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Highlights  Abstract  

▪ A time-series dimension expansion and TL 

method is proposed to improve the 

performance of TCM for small samples. 

▪ A time-frequency Markov transition field is 

proposed to encode the cutting force signal to 

two-dimensional color images, enriching the 

information of time-series dimension 

expansion and imaging. 

▪ The proposed method outperforms four state-

of-the-art methods for small samples by the 

PHM 2010 TCM dataset. 

 Accurate tool condition monitoring (TCM) is important for the 

development and upgrading of the manufacturing industry. Recently, 

machine-learning (ML) models have been widely used in the field of 

TCM with many favorable results. Nevertheless, in the actual industrial 

scenario, only a few samples are available for model training due to the 

cost of experiments, which significantly affects the performance of ML 

models. A time-series dimension expansion and transfer learning (TL) 

method is developed to boost the performance of TCM for small 

samples. First, a time-frequency Markov transition field (TFMTF) is 

proposed to encode the cutting force signal in the cutting process to two-

dimensional images. Then, a modified TL network is established to learn 

and classify tool conditions under small samples. The performance of 

the proposed TFMTF-TL method is demonstrated by the benchmark 

PHM 2010 TCM dataset. The results show the proposed method 

effectively obtains superior classification accuracies for small samples 

and outperforms other four benchmark methods. 
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1. Introduction 

CNC machine is an important equipment for intelligent 

manufacturing. As a key component of CNC machines, cutting 

tools are most easily to be damaged and wasted 12. Unexpected 

damage to tools will result in additional downtime or even 

severe accidents. Friction between the tool and the workpiece is 

inevitable during the cutting process. With the increase of tool 

wear, cutting force, cutting heat and cutting vibration will 

increase or rise, thus reducing the surface quality of the 

workpiece. SAU et al 3 investigated the effect of machining 

parameters of Al/TiN coated carbide tools in milling Cu-B-CrC 

composites and the amount of powder with different weight 

ratios used for manufacturing machining reinforced samples on 

surface roughness, tool wear, chip morphology and cutting 

temperature, which are important for improving the machining 
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quality of the parts. Frequent tool replacement to ensure 

machining accuracy not only seriously weakens productivity, 

but also easily causes waste of resources. Jae-Woong et al 4 

investigated the relationship between dynamic/static cutting 

force components of machine tools and tool rear face wear and 

crescent pits wear, between cutting forces and cutting 

conditions for tool condition monitoring. With the increasing 

advancement of artificial intelligence (AI) technology, more 

and more researchers are applying AI to the field of tool 

condition monitoring. Danil et al 5 provides a valuable 

discussion of the research in the field of tool condition 

monitoring and a comprehensive analysis of the main 

advantages, disadvantages and prospects of various artificial 

intelligence methods. An accurate and efficient tool condition 

monitoring (TCM) method is necessary for ensuring the 

machining quality and reducing the machining costs 67.  

Non-stationary signals are often produced since mechanical 

equipment is becoming increasingly complicated. With the 

continuous promotion of computing power and advanced 

algorithms, data-driven machine-learning (ML) methods have 

shown extraordinary advantage to deal with large non-

stationary signals and have always been a research hot-pot in 

manufacturing processes 89. For instance, Yu developed  

a weighted HMM based method for TCM and tool remaining 

useful life prognosis 10. Benkedjouh et al. developed  

a method based on feature reduction and SVR for tool health 

assessment 11. Ma et al. proposed a deep convolution-based 

LSTM  model to predict the remaining useful life of rotating 

machinery 12.  

However, for complex non-stationary sensing data, 

traditional signal analysis methods are only capable of 

providing statistical average analysis in the time domain or 

frequency domain, which is difficult to reveal the 

comprehensive characteristics in both time and frequency 

domains 1314. In contrast, Time-frequency analysis can 

identify the frequency components of a signal and reveal its 

time-varying characteristics, and is an effective method for 

extracting mechanical health information contained in complex 

signals. Zhang et al. employed continuous wavelet transform to 

convert 1-D signals into 2-D images to extract wavelet power 

spectrum of bearing faults 15. Cheng et al. explored a data-

driven neural network model based on continuous wavelet 

transform and local binary convolution for intelligent fault 

diagnosis of rotating machinery 16. 

Unfortunately, these data-driven ML methods rely on a large 

number of labeled training samples, which is difficult for TCM 

to do in practical due to the high experimental and manual 

labeling costs 1718. The classification accuracy of these ML 

methods is not satisfactory under small labeled training samples 

1920. Zhou et al21 proposed an improved edge-labeled graph 

neural network for tool condition monitoring with small sample 

data by reconstructing and expanding the processed cutting 

force data into multidimensional data by phase space 

reconstruction. Currently, transfer learning (TL) enabled 

methods have been considered to be an effective way to solve 

this problem 22. Marei et al. proposed a transfer learning based 

CNN framework for tool wear condition monitoring 23. Yang et 

al. proposed a feature-based TL network to transfer the 

knowledge learned from experiments to real cases for health 

status identification 24. 

To improve the classification performance of DL-based 

methods for TCM, a time-frequency Markov transition field 

(TFMTF) algorithm is proposed to encode raw signals into two-

dimensional (2D) color images containing both time and 

frequency information, which can make full use of the excellent 

ability of DL in image processing. The TFMTF-TL TCM 

method proposed in this paper requires only a small amount of 

labeled data to achieve intelligent diagnosis under the same 

working conditions, and the training process does not require 

much computation and is highly efficient. In addition, the 

method based on model parameter transfer does not require pre-

constructed neural network, which can be directly reused, and 

loading pre-trained model parameters can initialize the network 

and accelerate the model fitting speed. 

The rest of this paper is organized as follows. The proposed 

methodology is described in Section 2. In Sections 3, the PHM 

2010 public dataset are applied to test the validity of the 

proposed method. The conclusion is presented in Section 4. 

2. Method 

2.1. Markov Transition Field 

Wang and Oates first proposed the concept of the Markov 

Transition Field (MTF) 25, as described below. The MTF is an 

effective method of encoding 1D time-series data into 2D 
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images in timeline order. The MTF is closely related to the 

Markov chain 26, Figure 1 shows the state transfer diagrams 

corresponding to Markov chains in the three states. It uses the 

state-transition diagram or state-transition matrix (also called 

the Markov transition matrix) to describe the probabilities of  

a state transitioning to itself or other states. 

Generally, suppose 𝑆 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑞}  denotes a Markov 

chain with q states, and its transition matrix 𝑃𝑞×𝑞 can be set as 

Eq.(1),  in which 𝑝𝑖𝑗 denotes the one-step transition probability 

from state 𝑠𝑙̇ to state 𝑠�̇�, ∑𝑖 𝑝𝑖𝑗 = 1, and 1≤ 𝑖,𝑗 ≤ q.  

 

Fig. 1 A 3-state Markov chain with 9 state transition 

probabilities. 

𝑝𝑞×𝑞 = [

𝑝11 𝑝12 ⋯ 𝑝1𝑞

𝑝21 𝑝22 ⋯ 𝑝2𝑞

⋮ ⋮ ⋱ ⋮
𝑝𝑞1 𝑝𝑞2 ⋯ 𝑝𝑞𝑞

] (1) 

Given a time series 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, 𝑥𝑖 denotes the data 

points at time step i. 𝑥𝑖 can be assigned initially to a matching 

state 𝑠𝑖  (or a quantile bin 𝑞𝑗) using the min-max standardization 

method, where 1 ≤ 𝑗 ≤ 𝑞 , and q is the state number. In this 

case, an 𝑞 × 𝑞 state transition matrix 𝑃𝑞×𝑞 of the time series X 

can be obtained through counting 𝑐𝑖𝑗   firstly, which is the 

number of data points in the transition from state 𝑠�̇� to state 𝑠�̇�. 

Afterward, 𝑝𝑖𝑗  can be deduced as 𝑝𝑖𝑗=
𝑐𝑖𝑗

∑𝑖 𝑐𝑖𝑗
. The MTF captures 

the multi-step transition probabilities between any two data 

points of X during the construction of the two-dimensional data. 

It is an 𝑛 × 𝑛 matrix, as shown in Eq. (2). 𝑀𝑛×𝑛  =  𝑝𝑖𝑗   is the 

probability of transition from the state 𝑠𝑖 of 𝑥𝑘   to the state 𝑠𝑗  of 

𝑥𝑙 . 

𝑀𝑛×𝑛 =

          

[
 
 
 
 
𝑝𝑖𝑗|𝑥1 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑖𝑗|𝑥1 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑖𝑗|𝑥1 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗

𝑝𝑖𝑗|𝑥2 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑖𝑗|𝑥2 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑖𝑗|𝑥2 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗
⋮ ⋮ ⋱ ⋮

𝑝𝑖𝑗|𝑥𝑛 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑖𝑗|𝑥𝑛 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑖𝑗|𝑥𝑛 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗]
 
 
 
 

 (2) 

2.2. Proposed Time-frequency MTF 

The process of the proposed TFMTF algorithm is as follows. 

Step 1: Execute time-domain signal process and obtain 

Xt. 

Step 1.1: Time series X is first normalized by the min-max 

standardization algorithm (shown in Eq.(3)), and defined as Xt. 

𝑋𝑡 =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)
   (3) 

Step 1.2: Set the q-state transition interval of the time 

domain signal from minimum to maximum along the amplitude. 

Step 1.3 Construct an 𝑞 × 𝑞 state transition matrix 𝑃𝑡𝑞×𝑞 for 

𝑋𝑡, as shown in Eq. (4). 

𝑃𝑡𝑞×𝑞
=

[
 
 
 
𝑝𝑡11

𝑝𝑡12
⋯ 𝑝𝑡1𝑞

𝑝𝑡21
𝑝𝑡22

⋯ 𝑝𝑡2𝑞

⋮ ⋮ ⋱ ⋮
𝑝𝑡𝑞1

𝑝𝑡𝑞2
⋯ 𝑝𝑡𝑞𝑞]

 
 
 

 (4) 

Step 1.4: Count 𝑐𝑖𝑗   ( 1 ≤ 𝑖, 𝑗 ≤ 𝑞 ) (the number of Xt 

transiting from state 𝑠�̇� to state 𝑠�̇�) and then calculate 𝑝𝑡 𝑖𝑗 = 
𝑐𝑖𝑗

∑𝑖 𝑐𝑖𝑗
 

to obtain the time domain MTF (T-MTF) matrix 𝑀𝑡 = (𝑝𝑖𝑗)𝑛×𝑛
 

that has extra temporal information in addition to state-

transition possibilities compared with the state transition matrix, 

as shown in Eq.(5). 

𝑀𝑡𝑛×𝑛
=

  

[
 
 
 
 
 𝑝𝑡𝑖𝑗

| 𝑥1 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑡𝑖𝑗
| 𝑥1 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑡𝑖𝑗

| 𝑥1 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗

𝑝𝑡𝑖𝑗
| 𝑥2 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑡𝑖𝑗

| 𝑥2 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑡𝑖𝑗
| 𝑥2 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗

⋮ ⋮ ⋱ ⋮

𝑝𝑡𝑖𝑗
| 𝑥𝑛 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑡𝑖𝑗

| 𝑥𝑛 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑡𝑖𝑗
| 𝑥𝑛 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗]

 
 
 
 
 

   

(5) 

Step 2: Execute frequency-domain signal processing and 

obtain 𝐗𝐟. 

Step 2.1 Calculate the frequency spectrum signal 𝑋𝑓(𝑘) of 

X = {𝑥𝑖}1
𝑁, as shown in Eq. (6): 

𝑋𝑓(𝑘) =
𝑎𝑏𝑠Σ𝑖=0

𝑁−1𝑥(𝑖)𝑒−𝑗
2𝜋
𝑁

𝑘𝑖

𝑁
2

 (6) 

where k refers to the frequency axis. 

Step 2.2 Compute 𝑋𝑓(𝑘), which is scaled to between 0 and 

1 using min-max standardization, as shown in Eq. (7): 

𝑋𝑓(𝑘) =
𝑋𝑓(𝑘) − min(𝑋𝑓(𝑘))

max(𝑋𝑓(𝑘)) − min(𝑋𝑓(𝑘))
     (7) 

Step 2.3: Set the q-state transition interval of the frequency 
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domain signal from minimum to maximum along the frequency 

spectrum amplitude 

Step 2.4: Construct an 𝑞 × 𝑞  state transition matrix  𝑃𝑓𝑞×𝑞 

for 𝑋𝑓(𝑘), as shown in Eq. (8). 

𝑃𝑓𝑞×𝑞
=

[
 
 
 
 
𝑝𝑓11

𝑝𝑓12
⋯ 𝑝𝑓1𝑞

𝑝𝑓21
𝑝𝑓22

⋯ 𝑝𝑓2𝑞

⋮ ⋮ ⋱ ⋮
𝑝𝑓𝑞1

𝑝𝑓𝑞2
⋯ 𝑝𝑓𝑞𝑞]

 
 
 
 

 (8) 

Step 2.5: Obtain the frequency domain MTF (F-MTF) 

matrix 𝑀𝑓 = (𝑝𝑓 𝑖𝑗)
𝑛×𝑛

, as shown in Eq. (9). 

𝑀𝑓𝑛×𝑛
=

[
 
 
 
 
 𝑝𝑓𝑖𝑗

| 𝑥1 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑓𝑖𝑗
| 𝑥1 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑓𝑖𝑗

| 𝑥1 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗

𝑝𝑓𝑖𝑗
| 𝑥2 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑓𝑖𝑗

| 𝑥2 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑓𝑖𝑗
| 𝑥2 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗

⋮ ⋮ ⋱ ⋮

𝑝𝑓𝑖𝑗
| 𝑥𝑛 ∈ 𝑠𝑖 , 𝑥1 ∈ 𝑠𝑗 𝑝𝑓𝑖𝑗

| 𝑥𝑛 ∈ 𝑠𝑖 , 𝑥2 ∈ 𝑠𝑗 ⋯ 𝑝𝑓𝑖𝑗
| 𝑥𝑛 ∈ 𝑠𝑖 , 𝑥𝑛 ∈ 𝑠𝑗]

 
 
 
 
 

   (9) 

Step 3: Construction of TFMTF 

Owing to the symmetry of the MTF matrix, we intercept 

𝑀𝑡 𝑛×𝑛  and 𝑀𝑓 𝑛×𝑛  into lower and upper triangular matrices, 

respectively, and then add the corresponding elements of the 

two matrices to construct the TFMTF matrix, as shown in Eq. 

(10). Therefore, the original vibration signals can be encoded 

into a time-frequency matrix, and then the elements in the 

TFMTF are mapped to pixel color according to a single-value 

function, as shown in Figure 2. 

𝑇𝐹𝑀𝑇𝐹𝑛×𝑛 = [

0 0 ⋯ 0
𝑀𝑡21 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝑀𝑡𝑛1 𝑀𝑡𝑛2 ⋯ 0

] + [

𝑀𝑓11 𝑀𝑓12 ⋯ 𝑀𝑓1𝑛

0 𝑀𝑓22 ⋯ 𝑀𝑓2𝑛

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑀𝑓𝑛𝑛

](10) 

 

Fig. 2 Image representation process of TFMTF. 

2.3. Residual Neural Network 

The hidden features contained in the original signal represented 

by a 2D image can be learned automatically based on a deep 

model. In this paper, we use a deep model transfer learning 

method (TL), which means that a general classification model 

with good generalization ability and compatibility is pre-trained 

on a large data set, and then the model can be applied to the 

corresponding downstream tasks according to the needs of real 

scenarios, and only fine-tuning of the model parameters is 

needed to implement a new classification model. Figure 3 
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illustrates a simple basic process of model transfer learning 

method. Using the TL method, it is possible to freeze the general 

feature convolution layers in the network and retrain only a few 

layers at the end of the network for specific feature learning or 

to train all layers directly without freezing, which has 

demonstrated to drop greatly training time and computational 

costs 27. 

 

Fig. 3 Model transfer learning framework. 

The residual neural network as a special kind of 

convolutional neural network was proposed by Kaiming He's 

team in 2015, and the method has achieved excellent results in 

major image recognition and image segmentation competitions. 

In recent years, the method has created a wide boom in 

academia and industry, and is widely used in many fields such 

as text classification, speech recognition, and computer 

vision28. Generally speaking, the deeper the neural network, the 

better the network performance will be accordingly, but the 

reality is that deeper networks have a higher probability of 

overfitting, also known as degradation of the network. To 

address this problem, the network proposes a "residual learning" 

mechanism that can increase the depth of the network without 

causing degradation in performance. The residual learning 

module is shown in Figure 4, from which it can be seen that the 

module consists of two pathways, one is a constant mapping of 

the original data x→ x, and the other is a nonlinear mapping 

𝐹(𝑥)after convolutional pooling. 

 

Fig. 4 Residual structure. 

 

Fig. 5 Bottleneck structure. 

The shallow residual network is mainly composed of 

multiple residual modules stacked as described above, but for 

some deeper residual networks (e.g., Resnet50, Resnet101)  

a Bottleneck (also known as bottleneck layer) residual module 

is used, as shown in Figure 5. From the figure, we can see that 

the nonlinear part of Bottleneck structure has a total of three 

convolutional layers, including two convolutional layers with 

1×1 convolutional kernel size, and the middle layer with 3×3 

convolutional kernel size. The convolution of the first layer will 

downscale the input dimension, and after that, the convolution 

of 3×3 and the convolution of 1×1 will be upscaled. The 

advantage of this is that the number of computational 

parameters can be reduced, making it possible to build a deeper 

network. Resnet network largely solves the problem of network 

degradation and gradient disappearance, so this paper uses 

Resnet to study tool condition monitoring under the same 

working conditions. 

2.3 Proposed TCM Method 

The TFMTF-based feature representation can obtain rich 

features of tool wear in the time-frequency domain, while the 
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TL method enables the transfer of generic knowledge and 

provides precision tool condition monitoring under small 

labeled data. The proposed TFMTF-TL method framework is 

shown in Figure 6, including data acquisition, data encoding, 

feature extraction, and tool condition classification.  

The proposed method in this paper is to achieve the tool 

condition monitoring under the same working condition 

assuming that a small number of target domain label samples 

can be obtained, the method consists of four main stages. 

(1) Data acquisition stage: In order to verify the accuracy of 

tool condition monitoring under the same working conditions 

we use PHM 2010 TCM public data set for analysis and 

validation, using a dynamometer to collect real-time sensing 

data during the cutting process and reserve it to the local 

computer database for the next data pre-processing preparation. 

(2) Data pre-processing stage: Cutting force data can 

directly reflect the state of tool wear, and due to its high 

accuracy and anti-interference capability, it was widely used in 

the field of fault diagnosis and tool condition monitoring. Based 

on Markov transition field (MTF), an improved method is 

proposed: time-frequency Markov transition field (TFMTF), 

which encodes the sensor signal in the milling process into  

a state matrix containing both time-domain and frequency-

domain information, and determines the color of the image by 

the size of the matrix elements, realizing the pictorial 

representation of time series and greatly enriching the 

information of imaging. 

(3) Model training stage: This phase uses the model 

parameter transfer method by using the Resnet50 network as the 

feature extractor, importing the weight parameters of the 

network pre-trained on ImageNet into the residual network as 

initialization, and modifying the final number of classification 

layers of the model to be consistent with the number of tool wear 

states. The advantage of using this method is that only a small 

amount of labeled source domain data is needed for supervised 

training to achieve accurate tool condition monitoring of a new 

tool under the same working conditions, without the need to 

acquire unlabeled data from the target domain online to assist in 

learning, greatly improving the efficiency. 

 

Fig. 6 Framework of the proposed TFMTF-TL method. 

(4) The final test phase uses the trained classifier to classify 

the new data. The experimental results show that the method can 

quickly and effectively learn the tool wear features contained in 

TFMTF and achieve accurate classification results. The 

parameters of the deep model are listed in detail in Table 1. 

Table 1 Parameters of proposed TCM method 

 

Parameter 
Learning 

rate  

Size of 

image 
Dropout 

Batch 

size 
Optimizer  

Loss 

function 

Value 1e-4 
224×
224 

0.5 16 Adam 

Cross-

Entropy 
Loss 

 

3. Investigation with PHM 2010 TCM Experiment 

3.1. Data Description 

The PHM 2010 TCM experimental dataset29 was used to 

demonstrate the effectiveness of the proposed TCM method. 

Figure 7 shows the experimental platform. The dataset contains 

a total of six tools, of which C1, C4, and C6 are labeled and the 

other three tools are without label, because the main content of 

this paper is a tool condition monitoring study with a small 

number of labeled samples available in advance, so we selected 

the data of C1, C4, and C6 for the study. Each tool contains 315 
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CSV files, the data sampling frequency is 50,000 HZ, and the 

rotational speed is 10400 RPM. The experiment uses the 

workpiece size of 108 mm in length and width, and the complete 

distance of 108 mm after the tool is cut into the workpiece is 

recorded as a tool walk, after which the degree of wear will be 

measured using a LEICA MZI2 tool microscope and the current 

wear value will be recorded. The specific parameters are shown 

in Table 2. 

Table 2 PHM 2010 TCM Cutting parameters 

Hardware  Model or parameter Cutting condition Parameters 

CNC machine tools Roders Tech RFM760 Sampling frequency 50k Hz 

Dynamometer Kistler 9265B  Spidle speed 10400 rpm 

Charge amplifier Kistler5019A Feed rate 1555 mm/min 

Workpiece material Inconel 718 Y depth of cut (radial) 0.125 mm 

Tool 
Three flute ball end  

carbide milling cutter 
Z depth of cut (axial) 0.2 mm 

Data Acquisition Cards NI DAQ Feed per tooth 0.001mm 

Wear measurement instrument LEICA MZI2 Cooling condition Dry cutting 

 

 

Fig. 7 Experimental platform. 

Tool wear can be classified into three classes depending on 

the degree of tool wear: slight wear, stable wear and sharp wear. 

Figure 8 shows the wear degradation process of C1. 

 

Fig. 8 Tool wear degradation process of C1. 

From the figure, it can be seen that at the beginning of tool 

wear, the wear values change more drastically and with a larger 

slope, after which the change increases steadily for a long period 

of time and the slope of the curve becomes significantly smaller 

until the final tool wear reaches the critical value for tool change, 

when the slope starts to become larger again. 

3.2. Results and Analysis 

(1) Compared with not using TL strategy 

To verify the effect of using the TL strategy, we use C1 of Y 

direction as the training set and C4&C6 of Y direction as the test 

set, in which the optimizer is Adam. The results are shown in 

Table 3. It can be found that, with the TL strategy, the model 

does not require a substantial iterative update of all weights of 

the network and only a small amount of fitting update is 

required on the basis of the original model parameters to obtain 

the optimal solution of the model, the average classification 

accuracy is improved by 7.8% and the average training time is 

shortened by 3.3 seconds compared with the method without TL 

strategy. Figure 9 shows the comparison of training accuracy 

and training time consumption before and after using the TL 
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strategy. It can be seen that the TL method can greatly improve 

the speed of model training as well as ensure the accuracy of 

model training under small samples.  
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Fig. 9 Results of using TL strategy compared to without TL strategy. 

Table 3 Results with different learning rates and number of iterations. 

Method Learning rate Iteration number Classification accuracy (%) Training time (s) 

With TL 

0.01 10 79.13 290 

0.01 20 80.28 585 

0.01 30 87.28 871 

0.001 10 88.01 292 

0.001 20 87.26 585 

0.001 30 89.00 873 

0.0001 10 88.89 292 

0.0001 20 94.30 585 

0.0001 30 93.88 873 

0.00001 10 89.39 292 

0.00001 20 93.30 585 

0.00001 30 92.66 872 

Without TL 

0.01 20 75.35 587 

0.001 20 82.68 588 

0.0001 20 85.22 589 

0.00001 20 80.67 589 

(2) The effect of different learning rates and iterations on the 

results 

In order to determine the appropriate learning rate size and 

the effect of the number of iteration ns on the final results,  we 

use C1 in the Y-direction as the training set and C4&C6 in the 

Y-direction as the test set, with each tool containing 1200 

samples, and the results were analyzed as shown in Table 3. 

From Table 3, it can be seen that when the learning rate is 0.01, 

the learning rate is large leading to the test results cannot reach 

a satisfactory value and no essential information is learned. 

When the learning rate is 0.0001, the accuracy of the test set 

reaches the peak, and when the learning rate continues to 

become smaller, the classification accuracy transformation 

decreases slightly, so we set the learning rate is 0.0001. When 

the number of iterations is 10, it can be seen that the results are 

obviously low, and when the training iterations continues to 30, 

the results do not change significantly compared to 20 iterations, 

but slightly decrease. Therefore, we use training 20 iterations as 

the final solution. 

(3) Influence of different optimizers on the results 
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To confirm the impact of different optimizers on the final 

results, we still use C1 as the training set C4 as the test set with 

a total sample size of 1200, including 400 samples per category, 

a learning rate set to 0.0001, and a number of iterations of 20. 

Table 4 analyzes the effect of using different optimizers on the 

final classification results, and it can be seen from the table that 

the classification accuracy using Adam optimizer can reach 

94.3%, which has a significant advantage compared with 

RMSProp optimizer and SGD optimizer. The Adam optimizer 

integrates the first-order moment estimation and second-order 

moment estimation of the gradient to calculate the update step, 

and this optimization algorithm combines the advantages of 

both AdaGrad and RMSProp optimization algorithms. 

Table 4 Classification results under different optimizers 

optimizer Adam RMSprop SGD 

Classification 

accuracy/% 
94.30 92.25 84.28 

Training time/s 585 585 573 

(4) The effect of different feature representation methods on 

the results 

The parameters of the residual network used for the tool 

condition monitoring method in this paper are set as follows. 

The residual network after parameter transfer is optimized using 

the Adam optimization algorithm, the learning rate of the 

feature extraction part is set to 0.0001, and the learning rate of 

the final FC layer is set to 0.0001×10. This setting is to stabilize 

the initial weights, reduce the fluctuation of the loading weights, 

and fine-tune the classification layer. The hardware 

environment for the experiments is under Windows, using the 

Pytorch deep learning framework based on the Python language, 

which can improve the training speed of the model with the help 

of GPU for accelerated computation, and also supports dynamic 

neural networks, which is a simple and efficient deep learning 

framework. The computer processor is an AMD R5 4600H, 

accelerated by an NVIDIA GeForce GTX1650 GPU, and the 

training process requires less than 4G of GPU usage. 

Due to the increasing complexity of mechanical devices, 

non-stationary signals are often generated. For complex 

nonstationary sensor data, traditional signal analysis methods 

can only provide statistical averaging analysis in the time or 

frequency domain, which is difficult to reveal the 

comprehensive features in the time and frequency domains30. 

Therefore, this method is not suitable for analyzing non-

stationary signals in engineering applications. Time-frequency 

analysis can identify the frequency components of signals and 

reveal their time-varying characteristics, which is an effective 

method for extracting mechanical health information contained 

in non-stationary signals. To verify the effectiveness of the time-

frequency Markov transform field (TFMTT) algorithm 

proposed in this paper, we compare it with the conventional 

Continuous Wavelet transform (CWT)31, Short-Time Fourier 

Transform (STFT)32 compared with MTF and frequency 

domain Markov transfer field (SMTF)33 as well. Considering 

that the data may not be abundant in the actual processing 

situation, we only use the data of one tool as the training set, 

and the data of the other two tools are used in the testing phase 

to test as many other data as possible with the least amount of 

data, and Table 5 show the TCM classification results using 

different feature representations. 

Figure 10 shows the imaging results with five imaging 

algorithms: MTF, SMTF, STFT, CWT, and TFMTF. It can be 

found that the TFMTF-based algorithm has the richest details 

among all the considered algorithms that abundantly 

representing the information in the time and frequency domains. 

In addition, the color and internal shape features of the image 

are also richer, which can realize intelligent feature extraction 

and provide more effective features for deep network training. 

 

Fig. 10 Image representations. 

All the results are listed in Table 5, and the average 

classification accuracies of different methods on the three 

directional datasets are given in Figure 11. It can be found that 

the proposed method shows better classification accuracy than 
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the existing methods on the Y-direction dataset with 94.30%, 

95.23% and 91.98%, respectively, and the average classification 

accuracy reaches 93.83%, which is optimal compared with 

other methods. From the traditional time-frequency 

representation methods specifically, CWT and STFT have the 

highest average classification accuracy of only 87.51% in the X 

directions, and the results vary greatly when using different 

tools as the training set and are not stable. From the MTF series 

feature representation method, the highest performance of the 

traditional MTF method can reach 85.57% classification 

accuracy only in the X direction, and SMTF, as a frequency 

domain coding method, achieves more than 90% test results in 

all three directions with better stability, but is still 2.52% lower 

than the proposed TFMTF feature representation method. 

Therefore, these comparative results fully reflect the superiority 

of the proposed method in terms of classification accuracy and 

generalization ability under tool state monitoring. 

Table 5 Classification accuracy under different feature representation methods. 

Dataset  Training set Testing set MTF SMTF CWT STFT TFMTF 

X 

C1 C4&C6 87.75 91.35 83.02 93.33 57.77 

C4 C1&C6 87.93 91.50 77.14 89.12 69.71 

C6 C1&C4 81.03 90.59 79.36 80.08 40.60 

Average accuracy 85.57 91.95 79.84 87.51 56.03 

Y 

C1 C4&C6 87.15 92.39 79.53 77.61 94.30 

C4 C1&C6 87.96 94.18 87.09 86.28 95.23 

C6 C1&C4 60.93 87.38 84.53 85.81 91.98 

Average accuracy 78.68 91.31 83.72 83.23 93.83 

Z 

C1  C4&C6 60.36 90.13 67.42 69.92 77.45 

C4  C1&C6 66.47 91.67 72.06 66.15 63.92 

C6  C1&C4 44.92 94.48 62.34 82.73 42.32 

Average accuracy 57.25 92.09 67.27 72.93 61.23 
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Fig. 11 Average classification results using different feature 

representation methods. 

(5) Analysis of the results of the MTF series three-channel 

data fusion representation method 

In addition, this paper investigates the effect of the three 

methods MTF, SMTF and TFMTF after merging the data of X, 

Y and Z channels, as shown in Table 6. The data fusion in the 

table is done by MTF series methods after generating the 

corresponding feature representation matrix for each channel 

data, and then combining the three matrices into a three-

dimensional 3×224×224 matrix, which is finally saved as RGB 

three-channel picture by computer. The data fusion process is 

shown in Figure 12, in which 3C stands for the abbreviation of 

three channels (Three Channel). From the data in Table 6, it can 

be seen that after the fusion of three channels, the classification 

accuracy of the three methods is significantly improved 

compared with the previous single channel. The experimental 

results show that the proposed TFMTF method still has obvious 

advantages after data fusion, which indicates that this way of 

combining time-frequency domain information can be applied 

to the actual tool condition monitoring field. 
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Fig. 12 MTF series three-channel data fusion representation process. 

Table 6 Classification accuracy of three-channel data fusion representation. 

Training set Testing set 
Classification accuracy (%) 

3C-MTF 3C-SMTF 3C-TFMTF 

C1 C4 & C6 82.86 93.46 93.97 

C4 C1 & C6 88.85 95.04 95.63 

C6 C1 & C4 85.32 92.41 92.55 

Average accuracy 85.67 93.63 94.05 

 

4. CONCLUSION 

In this paper, a new time-frequency representation method 

called TFMTF is proposed, which provides an image 

representation of the cutting force signal and enhances the 

identifiability of the sample to improve the accuracy of tool 

condition monitoring. A learning strategy based on the transfer 

of model parameters is introduced to reduce the computational 

effort of the model, improve the training speed, and achieve tool 

condition monitoring under small sample conditions. We 

evaluated the performance of the proposed method in this paper 

using the PHM 2010 TCM dataset. The comparison of the 

results of different methods for X, Y, and Z single channel data 

shows that TFMTF obtains the highest classification accuracy 

on the Y-direction dataset, where the classification result can 

reach 95.23% when C4 is used as the training set C1& C6 as the 

test set, and the average classification accuracy of the three 

transfer tasks in Y-direction is 93.83%, which still achieves the 

highest classification result compared with several other 

methods. It can be proposed that the SMTF method achieves 

comparable results with the proposed method in this paper with 

test results above 90% on all three directional datasets. In order 

to further verify the effectiveness of the proposed method in this 

paper, the dataset under the three-channel data fusion was 

constructed for comparing the classification accuracy of the 

three methods MTF, SMTF and TFMTF. The results show that 

after the three-channel data fusion representation, the average 

classification accuracy of the proposed TFMTF method 

improved by 0.22% compared with the previous single-channel 

highest classification accuracy, which was higher than that of 

MTF, SMTF by 8.38% and 0.42%, respectively. 
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