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Highlights  Abstract  

▪ Proposed a learning function for multi-fidelity 

models. 

▪ A practical reliability calculation stopping 

condition is proposed. 

▪ Proposed a feasible and applicable structural 

reliability analysis framework for multi-

fidelity models. 

 The commonly used reliability analysis approaches for Kriging-based 

models are usually conducted based on high-fidelity Kriging models. 

However, high-fidelity surrogate models are commonly costly. 

Therefore, in order to balance the calculation expense and calculation 

time of the surrogate model, this paper proposes a multi-fidelity Kriging 

model reliability analysis approach with coupled optimal important 

sampling density (OISD+MFK). First, the MEI learning function is 

proposed considering the training sample distance, model computation 

cost, expected improvement function, and model relevance. Second, a 

dynamic stopping condition is proposed that takes into account the 

failure probability estimation error. Finally, the optimal importance 

sampling density is incorporated into the reliability analysis process, 

which can effectively reduce failure probability estimation error. The 

results of the study show that the approach proposed in this paper can 

reduce the calculation cost while outputting relatively accurate failure 

probability evaluation results. 
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1. Introduction 

The influence of uncertainties such as structural parameters and 

load randomness in the manufacturing process of engineering 

structures makes structural reliability analysis crucial for 

structural performance assessment. The probability of failure is  

a key indicator of reliability analysis, which can calculate the 

probability that a structure does not meet the requirements of 

use. It can be mathematically described as 

Pf=∫ f(x)
G(x)≤0

dx   (1) 

where Pf is the failure probability, x=(x1,x2,⋯,xn) is random 

variables, G(x) is the limit state function (LSF), f(x) is the joint 

probability density function of random variables. 

In large-scale engineering applications, the LSF is usually  

a high-dimensional nonlinear black-box function, so it is very 

difficult to solve. The approximation methods for solving the 

function have been developed, including the first-order/second-

order method [1-2], line sampling method [3], directional 
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sampling method [4], importance sampling method [5],  Monte 

Carlo method [6], cross-entropy method [7], and subset 

simulation [8]. However, if the limit state function contains 

multiple failure domains or has nonlinear characteristics, the 

results of the above methods will obtain a failure probability 

with an unsatisfactory accuracy. Therefore, a large number of 

simulations of the LSF are required to obtain results with high 

accuracy. For example, in MCS, the failure probability 

expression is 

Pf=∫ f(x)I(x)dx ≈
1

NMCS
∑ I(xi)
NMCS
i=1   (2) 

where I(x) is the indicator function with the property that 

I(x) = 1 when G(x)≤0 , NMCS is the number of Monte Carlo 

samples and xi is the ith sample in the NMCS. 

However, with the flying advancement of PC engineering, 

the degree of refinement of reliability analysis models is 

increasing, and the evaluation cost of limit state functions is 

gradually increasing. To reduce the total calculation expense, 

the implementation of surrogate models in the framework of 

structural reliability analysis is an effective approach. The 

commonly used surrogate models, including the Kriging model 

[9-11], radial basis function (RBF) model [12], the response 

surface model (RSM) [13,14], the polynomial chaos expansion 

(PCE) model [15-17], and the support vector regression (SVR) 

model [18,19]. These surrogate models are able to fit the 

characteristics of the real LSF by a  sample set. Since the kriging 

model can obtain the standard deviation of the test samples, it 

can be broadly used in the domain of reliability assessment. The 

Kriging model can calculate reliability in two ways, the first is 

to build a static Kriging model to calculate reliability, and the 

second is to integrate the active learning process into the 

Kriging model-building process, while dynamically updating 

reliability. In most cases, the second approach is more efficient 

than the first one. 

Some scholars have exploited the characteristic of kriging 

models that can quantify uncertainty information to make 

accurate predictions of limit states. For example, Bichon et al. 

[20] proposed the Efficient Global Reliability Analysis (EGRA) 

algorithm, which proposes the Expectation Feasibility Function 

(EFF) to candidate samples that are approaching limit states. 

Echard et al. [21] proposed a new practical approach by 

combining Kriging and MCS (AK-MCS), which introduced the 

currently popular learning function U. Jones et al. [22] 

implements global optimization of black-box functions by using 

the Expected Improvement Function (EIF). Zhi et al. [23] 

proposed a U  function based on the U function, which further 

optimized the sampling characteristics of the U function. Xiao 

et al. [24] proposed a new learning function with parallel 

processing strategy. 

Afterward, the learning function H [25] evaluates the 

uncertainty of the sample using information entropy theory. Sun 

et al. [26] proposed the Least Improvement Function (LIF), 

which integrates the uncertainty and probability density 

function for improving the failure probability, but its application 

is limited by its complex expressions. Zhang et al. [27] 

developed a reliability-based expectation improvement function 

REIF and an improved version REIF2 by using a folded normal 

distribution. 

The stopping condition of the active learning process is also 

an essential element that influences the accuracy and efficiency 

of the reliability results. The conventional stopping condition is 

usually established as a constant, which is derived from the 

calculation of the learning function. The iterative procedure 

halts when the result of the learning function reaches a threshold 

value. Considering that the conventional stopping conditions 

may not satisfy the accuracy of the failure probability 

prediction, the thresholds used are more stringent. Therefore, to 

improve the universality of termination conditions, Hu and 

Mahadevan [28] established the relative error estimates between 

the true and evaluated failure probabilities. Wang et al. [29] 

considered the uncertainty of the Kriging model and then 

evaluated the maximum relative error of the failure probability 

in accordance with the error stopping criterion (ESC). To 

improve the efficiency of ESC, Yi et al. [30] introduced a new 

ESC which focuses on highly uncertain samples. The results 

show that ESC demonstrates better superiority in the active 

learning process. 

However, for most methods, the data used for surrogate 

model construction are obtained from high-fidelity (HF) 

models. High-fidelity models usually require expensive 

simulations for simulation, thus restricting the total number of 

available runs. As a result, models with multiple fidelities have 

gradually become a hot research topic. Although the uncertainty 

of low-fidelity (LF) is larger than that of high-fidelity models, 
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it can provide valid model information and has a much lower 

calculation cost than high-fidelity models, which indicates that 

low-fidelity models have good prospects for development. The 

multi-fidelity (MF) model combines the advantages of both HF 

and LF models and thus a sound balance between evaluation 

error and cost can be provided. Qian and Wu [31] explored  

a hierarchical Gaussian process model for treating HF and LF 

data simultaneously. Zhou et al. [32] developed a robust 

optimization method based on a multi-fidelity surrogate model, 

which takes into account the uncertainty of the surrogate model 

and design variables. Chaudhuri et al. [33]proposed the multi-

fidelity EGRA (mfEGRA) method to solve the problem of 

reliability analysis of multi-fidelity data. Lefebvre et al. [34] 

evaluated the failure probability of industrial assemblies using 

Co-Kriging, and the results had reasonable computational cost 

and acceptable accuracy. Cheng et al. [35] introduced a 

variable-fidelity constrained lower confidence bound (VF-

CLCB) criterion to address the expensive function-constrained 

optimization problem. At present, the Co-Kriging variable 

confidence approximation model is less used in structural 

reliability analysis. 

At present, multi-fidelity kriging models are widely used in 

the fields of optimization and regression analysis but rarely 

applied to structural reliability analysis. Therefore, aiming at the 

reliability analysis of multi-fidelity data, this paper proposes  

a reliability analysis method for multi-fidelity models with 

coupled optimal important sampling density. The method can be 

used to obtain accurate reliability estimation by multi-fidelity 

kriging model and active learning process of optimal 

importance sampling technique. 

The contributions of the proposed research work can be 

summarized as follows 

(1) A new learning function construction method is 

proposed, which is a new method capable of selecting the 

optimal fit sample from a candidate sample set. It can consider 

the computational cost of both HF and LF models, as well as the 

crowding distance of the training samples and the 

approximation to the LSF. The characteristics of the model can 

be captured more effectively by considering the fitting 

performance of the model. 

(2) A new stopping condition is proposed which stops the 

point addition process based on the estimated value of the 

relative error. 

(3) The optimal important sampling density is implemented 

in the reliability analysis process to effectively improve the 

speed of failure probability assessment. 

The rest of the paper is divided into 5 sections. Section 2 

retrospects the basic principles of Co-Kriging, a method for 

calculating the probability of failure using the optimal 

importance sampling density, and the classic expected 

improvement function. Section 3 mainly describes the 

innovation points of the proposed method. Section 4 describes 

the steps of the computational process of the proposed method. 

Section 5 demonstrates the advantages of the method with 

several application examples. The conclusions obtained in this 

paper are described in Section 6. 

2 Fundamental background 

2.1  Basic concept of the Co-Kriging model 

According to the reference [36], as a variable fidelity 

approximation model, Co-Kriging can provide information 

about the prediction error at non-sample points, which can be 

easier to fit the LSF in the reliability problem. To construct the 

Co-Kriging approximation model, two sets of sample data with 

different fidelity levels are required, where the high fidelity 

expensive sample points and response values are denoted as Xh 

and Yh, and the low confidence sample points and response 

values are denoted as Xl and Yl, respectively. The two sets of 

high and low fidelity sample points are independent of each 

other, and there are nh high fidelity sample points and nl low 

fidelity sample points. In general, the high fidelity sample size 

is smaller than the low fidelity sample size, and the two part 

sample points and output response values are as follows 

X=(Xl,Xh)
T=(xl

1,⋯,xl
nc ,xh

1,⋯,xh
nh)T  (3) 

Y=(Yl,Yh)
T=(Yl(xl

1),⋯,Yl(xl
nl),Yh(xh

1),⋯,Yh(xh
nh))

T

(4) 

The expression for the approximate estimate of the Co-

Kriging surrogate model is as follows 

Zh(x)=ρZl(x)+Zδ(x)   (5) 

where ρ is a scalar coefficient, Zl denotes the model consisting 

of low confidence samples, and Zδ denotes the model consisting 

of the difference between high and low confidence samples. 

Similar to the Kriging model approach, the covariance matrix 

of the Co-Kriging model is constructed as follows  
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𝑐 = (
σl
2Rl(Xl ,Xl) ρσl

2Rl(Xl,Xh)

ρσl
2Rl(Xh,Xl) ρσl

2Rl(Xh ,Xh)+σδ
2Rδ(Xh,Xh)

)(6) 

where Rl and Rδ represent the spatial correlation matrices of the 

models corresponding to different sample data Xl and Xh, 

respectively, σc represents the standard deviation of the low 

confidence approximation model, and σd represents the standard 

deviation of the difference model, which can be calculated by 

maximum likelihood estimation. Because there are two 

correlation matrices Rl and Rδ in the building of Co-Kriging 

approximation model, there are correlation parameters that need 

to be estimated θl and θ𝛿 as well as the amplification factor ρ. 

Since the data at the high and low confidence sample points are 

independent of each other, the parameter estimation approach 

for the low confidence model can be referred to the Kriging 

model. For the parameters of the difference model, the 

expression is defined as 

yδ=yh-ρyl(Xh)   (7) 

where y
l
(Xh) represents the value of the point Xh in the low-

confidence model. In this way, the parameters for the different 

models can also be derived using an optimization procedure 

similar to Kriging. 

The predicted mean and variance of Co-Kriging are 

expressed respectively as  

yh(x)=μ+cTC-1(Y-1μ)  (8) 

sh
2(x)=ρ2σl

2+σδ
2-cTC-1c  (9) 

where, x indicates the input variable, μ=
1

TC-1
Y

1
TC-1

1
, 1 is an n-

dimensional column vector consisting of 1. The expression of 

the vector c is 

𝑐= (
ρσl

2Rl(Xl ,x)

ρ2σl
2Rl(Xh,x)+σδ

2Rδ(Xh,x)
) (10) 

2.2  Failure Probability Based on Optimal Importance 

Sampling Density 

To minimize the error in the predicted value of the probability 

of failure 𝑃̂f , a theoretically optimal important sampling density 

function hopt(x) can be derived, whose expression is as follows 

hopt(x)=
IF(x)fx(x)

Pf
   (11) 

where Pf represents the true value of the failure probability. 

Since the Pf is only an unknown quantity to be estimated, it is 

obviously impractical to solve hopt(x) precisely. However, the 

Kriging model of LSF g
k
(x) is used to construct the current 

significant sampling density function hx(x), defined as  

hx(x) =
π(x)fx(x)

Pfε
   (12) 

where π(x) represents the probability of g
k
(x) ≤ 0 at the sample 

point x obtained from the current Kriging model g
k
(x), defined 

as follows: 

𝜋(x)=P{gk(x)≤0}=Φ (-
μgk

(x)

σgk
(x)
)   (13) 

where g
k
(x) follows a normal 

distributiong
k
(x)∼N (μ

gk
(x),σgk

2 (x)), μ
gk

(x)and σgk

2 (x) are the 

predicted mean and predicted standard deviation of g
k
(x), 

respectively. When g
k
(x) can replace g(x) very accurately, π(x) 

will be close to IF(x). 

Pfε
 is the normalization factor and is defined as follows: 

Pfε  = ∫⋯∫ π(x)
Rn

fx(x)dx    (14) 

where Pfε
  is also known as the augmented failure probability. 

Adopting the importance sampling density function hx(x) 

constructed by the Kriging model, the following derivation can 

be made for the estimator of the failure probability. 

Pf=Pfεαcorr    (15) 

where αcorr=∫⋯∫
IF(x)

π(x)
hx(x)dx

Rn  is called the correction factor. 

2.3  Expected Improvement Function 

The EIF is mainly applied in the field of global optimization. It 

determines the choice of each update point and the search 

direction of the global algorithm. The degree of improvement is 

reflected in the concept known as expected improvement, 

defined as 

𝐸𝐼=(fmin-ŷ(x))Φ (-
fmin-ŷ(x)

σŷ(x)
)+σŷ(x)ϕ (-

fmin-ŷ(x)

σŷ(x)
) (16) 

where f
min

 is the minimum point sampled thus far, ŷ(x) is the 

predicted output value at sample point x, σŷ(x) is the predicted 

standard deviation value at sample point x, Φ is the cumulative 

distribution function, and ϕ is the probability density function. 

3 The proposed OISD+MFK method 

In the field of adaptive reliability analysis, the selection of 

learning function and stopping conditions is crucial. For the 

learning function, it is possible to select suitable samples and 

add them to the experimental design, which in turn increases the 

number of fitted samples, and then corrects the model as fast as 
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possible during the continuous updating of the model. The 

candidate points of these samples are generally selected in the 

candidate set, which can be obtained by performing Monte 

Carlo sampling in the input space. The stopping condition is 

used to determine when to stop the adaptive sampling process. 

The stopping condition usually changes depending on the value 

of the learning function, and the modification of the model is 

stopped when the prediction accuracy is judged to be required 

in order to avoid the waste of computational cost. 

3.1 MEI learning function 

In order to further optimize the efficiency of screening samples 

in the active learning process, a learning function that can fully 

take into account the computing cost of different degrees of 

fidelity is established by extending the ordinary EI filling 

criterion by accounting for the correlation of different 

confidence levels, as well as the distance between training 

samples, defined as 

𝑀𝐸𝐼(x,t)= {
VEI(x,t)d(x)r(x,t)CR(t)  ,t=l

VEI(x,t)d(x)                      ,t=h
 (17) 

where  𝑉𝐸𝐼(x,t) is a variant EI function built based on the EI 

function, t denotes the fidelity of the model, h denotes the HF 

model, and l denotes the LF model. 𝑟(x,t), 𝑑(x), and 𝐶𝑅(t) are 

the intercorrelation function, the sample distance, and the cost 

radio function, respectively, and the key factors of these 

learning functions will be elaborated in the following 

subsections. 

The MEI function is able to obtain sample points from data 

with different fidelities. According to the sampling 

characteristics of the MEI function, the location of the update 

points is obtained by maximizing the MEI function,  

(x*,t*)= argmaxMEI(x,t) ,t=l,h  (18) 

According to (18), each candidate sample corresponds to two 

update samples in the process of each iteration, which are built 

with HF and LF models, respectively, by filtering the maximum 

of which is the most optimal update point. 

3.1.1 VEI learning function 

The EI function is transformed so that it can be applied to the 

MF model with the expression as follows  

𝑉𝐸𝐼(x,t)={

(-ŷ
l
(x))Φ (

-ŷl
(x)

σŷl
(x)
)+σŷl

(x)ϕ(
-ŷl
(x)

σŷl
(x)
) -ŷ

h
(x) ,t=l

(-ŷ
h
(x))Φ (

-ŷh
(x)

σŷh
(x)
)+σŷh

(x)ϕ(
-ŷh
(x)

σŷh
(x)
) -ŷ

h
(x),t=h

             (19) 

where ŷ
l
(x) is the predicted mean value of the LF model, σŷl

(x) 

is the predicted standard deviation of the LF model, ŷ
h
(x) is the 

predicted mean value of the HF model, and σŷh
(x) is the 

predicted standard deviation of the HF model. 

3.1.2  The correlation function  

The prediction accuracy corresponding to various fidelity 

models will also be different. Therefore, it is important to 

quantify the correlation between the LF model and HF model. 

The higher the correlation, indicating that the predicted value of 

the LF model is closer to the true value. The correlation is 

mainly affected by the prediction standard deviation, which is 

expressed as  

𝑟(x,t)={

σŷl
(x)

√σŷl
2 (x)+σŷh

2 (x)
                   ,t=l

1                          ,t=h

  (20) 

3.1.3 Sample distance function 

To consider the effect of sampling point distance with respect to 

the Kriging model and try to avoid the sample waste caused by 

too dense sampling points, for this reason, a sampling distance 

restriction function is introduced, whose expression is as 

follows 

d(x)=min√(x-Xi)2 ,i=1,2,⋯n   (21) 

where Xi is the ith training sample and n is the sample size of 

training samples. 

3.1.4 Cost Ratio Function 

To reasonably account for the difference in computation time 

for high/low accuracy models, the variable confidence MEI 

function introduces the cost ratio CR of high/low precision 

simulation models, which represents the cost ratio between 

conducting one high precision model simulation and conducting 

one low precision model simulation, i.e., the computational cost 

consumed by running one high precision simulation. 

3.2 New Stopping Condition 

As an important factor in active learning reliability analysis, the 

convergence criterion also affects the accuracy of calculation 

results. Setting a reasonable convergence criterion can ensure 

that the algorithm stops the calculation in time. At present, the 

more popular method is established based on the error of Pf. The 

error accuracy is evaluated to determine whether the algorithm 

stops or not. To further improve the computational efficiency of 
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the algorithm, the new convergence criterion proposed in this 

paper is established based on the error of Pf, which can ensure 

the adaptive convergence of the algorithm. 

The relative error in estimating the Pf during active learning 

process is expressed as  

εf=
|Pf-P̂f|

Pf
=
|Nf-N̂f|

Nf
   (22) 

where Nf represents the sample size of true failure samples and 

𝑁̂f represents the sample size of predicted failure samples. 

As the number of active learning processes gradually 

increases, the error of Pf gradually decreases. And the number 

of failure sample symbol estimation errors is smaller than the 

number of total sample symbol estimation errors, so the relative 

error of Pf is expressed as 

εf ≤
Swrong

Nf
   (23) 

where Swrong represents the sample with wrong sign prediction 

among all samples. 

Influenced by the effect of the approximation of the Kriging 

model, in this case, the judgment for the sign of the predicted 

sample is not necessarily accurate. In order to accurately define 

the sign of the predicted failure sample, the expression exists as 

follows 

Sf={x|ŷ(x)≥0∩ŷ(x)-ασŷ(x)≤0,x∈SMC}  (24) 

Ff={x|ŷ(x)<0∩ŷ(x)+ασŷ(x)≤0,x∈SMC}  (25) 

Ss={x|ŷ(x)≥0∩ŷ(x)-ασŷ(x)>0,x∈SMC}  (26) 

Fs={x|ŷ(x)<0∩ŷ(x)+ασŷ(x)>0,x∈SMC}  (27) 

where Sf is the sample with incorrect sign prediction in the 

safety domain, fF
 is the sample with correct sign prediction in 

the failure domain, Ss is the sample with correct sign prediction 

in the safety domain, Fs is the sample with incorrect sign 

prediction in the failure domain. α is the error factor, and the 

confidence interval reaches 95%, when α=1.96. 

Thus, the new expression for the convergence criterion 𝜍 is 

defined as follows 

𝜍=
NSf+NFs

NSf+NFf
≤[𝜍]   (28) 

where NSf
 is the sample size of the set Sf , NFs

 is the sample size 

of the set Fs, NFf
 is the sample size of the set Ff, and [ς] 

represents the error threshold. In this paper, we take 0.5. 

4 Implementation flow of OISD+MFK algorithm 

In summary, the flowchart of the OISD+MFK algorithm based 

on the novel learning function and stopping condition is shown 

in Figure 1, and the specific steps are summarized as follows 

Step 1: DoE initialization. Initial samples xinitial are 

generated with Latin Hypercube Sampling. These samples are 

the LF samples. Randomly select samples from the LF samples 

as the HF samples. 

Step 2: Construct the initial Co-Kriging model. Co-Kriging 

model are built using LF samples and HF samples. 

Step 3: Generate candidate samples SMC. Generate 

candidate samples SMC through Monte Carlo sampling. Output 

the response values of Monte Carlo samples using the Co-

Kriging model. 

Step 4: Search for the new training sample (x*,t*). The 

corresponding sample is selected as a new sample in the 

candidate sample set according to Equation (18). 

Step 5: Evaluate the stopping condition ς.  

Step 5.1: Evaluate augmented failure probability 𝑃̂fε
 

Step 5.2: Evaluate the correction factor α̂corr 

Step 5.3: Evaluate failure probability 𝑃̂f 

Step 5.4: If the stopping condition ς is not smaller than 0.05, 

go back to step 3 and add the additional sample to the DoE and 

repeat the above steps, setting the number of iterations k=k+1. 

If the convergence criterion is smaller than 0.05, output the 

failure probability estimate 𝑃̂f. 

Step 6: Check the coefficient of variation Covp̂f
. If the 

coefficient of variation  Covp̂f
 is not smaller than 0.05, go back 

to step 3 and expand the Monte Carlo candidate sample set SMC. 

If the coefficient of variation Covp̂f
 is smaller than 0.05, proceed 

to Step 7. 

Step 7: End of method. Outputs 𝑃̂f and Covp̂f
. 
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Fig. 1. Flow chart of OISD+MFK. 

 

5 Illustration examples 

In this section, two numerical cases and two engineering cases are 

used to conduct a comparative study of the OISD+MFK method 

and the commonly used methods to demonstrate the accuracy and 

effectiveness of the OISD+MFK method. The first example is  

a two-dimensional multimodal function, the second example is  

a four-branch tandem function, the third example is a cantilever 

beam, and the fourth example is a high-dimensional nonlinear 

vibration system. The comparison methods mainly include MCS, 

AK-MCS+U, and AK-MCS+EFF. To avoid randomness, each 

method was operated 30 times. 

5.1 Example 1: Multimodal function 

The first example of the algorithm is a two-dimensional highly 

nonlinear function, called a multimodal function. The expression 

of this function is as follows. 

{
Gh(x)=2-

(x1
2+4)(x2-1)

20
- sin (

5x1

2
)

Gl(x)=2-
(x1

2+4A)(x2-1-A)

20
- sin (

5x1

2
-A) - sin (

5

22
(x1+

x2

2
)+

5

4
)
 (29) 

where the input variables x1 follow the normal distribution 

N(1.5,1), x2 follow the normal distribution N(2.5,1) , and are 

uncorrelated with each other. A=0, the cost ratio CR=5. 

Figure 2 shows the adding point results and fitting 

performance of the multimodal function, where the black line 

indicates the actual limit state of the HF model, the green line 

indicates the actual limit state of the LF model, and the red dashed 

line indicates the predicted limit state. First, 20 LF samples and 6 

HF samples are generated by LHS sampling. In Figure 2, LF 

samples are shown as pink solid dots and HF samples are shown 

as blue hollow hexagons. Using the MEI function to increase the 

training samples, 2 additional HF samples and 22 additional LF 

samples are generated, and in Fig. 2, the additional LF samples 

appear as pink solid pentagons and the additional HF samples 

appear as blue solid pentagons. From the location and sparsity of 

the samples, it can be seen that the additional training samples are 

located near the LSF, and thus are important for fitting the real 

LSF. Finally, by comparing the actual limit state curve and the 

predicted limit state curve, we can find that the two curves fit well 

in the global range. 

Figure 3 shows the iteration history curve of MCS, AK-
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MCS+U, AK-MCS+EFF, and OSID+MFK approaches to assess 

the failure probability. After 26 iterations, the algorithm reaches 

the stopping condition and the failure probability evaluation value 

gradually approaches the true Pf value as the number of iterations 

is updated.  

The performance of the OISD+MFK method was compared 

with existing methods and the results of MCS, AK-MCS+EFF, 

and AK-MCS+U are presented in Table 1. As illustrated in Table 

1, Tc is the computational cost of the combined LF and HF models. 

In terms of calculating cost, the Tc of OISD+MFK is 17.07, which 

has the smallest number of all methods. The Tc of AK-MCS+U 

and AK-MCS+EFF are 41.46 and 55.82, respectively, which are 

significantly larger than that of OISD+MFK. For the accuracy 

results of the failure probability calculation, the OISD+MFK is 

0.35%, which is somewhat bigger than the 0.32% of AK-

MCS+EFF. Nevertheless, the calculated burden of AK-MCS+EFF 

is larger than that of OISD+MFK. In summary, the proposed 

OISD+MFK method has the optimal overall performance 

regarding computational accuracy and computational cost. 

 

 

 

 

Fig. 2  Adding point results and fitting performance of OSID+MFK method for multimodal function. 

 

Fig. 3 Iterative curve of failure probability of  

MCS, AK-MCS+U, AK-MCS+EFF and OSID+MFK approaches 

for multimodal function. 

Table 1 Reliability analysis results of MCS, AK-MCS+U, AK-

MCS+EFF and OISD+MFK approaches for multimodal function. 

Methods 𝑇𝑐 𝑃̂𝑓 (×10-2) 
𝐶𝑜𝑣𝑃̂𝑓  

(%) 

𝜀𝑃̂𝑓 

(%) 

MCS 106 3.133 0.56 - 

AK-

MCS+U 
41.46 3.111 0.56 0.70 

AK-

MCS+EFF 
55.82 3.143 0.56 0.32 

OISD+MFK 8.24+44.16×0.2 3.144 0.56 0.35 

5.2 Example 2: Four branches series system 

The second example is a four branches series function. The 

expression of the four-branch series function is as follows 
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  (30) 

where the input variables x1 and x2 obey a standard normal 

distribution and are uncorrelated with each other. A=1, the cost 

ratio CR=5. 

This function has more complexity than the last function 

because the calculation results of this function are affected by the 

four nonlinear functions together. 

Firstly, 30 LF samples and 6 HF samples were generated by 

LHS sampling. Figure 2 shows the final fitting results of the four-

branch tandem function. It can be seen in the figure that the 

majority of the additional HF and LF samples are approaching the 

HF limit state function, and no invalid added samples are 

generated. It shows that the algorithm can effectively obtain 

meaningful samples near HF. 

Figure 4 shows the iteration history curve of the OISD+MFK 

method to evaluate the reliability. After 48 iterations, the 

algorithm gradually smoothed out and reached the stopping 

condition. 

 

 

Fig. 4  Adding point results and fitting performance of OSID+MFK method for four branches series function. 

The performance of the OISD+MFK method was compared 

against existing methods and the results of MCS, AK-MCS+EFF, 

and AK-MCS+U are presented in Table 2. As shown in Table 2, 

the standard outcome is Pf=2.221×10-3. The total computational 

cost shows that OISD+MFK has the least computational cost, 

which is reduced by 55.37% and 57.54% compared to AK-

MCS+U and AK-MCS+EFF, respectively. In terms of Pf error 

results, the failure errors of AK-MCS+U, AK-MCS+EFF, and 

OISD+MFK are 4.68%, 1.35%, and 0.45%, respectively. the 

error results of OISD+MFK are the smallest, thus it can be seen 

that the OISD+MFK method shows good competitiveness with 

regard to both the calculation cost and the accuracy of the Pf 

calculation. 
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Table 2 Reliability analysis results of MCS, AK-MCS+U, AK-

MCS+EFF and OISD+MFK approaches for four branches series 

function. 

Methods 𝑇𝑐 𝑃̂𝑓 (×10-3) 
𝐶𝑜𝑣𝑃̂𝑓 

(%) 
𝜀𝑃̂𝑓 (%) 

MCS 107 2.221 0.67 - 

AK-MCS+U 54.56 2.325 0.66 4.68 

AK-MCS+EFF 57.35 2.251 0.67 1.35 

OISD+MFK 9.26+75.43×0.2 2.211 0.67 0.45 

 

Fig. 5 Iterative curve of failure probability of  

OSID+MFK approach for four branches series function. 

5.3 Example 3: An cantilever beam 

The third example is studied with a cantilever beam of  

a rectangular section. The schematic diagram of the cantilever 

beam is shown in Fig. 6(a). The cantilever beam is burdened with 

loads in horizontal and vertical directions, and the force diagram 

of its cross-section is shown in Fig. 6(b). The LSF of the force 

state of the cantilever beam is established with its free end 

displacement not exceeding ΔD as a constraint, and the specific 

mathematical expressions are as follows. 

{
 
 

 
 Fh(E,X,Y,w,t,L)=ΔD-Dmax=2.2-

4L3

Ewt
√(

X

w2
)
2
+(

Y

t2
)
2

Fl(E,X,Y,w,t,L)=2.2-
4L3

Ewt
√(

X+0.01

w2
)
2
+(

Y+0.1

t2
)
2

 (31) 

where ΔD is the free end displacement threshold, Dmax is the 

maximum free end displacement, E is the modulus of elasticity 

of the material, w is the width of the beam, t is the beam height, 

L is the beam length, and the cost ratio CR=2. ΔD, w, t, and L are 

constants, and their specific values are shown in Table 3. X and 

Y are normal distributed variables, and their parameters are 

shown in Table 4. 

Table 3 Constant parameters of cantilever beam structure. 

Constant value 

𝛥𝐷/mm 2.2 

  

w/m 2.4884 

t/m 3.8884 

L/m 100 

Table 4 Variable parameters of the cantilever beam structure. 

Random 

variable 
Distribution Mean 

Standard 

deviation 

X/N Normal 500 100 

Y/N Normal 1000 100 

E/Pa Normal 2.9×107 1.45×106 

 

 

(a)         (b) 

Fig. 6 Cantilever beam structure (a) Schematic diagram of cantilever beam (b) Cross-section force diagram. 
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Table 5 Reliability analysis results of MCS, AK-MCS+U, AK-

MCS+EFF and OISD+MFK approaches for cantilever beam 

structure. 

Methods 𝑇𝑐 𝑃̂𝑓 (×10-3) 
𝐶𝑜𝑣𝑃̂𝑓 

(%) 

𝜀𝑃̂𝑓 

(%) 

MCS 106 2.711 1.92 - 

AK-MCS+U 26.23 2.683 1.93 1.03 

AK-MCS+EFF 22.95 2.732 1.91 0.77 

OISD+MFK 6+13.49×0.5 2.708 1.92 0.11 

 

The initial HF samples were set with 6 and LF samples with 

10. The MCS, AK-MCS+U, AK-MCS+EFF, and OISD+MFK 

methods were used for comparison and calculation, respectively. 

The results of all methods are given in Table 5. 

It is found that the computational costs of MCS, AK-

MCS+U, AK-MCS+EFF and OISD+MFK are 106, 26.23, 22.95 

and 12.75, respectively. the computational cost of OISD+MFK 

is the least, which is reduced by 51.39% and 44.44% compared 

to K-MCS+U and AK-MCS+EFF, respectively. Meanwhile, the 

results of 𝑃𝑓 given in Table 5 show that Pf evaluation error of the 

OISD+MFK method is the smallest and closest to the standard 

result of MCS of 2.711×10-3, which indicates that the 

OISD+MFK method has some guiding significance to improve 

the calculation accuracy. In conclusion, the reliability analysis of 

the cantilever beam structure shows that the OISD+MFK method 

has greater advantages in terms of computational cost and 

probability of failure assessment. Through this example, it is 

proved that the OISD+MFK method is efficient and successful. 

5.4 Example 4: Nonlinear oscillator system 

The nonlinear oscillatory system belongs to a high-dimensional 

nonlinear function, which is shown schematically in Figure 7. 

The LSF expression of the nonlinear oscillatory system is as 

follows 

 

Fig. 7. The nonlinear oscillator system. 

 

{
 
 

 
 Gh(C1,C2,M,R,T1,F1)=3R-|Zmax| =3R- |

2F1

Mω0
2 sin (

ω0T1

2
)|

Gl(C1,C2,M,R,T1,F1)=3R- |
2F1

Mω0
2 sin (

ω0T1

2
-0.1)|

(32) 

where F1 is the load, T1 is the time course, M is the mass of the 

oscillator, C1 and C2 represent the two elasticity coefficients, R 

is the displacement of the system, ω0 is the frequency of the 

system, Zmax is the maximum displacement of the system 

response, 3R is the maximum allowed displacement of the 

nonlinear restoring force, the cost ratio CR=5. The expression of 

ω0 is as follows 

ω0=√
C1+C2

M
   (33) 

Table 6 The parameters of the nonlinear oscillator system. 

Random variable  Distribution  Mean standard deviation 

𝑀 Normal 1 0.05 

𝐶1 Normal 1 0.1 

𝐶2 Normal 0.1 0.01 

𝑅 Normal 0.5 0.05 

𝑇1 Normal 1 0.2 

𝐹1 Normal 1 0.2 
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Table 7 Reliability analysis results of MCS, AK-MCS+U, AK-

MCS+EFF and OISD+MFK approaches for nonlinear oscillator 

system. 

Methods 𝑇𝑐 
𝑃̂𝑓 

(×10-3) 

𝐶𝑜𝑣𝑃̂𝑓    

(%) 

𝜀𝑃̂𝑓 

(%) 

MCS 106 2.432 2.05 - 

AK-MCS+U 89.28 2.525 1.99 3.82 

AK-MCS+EFF 105.46 2.489 2.00 2.34 

OISD+MFK 11.15+75.43×0.2 2.500 2.00 2.80 

In this algorithm, the initial Kriging model is created from 8 

HF samples and 40 LF samples. The performance results of the 

OISD+MFK, MCS, AK-MCS+EFF and AK-MCS+U are 

presented in Table 7. As shown in Table 7, the standard outcome 

is 𝑃𝑓 = 2.221 × 10−3. The corresponding Tc for AK-MCS+U 

and AK-MCS+EFF are 89.28 and 105.46, respectively, which are 

significantly bigger than the result of the OISD+MFK method. 

In addition, the relative errors of failure probabilities for these 

methods were 3.82%, 2.34%, and 2.80%, respectively. Although 

the error of the AK-MCS+EFF method is slightly larger than that 

of OISD+MFK, the calculation burden of this method is 

remarkably larger than that of the OISD+MFK method. 

Consequently, in comparison with other methods, the 

OISD+MFK method can obtain satisfactory error accuracy with 

less calculation cost. This example shows that for the reliability 

problem of high-dimensional complex nonlinear functions, the 

proposed OISD+MFK shows favorable merits with respect to 

calculation demands and evaluation accuracy. 

6  Conclusion 

To surmount the problem that traditional reliability analysis 

methods cannot address multi-fidelity data, this paper proposes 

a structural reliability analysis method coupled with the optimal 

importance sampling density function. The method integrates the 

computational cost of HF and LF models and can obtain 

relatively accurate failure probability estimates at a low cost. 

By considering the training sample distance, the correlation 

of between various fidelity models, and the calculating cost, 

additional samples of suitable fidelity are automatically found 

among the candidate samples. The proposed stopping condition 

is able to obtain more conservative error estimates by scaling the 

relative error estimates. Two numerical cases and two 

engineering cases are used to verify the feasibility of the 

OISD+MFK method, and the performance shows that the 

OISD+MFK method is able to balance the calculation cost and 

error accuracy of the failure probability calculation. To 

summarize, the integrated performance of OISD+MFK is 

obviously superior to other comparison methods. 

The analysis of the four cases leads to some main 

observations: (1) The stopping condition proposed would be 

effective in raising the operational efficiency of the algorithm. 

(2) The learning function that considers the computational cost 

is important to reduce the computational burden while generating 

an effective agent model. (3) The integration of the most 

important sampling density function into the reliability analysis 

process can make the failure probability assessment value more 

approximate to the true solution. 

The proposed method in this paper has shown good results in 

dealing with the static reliability of components. Besides, in 

future research, the method of this paper can be broadened to 

address the study of time-variant reliability analysis problems. 
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