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Highlights  Abstract  

▪ Optimization of the parameters of the VMD 

algorithm through the genetic algorithm (GA) 

to achieve adaptive extraction of rolling 

bearing fault features. 

▪ Optimization of the model parameters of the 

probabilistic neural network (PNN) using the 

sparrow search algorithm (SSA) to improve the 

recognition accuracy of the network model. 

▪ A fault pattern recognition model for rolling 

bearings was constructed by combining the 

fault feature adaptive extraction method and 

the sparrow probabilistic neural network. 

 Fault diagnosis of rolling bearings is essential to ensure the proper 

functioning of the entire machinery and equipment. Variational mode 

decomposition (VMD) and neural networks have gained widespread 

attention in the field of bearing fault diagnosis due to their powerful 

feature extraction and feature learning capacity. However, past methods 

usually utilize experiential knowledge to determine the key parameters 

in the VMD and neural networks, such as the penalty factor, the smooth 

factor, and so on, so that generates a poor diagnostic result. To address 

this problem, an Adaptive Variational Mode Decomposition (AVMD) is 

proposed to obtain better features to construct the fault feature matrix 

and Sparrow probabilistic neural network (SPNN) is constructed for 

rolling bearing fault diagnosis. Firstly, the unknown parameters of VMD 

are estimated by using the genetic algorithm (GA), then the suitable 

features such as kurtosis and singular value entropy are extracted by 

automatically adjusting the parameters of VMD. Furthermore, a 

probabilistic neural network (PNN) is used for bearing fault diagnosis. 

Meanwhile, embedding the sparrow search algorithm (SSA) into PNN 

to obtain the optimal smoothing factor. Finally, the proposed method is 

tested and evaluated on a public bearing dataset and bearing tests. The 

results demonstrate that the proposed method can extract suitable 

features and achieve high diagnostic accuracy. 
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1. Introduction 

Rolling bearings as the core components of the mechanical 

transmission system, widely used in various types of precision 

machinery and equipment; bearing failure often causes 

catastrophic consequences. Under the condition of good 

lubrication, correct installation and moderate working condition, 

the rolling bearing failure is mostly fatigue[5]. At present, when 

domestic and foreign scholars research rolling bearing fault 

diagnosis, they usually assume that the bearing failure is fatigue 

failure. By drilling holes and EDM engraving on bearing rings 

and rolling bodies to simulate fatigue pitting and fatigue 

spalling of bearings, the bearing signals with more obvious fault 

characteristics are obtained through experiments[19]. However, 

the actual operation of the bearing will be affected by many 

external conditions, which may produce other forms of failure, 

such as wear, scoring, plastic deformation, etc. And the fault 

feature signal may be hidden among other noise signals and 
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challenging to observe. Therefore, the timely detection of 

bearing failure and determination of its failure taking, and then 

taking the necessary measures to maintain. 

The diagnosis method based on vibration signal is  

a relatively popular and effective detection method at home and 

abroad. Bearing vibration signals exhibit non-smooth and 

complex frequency components features, and the fault features 

are easily drowned by environmental noise, which makes it 

challenging to extract the features of faults[30].EMD[6], 

EEMD[26], CEEMD[22], LMD[21], LCD[2] and other time-

frequency analysis methods are commonly used to process 

signals. However, these methods suffer from deficiencies such 

as modal confounding. Variational modal decomposition (VMD) 

is widely used in the study of bearing fault diagnosis because of 

its good noise robustness and ability to suppress modal aliasing 

and endpoint effects effectively [7]. However, the model 

parameters significantly influence the effect of decomposition. 

Wang Fengtao et al. used the energy difference of the 

decomposed signal as a criterion to determine the parameter 

k[3]. Lian et al. proposed to set the range of k in advance, 

decompose the signal in the set range, and calculate the energy 

loss for different numbers of decomposed modes to obtain the 

optimal k[12]. Li Hua et al. optimize the number of 

decompositions k according to the theory of maximum IMF 

cliffness[13]. However, they only optimize for the number of 

decomposition layers K, so the obtained parameters are not 

necessarily globally optimal solutions. 

Therefore, Wenjie Shi et al. used the differential search (DS) 

algorithm to optimize the VMD to achieve adaptive signal 

decomposition and then reconstructed the components after 

weighting them[23]. Gu Ran et al. used an adaptive variational 

modal decomposition (AVMD) method to reconstruct the signal 

of the effective modal components[18]. Chen Peng et al. used 

the whale algorithm to determine and improve the threshold 

noise reduction for the optimal components to extract fault 

features effectively[17]. Ren Xueping used the energy 

difference as the evaluation indicator to select the number of 

decomposition layers and combined it with the envelope 

derivative energy operator to achieve early fault diagnosis[24]. 

Cheng Junsheng et al. combined the firefly algorithm and the 

principal modal analysis method to determine the best 

combination of the influence parameters [k,α] of the VMD, and 

used it for the fault diagnosis of tooth root crack[10]. In this 

paper, a genetic algorithm is used to optimize the parameters of 

the VMD algorithm to further enhance the adaptiveness of the 

parameters. 

With the development of intelligent algorithms, neural 

networks are used extensively. Compared with general 

algorithms, it has the characteristics of fast training and 

convergence, high accuracy and fault tolerance. Du Zhendong 

et al. combined sensitivity analysis (SA), empirical modal 

decomposition (EMD) and PNN to achieve fault recognition of 

plunger pumps[29]. Chen hui et al. used multiscale entropy with 

PNN to diagnose the type and extent of bearing fault[8]. And 

Chen Shuai et al. further combined composite multiscale 

scattering entropy and probabilistic neural network for bearing 

fault diagnosis[20]. Zhao Ningning et al. proposed a bearing 

fault feature extraction method based on adaptive local iterative 

filtering and PNN[16]. Although PNN has many advantages, the 

value of the smoothing factor of its model parameters has  

a significant impact on its classification results and mainly 

selected based on experience, for which Qin Xing et al. used 

PSO to optimize PNN networks for the effective identification 

of power quality disturbances[25]. Liu Fuzheng et al. used PSO 

to optimize PNN and extract the energy vantage of the signal to 

achieve fault diagnosis of bearings[4]. Dang Jian et al. used the 

Firefly algorithm  to determine the optimal parameters and used 

FA-PNN to achieve fault diagnosis of wind turbine 

gearboxes[11]. The Sparrow Search Algorithm (SSA) has  

a strong merit-seeking ability and convergence speed. Chen et 

al. used the SSA algorithm to solve the problem of overlapping 

adjacent spectral peaks of elements in the X-ray fluorescence 

analysis method[27]. Ma Chen et al. used the SSA to optimize 

SVM to diagnose bearing faults effectively [15]. Tang Yanqiang 

et al. proposed an adaptive variational sparrow search algorithm, 

which greatly improves the accuracy of the algorithm's 

search[28]. Hu, Hongzhi et al. used EMD and SVM method 

optimized by SSA to achieve tool wear status identification[9]. 

Combining the above research, this paper uses the SSA 

algorithm to optimize the parameter smoothing factor of PNN. 

In summary, this paper proposes a rolling bearing fault 

diagnosis method based on AVMD and SPNN. Using the 

genetic algorithm to determine the parameters in the VMD 

algorithm model, realized the adaptive extraction of fault 
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features of bearing vibration signals and then constructed the 

fault feature matrix. Meanwhile, the SSA determines the 

optimal smoothing factor for the PNN network. And 

constructing the sparrow probabilistic neural network (SPNN). 

The fault feature matrix is substituted into the SPNN network 

for training and prediction to achieve diagnosis of rolling 

bearing faults. 

The main content of the article is organized as follows. 

Section Ⅱ describes in detail the adaptive extraction method 

based on the AVMD algorithm; Section Ⅲ gives the detailed 

procedure of the rolling bearing fault diagnosis model; The 

feasibility of the model is verified through experiments in 

Section Ⅳ; Finally, Section Ⅴ gives the conclusion of the 

article. 

2. Adaptive feature extraction 

In this section, the adaptive extraction method based on the 

AVMD algorithm is described in detail. First, we introduce the 

variational modal decomposition method, The GA algorithm is 

then used to perform an adaptive decomposition of the vibration 

signal, on the basis of which the feature matrix is constructed.  

2.1.Variational modal decomposition 

Variational modal decomposition (VMD) was first introduced 

as a signal decomposition method by Dragomiretskiy et al.[1]. 

The essence of this method is to use the vibration signal to 

construct a variational mode, and to convert the signal into 

intrinsic mode components with central frequency and 

bandwidth by iterative search and solution. This method can 

effectively avoid the endpoint effect and modal mixing problem 

in the empirical modal decomposition. It can also eliminate 

noise interference in the extraction of fault components and 

realize the decomposition of the signal [14].  

Decompose the vibration signal 𝑓  into K natural modal 

components 𝜇𝑘(𝑡) with center frequency 𝜔𝑘. Then the variable 

modal problem can be represented as a problem of finding K 

intrinsic modal components. With the sum of the modal 

components being 𝑓 , minimise the sum of the estimated 

bandwidths of each modal component. The model is： 

{
𝑚𝑖𝑛{𝑢𝑘}{𝜔𝑘} {∑ ‖𝜕𝑡 [(𝜎(𝑡) +

𝑗

𝜋𝑡
) × 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘 }

𝑠. 𝑡. ∑ 𝑢𝑘 = 𝑓𝑘

}(1) 

In order to transform the variational modal decomposition 

problem into an unconstrained problem, we introduce an 

enhanced Lagrangian function. The model is： 

𝐿(𝑢𝑘, 𝜔𝑘 , 𝜆) = 𝛼 ∑ ‖∂𝑡[(𝛿(𝑡) +
𝑗

𝜋𝑡
) × 𝑢𝑘(𝑡)]𝑒−𝑗𝜔𝑘𝑡‖

2

2

+

𝑘

 

‖𝑓 − ∑ 𝑢𝑘𝑘 ‖2
2 + ⟨𝜆, 𝑓 − ∑ 𝑢𝑘𝑘 ⟩  (2) 

The iterative solution formula for the modal components 𝜇𝑘, 

the central frequency 𝜔𝑘 and 𝜆𝑘 is: 

𝑢𝑘
𝑛+1(𝜔) =

𝑓(𝜔)−∑ 𝑢𝑖(𝜔)𝑖≠𝑘 +
𝜆(𝜔)

2

1+2𝛼(𝜔−𝜔𝑘)2   (3) 

𝜔𝑘
𝑛+1 =

∫ 𝜔|𝑢𝑘(𝜔)|2𝑑𝜔
∞

0

∫ |𝑢𝑘(𝜔)|2𝑑𝜔
∞

0

   (4) 

𝜆𝑛+1(𝜔) = 𝜆𝑛(𝜔) + 𝜏(𝑓(𝜔) − ∑ 𝑢𝑘
𝑛+1(𝜔)𝑘 ) (5) 

Until the iterative stopping condition ∑ (‖𝑢𝑘
𝑛+1 − 𝑢𝑘

𝑛‖2
2/𝑘

‖𝑢𝑘
𝑛‖2

2) ≤ 𝜀 is met, the variational solving process ends. At this 

point, get K modal components with finite bandwidth. 

In the VMD method, the decomposition modal number K 

and the penalty factor α greatly impact the decomposition 

results, and their combination in the VMD method is shown in 

Table Ⅰ. As can be seen, the choice of K value is crucial for the 

accurate determination of the resonance band in which the fault 

characteristic frequency is located, and the correct choice of α 

value ensures the accuracy of the VMD algorithm when 

reconstructing the signal. Therefore, reasonable VMD model 

parameters are especially important to extract fault information 

from bearing vibration signals effectively. 

Table 1. Effect of VMD parameters on the final results. 

K-value a-value Consequences 

oversize oversize Modal Mixing 

 
too small 

 
Missing valid information 

too small 
oversize 

too small 

Missing valid information 

Modal Mixing 

2.2.Adaptive feature extraction basic on AVMD 

The choice of the modal number K and penalty factor α for the 

parameter decomposition of the VMD relies heavily on the 

experience of the technician. The traditional method of 

determining K values is to try one by one from small to large 

and analyze the results with the decomposition to determine K 

values: As the value of K increases each major frequency band 

data can be distributed into different IMF components. No 

spurious components are generated, then the value of K is more 

appropriate. And the penalty factor α determines the bandwidth 

of the IMF components. Too small a bandwidth can lead to some 
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signals being lost, and too large a bandwidth can cause some 

components to contain signals from other components. The 

common range of penalty factor is 500~3000. 

 Selecting the right combination of parameters is the key to 

signal decomposition using the VMD algorithm. If one 

parameter is set unchanged and the other parameter is optimized, 

the influence of the interaction of the two parameters is ignored, 

which makes the optimization of the objective function easy to 

become a local optimization. To obtain the best model 

parameters and avoid human influence on the parameters, it is 

necessary to use algorithms to optimize the parameters of the 

VMD algorithm.. 

Genetic algorithm has the ability of fast global search and 

wide adaptability. It has been used in various parametric 

optimization problems, such as SVM and BP neural networks. 

In the optimization process, the first step is to determine  

a reasonable objective function. The entropy value can 

effectively reflect the randomness and complexity of the 

bearing vibration signal. The stronger the cyclical components 

of the vibration signal decomposition, the more fault 

information it contains, and the lower the entropy value. 

Conversely, the more noise signal components will become, the 

less obvious the periodicity will be, and the higher the entropy 

value. 

Selecting the sample entropy as the goal function, the 

sample entropy of the component {𝑥(𝑛)} =

𝑥(1), 𝑥(2), . . . , 𝑥(𝑁)  for the original vibration signal of the 

bearing after decomposition by VMD can be expressed as: 

Form the data into an m-dimensional vector sequence 

𝑋𝑚(1), 𝑋𝑚(2), . . . , 𝑋𝑚(𝑁 − 𝑚 + 1) according to the data serial 

number, where  𝑋𝑚(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 1), . . . , 𝑥(𝑖 + 𝑚 −

1)}1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1. 

Form the data into a sequence of vectors X of dimension m 

according to their serial numbers 

This vector sequence represents m consecutive data starting 

from the i-th data point. 

The distance between vectors 𝑋𝑚(𝑖) and 𝑋𝑚(𝑗) is： 

𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] = 𝑚𝑎𝑥𝑘=0,1,…,𝑚−1 

(|𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|)   (6) 

The number of 𝑋𝑚(𝑖) and 𝑋𝑚(𝑗) distances less than to r is 

recorded as 𝐵𝑖 . 

For 1 ≤ 𝑖 ≤ 𝑁 − 𝑚, define  as : 

𝐵𝑖
𝑚(𝑟) =

1

𝑁−𝑚−1
𝐵𝑖    (7) 

Define 𝐵(𝑚)(𝑟) as:  

𝐵(𝑚)(𝑟) =
1

𝑁−𝑚
∑ 𝐵𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1   (8) 

Similarly, when the number of dimensions is m+1, the 

number of individuals is defined as 𝐴𝑖. 

Define 𝐴𝑖
(𝑚)(𝑟) as 

𝐴𝑖
𝑚(𝑟) =

1

𝑁−𝑚−1
𝐴𝑖   (9) 

Define 𝐴(𝑚)(𝑟) as: 

𝐴(𝑚)(𝑟) =
1

𝑁−𝑚
∑ 𝐴𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1   (10) 

The sample entropy is defined as: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = 𝑙𝑖𝑚
𝑁→∞

{− 𝑙𝑛 [
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
]}  (11) 

When N is a finite value, the equation is: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = − 𝑙𝑛 [
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
]  (12) 

Based on the fault diagnosis of the vibration signal of the 

bearing, it is essential to extract the fault characteristics that are 

indicative of the bearing's operating conditions. Based on the 

adaptive decomposition of the original signal using the AVMD 

method proposed in Chapter Ⅳ. Analysis in terms of time 

domain, frequency domain, and entropy, select root means 

square, cliffs, envelope entropy, and singular value entropy to 

construct the feature matrix and substitute it into the SPNN 

network for training prediction. It can achieve diagnosis of 

rolling bearing faults. 

The root means square is defined as: 

𝑋𝑟𝑚𝑠 = √
∑ (𝑥𝑖)2𝑁

𝑖=1

𝑁
   (13) 

Cliffness is defined as: 

𝑞 =
∑ 𝑥𝑖

4𝑁
𝑖=1

𝑁
    (14) 

The envelope entropy is defined as: 

𝐸𝑖1
= − ∑ 𝑝𝑖1,𝑗 𝑙𝑔 𝑝𝑖1,𝑗 , 𝑝𝑖1,𝑗 = 𝑎𝑖1

(𝑗)/ ∑ 𝑎𝑖1
(𝑗)𝑁

𝑗=1
𝑁
𝑗=1   (15) 

Where 𝑖1  (𝑖1 = 1,2,3. .. ) is the ordinal number of the IMF 

component obtained by decomposing the original signal 𝑥(𝑖) of 

length N; 𝑝𝑖1,𝑗  is the normalized form of 𝑎𝑖1
(𝑗) ;𝑎𝑖1

(𝑗)  is the 

envelope signal of the IMF component of the signal after Hilbert 

demodulation. 

According to the k components obtained from the VMD 
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decomposition, perform singular value decomposition on it. The 

singular value spectrum is obtained as  𝛿 = {𝛿1, 𝛿1, . . . , 𝛿𝑛}, and 

the entropy of the singular value spectrum is defined as: 

𝑆 = − ∑ 𝑃𝑖1
log2 𝑃𝑖1

, 𝑃𝑖1
= 𝛿𝑖1

/ ∑ 𝛿𝑖1
𝑘
𝑖1=1

𝑘
𝑖1=1   (16) 

Where, 𝑝𝑖1
  is the weight of the 𝑖1  singular value in the 

spectrum of singular values. 

3. Rolling bearing failure diagnosis 

In this section, the construction process of the fault diagnosis 

model is described in detail. We introduce the sparrow 

probabilistic neural network, and then we introduce the process 

of diagnosing rolling bearings. 

3.1.Sparrow probabilistlc neural network 

Probabilistic Neural Network (PNN) is an optimization 

algorithm consisting of four layers: input layer, mode layer, 

accumulation layer and output layer. Compared with the general 

BP neural network, it has the characteristics of fast training and 

convergence, high accuracy and fault tolerance. 

However, in the process of practical application, it is found 

that the value of the smoothing factor α of the model parameters 

in the probabilistic neural network has a significant impact on 

its classification results, so how determining the optimal 

smoothing factor is crucial to obtaining accurate recognition 

results. 

In this paper, the sparrow search algorithm (SSA) is used to 

optimize the PNN model to determine the optimal parameters α, 

then construct the sparrow probabilistic neural network (SPNN). 

The sparrow search algorithm classifies population data into 

finders, followers and warners by imitating the sparrow's 

foraging and anti-predatory behavior. The sparrow search 

algorithm is superior to other single-objective optimization 

algorithms in terms of search precision. 

Assume that the population size of the optimization 

algorithm is N and the number of maximum iterations is T, and 

the number of optimization objectives is d. The sparrows’ 

positions are 𝑋𝑖𝑗（i=1,2,...,n; j=1,2,...，d） 

Discoverers, which typically makeup 10-20% of the 

population, provide direction to followers by constantly 

iterating and updating to find better adaptations. Whose position 

iteration formula is shown in equation (17). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 𝑒𝑥𝑝 (

−𝑖

𝛼𝑇
) , 𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄𝐿, 𝑅2 ≥ 𝑆𝑇

       (17) 

Followers are poorly adapted individuals in the population, 

and when a better-adapted individual is found among the 

discoverers, the followers will change their position to obtain a 

better adaptation. Whose position iteration formula is shown in 

equation (18). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑄 𝑒𝑥𝑝 (
𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 −𝑋𝑖,𝑗
𝑡

𝑖2 ) , 𝑖 >
𝑛

2

𝑋𝑏𝑒𝑠𝑡
𝑡+1 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡+1 |𝐴+𝐿, 𝑖 ≤

𝑛

2

   (18) 

Warners generally make up 10-20% of the whole, and their 

original positions are chosen at random, whose position 

iteration formula is shown in equation (19) 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽|𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 |, 𝑓𝑖 > 𝑓𝑔

𝑋𝑖,𝑗
𝑡 + 𝐾 (

𝑋𝑖,𝑗
𝑡 −𝑋𝑤𝑜𝑟𝑠𝑡

𝑡

(𝑓𝑖−𝑓𝑤)+𝜀
) , 𝑓𝑖 = 𝑓𝑔

  (19) 

The training error of PNN is used as the fitness function of 

SSA to determine the optimal parameters 𝜎, and the obtained 

sparrow probabilistic neural network can be used for subsequent 

failure diagnosis research. The parameter description table is 

shown in Table 2. 

Table 2. Parameter description table. 

Parameter Mathematical implications 

𝑡 Number of current iterations 

𝛼 A random number of (0,1] 

𝑄 
A random number obeying the standard 

normal distribution 

𝑅2 The warning value, located at [0,1] 

𝑆𝑇 The safety value, located at [0.5,1] 

𝑋𝑤𝑜𝑟𝑠𝑡
𝑡  The global worst position 

𝑋𝑏𝑒𝑠𝑡
𝑡+1  The global best position 

A A 1*d matrix 

 The step control parameter 

𝑓𝑖 𝑓𝑤 𝑓𝑔 The fitness, worst and best fitness values 

K A random number of [-1,1] 

3.2. Failure diagnosis for rolling bearings 

Based on the method of adaptive feature extraction of AVMD 

mentioned above, the feature matrix is substituted into the 

SPNN network for training and prediction to achieve diagnosis 

of rolling bearing faults. The framework flow chart for the 

method described in this paper is shown in Figure 1. 
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Fig. 1. Flow chart of rolling bearing fault diagnosis algorithm 

framework. 

The algorithm process is as follows: 

1) Adaptive feature extraction based on AVMD: The VMD 

algorithm optimized by the genetic algorithm decomposes 

the original vibration signal of the bearing into several 

relatively independent intrinsic modal components. 

Calculate the root mean square, cliffs, singular value 

entropy and envelope spectral entropy of each order 

component to construct the fault feature matrix. 

2) Rolling bearing fault diagnosis using SPNN network: 

Using the rolling bearing accelerated life test bench to 

obtain failure data for a wide range of bearing conditions. 

Create a fault feature matrix and divide the data into 

training and test samples. Building SPNN fault diagnosis 

models using training samples, fault diagnosis of rolling 

bearings using test specimen testing. 

4. Engineering example 

4.1.Validation of public datasets 

This paper uses real damage data generated from accelerated 

life tests on the Paderborn bearing dataset at the University of 

Paderborn, Germany, for validation. The test uses a rolling 

bearing accelerated life test bench to accelerate the examination 

of 6203 deep groove ball bearings. It accelerated bearing 

damage through increased radial load and selection of low 

viscosity lubricant. The purpose of using low viscosity 

lubricants is to allow improper lubrication conditions for the 

bearings, thus accelerating the appearance of bearing damage 

and saving test time and resources. The final bearing failure 

takes the form of fatigue pitting and plastic deformation. 

The test bearing has four working conditions, and the data 

under the last working condition is selected for analysis. The 

bearing speed is 1500rpm and the radial load is 400 N, the 

sampling frequency is 64KHz, take 0.1s data as a sample, three 

kinds of (outer ring pitting, inner ring pitting, plastic 

deformation) state a total of 240 randomly selected training 

samples and 120 test samples. Take an inner ring pitting sample 

as an example, its original vibration signal and frequency 

spectrum are shown in Figure 2 and Figure 3. The adaptive 

feature extraction method of AVMD is used to decompose the 

signal, the optimized decomposition layer 𝑘 = 8 , the penalty 

factor 𝛼 = 1953, the iteration curve of the fitness function is 

shown in Figure 4, and the multilayer intrinsic modal 

components obtained from the decomposition are shown in 

Figure 5. 

 

Fig. 2. Original vibration signal of inner ring pitting failure. 

 

Fig. 3. Signal spectrum of inner ring pitting failure. 
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Fig. 4. Adaptation function iteration curve. 

 

Fig. 5. Inner ring pitting fault signal VMD decomposition 

results. 

For the samples with different failure modes, set the value 

range of decomposition layers K to [3,10] and the value range 

of the penalty factor to [500,2000]. Extraction of fault features 

according to the components of adaptive decomposition, where 

the cliffs, the cliff and envelope entropy are both 1*10 vectors. 

Calculate the cliffness and envelope entropy of each component. 

If the number of decomposition layers after optimization is less 

than 10, zero is added after this vector. Together with the root 

mean square and the singular spectrum, they form the fault 

characteristic matrix. Table 3 shows the values of the failure 

characteristics of the bearings in different failure modes. As can 

be seen from the table, there are obvious differences in the fault 

characteristic values between different failure modes, laying the 

foundation for the accurate identification of subsequent failure 

modes 

Table 3.Failure characteristics of bearings under different 

failure modes. 

Bearing 

fault type 

root mean 

square 

(m/s2) 

Singular 

value spectral 

entropy 

Cliffness 
Envelope 

entropy 

Outer ring 

pitting 
0.418 1.719 

(0.0124, 

0.0046, 

0.0087, 

0.0011, 

0.0006, 

0.0001, 

0.0001, 

0,0,0) 

 

(9.26,8.66, 

8.53,8.67，
8.52,8.21, 

8.17,0,0,0) 

Inner ring 

pitting 
0.326 1.605 

(0.0061, 

0.0029, 

0.0011, 

0.0018, 

0.0001, 

0.0001, 

0,0,0,0) 

 

(9.57,8.66, 

8.63,8.55, 

8.15,8.21, 

0,0,0,0) 

Plastic 

deformati

on 

0.340 2.018 

(0.0002, 

0.0070, 

0.0008, 

0.0004, 

0.0004, 

0.0004, 

0.0001, 

0.0001, 

0.0001, 

0) 

(9.10,8.69, 

8.64,8.57, 

8.18,8.14, 

8.21,8.26, 

8.50,0) 

 

Fig. 6. SPNN network training error graph. 

 

Fig. 7. SPNN Network prediction results. 
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Based on obtaining the characteristics of the bearing fault, 

outer ring pitting, inner ring pitting and plastic deformation are 

marked as 1~3. Set the value range of the smoothing factor to 

[0.0001,2]. Training of data using sparrow probabilistic neural 

network and its optimized smoothing factor 𝜎 = 0.0581 . Its 

training error is shown in Figure 6 and the prediction results in 

Figure 7, reaching 93.3%. Based on the empirical selection of 

the smoothing factor 𝜎 = 0.5, the accuracy of the PNN network 

recognition is 86.7%. Comparison of the results of the 

recognition, it can be seen that the PNN network optimized by 

the sparrow search algorithm has higher accuracy than the PNN 

network using empirically selected smoothing factors. It shows 

that the proposed AVMD and SPNN rolling bearing fault 

diagnosis method has excellent diagnostic effects and 

superiority. 

4.2.Experimental verification 

To further validate the efficacy of the described method, we 

used actual rolling bearing failure signals for verification. 

 

a) 

 

b) 

Fig. 8. Machine tool spindle bearing test bench:(a) Machine 

tool spindle bearing test bench structure diagram, 

(b) Machine tool spindle bearing test bench partial diagram. 

The test uses the rolling bearing performance test bench of 

Luoyang Bearing Research Institute. The machine tool spindle 

bearing test bench structure diagram and partial diagram are 

shown in Figure 8. The diagram shows the bearing mounting 

positions on the motor end and the non-motor end of the test 

bench. During the test, it took approximately 30 minutes to 

remove the old bearing and replace it with a new one. The 

sensor used is the IEPE voltage output acceleration sensor, and 

the MI-7008 signal acquisition and analyzer of Yiheng 

Company is used to collect the bearing vibration signal. The 

signal acquisition instrument is shown in Figure 9.  

 

Fig. 9. MI-7008 Signal Acquisition and Analyzer. 

The test bearing uses angular contact ball bearing B7005C, 

bearing parameters as shown in Table 4.  

Table 4. Test basic bearing parameters. 

name 
Inner 

diameter 

(mm) 

Outer 
diameter 

(mm) 

Diameter of 
rolling element 

(mm) 

Number of 
rolling element 

 

Bearing 
width 

(mm) 

Contact 
angle 

(°) 

value 25 47 6.35 14 12 15 

The electrical discharge machining technique was applied to 

construct craters in the rings of the bearings respectively to 

simulate the fatigue spalling of the bearings during the actual 

operation, the shape of which is shown in Figure 10 and  

Figure 11. 

 

Fig. 10. Simulation topography of bearing fatigue spalling 

fault. 
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Fig. 11. Simulation topography of bearing outer ring scratch 

fault. 

After the test bearings had been installed and were running 

steadily, vibration signal data were collected from the same 

bearing for approximately 20 minutes at different time periods.  

For samples with different failure modes, set the value range 

of the decomposition layer K to [3,10] and the value range of 

the penalty factor 𝜎to [500,2000]. Based on the components of 

adaptive decomposition, root means square, singular value 

spectral entropy, cliffness and envelope entropy are extracted to 

construct the fault feature matrix. Mark outer ring spalling, 

outer ring axial scratches, and outer ring circumferential 

scratches as 1-3 respectively. Set the value range of the 

smoothing factor to [0.0001,2]. The SPNN is used to train the 

data for recognition, and its optimized smoothing factor is 

0.0614. Its training error is shown in Figure 12 and its prediction 

results in Figure 13, with 139 correct samples and an accuracy 

rate of 92.7%.  

 

Fig. 12. SPNN network training error graph. 

And the accuracy of the PNN network recognition is 80.6%. 

Comparison of the results of the recognition, it can be seen that 

the SPNN network has higher accuracy than the PNN network. 

The results are shown that the method described in this paper 

has good recognition of rolling bearing failure modes. 

 

Fig. 13. SPNN Network prediction results. 

5. Conclusion 

This paper proposes a rolling bearing fault diagnosis method 

based on AVMD and SPNN. Using genetic algorithm to select 

the optimal values of the number of decomposition layers K and 

the penalty factor α in the VMD algorithm. Adaptively extract 

fault features such as cliffness, singular value entropy, envelope 

spectrum entropy of the bearing and construct fault feature 

matrix. Then, using SSA algorithm to determine the optimal 

value of the smoothing factor α in the PNN network model. 

Finally, a sparrow probabilistic neural network bearing fault 

diagnosis model is constructed to diagnose the bearing fault 

signals of different failure mode states. 

We validated the proposed approach with publicly bearing 

datasets and bearing tests, and compare it with traditional PNN 

networks. The results show that the SPNN network has a more 

effective diagnostic performance. Optimization of the 

parameters with greater influence can significantly increase the 

accuracy of bearing fault diagnosis.  

But when bearing failure tests are performed, we set a single 

failure point and scratch size for bearings and fewer forms of 

failure. We will follow up with further experimental analysis by 

increasing the size of the bearing failures and increasing the 

form of the bearing failures to explore the generalisability of the 

article's methodology. 
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