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▪ Combining physical degradation models with 

BP-LSTM deep learning models for predicting 
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data and merit-seeking guidelines. 

▪ GPSO is used to solve the dynamic equation 

seeking problem. 

▪ Example of a preventive maintenance strategy 

realized for a coating machine. 

 

 In this paper, a dynamic preventive maintenance strategy is proposed for 

the problem of high maintenance cost rate due to excessive maintenance 

caused by unreasonable maintenance threshold setting when complex 

electromechanical equipment maintenance strategy is formulated. 

Increasing failure rate factor and decreasing service age factor are 

introduced to describe the evolution rules of failure rate during the 

maintenance of the coating machine, and the BP-LSTM (BP-Long Short 

Term Memory Network, BP-LSTM) model is combined to predict the 

failure rate of the coating machine. A Dynamic preventive maintenance 

Model (DM) that relies on dynamic failure rate thresholds to classify the 

three preventive maintenance modes of minor, medium and major 

repairs is constructed. A dynamic preventive maintenance strategy 

optimization process based on Genetic-Particle Swarm Optimization 

(GPSO) algorithm with the lowest cost rate per unit time in service phase 

is built to solve the difficult problem of dynamic failure rate threshold 

finding. Based on the historical operating data of the coating machine, a 

case study of the dynamic preventive maintenance strategy of the coating 

machine was conducted to verify the effectiveness of the model and the 

developed maintenance strategy proposed in this paper. The results show 

that the maintenance strategy developed in this paper can ensure better 

economy and applicability. 
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1. Introduction 

With the increasing level of automation and leanness of the 

equipment, the need for stable and reliable operation of the 

equipment has put higher requests on the preventive 

maintenance strategy of the equipment. Traditional timed 

preventive maintenance strategies [22] or maintenance strategies 

with a given failure rate threshold [7] are prone to excessive 

maintenance, resulting in reduced equipment availability or high 

maintenance costs. Therefore, how to reasonably develop  

a preventive maintenance strategy, to improve the operational 

reliability and economy of the equipment system, to ensure the 

quality of equipment products and manufacturing and 

processing capabilities, has an important role. 

In recent decades, maintenance strategies have been studied. 

Maintenance strategies have evolved from initial corrective 

maintenance, to preventive maintenance, and then to dynamic 

preventive maintenance [9]. Corrective maintenance refers to 

repair activities after equipment failure, with a delay. Preventive 

maintenance refers to maintenance activities carried out before 

equipment failure occurs, with the aim of preventing or reducing 

equipment failure and improving equipment reliability [37]. 

However, the current research on equipment failure prediction is 

not mature, which makes it difficult to develop correct 

maintenance strategies in advance and increases the 

maintenance cost of equipment. Therefore, reliability-centered 
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preventive maintenance [23, 27, 29] and condition-based 

preventive maintenance [3, 28, 40] have become hot topics of 

research. However, most authors only consider the degradation 

characteristics of the physical model of the device, ignoring that 

the degradation has a certain stochastic nature, resulting in its 

limitations. Preventive maintenance for a given threshold gives 

us a new research direction. For example, Aafif Y [1] monitors 

the status of the gearbox by its temperature and cools it once the 

temperature reaches a predetermined threshold level. Zhang L 

[39] considered the reliability of a Multi-Component Repairable 

System (MCRS) performing preventive maintenance as soon as 

a given threshold value is reached. Bautista L [6] performs 

preventive replacement if the level of degradation of the 

degradation process exceeds a certain threshold when checking 

the work of the system. Although the above-mentioned ways of 

giving the threshold value can effectively reduce the frequency 

of equipment failure or reduce the maintenance cost, whether the 

threshold value is set reasonably needs further verification. 

Some authors have proposed dynamic preventive maintenance 

strategies. For example, Wu ZY [34] proposed a dynamic 

condition maintenance model based on an inverse Gaussian 

process and established a dynamic maintenance threshold 

function, which sets different thresholds at different degradation 

stages and can reduce the risk of early failure of the equipment 

while ensuring a lower expected cost ratio. Chen W [8] proposed 

a dynamic portfolio maintenance model for PV plants based on 

component correlation and availability. The state of the 

equipment and correlation set is predicted and its availability is 

determined. Alvarez C [4] proposed a stochastic dynamic 

planning model for condition-based maintenance applications. 

The optimal timing of inspection and preventive maintenance 

for each component of a non-redundant system was determined. 

However, most of the above studies only consider the state of 

the equipment and ignore the degradation characteristics of the 

failure rate of the equipment. Gong Q [13] proposed a dynamic 

preventive maintenance strategy for metro vehicle traction 

systems considering stages. The decreasing service life factor 

and the increasing failure rate factor are introduced, and  

a dynamic reliability model considering the effect of preventive 

maintenance on component failure rate is established. Although 

this literature considers the effect of maintenance on the failure 

rate, the enumeration method is computationally intensive and 

inefficient to solve when optimizing the maintenance strategy. 

With the continuous development of deep learning 

algorithms, the application of deep learning in maintenance 

strategies is also increasing. Yousefi N [38] used deep 

reinforcement learning methods to provide a new dynamic 

maintenance model for degraded repairable systems subject to 

degradation and random shocks. Rodriguez MLR [30] proposed 

a new multi-intelligence approach to learn maintenance 

strategies executed by technicians under the uncertainty of 

multiple machine failures. Xin JY [35] proposed a new 

framework based on system reliability for multi-objective 

optimization of in-service asphalt pavement preventive 

maintenance (PM) management based on time-varying Limit 

State Functions (LSFs), combining the uncertainty in LSTM 

neural network predictions and the observed errors in 

International Roughness Index (IRI) measurements. The 

aforementioned literature uses deep learning algorithms to 

analyze the system, without considering the integration with 

physical models. When performing long-time prediction, the 

prediction results may deviate from the reality. 

A dynamic preventive maintenance strategy with dynamic 

failure rate thresholds is proposed to solve the above problems. 

The main contributions of this paper are as follows. 

(1) To improve the prediction accuracy of equipment failure 

moments, a failure prediction model combining a physical 

model of equipment degradation and a BP-LSTM deep learning 

model is proposed. 

(2) A dynamic preventive maintenance strategy finding 

process based on Genetic-Particle Swarm Optimization (GPSO) 

algorithm is built, which improves the solution efficiency and 

solves the difficult problem of dynamic equation finding. 

(3) The three preventive maintenance modes of minor, 

medium and major repairs are classified based on dynamic 

failure rate thresholds to make the dynamic preventive 

maintenance strategy more in line with the actual situation. 

The rest of the paper is organized as follows. In Section 2, 

describe the dynamic preventive maintenance strategy; In 

Section 3, the GPSO algorithm is constructed to solve the 

dynamic preventive maintenance model; In Section 4, dynamic 

preventive maintenance strategy analysis is conducted; In 

Section 5, gives the conclusion. 

2. Coating machine dynamic preventive maintenance 

strategy 

As complex electromechanical equipment in the field of lithium 

battery positive and negative slurry coating, the coating machine 

consists mainly of four parts: the parent roll delivery system, the 

coating system, the heating drying system and the cooling 

system. Each system consists of a large collection of mechanical, 

pneumatic, electronic components. For example, the parent roll 

conveyor system is equipped with 2 3-inch convex bond 

inflation shaft, 5 kg magnetic powder brake controls roll tension, 

and the overall rack adopts EPC (Edge Position Control) 

hydraulic automatic deflection correction and pneumatic film 

mechanism. The coating machine is key equipment in the 

lithium battery production line, and its working reliability has an 

important impact on the uniformity of the slurry coating on the 

electrode surface, which directly affects the safe operation of 

lithium batteries. Therefore, it is important to establish an 

effective preventive maintenance strategy to ensure the stable 

and reliable operation of the coating machine. 

2.1 Dynamic preventive maintenance modes for coating 

machine 

Most traditional equipment maintenance models use fixed 

failure rate thresholds for maintenance strategy development. 

The selection of failure rate thresholds directly affects 

preventive maintenance programs, and the subjectivity of their 

settings can easily lead to over or under-maintenance of 

preventive maintenance. The dynamic preventive maintenance 

model is based on the dynamic failure rate threshold for 

maintenance strategy development, which is strictly determined 

according to the equipment's historical failure data and the 

merit-seeking criteria, effectively solving the above problems. 

To construct a dynamic preventive maintenance strategy for the 

coating machine, make the following assumptions: 
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(1) The initial failure rate of the coating machine is 0 [25]. 

(2) Preventive maintenance of the coating machine is divided 

into three maintenance modes based on failure rate thresholds: 

minor, medium, and major maintenance, as shown in Fig. 1. 

Assuming that the coating machine will fail at time 𝑡𝑁, (𝑁 =

1, 2,⋯ ,𝑁. ), when the failure rate of the coating machine is 𝜆(𝑡), 

the maintenance model has the following definition: 

Minor repair: When 𝜆(𝑡) < 𝜆𝑚𝑒𝑑  , the coating machine's 

failure rate does not reach the medium repair threshold 𝜆𝑚𝑒𝑑  at 

the moment, the coating machine undergoes a minor repair, as 

"repair as old", and the repair time is very short and negligible. 

Medium repair: When 𝜆𝑚𝑒𝑑 ≤ 𝜆(𝑡) < 𝜆𝑚𝑎𝑗  , the coating 

machine's failure rate reaches the medium repair threshold 𝜆𝑚𝑒𝑑  

at time 𝑡𝑁 and does not reach the major repair threshold 𝜆𝑚𝑎𝑗 , 

the coating machine undergoes a medium repair and the repair 

time is advanced 𝑡𝑁
′. The medium repair does not "repair as 

new" the coating machine, but restores the coating machine to 

 a better condition than it is now, the failure rate changes faster 

and the service life of the coating machine decreases after the 

repair. The repair time is fixed at 𝜎. 

Major repair: When 𝜆(𝑡) ≥ 𝜆𝑚𝑎𝑗, the coating machine's 

failure rate at 𝑡𝑁 is greater than or equal to the major repair 

threshold of 𝜆𝑚𝑎𝑗 , the coating machine undergoes a major repair 

and the repair time is advanced to 𝑡𝑁
′. The major repair makes 

the coating machine "repaired as new". The repair time is fixed 

at 𝜌.' 

 
Fig. 1. Three maintenance modes of dynamic preventive 

maintenance strategy for coating machine. 

In this strategy, minor, medium, and major repairs are 

performed before the moment of failure. For example, in Fig. 1, 

the coating machine failure occurs at the time 𝑡1,  𝑡4, 

corresponding to the failure rate 𝜆(𝑡) < 𝜆𝑚𝑒𝑑, and the minor 

repair is advanced to 𝑡1
′ ,  𝑡4

′ ; the coating machine failure occurs 

at the time 𝑡2,  𝑡3,  𝑡6, corresponding to the failure rate 𝜆𝑚𝑒𝑑  ≤

𝜆(𝑡) < 𝜆𝑚𝑎𝑗 , and the medium repair is advanced to 𝑡2
′ ,  𝑡3

′ ,  𝑡6
′ ; 

the coating machine failure occurs at the time 𝑡5, 𝑡𝑁, 

corresponding to the failure rate 𝜆(𝑡) ≥ 𝜆𝑚𝑎𝑗 , and the minor 

repair is advanced to 𝑡5
′ ,  𝑡𝑁

′ . 

2.2 Coating machine failure rate evolution rules 

Based on the usage process of the coating machine, a 

combination of a failure rate increment factor and a service age 

decrement factor is introduced in this section to describe the 

degradation process of the coating machine to more accurately 

portray the failure rate evolution rule of the coating machine. 

(1) Failure rate evolution rule with failure rate increment 

factor 

The failure rate of the coating machine after the 𝑖th 

preventive maintenance, according to reference [24], can be 

expressed as 

𝜆𝑖+1 = 𝑎𝑖𝜆(𝑡)   (1) 

Where 𝑎𝑖 > 1 is the failure rate increment factor. Under this kind 

of rule, the failure rate of the coating machine will be brought 

back to 0 after each repair, but it will make the failure rate 

change faster, and the failure rate evolution rule is shown in 

Fig.2. 

 
Fig. 2. Failure rate evolution rule with increasing failure rate 

factor. 

The failure rate of the coating machine after the 𝑖th 

preventive maintenance, according to reference [18], can be 

expressed as 

𝜆𝑖+1 = 𝜆𝑖(𝑡 + 𝑏𝑖𝑇𝑖)   (2) 

Where 0 < 𝑏𝑖 < 1 is the service age decrement factor and 𝑇𝑖  is 

the last maintenance time interval. Under such a rule, the failure 

rate of the coating machine will become 𝜆𝑖(𝑡 + 𝑏𝑖𝑇𝑖) after each 

repair. The rules of failure rate evolution are shown in Fig. 3. 

 

Fig. 3. Failure rate evolution rule with service age decrement 

factor. 

(3) Description of the degradation process of the coating 

machine 

The failure rate evolution rules under the failure rate 

increment factor and the failure rate evolution rules under the 

service age decrement factor are integrated to construct the 

failure rate evolution rules of the coating machine as shown in 

Fig. 4. 
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Fig. 4. Evolution rule of failure rate with two adjustment 

factors. 

Fig. 4 shows that the failure rate of the coating machine 

increases and the service life decreases after the repair. The 

relationship between the failure rate of the coating machine 

before and after the repair can be expressed as 

𝜆𝑖+1 = 𝑎𝑖𝜆𝑖(𝑡 + 𝑏𝑖𝑇𝑖)   (3) 

Where 𝑎𝑖 > 1 is the failure rate increment factor, 0 < 𝑏𝑖 <

1 is the service age decrement factor, and 𝑇𝑖  is the last 

maintenance time interval. The values of 𝑎, 𝑏 can be statistically 

derived from the maintenance records of the equipment. For 

calculation ease, assume 𝑎𝑖 → 𝑎, 𝑏𝑖 → 𝑏 that during the 

maintenance cycle, and then we can get the failure rate in the 𝑖 

th maintenance cycle as 

𝜆𝑖 = 𝑎𝜆𝑖−1(𝑡 + 𝑏𝑇𝑖−1) = 𝑎
2𝜆𝑖−2(𝑡 + 2𝑏𝑇𝑖−2) = 𝑎

𝑖𝜆0(𝑡 + 𝑖𝑏𝑇0) (4) 

Due to the two maintenance cycles before and after the 

coating machine 𝑇𝑖+1 ≈ 𝑏𝑇𝑖 . Therefore, the rule for the 

evolution of the failure rate of the coating machine is obtained 

as 

𝜆𝑖(𝑡) = 𝑎
𝑖𝜆0(𝑡 + 𝑖𝑏𝑇𝑖)  (5) 

2.3 Failure rate prediction method of coating machine 

based on BP-LSTM 

The model for dynamic preventive maintenance uses failure rate 

prediction for maintenance strategy development. Combining 

the advantage of Long Short Term Memory Network (LSTM) 

with long time memory function in time series modeling 

problems [21] and the feature of BP neural network with 

extremely strong generalization ability [36], a BP-LSTM fault 

prediction model is proposed to predict the failure rate. The 

failure rate prediction framework based on BP-LSTM is shown 

in Fig. 5. 

 
Fig. 5 Failure rate prediction framework based on BP-LSTM. 

Based on the prediction framework in Fig. 5, the BP-LSTM 

failure rate prediction model is constructed in the following: 

(1) The original fault data is analyzed to extract fault features 

and constitute the training set 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑡 , ⋯ , 𝑥𝑛}, 𝑡 =
{1,⋯ , 𝑛}. 

(2) Initialization of LSTM. Given the initial weight matrix, 

an initial weight matrix is a random number uniformly 

distributed between [0, 1]. Set a reasonable maximum number 

of iterations for training and a minimum error. 

(3) Take the training set 𝑥𝑡 as an example, input 𝑥𝑡 into BP-

LSTMt, 𝑥𝑡 first get the current output 𝑦𝑡  by LSTMt, the formula 

where 𝑦𝑡 is calculated as follows: 

𝑦𝑡 = 𝜎(𝑤𝑥𝑜𝑥𝑡 +𝑤ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) ⊗ 𝑡𝑎𝑛ℎ(𝜎(𝑤𝑥𝑖𝑥𝑡 +𝑤ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)⊗

𝑡𝑎𝑛ℎ(𝑤𝑥𝑐𝑥𝑡 +𝑤ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) + 𝜎(𝑤𝑥𝑓𝑥𝑡 + 𝑤ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)⊗ 𝐶𝑡−1)         (6) 

The current output 𝑦𝑡  obtained from the LSTMt is then input 

to the BP neural network, reducing error with the current long-

term state 𝐶𝑡 to obtain the previous short-term state 𝑧𝑡 of 

LSTMt+1, 𝑧𝑡 = ∑ 𝜎(∑ 𝑤𝑖𝑙𝑦𝑡 + 𝑎𝑙
𝑙
𝑖=1 )𝑤𝑙𝑗 +

𝑛
𝑗=1 𝑏𝑗. The output of 

input 𝑥𝑡 through BP-LSTMt can be expressed as 𝑝̂𝑡 , 𝑃̂𝑡 =

𝐵𝑃 − 𝐿𝑆𝑇𝑀𝑡(𝑥𝑡 , 𝐶𝑡−1, 𝑧𝑡−1). 

Similarly, the output of the whole BP-LSTM model can be 

obtained as 𝑃̂ = {𝑃̂1, 𝑃̂2, ⋯ , 𝑃̂𝑛}. 

(4) The actual output of the BP-LSTM model and the test set 

is used to calculate the error, which is input into the model, and 

the weight and bias of the model are adjusted to make the error 

decrease continuously and achieve the optimization of the 

network. The error calculation formula is shown in Eq. (7). 

𝜀 =
1

𝑁
(𝑝𝑡 − 𝑝̂𝑡)

2   (7) 

In Eq. (7): 𝑝𝑡 , 𝑝̂𝑡is the true and predicted value of the fault; 

𝑁 is the number of data for test verification. 

(5) Output the failure moment prediction data and combine 

with the failure rate evolution rules to get the failure rate 

prediction data. 

(6) The model stops training when the number of training 

sessions or error values meet the requirements 

2.4 Objective function construction for dynamic 

preventive maintenance model 

The coating machine uses the lowest cost rate per unit of 

operating time as the goal when performing maintenance 

strategy development, assuming that the coating machine 

maintenance costs consist of downtime losses, labor costs, and 

maintenance material costs as follows: 

(1) Downtime losses 𝐶𝑑 

Refers to the loss of products that should be produced due to 

medium and major repairs, minor repairs are very short and 

downtime losses are not counted. Define the cost of downtime 

per unit of time as 𝐶𝑒, downtime for medium maintenance is 𝜎, 

downtime for major maintenance is 𝜌, then the downtime losses 

can be determined by Eq. (8). 

𝐶𝑑 = 𝐶𝑒𝜎 + 𝐶𝑒𝜌 = 𝐶𝑒(𝜎 + 𝜌)   (8) 

(2) Labor costs 𝐶𝑟 

Refers to the labor costs incurred in the process of medium 

and major repairs, and the labor costs are not counted for the 

very short time of minor repairs. Define the cost of labor per unit 

of time as 𝐶𝑟0, downtime for medium maintenance is 𝜎, 

downtime for major maintenance is 𝜌, then the labor costs can 

be determined by Eq. (9). 
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𝐶𝑟 = 𝐶𝑟0𝜎 + 𝐶𝑟0𝜌 = 𝐶𝑟0(𝜎 + 𝜌)  (9) 

(3) Maintenance material costs 𝐶𝑔 

Refers to the cost of materials required in the course of 

minor, medium, and major repairs. Define the cost of materials 

required for a single minor repair as 𝐶𝑔𝑚𝑖𝑛, the cost of materials 

required for a single medium repair as 𝐶𝑔𝑚𝑒𝑑, the cost of 

materials required for a single major repair 𝐶𝑔𝑚𝑎𝑗 . 

Based on the above definition of cost, assume that the cost 

of each minor repair of the coating machine is 𝐶𝑚𝑖𝑛, each 

medium repair of the coating machine is 𝐶𝑚𝑒𝑑 , and each major 

repair of the coating machine is 𝐶𝑚𝑎𝑗 . We can identify three 

preventive maintenance mode costs as follows: 

(1) Minor repair costs 

The repair time for minor repairs is very short and negligible, 

so the cost of minor repairs only includes the cost of repair 

materials, not including downtime losses and labor costs, which 

is 

𝐶min = 𝑚𝐶𝑔min   (10) 

In Eq. (10), 𝑚 is the number of minor repairs. 

(2) Medium repair costs 

𝐶𝑚𝑒𝑑 = 𝑖(𝐶𝑒𝜎 + 𝐶𝑟0𝜎 + 𝐶𝑔𝑚𝑒𝑑) (11) 

In Eq. (11), 𝑖 is the number of medium repairs. 

(3) Major repair costs 

𝐶𝑚𝑎𝑗 = 𝑘(𝐶𝑒𝜌 + 𝐶𝑟0𝜌 + 𝐶𝑔𝑚𝑎𝑗) (12) 

In Eq. (12), 𝑘 is the number of major repairs. 

In summary, we can obtain the total cost of maintenance as 
𝐶 = 𝐶𝑚𝑖𝑛 + 𝐶med + 𝐶maj

= 𝑚𝐶𝑔min + 𝑖(𝐶𝑒𝜎 + 𝐶𝑟0𝜎 + 𝐶𝑔𝑚𝑒𝑑) + 𝑘(𝐶𝑒𝜌 + 𝐶𝑟0𝜌 + 𝐶𝑔𝑚𝑎𝑗)
(13) 

Therefore, the cost rate per unit of operation time in the 

forecast cycle is 

𝐸𝐶 =
𝑚𝐶𝑔min+𝑖(𝐶𝑒𝜎+𝐶𝑟0𝜎+𝐶𝑔𝑚𝑒𝑑)+𝑘(𝐶𝑒𝜌+𝐶𝑟0𝜌+𝐶𝑔𝑚𝑎𝑗)

𝑇−𝑖𝜎−𝑘𝜌
  (14) 

In Eq. (14), 𝑇 is the whole forecast period. 

As a result, we solve for the optimal failure rate threshold 

with the lowest cost rate per unit of operating time in the forecast 

cycle, and propose the objective function of the dynamic 

preventive maintenance model as follows: 

{
 
 

 
 min𝐸𝐶 =

𝑚𝐶𝑔𝑚𝑖𝑛+𝑖(𝐶𝑒𝜎+𝐶𝑟0𝜎+𝐶𝑔𝑚𝑒𝑑)+𝑘(𝐶𝑒𝜌+𝐶𝑟0𝜌+𝐶𝑔𝑚𝑎𝑗)

𝑇−𝑖𝜎−𝑘𝜌

s.t. {

𝜆(𝑡) < 𝜆med
𝜆med ≤ 𝜆(𝑡) < 𝜆maj

𝜆(𝑡) ≥ 𝜆maj

}
 (15) 

In Eq. (15), 𝜆(𝑡) is the failure rate corresponds to the 

predicted value at each failure moment, and the constraint 𝑠. 𝑡. is 

used to determine the repair mode corresponding to each failure 

moment predicted by the BP-LSTM, and thus the number of 

failures corresponding to each repair mode. The design variables 

corresponding to the objective function are 𝜆med, 𝜆maj. 

It is worth noting that Eq. (15) is a dynamic equation and it 

is very difficult to obtain its solution, so we need to solve the 

above equation with the help of an optimization algorithm. 

3. Research on dynamic failure rate finding method  

The dynamic preventive maintenance model is divided into three 

preventive maintenance modes of minor repair, medium repair, 

and major repair based on dynamic failure rate threshold. We 

solve for the optimal medium repair threshold and major repair 

threshold with the lowest cost rate per unit of operating time. 

The objective function of the model is a dynamic equation, and 

the optimization process may face the situation of falling into 

local optimum or difficult to get the global optimum. At present 

many researchers used and proposed modified algorithms or 

hybrid algorithms [10, 12, 32]. Therefore, this section combines 

the Particle Swarm Optimization (PSO) algorithm with better 

local search capability [16] and the Genetic Algorithm (GA) 

with better global search capability [26] to solve the problem of 

finding the dynamic failure rate threshold of the coating 

machine. 

The Particle Swarm Optimization (PSO) algorithm evaluates 

the quality of each particle through the fitness function. Each 

iteration of particles will update their relative positions [11], 

simulate the birds flying foraging behavior, and collaborate 

collectively to find optimal solutions [15]. The traditional 

continuous optimality search rule [14] is as follows： 

The information of D-dimensional spatial particles can be 

expressed as a position information Eq. (16) and velocity 

information Eq. (17). 

𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝐷)   (16) 

𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, ⋯ , 𝑣𝑖𝐷)   (17) 

Based on the individual optimal solution and the global 

optimal solution evolution, the velocity is updated as follows： 

𝑣𝑖𝑑
𝑘+1 = 𝑣𝑖𝑑

𝑘 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1
𝑘 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) + 𝑐2 ∗

𝑟𝑎𝑛𝑑2
𝑘 ∗ (𝑔𝑏𝑒𝑠𝑡𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 )   (18) 

The position is updated as follows： 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1   (19) 

In Eq. (18) and Eq. (19), 𝑣𝑖𝑑
𝑘 —velocity of the i th particle in 

the d th dimension of the k th iteration; 𝑥𝑖𝑑
𝑘 —position of the i th 

particle in the d th dimension of the k th iteration; 𝑐1, 𝑐2—

acceleration coefficient, generally 𝑐1 + 𝑐2 ≤ 4, usually 𝑐1 =

𝑐2 = 2; 𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2—random number within [0,1]; 

𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑘 —the individual extremum of particle i in the d th 

dimension; 𝑔𝑏𝑒𝑠𝑡𝑑
𝑘—global extreme value point. 

To solve Eq. (15) by the PSO algorithm, we have to 

correspond it by the following method. 

On the basis of the objective function, multiple particles are 

generated, each of which is composed of natural numbers of [1-

N], then they can form a particle population. 

(1) Position of the particle: corresponds to the medium repair 

threshold 𝜆𝑚𝑒𝑑  and major repair threshold 𝜆𝑚𝑎𝑗 . 

(2) Velocity of particles: previous studies have set the 

velocity taking space as 0 and 1, which is used to represent 

whether the next generation of particles has been shifted or not. 

However, the movement of particles by this way generates non-

compliant particles and requires the particles to be processed 

again. For this reason, we abolished the concept of velocity in 

particle swarms. 

(3) Particle adaptation: corresponding to the cost rate 

function EC, the smaller the value of the cost rate, the better its 

corresponding failure threshold. 

GA also need to be improved when solving dynamic 

problems, where traditional crossover and variation operators 

may lead to non-compliant offspring chromosomes from 

otherwise compliant parent chromosomes. Therefore, to 

redesign the crossover and variation operators: 

1) Crossover is a key step in the update and solution space of 

the GA. The traditional crossover operator may lead to 

misalignment of the solution space, for example, ABCDE and 
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BCAED cross over at the second point to produce ACCDE and 

BBAED. 

To ensure the integrity of the genes, we use the preferential 

selection crossover method for crossover, and the preferential 

preservation of the crossover operator is shown in Fig. 6. 

 
Fig. 6. Priority preservation crossover operator. 

2) Variation operator. Unlike the traditional variation 

operator, the variation operator cannot simply select any two 

points for replacement, because the chromosome after the 

exchange may not satisfy the priority constraint, and the 

variation may be invalid after the compliance treatment as the 

same as before the variation. It is improved by taking any two 

points and arranging all the genes between them in reverse order, 

and then the probability of validity of the variation after the 

compliance treatment is higher. 

Since once a relatively better particle is generated in the 

population of the PSO algorithm, the particles will all evolve 

toward that particle, and if the particle is not globally optimal 

and the direction of the global optimum is opposite to that of this 

particle, the particle will not be able to find the global optimal 

solution, making its local search ability stronger. When the 

solution quality is not required, the algorithm can efficiently find 

high-quality solutions, but not optimal solutions. Therefore, with 

the continuous iteration of the PSO algorithm, the population 

diversity is bound to decrease and it is easy to fall into the local 

optimum, thus obtaining a local optimal solution. 

In addition, the dynamic equation numerical optimization 

search problem and its result has been constrained, which easily 

leads to the initial population itself is likely to have scattered 

around the local optimal solution, so that the global optimal 

solution cannot be found and thus the optimal failure rate 

threshold cannot be obtained. The crossover operator in GA 

generally determines the location of one or several crossover 

points at random and then swaps the genes of two chromosomes 

to select two new individuals. The variation operator generally 

randomly selects a position on a chromosome and randomly 

changes it within its variable range according to certain rules. 

GA can improve its global searchability by mutation, and 

combining GA with particle swarm algorithm can enhance the 

global search ability of PSO. 

Therefore, the Genetic-Particle swarm Optimization (GPSO) 

algorithm is used to solve the dynamic preventive maintenance 

model in this paper. The solution flow is shown in Fig. 7. 

 
Fig. 7. Flow chart of dynamic preventive maintenance model solving based on GPSO algorithm. 
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4 Coating machine dynamic preventive maintenance 

strategy case study 

4.1 Analysis of dynamic preventive maintenance strategy 

verification for coating machine 

This paper verifies and analyzes the dynamic preventive 

maintenance strategy based on a total of 122 failure messages 

from two anode coating machines of a company's electrode 

production line for two years, 2017 and 2018. 

4.1.1 Dynamic preventive maintenance strategy training 

analysis 

Based on the coating machine failure information through data 

analysis to obtain the coating machine failure interval as shown 

in Schedule 1, the statistical analysis of Schedule 1 coating  

machine failure interval, it is known that the coating machine 

failure rate function conforms to the exponential Weibull 

distribution, based on the coating machine failure rate evolution 

rules, to obtain the final coating machine failure rate as shown 

in Eq. (20). 

𝜆(𝑡) = 𝑎𝑖
0.7013(1−𝑒

−(
𝑡+𝑖𝑏𝜎
1.179

)
0.6297

)

0.313

𝑒
−(
𝑡+𝑖𝑏𝜎
1.179

)
0.6297

(
𝑡+𝑖𝑏𝜎

1.179
)
−0.3703

1−(1−𝑒
−(
𝑡+𝑖𝑏𝜎
1.179 )

0.6297

)

1.313   (20) 

In Eq. (20), 𝑎—failure rate increment factor, 𝑏—service age 

decrement factor. 

Given the coating machine maintenance parameters shown 

in Table 1, 122 coating machine failure intervals are input into 

the dynamic preventive maintenance model and the training 

results are as follows. 

Table 1. Coating machine maintenance parameters 

NO. Parameters Value NO. Parameters Value 

1 𝑎 1.08 6 𝐶𝑟0 (104yuan/h) 0.001 

2 𝑏 0.95 7 𝐶𝑔𝑚𝑖𝑛 (104yuan/time) 0.003 

3 𝜎/h 2 8 𝐶𝑔𝑚𝑒𝑑 (104yuan/time) 0.01 

4 𝜌/h 7 9 𝐶𝑔𝑚𝑎𝑗 (104yuan/time) 0.03 

5 𝐶𝑒 (104yuan/h) 0.8    

The parameters of the GPSO algorithm are set as follows: 

initial population 𝑀 = 40, acceleration coefficients 𝑐1 = 𝑐2 =

2, spatial dimension 5, the maximum number of iterations is 100, 

particle length 0.1, and other parameters use system default 

values. The simulation solution of Eq. (15) is performed using 

MATLAB programming, and the algorithm training is shown in 

Fig. 8. 

a). Algorithm training process 

 

b). Primary population distribution  

 
Fig. 8. GPSO Algorithm Training. 

From Fig. 8a, it can be seen that the adaptation values 

gradually decrease with the number of iterations and the results 

tend to converge and the GPSO algorithm reaches the optimum 

at 450 iterations. The GPSO algorithm at 450 iterations is now 

used to analyze the coating machine, and Fig. 8b shows the 

stochastic primitive population obtained by MATLAB solution. 

The y axis in Fig. 8b represents the randomly generated failure 

threshold 𝜆 (the sum of the primitive population of the 𝜆𝑚𝑒𝑑  and 

𝜆𝑚𝑎𝑗) and the x axis represents the corresponding cost rate 𝐸𝐶. 

From Fig. 8, it can be seen that: the primary population is widely 

distributed in the 𝐸𝐶 − 𝜆 plane, and only the local distribution 

is denser, which ensures the diversity of particles, and on the 

other hand, it also shows the effectiveness and rationality of the 

primary population. When the GPSO algorithm is solved at 450 

iterations, the results of the dynamic preventive maintenance 

model are shown in Fig. 9; the globally optimal values are shown 

in Table 2. 

 
Fig. 9. Dynamic preventive maintenance model solution results 

Table 2. Global optimal values of dynamic preventive 

maintenance model. 

NO. Parameters Optimum value 

1 𝜆𝑚𝑒𝑑 0.65 

2 𝜆𝑚𝑎𝑗 0.80 

3 𝑚 104 

4 𝑖 13 

5 𝑘 5 

6 𝐸𝐶𝑚𝑖𝑛 0.00298 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 1, 2023 

 

From Fig. 9, it can be seen that the cost rate varies with 

increasing or decreasing the medium and major repair 

thresholds, and the optimal value is given in Table 2. That is, the 

minimum cost rate of 0.0026 (104yuan/h) can be obtained for the 

coating machine at a medium repair threshold of 𝜆𝑚𝑒𝑑 = 0.65 

and a major repair threshold of 𝜆𝑚𝑎𝑗 = 0.80. The corresponding 

number of repair modes are minor repair 𝑚 = 104, medium 

repair 𝑖 = 13, and major repair 𝑘 = 5. 

4.1.2 Comparative analysis of model efficacy 

(1) Comparison of dynamic preventive maintenance model and 

fixed threshold maintenance model 

The dynamic preventive maintenance model develops 

maintenance strategies based on dynamic failure rate thresholds 

and verifies its effectiveness by comparing it with the fixed 

threshold maintenance model. The GPSO algorithm was used to 

solve the above model, and the specific comparison results are 

shown in Table 3. 

Table 3. Comparison of dynamic preventive maintenance model 

and fixed threshold maintenance model 

Model 𝜆𝑚𝑒𝑑 𝜆𝑚𝑎𝑗 
Number of 

minor 

repairs 

Number of 

medium 

repairs 

Number of 

major 

repairs 

𝐸𝐶𝑚𝑖𝑛 

(104yuan/h) 

Dynamic 

preventive 

maintenance 

model 

0.65 0.80 104 13 5 0.00298 

Fixed 

threshold 

maintenance 

model 

0.65 0.75 104 11 7 0.00346 

0.65 0.70 104 6 12 0.00462 

0.60 0.80 97 20 5 0.00363 

0.55 0.80 85 32 5 0.00460 

Table 3 lists the optimal maintenance strategies for the 

dynamic preventive maintenance model and the fixed threshold 

maintenance model. The comparison shows that the cost rate of 

the maintenance strategy developed by the dynamic preventive 

maintenance model is significantly lower than that developed by 

the fixed threshold maintenance model, which proves that the 

dynamic preventive maintenance model can better take into 

account the cost rate of the coating machine. It can also be found 

that when the medium repair threshold remains unchanged and 

the major repair threshold decreases, the number of medium 

repairs decreases, the number of major repairs increases slightly, 

and the cost rate increases significantly; when the major repair 

threshold remains unchanged and the medium repair threshold 

decreases, the number of minor repairs decreases, the number of 

medium repairs increases significantly, and the cost rate 

increases subsequently; that is, the impact of the major repair 

threshold on the cost rate is large, and the impact of the medium 

repair threshold on the cost rate is relatively small. Therefore, 

the optimal failure rate threshold must be found to ensure the 

lowest cost rate when developing a coating machine 

maintenance strategy. The dynamic preventive maintenance 

model follows a strict merit-seeking model to determine the 

optimal failure rate threshold, which is not affected by any 

subjective factors, ensuring the reasonableness of the failure rate 

threshold and proving the superiority of the dynamic preventive 

maintenance model. 

(2) Comparison between dynamic preventive maintenance 

model and other maintenance models 

To further verify the effectiveness and superiority of the 

dynamic preventive maintenance model (DM) in maintenance 

strategy formulation, the reliability-constrained maintenance 

model (RM) [5], the importance-constrained maintenance model 

(IM) [17], and the age-dependent replacement model (AM) [31] 

were used to compare with the dynamic preventive maintenance 

model. Based on the coating machine failure data, the above 

models were solved using the GPSO algorithm, and the results 

of the four models were obtained as shown in Table 4, and the 

cost rate comparison of the four models is shown in Fig. 10. 

Table 4. Comparison of dynamic preventive maintenance model 

and other maintenance models. 

 DM RM IM AM 

𝜆𝑚𝑒𝑑 0.65 — — — 

𝜆𝑚𝑎𝑗 0.80 — — — 

𝑅𝑚𝑒𝑑 — 0.75 — — 

𝑅𝑚𝑎𝑗 — 0.90 — — 

𝐼𝑚𝑒𝑑 — — 0.80 — 

𝐼𝑚𝑎𝑗 — — 0.90 — 

𝐴𝑚𝑒𝑑 — — — 10 

𝐴𝑚𝑎𝑗 — — — 5 

Number of minor repairs 104 100 109 98 

Number of medium repairs 13 13 7 9 

Number of major repairs 5 11 6 15 

 
Fig. 10. Dynamic preventive maintenance model compared 

with other maintenance models cost rate. 

Table 4 shows the optimal maintenance strategy for the 

dynamic preventive maintenance model and the other three 

maintenance models. Fig. 10 gives a comparison of the cost rates 

of the four maintenance strategies. The cost rate of the strategy 

developed by the dynamic preventive maintenance model is 

0.00298 (104yuan/h), the cost rate of the strategy developed by 

the reliability-constrained maintenance model is 0.004 

(104yuan/h), the cost rate of the strategy developed by the 

importance-constrained maintenance model is 0.0033 

(104yuan/h), the cost rate of the strategy developed by the age-

dependent replacement model is 0.0048 (104yuan/h). By 
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comparison, the cost rate of the maintenance strategy developed 

by the dynamic preventive maintenance model is significantly 

lower than the maintenance strategies developed by the other 

three maintenance models. The maintenance strategy developed 

by the dynamic preventive maintenance model has 104 minor 

repairs, 13 medium repairs, and 5 major repairs. The number of 

major repairs is 6 times less than the reliability-constrained 

maintenance model, 1 times less than the importance-

constrained maintenance model, and 10 times less than the age-

dependent replacement model and the number of major repairs 

is the least. The obtained failure thresholds are the most 

reasonable and the best economy is achieved, which further 

proves the superiority of the dynamic preventive maintenance 

model. 

4.1.3 Comparative analysis of the effectiveness of the 

optimization search algorithm 

To verify the performance of the GPSO algorithm in solving the 

dynamic preventive maintenance model, four algorithms, 

Particle Swarm Optimization (PSO) algorithm [19], Genetic 

Algorithm (GA) [20], Ant Colony Optimization (ACO) 

algorithm [33], and Improved Artificial Bee Colony (IABC) 

algorithm [2], are used to compare with the GPSO algorithm in 

this paper. The dynamic preventive maintenance model was 

solved using each of the five algorithms to obtain the optimal 

adaptation comparison as shown in Fig. 11, the lowest cost rate 

comparison as shown in Fig. 12, and the comparison of the 

results of each algorithm as shown in Table 5.  

 
Fig. 11. Comparison of optimal adaptation of five algorithms. 

 
Fig. 12. Comparison of five algorithm cost rate. 

Table 5. Comparison of the results of the five algorithms. 

 𝜆𝑚𝑒𝑑 𝜆𝑚𝑎𝑗 
Iteration 

number 
Adaptation 

Number 

of minor 

repairs 

Number of 

medium 

repairs 

Number 

of major 

repairs 

𝐸𝐶𝑚𝑖𝑛 

(104yuan/h) 

GPSO 0.65 0.80 450 2.0165 104 13 5 0.00298 

PSO 0.60 0.70 115 2.432 96 16 10 0.00400 

GA 0.70 0.86 106 2.74 110 11 1 0.00330 

ACO 0.67 0.69 320 2.118 106 7 9 0.00360 

IABC 0.64 0.78 435 2.069 103 15 4 0.00312 

From Fig. 11, Fig. 12 and Table 5, it can be seen that the cost 

rate of the dynamic preventive maintenance strategy with GPSO 

algorithm seeking is significantly lower than that of the four 

maintenance strategies with PSO algorithm, GA, ACO 

algorithm and IABC algorithm seeking with a cost rate of 

0.00298 (104yuan/h). As the threshold of medium repair 

increases, the number of minor and medium repairs increases; as 

the threshold of major repairs decreases, the number of major 

repairs increases, and the number of major repairs has  

a significant effect on the cost rate. All five algorithms can 

obtain the optimal solution, but the GPSO algorithm obtains the 

lowest adaptation of the optimal solution as 2.0165 with better 

results. Although the GPSO algorithm has more iterations than 

the other four algorithms, it obtains more reasonable medium 

and major repair thresholds. In summary, the algorithm and 

model used in this paper are more effective and superior. 

4.2 Prediction result analysis of coating machine based on 

BP-LSTM 

Using the coating machine maintenance data in Table 1,  

a dynamic preventive maintenance model was used to develop  

a maintenance strategy for the coating machine over the future 

6,500 hours of operation. The final maintenance strategy is 

shown in Fig. 13, the maintenance moments and their 

corresponding maintenance modes are shown in Table 6, and the 

optimal parameters of the maintenance strategy are shown in 

Table 7. 

 
Fig. 13. Future 6500h maintenance strategy chart for coating 

machine. 
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Table 6. Maintenance moment and corresponding maintenance 

mode. 

NO. 
Maintenance 

moment 

Maintenance 

mode 
NO. 

Maintenance 

moment 

Maintenance 

mode 

1 17543 minor repair 11 21745 medium repair 

2 18213 minor repair 12 21998 minor repair 

3 18962 minor repair 13 22031 minor repair 

4 19363 medium repair 14 22364 minor repair 

5 19955 minor repair 15 22651 medium repair 

6 20153 minor repair 16 22913 major repair 

7 20461 medium repair 17 23241 minor repair 

8 20713 minor repair 18 23613 minor repair 

9 21006 minor repair 19 23716 minor repair 

10 21432 minor repair 20 23920 minor repair 

Table 7. Optimal parameters for dynamic preventive 

maintenance strategy. 
NO. Parameter Optimum value 

1 𝜆𝑚𝑒𝑑 0.72 

2 𝜆𝑚𝑎𝑗 0.87 

3 𝑚 15 

4 𝑖 4 

5 𝑘 1 

6 𝐸𝐶𝑚𝑖𝑛 0.00324 

From Fig. 13, Table 6, and Table 7, it can be seen that during 

the future 6500h operation of the coating machine, the dynamic 

preventive maintenance strategy determines the optimal medium 

repair threshold of 0.72 and major repair threshold of 0.87 by 

prediction, and divides the maintenance schedule into 20 times 

based on the optimal threshold, including 15 times for minor 

repairs, 4 times for medium repairs and 1 time for major repair. 

The optimal cost rate of 0.00324 (104yuan/h) was obtained. 

Significantly, the number of minor repairs accounted for three-

quarters of the total repairs, reflecting that the coating machine 

is in stable operation, but preventive maintenance with one 

major repair is predicted at 22913h, possibly due to functional 

failure caused by a vulnerable component running continuously 

for too long, and maintenance should be focused on. 

4. Conclusions 

In this paper, a dynamic preventive maintenance strategy is 

proposed for the problem of high maintenance cost rate due to 

excessive maintenance caused by unreasonable maintenance 

threshold setting when complex electromechanical equipment 

maintenance strategy is formulated, which provides valuable 

reference for the development of maintenance strategies. 

According to the effect of preventive maintenance on the 

equipment, the incremental failure rate factor and the decreasing 

service age factor are introduced to describe the changes of 

degradation characteristics during the operation of the 

equipment. The physical model of device degradation is 

combined with a BP-LSTM deep learning model to predict the 

failure rate of the device. A dynamic preventive maintenance 

model was constructed to classify the three preventive 

maintenance modes of minor, medium and major repairs based 

on the dynamic failure rate threshold. A dynamic preventive 

maintenance strategy for the coater was developed based on this 

model. A dynamic preventive maintenance strategy optimization 

process based on GPSO algorithm is established with the 

objective of minimizing the cost rate per unit time during the 

service phase given multiple cost types. The resulting optimal 

dynamic failure rate threshold reduces the risk of coater failure 

while ensuring the lowest cost rate. Since the dynamic 

preventive maintenance model is based on the original failure 

data and determines the optimal failure rate threshold according 

to a strict merit search model, it is not influenced by any 

subjective factors and ensures the reasonableness of the failure 

rate threshold. And three preventive maintenance modes 

corresponding to different types of failures are considered to 

make the dynamic preventive maintenance strategy more 

realistic. The analysis of the dynamic preventive maintenance 

strategy demonstrates its effectiveness, economy and 

applicability. The proposed maintenance strategy provides a new 

guiding direction for manufacturers. 
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Notations 

 

𝜆𝑚𝑒𝑑  Medium repair threshold 𝜆𝑚𝑎𝑗  Major repair threshold 

𝑁 Total number of repair 𝜎 Medium repair time 

𝜌 Major repair time 
𝑡𝑁 Failure moments predicted by BP-

LSTM model 

𝑡𝑁
′  

The actual moment of 

performing maintenance 
𝑎 Failure rate increment factor 

𝑏 Service age decrement factor 𝑚 Number of minor repairs 

𝑖 Number of medium repairs 𝑘 Number of major repairs 

𝐶𝑔𝑚𝑖𝑛 Cost of materials required for a 

single minor repair 

𝐶𝑔𝑚𝑒𝑑  Cost of materials required for a single 

medium repair 

𝐶𝑔𝑚𝑎𝑗  Cost of materials required for a 

single major repair 
𝐶𝑒 Cost of downtime per unit of time 

𝐶𝑟0 Cost of labor per unit of time   
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Schedule 

Schedule 1. coating machine Time between failures 

TBJ001 

NO. TBF NO. TBF NO. TBF NO. TBF 

1 13 21 947 41 2036 61 4779 

2 23 22 977 42 2110 62 4813 

3 37 23 1211 43 2250 63 4953 

4 76 24 1248 44 2531 64 5042 

5 81 25 1305 45 2630 65 5592 

6 94 26 1474 46 2645 66 5644 

7 106 27 1479 47 2723 67 5724 

8 119 28 1487 48 2903 68 5801 

9 136 29 1493 49 3005 69 6091 

10 558 30 1526 50 3051 70 6403 

11 628 31 1532 51 3111 71 6521 

12 651 32 1589 52 3150 72 6667 

13 661 33 1607 53 3188 73 6691 

14 692 34 1642 54 3204 74 6754 

15 793 35 1665 55 3397 75 6780 

16 818 36 1704 56 3564 76 7148 

17 824 37 1717 57 3948 77 7161 

18 832 38 1810 58 4113 78 7737 

19 887 39 1851 59 4171 79 7844 

20 939 40 2032 60 4619   

TBJ002 

1 22 12 1500 23 2355 34 5719 

2 67 13 1798 24 2553 35 5811 

3 79 14 1953 25 2901 36 6412 
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TBJ001 

NO. TBF NO. TBF NO. TBF NO. TBF 

1 13 21 947 41 2036 61 4779 

2 23 22 977 42 2110 62 4813 

3 37 23 1211 43 2250 63 4953 

4 76 24 1248 44 2531 64 5042 

5 81 25 1305 45 2630 65 5592 

6 94 26 1474 46 2645 66 5644 

7 106 27 1479 47 2723 67 5724 

8 119 28 1487 48 2903 68 5801 

9 136 29 1493 49 3005 69 6091 

10 558 30 1526 50 3051 70 6403 

11 628 31 1532 51 3111 71 6521 

12 651 32 1589 52 3150 72 6667 

13 661 33 1607 53 3188 73 6691 

14 692 34 1642 54 3204 74 6754 

15 793 35 1665 55 3397 75 6780 

16 818 36 1704 56 3564 76 7148 

17 824 37 1717 57 3948 77 7161 

18 832 38 1810 58 4113 78 7737 

19 887 39 1851 59 4171 79 7844 

20 939 40 2032 60 4619   

4 630 15 1965 26 3319 37 6434 

5 683 16 1989 27 4093 38 6456 

6 870 17 2051 28 4169 39 6623 

7 923 18 2057 29 4622 40 6737 

8 938 19 2063 30 4749 41 7823 

9 953 20 2226 31 4905 42 8049 

10 960 21 2299 32 4986 43 8633 

11 1237 22 2332 33 5406   

 


