
<td>SGD</td>
</tr>
</tbody>
</table>

Note: A single-layer LSTM is used for encoding and decoding the DSTP-ED model.

The prediction results and prediction errors of the DSTP-ED and the four baseline methods are shown in Fig. 11 and Błąd! Nie można odnaleźć źródła odwołania., respectively. As Fig. 11 shows, the predicted values of each model have the same trend as the actual values and fluctuate up and down around the actual values. Although each model has a good prediction effect,
this does not reflect the real performance of the model. According to Błąd! Nie można odnaleźć źródła odwołania., it can be seen that the prediction errors of each model are distributed around 0. Among them, ARIMA has the largest prediction error range, SVR and LSTM are the second, and ED and DSTP-ED have the smallest prediction error range. The above analysis indicates that ARIMA has a relatively poor prediction effect, SVR and LSTM have an intermediate prediction effect, and ED and DSTP-ED have a better prediction effect.

![Prediction results of BAP](image1)

![Prediction results of BAT](image2)

Fig. 11. The prediction results of different methods.

Fig. 12. The prediction errors of different methods.

To further compare the performance of each model, the root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), as defined in Eqs. (28) - (30), are used as evaluation metrics for the models. The prediction performances of different methods are compared in Table 8.

\[
RMSE = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (\hat{y}_t - y_t)^2} \quad (28)
\]

\[
MAE = \frac{1}{N} \sum_{t=1}^{N} |\hat{y}_t - y_t| \quad (29)
\]

\[
MAPE = \frac{1}{N} \sum_{t=1}^{N} \left| \frac{\hat{y}_t - y_t}{y_t} \right| \times 100\% \quad (30)
\]

where \(y_t\) is the true value of the target variable and \(\hat{y}_t\) is the predicted value at time \(t\).

Table 8. Prediction performance using different methods of BAP and BAT.

<table>
<thead>
<tr>
<th>Methods</th>
<th>BAP</th>
<th>BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE</td>
<td>MAPE</td>
</tr>
<tr>
<td>ARIMA</td>
<td>1.15</td>
<td>2.74%</td>
</tr>
<tr>
<td>SVR</td>
<td>0.85</td>
<td>2.03%</td>
</tr>
<tr>
<td>LSTM</td>
<td>0.69</td>
<td>1.66%</td>
</tr>
</tbody>
</table>
Table 8 indicates that the DSTP-ED outperforms the other models with the optimal RMSE, MAE, and MAPE. Specifically, the ARIMA model performs much worse than any other model. This is mainly because the ARIMA model only focuses only on the target variable and ignores other variables, which does not apply to multivariate forecasting. The SVR model with the kernel-based approach focuses more on the spatial correlation between variables, while LSTM and ED models focus more on the time dependence, so the LSTM-based approach performs better. The ED model has a slightly better prediction effect than the LSTM model, but the improvement of the model is limited because the length of the context vector of the ED model is fixed and cannot handle too long time series. The DSTP-ED model integrates the dual-stage attention mechanisms in space and time and achieves better model performance compared with the ED model. This is because the employed spatial and temporal attention mechanisms can dynamically adjust the influence weights of the relevant variables on the target variables and properly capture the long time dependencies of the time series. The comparative analysis shows that the DSTP-ED model is more effective than other classical methods for predicting BAS data.

3.6. Monitoring results

The EWMA control chart is used to detect anomalies of the BAP and BAT prediction errors, which are measured by the relative error (RE). The expression of \(\Delta y_t \) in Eq. (22) is given by:

\[
\Delta y_t = \text{RE} = \frac{|\hat{y}_t - y_t|}{y_t} \times 100\%
\]

where \(y_t \) is the true value and \(\hat{y}_t \) is the predicted value at time \(t \).

By comparing the RE of the DSTP-ED model for healthy BAS and faulty BAS, we can find that the RE of faulty BAS drifts before failure occurs, and illustrates such a pattern. In \(\text{Błąd! Nie można odnaleźć źródła odwolania.} \) of abnormal data gradually deviates from the normal range, reaches a peak, and then returns to the normal range after maintenance, so the RE of the DSTP-ED model can be used to identify the potential BAS faults.

![Graphs showing REs of BAP and BAT](image-url)

Fig. 13. Comparison of REs of healthy BAS and BAS with faulty data.

The RE of BAP and BAT in the test set data are monitored separately by EWMA control charts, and the monitoring results are illustrated.
alarms. As seen in Bląd! Nie można odnaleźć źródła odwołania. (a) and (b), flights 152 to 167 and flights 77 to 88 exceed the control limits. According to the maintenance records in Table 1, it can be seen that the maintenance was performed on July 8th and August 4th and the TCT and PRV were replaced, respectively. The maintenance on July 8th corresponds to the end of the 88th flight and the record on August 4th corresponds to the end of the 167th flight. Since operators can dispatch aircraft with faulty BAS as specified in the Minimum Equipment List, there is the possibility that the crew reported the corresponding failure before the maintenance was recorded.

We have reviewed the crew fault reports and the current system warnings and found that a BAS alert appeared in the warning system on flight 167 and a BAS anomaly was reported by the crew on flight 86. Therefore, combining the maintenance records, crew fault reports, and the current warning system, it can be concluded that the left BAS failures are all successfully identified a dozen flights (about two days) in advance. Additionally, according to Fig. 14, it can also be concluded that the repair on July 8th was caused by a BAT anomaly and the August 4th repair was due to a BAP anomaly, which can help the maintenance personnel locate the defective parts more quickly.

3.7. Comparison and discussion

To validate the effectiveness of the EWMA control chart for BAS anomaly detection, two other statistical methods, mean control chart (Xbar) and box plot, are selected for comparison. Xbar is the most common and basic control chart used to analyze the trend of changes in the center of the production process by determining whether the average value of the production process is in the required state of control. The box plot is a statistical method that shows the dispersion of data and is mainly used to reflect the characteristics of the original data distribution. It detects the data by five points: median, upper quartile, lower quartile, upper limit, and lower limit, and labels the information that exceeds the limits. The results of BAS anomaly detection for the Xbar control chart and box plot are given in Bląd! Nie można odnaleźć źródła odwołania. and Bląd! Nie można odnaleźć źródła odwołania., respectively.
In Fig. 15. Xbar control chart of BAS.

(a) Xbar control chart of BAP (left BAS).

(b) Xbar control chart of BAT (left BAS).

(c) Xbar control chart of BAP (right BAS).

(d) Xbar control chart of BAT (right BAS).

In Fig. 16. Box plot of BAS.

(a) Box plot of BAP (left BAS).

(b) Box plot of BAT (left BAS).

(c) Box plot of BAP (right BAS).

(d) Box plot of BAT (right BAS).
flights 155-167 exceed the control limits. The Xbar control chart can detect BAS anomalies 12 flights earlier, referring to the analysis in Section 3.6. Compared to the EWMA control chart, Xbar's test results lagged by three flights. In Błąd! Nie można odnaleźć źródła odwołania. (b), flights 30, 79-88 exceed the control limits. The monitoring effect of Xbar lags behind EWMA by two flights, and there is a false alarm. As can be seen in Błąd! Nie można odnaleźć źródła odwołania. (a), 154-167 flight anomalies are detected, so the detection effect of the box plot is two flights later than EWMA and one flight earlier than Xbar. In Błąd! Nie można odnaleźć źródła odwołania. (b), flights 30, 50, 78-88 are detected as abnormal. The box plot can detect anomalies one flight earlier than Xbar, but it generates two false alarms. In Błąd! Nie można odnaleźć źródła odwołania. (c), no abnormal data are detected, and in Błąd! Nie można odnaleźć źródła odwołania. (d), two flights are detected as abnormal. However, the data in Błąd! Nie można odnaleźć źródła odwołania. (c) and (d) are all healthy, so the box plot produces two false detections. In comparison to the EWMA and Xbar control charts, the box plot has a high false alarm rate. The monitoring results of the three statistical methods are summarized in Table 9.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Methods</th>
<th>Alerts</th>
<th>False alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left BAS</td>
<td>Box plot</td>
<td>Flights 154-167</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Xbar</td>
<td>Flights 155-167</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>EWMA</td>
<td>Flights 152-167</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Box plot</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Right BAS</td>
<td>Xbar</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>EWMA</td>
<td>None</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 9. Monitoring results of different methods.

Based on the above analysis and Table 9, it is clear that the EWMA control chart has the best monitoring effect. Although all three monitoring methods detect faults in advance, the Xbar and box plot generate warning signals later than EWMA, and Xbar and box plot generate some error warnings. False alarms for Xbar and box plot may be caused by the operating environment or sensor noise, while EWMA does a good job of eliminating this effect and reducing false alarms. The comparison results indicate that the EWMA control chart is more advantageous in terms of warning time and accuracy and is more suitable to be used as a criterion for fault prediction. In conclusion, the proposed failure prediction method can successfully identify BAS faults before the failure occurrence and does not cause false alarms. Such early detection provides aircraft operators with sufficient time to take some measures. If the abnormal BAS can be maintained in time, the risk event can be prevented to ensure the safety of aircraft operation. The proposed method can also reduce some inefficient routine maintenance of BAS, reduce operating costs and improve operating efficiency.

Although the computational results support the effectiveness of the proposed method in predicting BAS failures, there are still some limitations in practical applications. Since the BAS operating state can be disturbed by the external environment and usage load, DSTP-ED prediction accuracy may be degraded, affecting fault warning effectiveness. However, the system state prediction model is not designed for real-time data flow, so the DSTP-ED model cannot update data online, which makes it less practical. Therefore, a prediction model with an online learning function can be considered in the future.

4. Conclusion

This paper proposed a BAS fault prediction method based on the DSTP-ED prediction model and EWMA control chart, which consists of two parts: offline modeling and online warning. In the offline modeling part, DSTP-ED was utilized to build an accurate state prediction model for BAS. In the online warning part, the prediction errors of BAS operation data were tracked by EWMA control charts to identify potential failures in advance effectively. The main conclusions were as follows:

1. Taking the BAS of the Airbus 320 series as an example, real QAR data were selected to verify the prediction accuracy of the DSTP-ED model and the detection effect of the EWMA control chart. A total of eight modeling parameters were selected, with BAP and BAT as the key parameters reflecting the health status of BAS and the remaining parameters as auxiliary variables.

2. The DSTP-ED model introduced the dual-stage two-phase attention mechanisms, improving the accuracy of the prediction results. The attention mechanisms could better capture the spatiotemporal relationships...
between the driving and the target sequences, effectively solving the problems that the traditional model treated the input features with equal weight and the inability to handle long-time sequences. In the comparative analysis with other prediction models, the DSTP-ED obtained more accurate predictions with the lowest MAE, MAPE, and RMSE. Therefore, it was more suitable for predicting the state of BAS.

(3) The EWMA control chart was constructed based on the prediction deviation of the DSTP-ED model. The statistical process control results showed that the BAT and BAP prediction residuals of the healthy BAS were within the monitoring criteria, and impending BAS failures could be detected by abnormal BAT and BAP parameters about two days in advance. Compared with two classical statistical methods, the Xbar control chart and box plot, the EWMA control chart detected BAS abnormalities earlier, with fewer false alarms, and could effectively monitor the status of BAS online. The computational results supported the effectiveness of the proposed method in predicting BAS failures.

(4) The following work will validate the proposed failure prediction method on additional aircraft operational data and extend it to other systems (e.g., air conditioning systems, auxiliary power units, etc.) to reduce unexpected flight interruptions and improve operational safety and efficiency. In addition, the fault prediction model with online adaptive function needs further research.

Nomenclature

Symbols

\(c_t\) cell state of LSTM

\(c_{n_t}\) the context vector

\(c_t^p, d_t\) the cell state and the hidden state of LSTM in the decoder, respectively

\(e_t^k, \alpha_t^k\) the attention score and weight of the \(k\)th driving sequence at time \(t\), respectively

\(f_t\) forget gate

\(f_{c_t}, f_{s_t}, f_{d_t}\) LSTM unit

\(h_t\) hidden state

\(h_t^l\) the hidden state of LSTM (first phase attention module)

\(h_t^s\) the hidden state of LSTM (second phase attention module)

\(i_t\) input gate

\(l_t^l, l_t^s\) the temporal attention score and weight of the hidden state \(h_t^l\), respectively

\(m\) state (first phase attention module)

\(n\) state (second phase attention module)

\(o_t\) output gate

\(p\) the size of the hidden state (second phase attention module)

\(q\) the size of the hidden state (temporal attention module)

\(s_t^k, b_t^k\) the attention score and weight of the matrix \(z^k\) at time \(t\), respectively

\(v_{y_t}, b_{y_t}\) the weights and deviations of the linear function the parameters that map the concatenation \([d_t; c_{n_t}]\) to the size of the decoder's hidden state

\(w_{y_t}, b_{y_t}\) the parameters that map the concatenation \([y_t; c_{n_t}]\) to the decoder input

\(\tilde{y}_t\) the input of the decoder

\(\hat{y}_t\) the predicted value of the target variable for the next moment

\(\Delta y_t\) the predicted residual of the DSTP-ED model at time \(t\)

\(y^x\) the corresponding target sequence of \(x^x\)

\(\hat{x}_t\) \(x_t\) with first-phase attention weights

\(X\) a matrix of \(n\) relevant variables within the time window \(T\)

\(z_t\) the concatenation vector of \(x^x\) and \(y^x\) (the input of second phase attention)

\(z_t^l\) the concatenation vector of \(x_t^l\) and \(y_t\) with second-phase attention weights (the output of second-phase attention)

\(\text{UCL}\) upper control limit

\(\text{LCL}\) lower Control Limit

\(\text{CL}\) central limit

\(F(*)\) nonlinear mapping function

\(\text{L}\) the parameter that determines the control limit range

\(\text{LR(t)}\) the result after interpolation

\(\text{N}\) the size of the training data

\(\text{T}\) the time window size

\(\text{W}_c, W_f, W_i, W_o\) a vector of \(n\) other network parameters

\(W_c, U_c, V_c, b_c\) relevant variables at moment \(t\)
the driving series of the kth variable within the time window T (the input of first phase attention)

the weighted driving series of the kth variable within the time window T (the output of first phase attention)

the value of the kth variable at moment t

μ, δ

the mean and standard deviation of the normal data

λ

smoothing parameter

$\theta(y_t, \tilde{y}_t)$

the mean square error of predicted and true values

$[;]$

concatenation operation

σ

sigmoid function

x^{k}

λ

the original value of the sample data

the maximum and minimum values of the sample data

x^*_t

the true value of the target variable at moment t

x_t

the value after normalization

$x_{\text{train}}, x_{\text{test}}$

prediction residuals, respectively

ACARS

aircraft communications addressing and reporting system

ALT

flying altitude of the aircraft

ARIMA

autoregressive integrated moving average

BAP

bleed air pressure

BAS

bleed air system

BAT

bleed air temperature

BMC

bleed monitoring computer

DSTP-ED

dual-stage two-phase attention-based encoder-decoder

ED

encoder-decoder

EWMA

exponentially weighted moving average

FAV

fan air valve

HP

high pressure

HPV

high-pressure bleed valve

IP

Intermediate pressure

IPCV

Intermediate-pressure bleed check valve

LSTM

long short-term memory

MACH

flight Mach number

MAE

mean absolute error

MAES

mean absolute percentage error

MSE

mean squared error

N1

engine low-pressure rotor speed

N2

engine high-pressure rotor speed

OPV

Over-pressure valve

PRV

pressure regulator bleed valve

PCE

pre-cooler exchanger

QAR

quick access recorder

RE

relative error

RMSE

root mean squared error

RRN

recurrent neural network

SAT

static air temperature

SVR

support vector regression

SGD

stochastic gradient descent

TAT

total air temperature

TLT

temperature limitation thermostat

Xbar

mean control chart

Acknowledgments

This work was supported by the Joint Fund of the National Natural Science Foundation of China and Civil Aviation Administration of China (U2033202, U1333119); and the National Natural Science Foundation of China (No. 52172387).

Reference

