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Highlights  Abstract  

▪ Reliability modeling with stochastic impulsive 

differential equations (SIDE) is proposed. 

▪ The model divides dynamic process of 

software fault into a continuous and a skipped 

part. 

▪ The proposed model with SIDE is more in line 

with reality and has a better fitting effect. 

 In reality, sudden updates of software, attacks of hackers, influence of 

the Internet market, etc. can cause a surge in the number of open-source 

software (OSS) faults (this moment is the time when impulse occurs), 

which results in impulsive phenomenon. For the existing software 

reliability models, dynamic process of software fault is considered to be 

continuous when assessing reliability, but continuity of the process can 

be disrupted with appearance of random impulses. Thus, to more 

accurately assess software reliability, we proposed an OSS reliability 

model with SIDE. In the model, dynamic process of software fault is 

divided into a continuous and a skipped part, described the continuous 

part of the process with SDE, and described destruction of the continuity 

caused by unpredictable random events with random impulses. Finally, 

the proposed model is verified with two datasets from real OSS project, 

and the results show that the proposed model is more in line with reality 

and has better fitting effect than the existing models. 
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1. Introduction 

In today’s information age, with the increasing use of computers, 

the consequences of computer faults are becoming increasingly 

serious. Once a fault occurs, it might lead to major losses. Thus, 

the quality of the software needs to be improved urgently. 

Software reliability as an important evaluation attribute of 

software quality has been widely studied. Software reliability 

modeling analysis is an effective means to improve software 

reliability. It is well known that completeness, accuracy, and 

consistency of reliability assessment are important measurable 

criteria in reliability modeling. However, a novel and easy way 

has been chosen to describe the metric of reliability assessment 

in these books [16, 17], that is a Hausdorff metric was chosen 

to evaluate the test data which are fitted to the sigmoid models 

proposed. In the past, a number of classical traditional software 

reliability growth models [6, 15, 27, 29, 30] and imperfect 

debugging models [8, 19, 24, 25] have been proposed and 

widely applied. In these models, the fault detection rate is 

described by power function, S-type function or exponential 
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function. However, the testing efforts spent in the actual testing 

process, the skill level of testers and various testing tools will 

affect the fault and reliability of the software in an unpredictable 

way, resulting in a certain random impact on the detection rate 

of each fault, which may produce irregular fluctuations. Aim at 

the influence brought by these uncertain factors, some scholars 

solve the problem by adding noise term into b(t) [3, 4, 14, 23, 

26]; Other scholars build a data-driven reliability model [5, 13, 

22] based on the data itself. This kind of model can interpret and 

analyze the fault data very well, but it can’t establish a specific 

mathematical model analytic formula, which makes it difficult 

for managers to adjust and analyze the software fault later.  

Furthermore, when the influence fluctuation is too large, it will 

have a great impact on the average behavior of the software fault 

detection process in the test stage. Therefore, how to build an 

open-source software (OSS) reliability model in line with 

reality is a worthy study. To solve the above problems, a 

software reliability model with stochastic impulsive differential 

equations is proposed. That is to say, combined with the actual 

analysis, when the random impact of major damage on product 

reliability in the process of software testing is encountered, and 

then the dynamic process of software fault can be divided into 

continuous part and skip part. Stochastic differential equations 

are used to describe the continuous part of the fault process, and 

stochastic impulse are used to describe the damage of the 

continuity caused by unpredictable random major events. The 

software reliability model with SIDE is considered to have 

better fitting effect than the traditional model and the software 

reliability models with stochastic differential equations [7]. 

The remainder of this paper has been organized as follows: The 

preparatory knowledge is presented in Section 2. The theoretical 

derivation of the proposed SRGM with stochastic impulsive 

differential equations is given in Section 3. The estimation of 

the impulsive times and the estimation of the model parameters 

is described in Section 4. The numerical validation of the 

proposed method performed by using two real fault datasets of 

Firefox and R is presented in Section 5. The study is 

summarized in Section 6, along with a discussion of the 

proposed model. 

 

 

 

2. Preparatory Knowledge 

2.1 Brownian Motion 

I. Brownian motion 

A stochastic process {𝐵(𝑡), 𝑡 ≥ 0} called a Wiener process 

(or Brownian motion), if 

(i) 𝐵(0) = 0, 

(ii) {𝐵(𝑡), 𝑡 ≥ 0} is a process with stationary independent 

increments, and 

(iii) ∀𝑡 > 0, 𝐵(𝑡)~𝑁(0, 𝜎2𝑡). 

It should be noted that when 𝜎 = 1, {𝐵(𝑡), 𝑡 ≥ 0} is called 

the standard Brownian motion. The condition in (i) is not 

necessary. If 𝐵(0) = 𝑥 , then {𝐵(𝑡), 𝑡 ≥ 0}  is called the 

Brownian motion starting with 𝑥 and is denoted as 𝐵𝑥(𝑡), and 

𝐵𝑥(𝑡)~𝑁(𝑥, 𝜎2). 

Such processes are often used for describing random noise. 

II. Geometric Brownian Motion 

If 

𝑋(𝑡) = 𝑒𝑠𝐵(𝑡), 𝑡 ≥ 0. 

Then the stochastic process {𝑋(𝑡), 𝑡 ≥ 0}  is called the 

geometric Brownian motion. 

i. Matrix function of the Brownian motion 

The matrix function of 𝐵(𝑡)~𝑁(0, 𝑡):  

𝑀𝐵(𝑡) = 𝐸[𝑒
𝑠𝐵(𝑡)] = 𝑒

𝑠2𝑡

2 . 

ii. Mean function and variance function 

The mean function and the variance function of the geometric 

Brownian motion can be calculated by the moment matrix 

function of the Brownian motion as follows: 

𝐸[𝑋(𝑡)] = 𝐸[𝑒𝑠𝐵(𝑡)] = 𝑒
𝑠2𝑡

2 ,

var[𝑋(𝑡)] = 𝐸[𝑋2(𝑡)] − (𝐸[𝑋(𝑡)])2 = 𝐸[𝑒2𝑠𝐵(𝑡)] − 𝑒𝑠
2𝑡 = 𝑒2𝑠

2𝑡 − 𝑒𝑠
2𝑡.

(2.1) 

2.2 Newtonian Algorithm 

In Section 4 of this paper, we need to perform the necessary 

parameter estimates for the unknown parameters of the 

proposed model. To achieve the evaluation goal, it is necessary 

to solve the nonlinear equations. Therefore, in this section, we 

introduce the solution of the nonlinear equations in order to 

realize parameter estimation, such as solving the extreme value 

of the likelihood function using the Davidon-Fletcher-Powell 

(DFP) algorithm and the quasi-Newtonian method [9]. 

A nonlinear equation can be solved by constructing a quasi-
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Newtonian iteration method. This method not only ensures fast 

convergence of Newton’s method but also reduces the amount 

of calculation. The basic idea of this method involves the 

construction of an approximation of the Hesse matrix by using 

the difference in the gradient of the objective function and then 

generating a search direction based on Newton’s equation. 

Finally, the iterative process is completed by a line search.  

Using the quasi-Newtonian method, the extreme value of the 

likelihood function, 𝑓(𝑋), is solved and the value of the variable 

𝑋 is found when it is taken to the extremum. The flowchart of 

the algorithm is as follows: 

 

Figure 1. Algorithm flow chart.

3. Open-Source Software Reliability Modeling with 

Stochastic Impulsive Differential Equations 

3.1 Modeling Preparation and Assumptions 

In some stages of system development, the mutation 

phenomenon corresponding to a rapid change in the system due 

to the interference of external factors is usually called the 

impulsive phenomenon, and the location of the change is called 

the impulsive time (or the abrupt change-point). This process is 

generally very short. For instance, the trend of the stock market 

is affected by the phenomenon of the occurrence of a random 

impulse when big news arrives. In this study, the number of 

software faults discussed will be affected by the random 

impulsive phenomenon, resulting in unrealistic software 

reliability of the previous deterministic modeling. 

𝑁(𝑡)  is taken to be the cumulative number of detection 

faults of the software at the test time 𝑡(𝑡 ≥ 0) and the following 

assumptions are made: 

start 

Given 𝜀 , initial conditions 𝑋0 , 

maximum number of iterations 𝑛. 

iterations 𝑛 

Calculate: 𝑓0 = 𝑓(𝑋0), 𝑔0 = 𝑔(𝑋0). 

Let: 𝐻0 = 𝐼, 𝑑0 = −𝑔0, 𝑘 = 0. 

𝑋𝑘+1 = 𝑋𝑘 + 𝛼𝑘𝑑𝑘 ,where 𝛼𝑘 = arg 𝑚𝑖𝑛
𝛼≥0

𝑓(𝑋𝑘 + 𝛼𝑑𝑘),

𝑓𝑘+1 = 𝑓(𝑋𝑘+1), 𝑔𝑘+1 = 𝑔(𝑋𝑘+1).
 

ԡ𝑔𝑘+1ԡ ≤ 𝜀. 

𝑘 ≤ 𝑛. 

Output: 𝑋𝑘+1. 

𝑋0 = 𝑋𝑘+1,
𝑓0 = 𝑓𝑘+1,
𝑔0 = 𝑔𝑘+1.

 

𝑆𝑘 = 𝑋𝑘+1 − 𝑋𝑘 , 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 ,

𝐻𝑘+1 = 𝐻𝑘 +
𝑆𝑘𝑆𝑘

𝑇

𝑆𝑘
𝑇𝑦𝑘

−
𝐻𝑘𝑦𝑘𝑦𝑘

𝑇𝐻𝑘

𝑦𝑘𝐻𝑘𝑦𝑘
𝑇 ,

𝑑𝑘 = −𝐻𝑘+1𝑔𝑘+1, 𝑘 = 𝑘 + 1.      

 

end 

𝑌 

𝑁 

𝑌 

𝑁 
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(1) The dynamic change in the detection of the number of 

faults can be described by the geometric Brownian motion.  

(2) In the test environment, some factors can cause the number 

of faults to surge. 

Under common assumptions for software reliability growth 

modeling, the following linear differential equation can be 

obtained,  

𝑑(𝑎−𝑁(𝑡))

𝑑𝑡
= −𝑏(𝑡)(𝑎 − 𝑁(𝑡))  (3.1) 

Let 

𝑀(𝑡) = 𝑎 − 𝑁(𝑡). 

Equation (3.1) is equivalent to the following expression, 

 
𝑑𝑀(𝑡)

𝑑𝑡
= −𝑏(𝑡)𝑀(𝑡).    (3.2) 

Where 𝑎 is the total number of initials in the software, 𝑏(𝑡) 

represents the fault detection rate function, which implies the 

probability that each latent fault in the product is detected at 

time 𝑡, 𝑀(𝑡) represents the number of remaining faults of the 

system at time 𝑡. 

Based on the above assumption (1) and common 

assumptions for software reliability growth modeling, 

considering the irregular motion state of software faults, the 

number of software faults during the software testing phase is 

similar to the random fluctuations of stock price changes, and 

the occurrence of faults varies with time. Thus, the following 

SDE is obtained by extending Equation (3.2). 

𝑑𝑀(𝑡)

𝑑𝑡
= −[𝑏(𝑡) − 𝜎𝛾(𝑡)]𝑀(𝑡).  (3.3) 

Where 𝛾(𝑡) is the standardized Gaussian white noise; 𝜎 is a 

positive constant, and 

𝐸[𝛾(𝑡)] = 0, 𝑉[𝛾(𝑡)] = 𝜎2. 

Mathematically, the Wiener process 𝐵(𝑡)  can describe the 

integral form of the Gaussian white noise [12], i.e. 

𝐵(𝑡) = ∫𝛾(𝑡)𝑑𝑡,

𝑑𝐵(𝑡) = 𝛾(𝑡)𝑑𝑡.
 

And thus, Equation (3.3) is extended to an 𝐼𝑡̂𝑜-type SDE as 

follows [23], 

𝑑𝑀(𝑡) = −[𝑏(𝑡) −
1

2
𝜎2]𝑀(𝑡)𝑑𝑡 − 𝜎𝑀(𝑡)𝑑𝐵(𝑡). (3.4) 

According to the 𝐼𝑡̂𝑜  lemma [2], the solution of Equation 

(3.4) can be obtained as follows: 

𝑀(𝑡) = 𝑎 ⋅ exp[− ∫ 𝑏(𝑠)𝑑𝑠 − 𝜎𝐵(𝑡)
𝑡

0
].  (3.5) 

According to equation (3.2), 

𝑁(𝑡) = 𝑎 ⋅ {1 − exp[−∫ 𝑏(𝑠)𝑑𝑠 − 𝜎𝐵(𝑡)
𝑡

0
]}. (3.6) 

For the detailed derivation process of the conclusions (3.5), 

(3.6), please refer to Derivation-A. 

From Equation (3.6) and the definition of the geometric 

Brownian motion, it can be seen that 𝑁(𝑡)  represents a 

geometric Brownian motion. From the properties of the 

geometric Brownian motion, the progressive properties of 𝑁(𝑡) 

can be obtained, 

Because −∫ 𝑏(𝑠)𝑑𝑠 < 0
𝑡

0
, when 𝑡 → ∞, we get 

exp[−∫ 𝑏(𝑠)𝑑𝑠 − 𝜎𝐵(𝑡)
𝑡

0

] →
𝑡→∞

0. 

Thus, 

lim
𝑡→∞

𝑁(𝑡) = 𝑎. 

Because {𝐵(𝑡), 𝑡 ≥ 0}  is a Wiener process, according to its 

properties, we get 

𝐵(𝑡)~𝑁(0, 𝜎2𝑡). 

Based on the properties of the geometric Brownian motion 

and Brownian motion, 𝑀(𝑡), 𝑁(𝑡) follows a logarithmic normal 

distribution, and their distribution function is obtained as 

follows [26], 

𝑃[𝑀(𝑡) ≤ 𝑚|𝑀(0) = 𝑎] = 𝛷(
log (

𝑚

𝑎
)+∫ 𝑏(𝑠)𝑑𝑠

𝑡
0

𝜎√𝑡
).          (3.7)

𝑃[𝑁(𝑡) ≤ 𝑛|𝑁(0) = 0,𝑀(0) = 𝑎] =

𝛷(
log (

𝑎

𝑎−𝑛
)+∫ 𝑏(𝑠)𝑑𝑠

𝑡
0

𝜎√𝑡
)(𝑛 < 𝑎).            (3.8) 

The function 𝛷(⋅)  in Equations (3.7), (3.8) is the 

standardized normal distribution function which is defined as 

follows: 

𝛷(𝑥) =
1

√2𝜋
∫ exp (−

𝑠2

2
) 𝑑𝑠

𝑥

−∞
.   (3.9) 

At a given time 𝑡 , the stochastic process 𝑀(𝑡), 𝑁(𝑡)  is a 

random variable, the mathematical expectation of which can be 

calculated. From Equations (2.1), (3.5),(3.6), the mathematical 

expectation and variance of the process 𝑀(𝑡), 𝑁(𝑡)  at time 𝑡 

can be calculated as follows: 

𝐸[𝑀(𝑡)] = 𝑎 ⋅ exp[−∫ 𝑏(𝑠)𝑑𝑠
𝑡

0
+

𝜎2

2
𝑡],

𝑚(𝑡) = 𝐸[𝑁(𝑡)] = 𝑎 ⋅ {1 − exp[−∫ 𝑏(𝑠)𝑑𝑠
𝑡

0
+

𝜎2

2
𝑡]},

var[𝑀(𝑡)] = var[𝑁(𝑡)] = 𝑎2 ⋅ exp[−2∫ 𝑏(𝑠)𝑑𝑠 + 𝜎2𝑡
𝑡

0
] ⋅ [exp(𝜎2𝑡) − 1].

 (3.10) 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

3.2 Reliability Modeling with Stochastic Impulsive 

Differential Equations  

In realistic situations, we know that the reliability of software 

testing depends heavily on the community members and users. 

In addition, the detected number of faults can fluctuate greatly 

when some significant news (such as the social development 

trend, the expert’s advice, and software upgrade) comes along, 

which is identified as an impulsive time problem. The impulsive 

problem is considered based on the existing SRGM using SDE 

[26, 28]. Based on the above assumptions, in order to deal with 

the effects caused by such fluctuations and to be able to 

characterize the software operational profile precisely, we 

proposed the following SRGM with stochastic impulsive 

differential equations,  

{

𝑑𝑀(𝑡) = −[𝑏𝑖(𝑡) −
1

2
𝜎𝑖
2]𝑀(𝑡)𝑑𝑡 − 𝜎𝑖𝑀(𝑡)𝑑𝐵(𝑡), 𝑡 ∈ [𝜏𝑖−1, 𝜏𝑖)

𝑀(𝜏𝑖) = 𝜂𝑖𝑀(𝜏𝑖
−), 𝑖 = 1,2, …                                                              

𝑀(𝑡) = 𝑎 − 𝑁(𝑡)                                                                                   

 (3.11) 

Where {𝐵(𝑡), 𝑡 ≥ 0} is the standard Brownian motion, 𝜏1 ≤

𝜏2 ≤ 𝜏3 ≤ ⋯  is a sequence of impulsive times, 𝜂𝑖  is the 

impulsive function, (𝜂𝑖 − 1)𝑀(𝜏𝑖
−)  represents the jump 

amplitude of the number of faults, when the 𝑖𝑡ℎ impulse occurs, 

𝑀(𝜏𝑖) is the actual value at the time of the impulse, 𝑀(𝜏𝑖
−) is 

the value of 𝑀(𝜏𝑖) assuming that the impulse does not occur. 

The value of 𝑀(𝜏𝑖
−)  can be obtained by simulating the 

geometric Brownian process. 𝜔𝑖 = 𝜏𝑖 − 𝜏𝑖−1 is a random series 

of variables for the wait interval between impulse occurrences, 

which obeys the two-parameter exponential distribution. For 

more theoretical knowledge of stochastic impulsive differential 

equations, the reader can refer to the literatures [11, 20, 21]. 

For 𝑛 impulsive times, in solving Equation (3.11), it holds 

that 

𝑁(𝑡) =

{
 
 

 
 
𝑁1(𝑡), 0 ≤ 𝑡 < 𝜏1      

𝑁2(𝑡), 𝜏1 ≤ 𝑡 < 𝜏2     
…

𝑁𝑛(𝑡), 𝜏𝑛−1 ≤ 𝑡 < 𝜏𝑛
𝑁𝑛+1(𝑡), 𝑡 ≥ 𝜏𝑛          

   (3.12) 

The fault detection rate is given by 

𝑏(𝑡) =

{
 
 

 
 
𝑏1(𝑡) = 𝑏1, 0 ≤ 𝑡 < 𝜏1      

𝑏2(𝑡) = 𝑏2, 𝜏1 ≤ 𝑡 < 𝜏2     
…

𝑏𝑛(𝑡) = 𝑏𝑛 , 𝜏𝑛−1 ≤ 𝑡 < 𝜏𝑛
𝑏𝑛+1(𝑡) = 𝑏𝑛+1, 𝑡 ≥ 𝜏𝑛      

  (3.13) 

The mean value function can be obtained using its 

computational properties, 

𝑚(𝑡) =

{
 
 

 
 
𝑚1(𝑡), 0 ≤ 𝑡 < 𝜏1      

𝑚2(𝑡), 𝜏1 ≤ 𝑡 < 𝜏2     
…

𝑚𝑛(𝑡), 𝜏𝑛−1 ≤ 𝑡 < 𝜏𝑛
𝑚𝑛+1(𝑡), 𝑡 ≥ 𝜏𝑛          

  (3.14) 

Where 

𝑚𝑖(𝑡) = 𝐸[𝑁𝑖(𝑡)]. 

Using equation (3.10) we can get the following form of 

𝑚(𝑡), 

 𝑚(𝑡) =

{
 
 
 

 
 
 𝑚1(𝑡) = 𝑎 ⋅ [1 − exp (−(𝑏1𝑡) +

1

2
𝜎1
2𝑡)] , 0 ≤ 𝑡 < 𝜏1  

𝑚2(𝑡) = (𝑎 −𝑚1(𝜏1)) ⋅ [1 − exp(−(𝑏2(𝑡 − 𝜏1))         

                             +
1

2
𝜎2
2(𝑡 − 𝜏1))] + 𝑚1(𝜏1), 𝜏1 ≤ 𝑡 < 𝜏2        

…
𝑚𝑛+1(𝑡) = (𝑎 −𝑚𝑛(𝜏𝑛)) ⋅ [1 − exp(−(𝑏𝑛+1(𝑡 − 𝜏𝑛))

                         +
1

2
𝜎𝑛+1
2 (𝑡 − 𝜏𝑛))] + 𝑚𝑛(𝜏𝑛), 𝑡 ≥ 𝜏𝑛

 (3.15) 

4. Parameter Estimation with Random Impulse  

4.1 Estimation Method of Impulsive Time 

According to assumption (1), the number of faults, 𝑊(𝑡) , 

between adjacent intervals when impulses occur, follows the 

geometric Brownian motion. The impulsive time is estimated 

by the properties of the geometric Brownian motion and 

maximum likelihood estimation. Assume that there are 𝑛 

groups of data containing the detected faults, {𝑊𝑖 , 𝑖 = 1,2, … , 𝑛}, 

where 𝑊𝑖  is the number of faults in time [𝑖 − 1, 𝑖] , and 𝑊𝑖 =

𝑁(𝑖) − 𝑁(𝑖 − 1). Let the logarithmic growth rate be, 

𝑈𝑖 = log(𝑊𝑖+1) − log(𝑊𝑖), 𝑖 = 1,2, … , 𝑛 − 1. 

It follows from the properties of geometric Brownian motion 

that 

𝑈𝑖~𝑁(𝐸[(𝑈𝑖)], 𝑉[(𝑈𝑖)]). 

According to the normality of 𝑈𝑖, the impulsive time point of 

the number of faults can be estimated using the maximum 

likelihood method by performing the following steps: 

(i) The normal distribution test function in MATLAB is 

used to test whether 𝑈 = {𝑈1, 𝑈2, … , 𝑈𝑛}   follows the 

normal distribution. If the set of data does not follow 

the normal distribution, there is at least one impulsive 

time in the sequence. 

(ii) If an impulsive time exists, it is located using the 

maximum likelihood method. 

𝐿𝑘 = 𝑙1(𝑘) ⋅ 𝑙2(𝑘), 𝑘 = 2,3, … , 𝑛 − 2.  (4.1) 

Where 
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𝑙1(𝑘) =∏
1

√2𝜋𝑆1
2(𝑘)

𝑘

𝑖=1
exp(−

(𝑈𝑖 −𝑈1(𝑘)̅̅ ̅̅ ̅̅ ̅̅ )2

2𝑆1
2(𝑘)

),

𝑈1(𝑘)̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑘
∑𝑈𝑖

𝑘

𝑖=1

, 𝑆1
2(𝑘) =

1

𝑘 − 1
∑(𝑈𝑖 −𝑈1(𝑘)̅̅ ̅̅ ̅̅ ̅̅ )2
𝑘

𝑖=1

, 𝑘 ≥ 2,

𝑙2(𝑘) =∏
1

√2𝜋𝑆2
2(𝑘)

𝑛

𝑖=𝑘+1
exp(−

(𝑈𝑖 − 𝑈2(𝑘)̅̅ ̅̅ ̅̅ ̅̅ )2

2𝑆2
2(𝑘)

),

𝑈2(𝑘)̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛 − 𝑘
∑ 𝑈𝑖

𝑛

𝑖=𝑘+1

, 𝑆2
2(𝑘) =

1

𝑛 − 𝑘 − 1
∑ (𝑈𝑖 − 𝑈2(𝑘)̅̅ ̅̅ ̅̅ ̅̅ )2
𝑛

𝑖=𝑘+1

, 𝑘 ≤ 𝑛 − 2.

 

Log-transforming the equation (4.1), we get 

log𝐿𝑘 = −
𝑘

2
log (2𝜋𝑆1

2(𝑘)) +
1

2𝑆1
2(𝑘)

∑ (𝑈𝑖 − 𝑈1(𝑘)̅̅ ̅̅ ̅̅ ̅̅ )2
𝑘

𝑖=1

                              +
𝑛−𝑘

2
log (2𝜋𝑆2

2(𝑘)) +
1

2𝑆2
2(𝑘)

∑ (𝑈𝑖 − 𝑈2(𝑘)̅̅ ̅̅ ̅̅ ̅̅ )2
𝑛

𝑖=𝑘+1
.

 (4.2) 

Obviously, the log-likelihood function given by Equation 

(4.2) can be regarded as a function of the variable 𝑘. The value 

of 𝑘  for which the log-likelihood function is maximized is 

calculated. Here, 𝑘  is denoted as 𝜏 = 𝑘(1 ≤ 𝑘 ≤ 𝑛) , i.e., an 

impulsive time of 𝑈. Next, the entire dataset is divided into two 

sub-sequences: 𝑈1, 𝑈2, … , 𝑈𝑘  and 𝑈𝑘+1, 𝑈𝑘+2, … , 𝑈𝑛. 

(iii) Steps (i) and (ii) are repeated for 𝑈1, 𝑈2, … , 𝑈𝑘  and 

𝑈𝑘+1, 𝑈𝑘+2, … , 𝑈𝑛 , respectively, and for each of their 

sub-sequences, until none of the sub-sequences contain 

impulsive time, i.e., each sub-sequence obeys the 

normal distribution. 

4.2 Maximum Likelihood Estimation 

Considering the data between two adjacent impulsive times as 

a group, the entire sequence is divided into 𝑛 + 1 group data. 

Writing their likelihood functions, and the values of 𝑎, 𝑏 =

(𝑏1, 𝑏2, … , 𝑏𝑛+1), 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑛+1)  are unknown 

parameters in Equation (3.15) are estimated using the maximum 

likelihood estimation method. 

Taking the 𝑖 = 1 group of data as an example, estimation of 

the unknown parameters corresponding to the other groups can 

be obtained using the same method. (𝑡𝑗 , 𝑚𝑗)(𝑗 =

1,2, … , 𝐾1; 0 < 𝑡1 − 𝜏𝑖−1 < 𝑡2 − 𝜏𝑖−1 < ⋯ < 𝑡𝐾1 − 𝜏𝑖−1) , 

where 𝜏0 = 0 is the number of 𝑛 detected faults, 𝑚𝑗 represents 

the number of detected faults on (𝜏𝑖−1, 𝜏𝑖] , and 𝑚0 = 0 . 𝐾𝑖 

represents the data observed in the group 𝑖. From Equation (3.8) 

and considering that 𝑁(𝑡)  has Markov property, let the 

likelihood function of the process 𝑁(𝑡) be denoted as 

𝐿(𝑎, 𝑏1, 𝜎1) = 𝑃[𝑁(𝑡1) ≤ 𝑚1, 𝑁(𝑡𝐾𝑖) ≤ 𝑚𝐾𝑖
|𝑁(0) = 0,𝑀(0) = 𝑎 −𝑚(𝜏𝑖−1)]

 = ∏ 𝑃[𝑁(𝑡𝑗) ≤ 𝑚𝑗|𝑁(𝑡𝑗−1) ≤ 𝑚𝑗−1]
𝐾1
𝑗=1                            

 = 𝛷 (
log (

𝑎−𝑚𝑗−1

𝑎−𝑚𝑗
)−𝑏𝑖⋅(𝑡𝑗−𝑡𝑗−1)

𝜎1√𝑡𝑗−𝑡𝑗−1
)                                               

               = ∏
1

((𝑎−𝑚𝑗)𝜎1√2𝜋(𝑡𝑗−𝑡𝑗−1))

𝐾1
𝑗=1 ⋅ exp{−

[log (
𝑎−𝑚𝑗−1

𝑎−𝑚𝑗
)−𝑏1⋅(𝑡𝑗−𝑡𝑗−1)]

2

2𝜎1
2(𝑡𝑗−𝑡𝑗−1)

}.

 (4.3) 

Logarithmic transformation of the likelihood Equation (4.3) to 

obtain the following log-likelihood function, 

𝑙 = log𝐿(𝑎, 𝑏1, 𝜎1)                                                                         

   = −𝐾1log𝜎1 − ∑ log(𝑎 − 𝑚𝑗)
𝐾1
𝑗=1 −

1

2
∑ log(𝑡𝑗 − 𝑡𝑗−1)
𝐾1
𝑗=1

−
1

2𝜎1
2∑

[log
𝑎−𝑚𝑗−1

𝑎−𝑚𝑗
−𝑏1⋅(𝑡𝑗−𝑡𝑗−1)]

2

(𝑡𝑗−𝑡𝑗−1)

𝐾1
𝑗=1 −

𝐾1

2
log2𝜋.       

 (4.4) 

The maximum likelihood estimation can be obtained as the 

solutions of the following simultaneous likelihood equations 

by using the Quasi Newtonian algorithm, 

𝜕𝑙

𝜕𝜎1
= −

𝐾1

𝜎1
+

1

𝜎1
3 ⋅ ∑

[log (
𝑎−𝑚𝑗−1

𝑎−𝑚𝑗
)−𝑏1⋅(𝑡𝑗−𝑡𝑗−1)]

2

(𝑡𝑗−𝑡𝑗−1)

𝐾1
𝑗=1 = 0,                                                        

𝜕𝑙

𝜕𝑎
= −∑

1

𝑎−𝑚𝑗

𝐾1
𝑗=1 +

1

𝜎1
2 ⋅ ∑

(𝑚𝑗−𝑚𝑗−1)⋅[log (
𝑎−𝑚𝑗−1

𝑎−𝑚𝑗
)−𝑏1⋅(𝑡𝑗−𝑡𝑗−1)]

(𝑡𝑗−𝑡𝑗−1)⋅(𝑎−𝑚𝑗)⋅(𝑎−𝑚𝑗−1)

𝐾1
𝑗=1 = 0,                         

𝜕𝑙

𝜕𝑏1
=

1

𝜎1
2 ⋅ ∑ [log (

𝑎−𝑚𝑗−1

𝑎−𝑚𝑗
) − 𝑏1 ⋅ (𝑡𝑗 − 𝑡𝑗−1)]

𝐾1
𝑗=1 =

1

𝜎1
2 ⋅ [log (

𝑎

𝑎−𝑚𝐾1

) − 𝑏1𝑡𝐾1] = 0.

 (4.5) 

5. Experimental Data and Performance Analysis 

5.1 Performance Evaluation Criteria 

To do a fair comparison with the performance of various models, 

we used the following comparison criteria: 

(i) Mean Square Error (𝑀𝑆𝐸) 

The mean square error (𝑀𝑆𝐸) is generally defined as 

𝑀𝑆𝐸 =
1

𝑛
⋅ ∑ [𝑚(𝑡𝑘) − 𝑚𝑘]

2𝑛

𝑘=1
. (5.1) 

Where 𝑛  is the size of the selected dataset, 𝑚𝑘  is the true 

number of faults at times 𝑡𝑘, and 𝑚(𝑡𝑘) is the estimated number 

of faults at times 𝑡𝑘. 

A smaller value of 𝑀𝑆𝐸 represents a minimum fitting error 

and thus, a better the model. 

(ii) Akaike Information Criterion (𝐴𝐼𝐶) 

A smaller value of the Akaike information criterion (𝐴𝐼𝐶) 

indicates a minimum fitting error, and thus, a better model. The 

𝐴𝐼𝐶 is generally defined as 

𝐴𝐼𝐶 = 2𝐾 − 2log(𝐿).   (5.2) 

Where 𝐾 is the number of parameters, and 𝐿 is the maximum 
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likelihood value. 

If the error of the model is normally distributed, then the 

𝐴𝐼𝐶 is defined as 

𝐴𝐼𝐶 = 2𝐾 + 𝑛log(
𝑅𝑆𝑆

𝑛
).  (5.3) 

Where 𝑛  is the size of the selected dataset, and 𝑅𝑆𝑆  is the 

residual sum of squares. 

(iii) Residual Error (𝑅𝐸)  

The residual error (𝑅𝐸)  is a common criterion used for 

judging the validity of the model prediction. Its specific 

definition is as follows, 

𝑅𝐸 =
𝑚(𝑡𝑘)−𝑚𝑘

𝑚𝑘
.   (5.4) 

where 𝑚𝑘 is the true number of faults at times 𝑡𝑘, and 𝑚(𝑡𝑘) is 

the estimated number of faults at times 𝑡𝑘. The closer the value 

of 𝑅𝐸 is to 0, the more accurate is the model prediction is. 

5.2 Analysis of Actual Data 

5.2.1 Description of The Actual Dataset 

We focused on the Firefox browser and R software which are 

the software systems that have been developed under the open-

source project. According to the method proposed in section 3, 

two fault data corresponding to the Firefox browser and R, 

taking from the website https://www.bugzilla.org/, were used 

for the numerical verification. Dataset 1 corresponding to the 

Firefox browser, included 333 weeks of fault data from January 

1, 2016, to May 19, 2022, as listed in Table 1.  

Table 1. Actual fault dataset of Firefox. 

Time number time number time number time number time number 

0 0 6 4 12 2 18 7 327 13 

1 7 7 2 13 4 19 5 328 13 

2 5 8 12 14 9 20 8 329 15 

3 8 9 4 15 3 21 5 331 20 

4 11 10 7 16 9 22 5 332 16 

5 4 11 3 17 14 … … 333 14 

Table 2. Actual fault dataset of R. 

Time number time number time number time number time number 

0 0 6 6 12 1 18 3 84 4 

1 5 7 6 13 2 19 6 85 4 

2 7 8 4 14 7 20 11 86 5 

3 5 9 6 15 8 21 13 87 11 

4 2 10 6 16 8 22 11 88 10 

5 5 11 4 17 9 … … 89 1 

From the website https://bugs.r-project.org/, dataset 2 

corresponding to R, included 88 two-weeks of fault data from 

January 1, 2019, to May 23, 2022, as listed in Table 2. . 

In this section, the model proposed in this work has been 

compared with the classical GO model and the reliability model 

with SDE. The unknown parameters in the model were 

evaluated using the maximum likelihood method. Table 3 

summarizes the form of the fault detection rate and the mean 

value function of the selected model. 

Table 3. The model summary. 

Model Description fault detection rate MVF 

#1 GO model 𝑏(𝑡) = 𝑏 𝑚(𝑡) = 𝑎 ⋅ (1 − 𝑒−𝑏𝑡) 

#2 
SDE-based 

model 
𝑏(𝑡) = 𝑏 

𝑚(𝑡)

= 𝑎 ⋅ [1 − 𝑒(−𝑏𝑡+𝜎
2 2⁄ )] 

#3 
SIDE-based 

model 

𝑏(𝑡)

= {

𝑏1, 0 ≤ 𝑡 < 𝜏1 
𝑏2, 𝜏1 ≤ 𝑡 < 𝜏2

…
𝑏𝑛+1, 𝑡 ≥ 𝜏𝑛     

 
(3.15) 

5.2.2 The Estimation of Impulsive Time 

Ⅰ. Dataset 1 

Based on the method described in Section 4.1, the impulsive 

times of the data from the Firefox fault dataset were identified 

in Table 1, and the results obtained have been shown in Table 4.  

Table 4. Segmentation of the normality test of dataset 1. 

Data Time H P-value 

Ds-1 0-333 1 0.4149 

DS-2 0-103 0 0.3149 

Ds-3 105-260 0 0.2573 

Ds-4 262-333 0 0.5000 

In the process of segmentation, it was found that the length of 

some of the sub-sequences without impulsive times was very 

small, i.e., the interval between the two impulsive times was 

very small, and experience and practice show that there should 

be a time difference between the two impulsive times. Thus, the 

impulsive times that were too small at such impulsive moments 

were excluded from the evaluation. By performing the 

impulsive time extraction step described in Section 4.1, the 

sequence was divided into three segments, i.e., two impulsive 

times were found at 𝜏1 = 104, 𝜏2 = 261. From the assumptions 

of the above modeling process, we know that the fault data of 

two adjacent impulsive times obey a geometric Brownian 

https://www.bugzilla.org/
https://bugs.r-project.org/


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

motion, i.e., its value after taking the logarithm fluctuates about 

the 0-mean point. Meanwhile, from Figure 2, we can also 

roughly see the impulsive time position of the sequence. 

 

Figure 2. Log-rate change trend diagram showing the 

cumulative number of faults of Firefox. 

Figure 2 is mainly drawn according to the changes of value 

of 𝑈𝑖  in Section 4.1, representing the estimation of impulsive 

time for the fault data of Firefox mentioned above. And the 

results derived from them can be used as an initial value to 

solving for the exact impulsive time. 

Ⅱ. Dataset 2 

The impulsive times of the data from the fault dataset of R 

were identified in Table 2. The sequence was divided into two 

segments, and the results obtained have been shown in Table 5, 

i.e., one impulsive time was found at 𝜏1 = 45(or   46).  

Table 5 Segmentation of the normality test of dataset 2 

Data Time/d H P-value 

Ds-1 0-189 1 0.6456 

Ds-2 0-44 0 0.5459 

Ds-3 47-89 0 0.7361 

From the assumptions of the above modeling process, we 

know that the fault data of two adjacent impulsive times obeys 

the geometric Brownian motion, i.e., its value after taking the 

logarithm fluctuates about the 0-mean point. At the same time, 

from Figure 3, we can also roughly see the impulsive time 

position of the sequence. 

Figure 3 is mainly drawn according to the changes of value 

of 𝑈𝑖  in Section 4.1, representing the estimation of impulsive 

time for the fault data of R mentioned above. And the results 

derived from them can be used as an initial value to solving for 

the exact impulsive time. 

 

Figure 3. Log-rate change trend diagram showing the 

cumulative number of faults of R. 

5.2.3 Comparison of The Performance Criteria 

Ⅰ. Dataset 1 

The parameter estimates of the selected model obtained 

from the Firefox fault data in Table 1 are shown in the Table 6 . 

In addition, Table 7 shows the comparison of the values of 𝑀𝑆𝐸 

and 𝐴𝐼𝐶 for these different models. From Table 7, we can see 

that the proposed reliability model with SIDEs is obviously 

better than the existing models that have been compared in this 

study. 

Table 6 Parameter estimation of each model 

Model Description 𝑎(1 × 104) 𝑏(1 × 10−1) Other 

#1 NHPP-GO model 𝑎 = 2.4697 b=1.2500  

#2 SDE-based model 𝑎 = 2.4725 𝑏 = 1.2451 𝜎 = 0.0042 

#3 SIDE-based model 𝑎 = 2.4668 

𝑏1 = 0.5850

𝑏2 = 2.0001

𝑏3 = 0.6550

 

𝜎1 = 0.0043

𝜎2 = 0.0022

𝜎3 = 0.0021

𝜏1 = 104      
𝜏2 = 261      

 

Table 7 Model comparison results 

Model Description 𝑀𝑆𝐸 𝐴𝐼𝐶(1 × 103) 

#1 NHPP-GO model 127.5421 4.3190 

#2 SDE-based model 124.9542 4.3142 

#3 SIDE-based model 23.6821 3.7681 

Figure 4 shows the relationship between the actual fault data 

and the predicted fault data of Firefox based on the traditional 

GO model, the SDE model, and the model proposed in this study. 

At the same time, a comparison of the fitting (prediction) results 
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of the different models is shown, combined with the value of 

𝑀𝑆𝐸  and 𝐴𝐼𝐶  in Table 7, it can be seen that there is little 

difference in the fitting effect between the traditional GO model 

and the SDE model, but their fitting effect is worse than the 

proposed SIDE model. And it is easily observed that the fault 

data predicted by the SIDE model is closer to the actual data 

from Figure 4.  

 

Figure 4. Comparison of the fitting results obtained from the 

different models considered. 

 

Figure 5. Comparison of the residuals of the three models. 

Figure 5 presents a comparison chart of their residual errors, 

from which it can be seen that the values of 𝑅𝐸 are approaching 

0 after time 𝑡 = 150, indicating that all the mentioned models 

have good fitting results. It can be clearly seen that closest to 0 

is of model #3, followed by that of model #2, and finally model 

#1. The closer the value of 𝑅𝐸 is to 0, the better the fit of the 

model is, which is consistent with the results in Figure 4 and 

Table 7. Thus, it can be seen from these figures and tables that 

the proposed reliability model with stochastic impulsive 

differential equations gives the best fit to the Firefox fault data 

in Table 1.  

Ⅱ. Dataset 2 

As can be seen from Table 8 , the parameter estimates of the 

selected model are obtained using the R fault data given in Table 

2. Further, Table 9 shows the comparison of the values of 𝑀𝑆𝐸 

and 𝐴𝐼𝐶 for the different models, from which it can be seen that 

the proposed reliability model with the stochastic impulsive 

differential equations is obviously better than the existing 

models being compared. 

Table 8 Parameter estimation of each model 

Table 9. Model comparison results. 

Model Description 𝑀𝑆𝐸  𝐴𝐼𝐶(1 × 102)  

#1 NHPP-GO model 62.4941 7.7152 

#2 SDE-based model 49.6070 7.5296 

#3 SIDE-based model 16.7982 6.6058 

 

Figure 6. Comparison of the fitting results of the different 

models. 

Model Description 𝑎(1 × 103)  𝑏(1 × 10−3)  other 

#1 NHPP-GO model 𝑎 = 1.8121  𝑏 = 6.8501   

#2 SDE-based model 𝑎 = 1.7001  𝑏 = 7.0600  𝜎 = 0.0052 

#3 SIDE-based model 𝑎 = 1.7890  
𝑏1 = 4.9601

𝑏2 = 8.7800
  

𝜎1 = 0.0030    
𝜎2 = 0.0044    
𝜏1 = 45(or 46)
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Figure 6 show the relationship between the actual fault data 

of R and the predicted fault data based on the traditional GO 

model, the SDE model, and the model proposed in this work. At 

the same time, a comparison of the fitting (prediction) results of 

the different models is shown, combined with the value of 𝑀𝑆𝐸 

and 𝐴𝐼𝐶 in Table 9, it can be seen that there is little difference 

in the fitting effect between the traditional GO model and the 

SDE model, but their fitting effect is worse than the proposed 

SIDE model. And it can be seen that the fault data predicted by 

the SIDE model is closer to the actual data. 

 

Figure 7. Comparison of the residuals of the different models. 

Figure 7 presents a comparison chart of their residual errors, 

from which it can be seen that the values of 𝑅𝐸 are approaching 

0 after time 𝑡 = 60 , indicating that all the mentioned models 

have good fitting results. From the figure, it can be clearly seen 

that the value of 𝑅𝐸 closest to 0 is that of model #3, followed 

by that of model #2, and finally model #1. The closer the value 

of 𝑅𝐸  is to 0, the better the fit of the model is, which is 

consistent with the results in Figure 6 and Table 9. As can be 

observed from these figures and tables, the proposed reliability 

model with the stochastic impulsive differential equations gives 

the best fit to the R fault data in Table 2. . 

5.3 Sensitivity Analysis and Goodness of Fit 

The purpose of sensitivity analysis is to investigate which 

parameter have important influence on the model. From Figure 

8, we can see these parameters 𝑎, 𝑏 have important influence on 

the proposed model, while 𝜎 = (𝜎1, 𝜎2, 𝜎3) has little effect. The 

reasons are as follows: 

 

1) 

 

2) 

 

3) 

Figure 8. Sensitivity analysis of the proposed model 

parameters using dataset 1. 
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1) The total number of original faults (𝑎) has an important 

impact in the process of the open-source software (OSS) 

development. Because the number of original faults 

directly affects and determines the quality and reliability 

of the OSS. It can be seen from (1) of Figure 8 that the 

total number of original faults has a great impact on the 

final fault fitting result. Therefore, this is a factor that 

must be considered when establishing software reliability 

model. 

2) The fault detection rate (𝑏) is also an important factor in 

the process of the OSS development and testing. It 

determines the probability of faults being detected in the 

OSS. Its change directly affects the number of faults 

detected in the OSS, but also indirectly affects the number 

of remaining faults in the OSS. It can be seen from (2) of 

Figure 8 that the change of the parameter 𝑏  has a great 

influence on the final fault fitting result. Therefore, the 

parameter 𝑏  must be considered in software reliability 

modeling. 

3) It can be seen from (3) of Figure 8 that the fluctuation 

parameter 𝜎 has no significant influence on the final fault 

fitting result, because the whole fault detection process is 

separated and processed at impulsive times, which further 

makes the fluctuation of the fault detection is small in 

each section. 

This paper focuses on the influence of random shocks 

(random impulses) on the modeling analysis of software 

reliability assessment, so the stochastic differential equations is 

used to solve the stochasticity in the modeling analysis. And 

because in the existing reliability models, the entire dynamic 

process of software fault is generally considered as continuous 

when evaluating software reliability, but in reality, due to the 

existence of some random shocks, the continuity of the dynamic 

process of software fault can be damaged. Therefore, according 

to the actual situation, the OSS reliability modeling with SIDE 

proposed in this paper is more in line with the reality and has 

better fitting effect than the existing software reliability models. 

For the problem of "Overfitting" and "Underfitting" of the 

proposed model we can calculate its Hausdorff distance to 

characterize the goodness of fit of model by referring to 

literatures [10, 18]. For different models, the smaller the 

Hausdorff distance is, the better the model fitting effect will be, 

and an upper and lower bound on the Hausdorff distance can be 

calculated to better identify whether the model is " Overfitting 

" or " Underfitting". 

6. Summary 

In this study, we have presented the use of segmented geometric 

Brownian motion to describe the cumulative number of 

software faults, the use of the maximum likelihood estimation 

method to locate the impulsive times based on the properties of 

geometric Brownian motion, and to evaluate the parameters in 

the model. Because some major events will have an impact on 

the use of the software, resulting in a surge in the number of 

software faults and generating the impulsive phenomenon, the 

new model proposed in this study is closer to reality and 

provides an effective description of the software fault process. 

Finally, the proposed model, the NHPP-based model, and the 

reliability model with the SDE have been used to obtain fault 

predictions, and these have been compared with the actual fault 

data of Firefox and R obtained from https://www.bugzilla.org/. 

The comparison results show that the proposed model is more 

effective and practical than the existing models. From the 

figures and tables, it was observed that by dividing the data of 

dataset 1 into 3 segments and by querying the development 

history of Firefox, its two impulsive times corresponded to its 

major development history, i.e., the introduction of Firefox 

quantum on November 14, 2017, which greatly improved its 

performance, and the end of support for Adobe Flash in January 

2021. The same is true for dataset 2. 

The model proposed in this study can be seen as the 

influence of each major information on the software 

performance at a certain time (impact force), thereby improving 

the maintenance of the software in the impulsive time and more 

effectively describing the software fault process. It can be 

applied to the network maintenance of shopping apps at certain 

time (impulsive time) and the maintenance of other registration 

websites, etc. 

Prospective development: In the future, we can consider the 

SRGM with SIDE incorporating user behavior + multi-version 

multi-mutation + masked data [1] and studied the intrinsic 

characteristic d- “supersaturation” [18] of new model, breaking 

through the global software fault elimination, which is 

conducive to software developers for faster debugging and 

https://www.bugzilla.org/
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upgrading the software to achieve improved software reliability.  

Derivation-A. 

𝑑𝑀(𝑡)

𝑑𝑡
= −𝑏(𝑡)𝑀(𝑡),𝑀(𝑡) = 𝑎 − 𝑁(𝑡).  (A.1) 

Add random noise term, and the following SDE is obtained by 

extending Equation (A.1). 

𝑑𝑀(𝑡)

𝑑𝑡
= −[𝑏(𝑡) + 𝜎𝛾(𝑡)]𝑀(𝑡).   (A.2) 

Where 𝛾(𝑡) is the standardized Gaussian white noise, and 

𝐸[𝛾(𝑡)] = 0, 𝑉[𝛾(𝑡)] = 𝜎2,

𝐵(𝑡) = ∫ 𝛾(𝑡)𝑑𝑡,

𝑑𝐵(𝑡) = 𝛾(𝑡)𝑑𝑡.

   (A.3) 

Here 𝐵(𝑡)  is a Gaussian process (Wiener process) with zero 

mean.  

Putting equation (A.3) into equation (A.2), we can get the 

following derivation: 

𝑑𝑀(𝑡) = −[𝑏(𝑡) + 𝜎𝛾(𝑡)]𝑀(𝑡)𝑑𝑡

                        = −𝑏(𝑡)𝑀(𝑡)𝑑𝑡 − 𝜎𝑀(𝑡)𝛾(𝑡)𝑑𝑡
                        = −𝑏(𝑡)𝑀(𝑡)𝑑𝑡 − 𝜎𝑀(𝑡)𝑑𝐵(𝑡).

        (A.4) 

Apply the 𝐼𝑡̂𝑜 lemma to solve the above SDE formula (A.4). 

Let 𝑓(𝑡, 𝐵(𝑡)) = log(𝑀(𝑡)), From the 𝐼𝑡̂𝑜 lemma, we can 

get 

𝑑log(𝑀(𝑡)) = 𝑑𝑓 

=
𝜕𝑓

𝜕𝑡
𝑑𝑡 +

𝜕𝑓

𝜕𝐵(𝑡)
𝑑𝐵(𝑡) +

1

2

𝜕2𝑓

𝜕𝐵(𝑡)2
(𝑑𝐵(𝑡))

2
 

=
1

𝑀(𝑡)
𝑑𝑀(𝑡) = −𝑏(𝑡)𝑑𝑡 − 𝜎𝑑𝐵(𝑡).  (A.5) 

Integrate both sides of equation (A.5) at the same time, and 

finally take the logarithm on both sides of the equation. 

∫ 𝑑log(𝑀(𝑠))
𝑡

0
= ∫ −𝑏(𝑠)𝑑𝑠

𝑡

0
− ∫ 𝜎𝑑𝐵(𝑠)

𝑡

0
,

log𝑀(𝑡) − log𝑀(0) = ∫ 𝑏(𝑠)𝑑𝑠
𝑡

0
− 𝜎𝐵(𝑡),

𝑀(𝑡)

𝑀(0)
= 𝑒[∫ −𝑏(𝑠)𝑑𝑠−𝜎𝐵(𝑡)

𝑡
0 ],

𝑀(𝑡) = 𝑎 ⋅ 𝑒[∫ −𝑏(𝑠)𝑑𝑠−𝜎𝐵(𝑡)
𝑡
0 ].

   (A.6) 

And because 𝑀(𝑡) = 𝑎 − 𝑁(𝑡), we can get: 

𝑁(𝑡) = 𝑎 − 𝑀(𝑡)

  = 𝑎 − 𝑎 ⋅ 𝑒[∫ −𝑏(𝑠)𝑑𝑠−𝜎𝐵(𝑡)
𝑡
0 ]

    = 𝑎(1 − 𝑒[∫ −𝑏(𝑠)𝑑𝑠−𝜎𝐵(𝑡)
𝑡
0 ]).

    (A.7) 

In particular, when 𝑏(𝑠) = 𝑏, there is 

𝑁(𝑡) = 𝑎[1 − 𝑒(−𝑏𝑡−𝜎𝐵(𝑡))],

𝐸[𝑒𝜎𝐵(𝑡)] = 𝑒
1
2
𝜎2𝑡.

 

Thus, 

𝑚(𝑡) = 𝐸[𝑁(𝑡)] = 𝑎 ⋅ [1 − 𝑒(−𝑏𝑡−
1
2
𝜎2𝑡)]. 
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