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Highlights  Abstract  

▪ A risk assessment machinery is proposed 

under probability measure. 

▪ The generalized risk models are established 

based on the cooperative game theory. 

▪ A multi-objective optimal allocation model is 

presented for reliability improvement. 

▪ The proposed method is more reasonable, 

complete, and practical. 

 

 Optimal allocation of the reliability improvement target is essential for 

the system optimization design. In order to solve the problems that the 

optimization model is with loss of generality and the validity of the 

optimal solution is weakened, an optimal allocation method is proposed 

by considering multiple correlation failures and risk uncertainty in this 

paper. Two new concepts are presented, such as independent failure 

results in basic risk, and correlation failure leads to disturbance risk.  

A risk assessment machinery of “actual risk = basic risk + disturbance 

risk” is proposed. The action mechanisms of the three correlation failures 

are studied based on the cooperation game theory, and the generalized 

risk models are given under probability measure. Considering the 

improvement cost, the expectation and the variance of the reduction of 

system risk, a multi-objective optimal allocation model is developed, 

which is solved by using the PSO algorithm. Finally, the proposed 

optimal allocation is implemented at the 2-stage NGW planetary reducer, 

and the results show that it is more efficient and feasible for engineering 

practice. 
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1. Introduction 

With the increase in systematization and sophistication of the 

industrial product, more and more attentions are drawn to the 

system reliability design. Reliability allocation is the core of the 

system reliability design process and composed of two parts [27]: 

(1) the allocation of the system reliability design requirement 

[13, 17, 31] and (2) optimal allocation of the system reliability 

improvement target. During the design process, results of the 

allocation are used to predict system reliability. If the prediction 

result is less than the system reliability design requirement, 

optimal allocation of the system reliability improvement target 

is implemented in further. Hence, the optimal allocation is 

considered a special or advanced topic that deserves in deep 

study.  

Initially, the optimal allocation is performed based on 

allocation weights. Yadav and Zhuang [32] proposed to allocate 

the system reliability improvement target to the subsystems. Cao 

et.al [2, 3] developed an allocation weight calculation theory by 

improving and completing the Risk Priority Number (RPN) 

model. Chen et.al [4] improved the efficiency of obtaining 

weights via multi-criteria decision-making methods. Zhang et.al 

[35] and Fiondella et.al [11] introduced the failure correlation 

factor into the formula of the allocation weight.  

A positive weight is assigned to every subsystem through the 

weight method, but improvements for some subsystems are 

unworthy or prohibitive under the cost limitation. Hence, Kim 

and Zuo [18] allocated the system reliability improvement target 

to priority subsystems based on the optimization model. 

Maryam and Mahdi [24] ranked the priority of subsystems by 
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assessing the feasibility and difficulty of the reliability 

improvement. Aiming at achieving the system reliability target 

subject to the cost limitation, Si et.al [28] and Johnston et.al [14] 

built the reliability optimal allocation model. Kanagaraj et.al [15] 

and Lai et.al [21] investigated the problem of minimizing the 

optimization design cost under reliability constraints. Samanta 

and Basu [26] recognized the nonlinear phenomenon of 

reliability and gave the growth effort function of reliability. Dai 

et.al [7] constructed an allocation model considering the 

common cause failures.  

The potential relationship between some objectives and 

constraints is ignored in the single-objective optimization, such 

as the approximate positive correlation between reliability and 

improvement cost. Hence, a multi-objective optimal allocation 

model is developed, which is generally more complicated and 

solved by the intelligent optimization algorithm. Duan et.al [9] 

investigated an optimization allocation method for maximizing 

the system’s theoretical production rate and minimizing the 

system state entropy. Considering that the reliability, cost, and 

manufacturing consistency are coupled, Liu et.al [22] put 

forward a reliability allocation method based on 

multidisciplinary design optimization. Abdelkader et.al [1] and 

Kim et.al [16] studied the multi-objective optimal allocation of 

reliability in series or parallel systems. Liu [23] et.al took the 

warranty servicing cost as an additional objective for the 

optimization of the repairable system. Kumar et.al [20] and 

Zhang et.al [34] solved the multi-objective optimal allocation 

model by the gray wolf optimizer algorithm and the Particle 

Swarm Optimization (PSO) algorithm, respectively. Taking the 

risk as the losses from failures, Todinov et.al [29] extended the 

concept of the total cost as the sum of the risk and the resources 

invested in reliability improvement.  

Fundamentally speaking, reliability allocation is a kind of 

predictive design technique [6]. In previous research works, the 

system attribute was evaluated determinately, and the 

uncertainty of some variables was ignored in the optimal 

allocation model, which makes the values of indexes contingent 

and weakens the validity of the solution. In addition, the 

conventional models were built at the subsystem or component 

level and under counting measure, therefore they would lose the 

generality. In this paper, the multiple correlation failures and the 

risk uncertainty are studied under probability measure, so that  

a more complete and reasonable optimal allocation model is 

proposed for reliability improvement. The proposed model is 

solved based on the PSO algorithm, and its solution is proved to 

be more effective and refined.  

The rest of this article is organized as follows: the 

conventional method is reviewed briefly in section 2. In section 

3, the correlation failures are investigated based on the 

cooperative game theory, and the classical RPN model is 

extended to the probability measure. Simultaneously, the criteria 

are given to evaluate the system improvement profit, and  

a multi-objective optimal allocation model is built and solved by 

the PSO algorithm. In section 4, taking the 2-stage NGW 

planetary reducer as an example, the efficiency and feasibility of 

the proposed model are analyzed and discussed. In section 5, 

some conclusions are drawn.  

2. Conventional optimal model  

Considering that a system is comprised of m independent 

components in series, component i includes Ni independent 

failure modes. Let 𝜆𝑖 be the failure rate of component i during 

the normal life phase of the bathtub curve under the independent 

failure. Assuming that the product lifespan obeys the 

exponential distribution during this period [10, 18], the failure 

probability 𝐹𝑖 of component i can be expressed as:  

𝐹𝑖 = 1 − exp(−𝜆𝑖 ∙ 𝑡) , 𝑖 = 1, … , 𝑚. (1) 

The system failure probability F is shown as:  

𝐹 = 1 − ∏ (1 − 𝐹𝑖)
𝑚
𝑖=1 .         (2) 

Let 𝜆 be the system failure rate under the independent failure, 

which can be expressed as,  

𝜆 = ∑ 𝜆𝑖.
𝑚
𝑖=1    (3) 

Now, make a statement that the variables with or without 

superscript “*” symbolize the state before or after improvement, 

respectively. Hence, Eq. (4) holds for this series system.  

𝜆 − 𝜆∗ = ∑ (𝜆𝑖 − 𝜆𝑖
∗)𝑚

𝑖=1 .        (4) 

Because the failure rate is an important measurement of 

product reliability [30], the difference of 𝜆 − 𝜆∗ is taken usually 

as the improvement target during the system reliability 

optimization. Naming Δ = 𝜆 − 𝜆∗ as the reduction of the system 

failure rate, Δ is allocated down based on an optimization model 

in the optimal allocation of the system reliability improvement 

target.  

Minimizing the system improvement cost is common in the 

optimal allocation, however it is subject to reliability constraints 

[21]. Recently, the risk is taken as a criterion for judging the 

system quality, and minimizing the system risk is taken as an 

objective of the system reliability improvement. Hence, 

maximizing the reduction of system risk is also taken into 

account in the optimal allocation model [18].  

Let 𝑟𝑠  denote the system failure risk under independent 

failure, which is quantified as Eq. (5) based on the RPN model 

[33].  

𝑟𝑠 = 𝜆 ∙ 𝑠,   (5) 

where, s denotes the system failure severity under independent 

failure.  

In the same manner, the component failure risk 𝑟𝑖 and failure 

mode risk 𝑟𝑖𝑗  under independent failure are as Eq. (6) and Eq. 

(7).  

𝑟𝑖 = 𝜆𝑖 ∙ 𝑠𝑖 ,   (6)  

where,  𝑠𝑖  is the failure severity of component i under 

independent failure. 

𝑟𝑖𝑗 = 𝜆𝑖𝑗 ∙ 𝑠𝑖𝑗 ,   (7) 

where, 𝜆𝑖𝑗 and 𝑠𝑖𝑗  represent the occurrence rate and severity of 

failure mode j of component i under independent failure, 

respectively.  

Considering the risk accumulation effect in the series system, 

the system risk under independent failure is calculated by Eq. 

(8). 

𝜆 ∙ 𝑠 = ∑ (𝜆𝑖 ∙ 𝑠𝑖)
𝑚
𝑖=1 = ∑ ∑ (𝜆𝑖𝑗 ∙ 𝑠𝑖𝑗)

𝑁𝑖
𝑗=1

𝑚
𝑖=1  (8) 

By adjusting Eq. (8), s and 𝑠𝑖 are obtained as Eq. (9) and Eq. 

(10), respectively. 

𝑠 = ∑ (
𝜆𝑖

𝜆
∙ 𝑠𝑖)

𝑚
𝑖=1 ,     (9) 

𝑠𝑖 = ∑ (
𝜆𝑖𝑗

𝜆𝑖
∙ 𝑠𝑖𝑗)

𝑁𝑖
𝑗=1 .  (10) 

Assuming 𝑠𝑖 = 𝑠𝑖
∗ in the conventional methods [16, 18], the 
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optimal allocation model is shown as Eq. (11). In Eq. (11), the 

objective function includes the cost of system improvement and 

the reduction of system risk. 

min    ∑ {𝛿𝑖 ∙ ln (
𝜆𝑖

𝜆𝑖
∗)}𝑚

𝑖=1 − ∑ {(𝜆𝑖 − 𝜆𝑖
∗) ∙ 𝑠𝑖}

𝑚
𝑖=1 ,           (11) 

s.t    {
0<𝜆𝑖

∗≤𝜆𝑖                 

∑ (𝜆𝑖 − 𝜆𝑖
∗) = ∆𝑚

𝑖=1
 , 

where 𝛿𝑖 is the difficulty coefficient for improving component i.  

In the conventional method, ∆  is accomplished by 

decreasing 𝜆𝑖  to 𝜆𝑖
∗ , however the reduction of 𝜆𝑖−𝜆𝑖

∗  achieved 

fundamentally by decreasing 𝜆𝑖𝑗  to 𝜆𝑖𝑗
∗   is not taken into 

consideration. Hence, an analytic hierarchy model of “system–

component–failure mode” should be considered before 

analyzing the conventional model.  

(1) 𝜆𝑖 is the sum of several 𝜆𝑖𝑗 , and a determinate reduction 

of 𝜆𝑖−𝜆𝑖
∗  can be achieved by many schemes. These schemes 

determine which 𝜆𝑖𝑗  should be decreased and how many. The 

improvement difficulties and costs of diverse failure modes may 

be different, so complexities and costs of different schemes are 

also different actually. That is to say that the conventional 

formula of the component improvement cost in Eq. (11) is with 

loss of generality.  

(2) 𝑠𝑖 is a function subject to several 𝜆𝑖𝑗 in Eq. (10). Once the 

system reliability is improved and fundamentally 𝜆𝑖𝑗  is 

decreased to 𝜆𝑖𝑗
∗ , 𝑠𝑖

∗ is likely to be different from 𝑠𝑖. Hence, the 

formula of the component risk reduction in Eq. (11) may not 

work actually, and the validity of the solution of the conventional 

model is doubtful.  

(3) The law of conservation of energy holds for a system, so 

the loads for most components are mutually correlative [27]. 

From the perspective of failure mechanism, a component failure 

may cause or be caused by another component failure. From the 

risk point of view, the component failure risk may be influenced 

by the interaction among various components. Furthermore, the 

component failure stems from failure mode occurring, so the 

stress corresponding to the failure mode is a micro reflection of 

component load. Hence, it can be further derived that various 

failure modes can affect each other and the failure mode risk 

may be influenced by the interaction. Here, the various failure 

modes may belong to the same or different components.  

If this interaction is taken as a property of correlation, it 

would be indefinite during the system reliability design process. 

Hence, considering the correlation during the reliability 

allocation, the adverse events within the system are uncertain. 

Simultaneously, the uncertainty of correlation would deepen the 

uncertainty of the actual risk in further. Therefore, the 

conventional risk model can only describe the determinate risk 

of independent event.  

Above issues are not taken into consideration 

comprehensively in conventional optimal allocation model, 

which would weaken the validity of its solution. Hence, 

considering the multiple correlation failures and risk uncertainty, 

an optimal allocation is proposed in this study.  

3. Proposed optimal allocation 

3.1 Risk model under probability measure 

Considering that a system is comprised of m components in 

series, the component i includes Ni failure modes. The 

improvement target ∆ is accomplished by decreasing 𝜆𝑖𝑗 to 𝜆𝑖𝑗
∗ , 

and the three statements need to be declared ahead of time.  

(1) 𝜆𝑖𝑗 cannot be decreased to 0 in any case, so the number 

of failure modes for a component will keep constant after 

improvement.  

(2) 𝑠𝑖𝑗   refers to the disruption to system mission resulting 

from a failure mode, which doesn’t depend on whether the 

failure mode occurs or not [8]. Hence,  𝑠𝑖𝑗 = 𝑠𝑖𝑗
∗   holds in  

a definite system [18].  

(3) Let 𝑅𝑠, 𝑅𝑖 and 𝑅𝑖𝑗 denote the risk of system, component 

i and failure mode j of component i under the uncertain 

correlation, respectively. In fact, they are regarded as the actual 

risks in this study.  

In the series system, the components and failure modes are 

countable. Under the action of uncertain correlation, the 

components failure or failure modes occurrence are not mutually 

exclusive, but the failure events related to components or failure 

modes are enumerable. Therefore, elementary events in the 

sample space of system failure are with randomness, and both 

𝑅𝑖  and 𝑅𝑖𝑗  are the random variables. Next, the generalized 

system risk model is derived from the risk accumulation effect 

under probability measure.  

The independent failure can be regarded as a special case of 

the correlation failure with zero interaction. Either all 

components failure or all failure modes occurrence are mutually 

exclusive under the independent failure assumption. Therefore, 

based on these premises, the correlation has no impact on risks 

of independent failure events and 𝑟𝑖𝑗 , 𝑟𝑖 and 𝑟𝑠 are determinate. 

Regarding the independent failure event as the basic event 

arousing risk, the system basic risk is formulated as Eq. (12) 

based on the risk accumulation effect [18].  

𝑟𝑠 = ∑ 𝑟𝑖
𝑚
𝑖=1 = ∑ ∑ 𝑟𝑖𝑗

𝑁𝑖
𝑗=1

𝑚
𝑖=1 .  (12) 

The nonzero interaction results in the possible fluctuation of 

actual risk around basic risk, and this finite fluctuation is defined 

as disturbance risk. Hence, a risk assessment machinery of 

“actual risk = basic risk + disturbance risk” under correlation 

failure is proposed. Here, both disturbance risk and actual risk 

are random variables.  

Because the basic risk is a special actual risk, Eq. (12) 

demonstrates not only the relationship of basic risks, but also the 

relationship of actual risks to some extent. Therefore, extending 

Eq. (12) to probability domain, 𝑅𝑠 is a multidimensional random 

variable with respect to 𝑅𝑖 or 𝑅𝑖𝑗. The system actual risk model 

under probability measure is given as Eq. (13).  

𝑅𝑠 = ∑ 𝑅𝑖
𝑚
𝑖=1 = ∑ ∑ 𝑅𝑖𝑗

𝑁𝑖
𝑗=1

𝑚
𝑖=1 .  (13) 

Subtracting basic risk from the actual risk, the system 

disturbance risk is also a multidimensional random variable with 

respect to disturbance risks of components or failure modes. 

Therefore, the system disturbance risk is the sum of all 

disturbance risks of failure modes. The disturbance risk model 

of system under probability measure can be obtained as Eq. (14).  

𝜀𝑟𝑠 = ∑ 𝜀𝑟𝑖
𝑚
𝑖=1 = ∑ ∑ 𝜀𝑟𝑖𝑗

𝑁𝑖
𝑗=1

𝑚
𝑖=1 ,  (14) 

where, 𝜀𝑟𝑠 , 𝜀𝑟𝑖  and 𝜀𝑟𝑖𝑗  denote the disturbance risk of system, 

component i and failure mode j of component i, respectively. 

𝑟𝑖𝑗   is a function with respect to 𝜆𝑖𝑗  and 𝑠𝑖𝑗   in Eq. (7). 𝜀𝑟𝑖𝑗 

mirrors a risk fluctuation caused by correlation failure, of which 

the dominant factors are the action effects of correlation failure 
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on 𝜆𝑖𝑗  and 𝑠𝑖𝑗  . Furthermore, correlation failure uncertainty 

results in the uncertainty of 𝜀𝑟𝑖𝑗, of which the intrinsic cause is 

that action effects of uncertain correlation failure on 𝜆𝑖𝑗 and 𝑠𝑖𝑗  

are uncertain. The demonstration is given in detail in next 

section.  

The correlation failure is usually summarized as cascading 

failure, common cause failure, and negative correlation failure 

[2]. The cascading failure refers to the behavior that  

a component failure facilitates subsequently the failure of 

another component in a system, which has an effect of 

magnifying 𝜆𝑖 of the latter and 𝑠𝑖 of the former compared with 

the independent failure. Considering that the interaction is 

reversible, cascading failure would increase 𝜆𝑖  and 𝑠𝑖  of both 

involved components. The common cause failure means that 

several components in a system fail synchronously due to 

external causes. It is a special failure manner of components, and 

amplifies 𝜆𝑖  of these components compared with independent 

failure. The negative correlation failure is that one component 

failure may make another component tend to be without failure. 

Hence, it has an effect of decreasing 𝜆𝑖 of the latter and 𝑠𝑖 of the 

former compared with the independent failure. Considering the 

reversibility of the interaction, negative correlation failure 

would decrease 𝜆𝑖 and 𝑠𝑖 of both involved components.  

Because the deep reason of component failure is the 

occurrence of failure modes, the effects of correlation failure on 

the component can be effectively transformed into the effects on 

the failure mode. The details are shown in Table 1. In Table 1, 

“Inc.”, “Dec.” and “NG” are the abbreviations of “Increase”, 

“Decrease”, and “Not Given”, respectively. “Inc.” or “Dec.” 

means that the correlation failure would increase or decrease the 

value of the risk factor, respectively. “NG” means that the 

correlation failure has no impact on the value of the risk factor. 

Table 1. Impact of correlation failure on failure mode risk factors. 

Correlation failure type 
Effect on failure mode risk factors 

On 𝜆𝑖𝑗 On 𝑠𝑖𝑗 On 𝑟𝑖𝑗 

Cascading failure Inc. Inc. Inc. 

Common cause failure Inc. NG Inc. 

Negative correlation failure Dec. Dec. Dec. 
 

The three kinds of correlation failure can be uniformly 

regarded as joint failure [3], and the uncertainty of its internal 

interaction dominates the uncertainty of correlation. In the light 

of this, the cooperative game theory is brought to demonstrate 

the action mechanism of correlation failure, and alliances of 

failure modes are taken as the game players.  

In the system, there are totally ∑ 𝑁𝑖
𝑚
𝑖=1 = 𝑛  failure modes 

and (𝑛
2

) + (𝑛
3

) + ⋯ + (𝑛
𝑛

) = (2𝑛 − 𝑛 − 1)  alliances of failure 

modes. Because the population of alliances is relatively large, it 

is supposed that every alliance is of the same occurrence chance 

from the scientific research and engineering practice point of 

view and simplifying the question. Simultaneously, the 

occurrence of every alliance has the same consequences for the 

system, which makes the system fail. Therefore, a standard of 

classification is given that the alliance type is dependent on the 

quantity of its failure modes, and the probability of a type of 

alliances including specific failure mode j and k-1 other failure 

modes is calculated as 
(𝑛−1)!

(𝑘−1)!∙(𝑛−𝑘)!∙(2𝑛−1−1)
 . Next, the action 

effect of this type of alliances on its internal failure mode j is 

quantified based on Table 1.  

Under the cascading failure, interaction among the failure 

modes is reversible, therefore every other failure mode in the 

alliance has a positive action on failure mode j. The schematic 

diagram of cascading failure is shown as Fig. 1.  

 
Fig. 1. Schematic diagram of cascading failure. 

In this study, the action of every other failure mode on failure 

mode j is defined as one meta-action, and it is considered that 

the meta-actions can be linearly accumulated. Hence, for  

a cascading failure alliance including the specific failure mode j 

and k-1 other failure modes, it has k-1 positive meta-actions on 

both 𝜆𝑖𝑗  and 𝑠𝑖𝑗  . Without loss of generality, for a cascading 

failure alliance with k failure modes, the distribution law of 

Action Value of Alliance (AVA) on 𝜆𝑖𝑗 and 𝑠𝑖𝑗  is formulated as 

Eq. (15).  

Pr(AVA = 𝑘 − 1) =
(𝑛−1)!

(𝑘−1)!∙(𝑛−𝑘)!∙(2𝑛−1−1)
, 𝑘 = 2, … , 𝑛 (15) 

Under common cause failure, occurrence of an alliance 

means that all of the minor alliances constituted of its internal 

failure modes occur synchronously. Every minor alliance can be 

broken down into several minimal alliances with 2 failure 

modes. Therefore, for an alliance including specific failure mode 

j and k-1 other failure modes, the occurrence of it can be replaced 

by the fact that k-1 minimal alliances containing failure mode j 

occur synchronously. The schematic diagram of common cause 

failure is shown as Fig. 2. 

 
Fig. 2. Schematic diagram of common cause failure. 

Every minimal alliance containing failure mode j has a basic 

amplification effect on 𝜆𝑖𝑗 , and it can be equivalent to  

a phenomenon that the other failure mode in every minimal 

alliance has a positive action on failure mode j. According to the 

definition of the meta-action, it can be derived that every 

minimal alliance containing failure mode j has a positive meta-

action on 𝜆𝑖𝑗 . Hence, for a common cause failure alliance 

including the specific failure mode j and k-1 other failure modes, 

it has k-1 positive meta-actions on 𝜆𝑖𝑗 . Without loss of 

generality, for a common cause failure alliance with k failure 

modes, the distribution law of AVA on 𝜆𝑖𝑗 is also formulated as 

Eq. (15).  

Under negative correlation failure, interaction among the 
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failure modes is reversible, therefore every other failure mode 

has a negative action on failure mode j in an alliance. The 

schematic diagram of negative correlation failure is shown as 

Fig. 3. 

 
Fig. 3. Schematic diagram of negative correlation failure. 

It is supposed that the action of every failure mode is 

equivalent and can be linearly accumulated. For a negative 

correlation failure alliance including the specific failure mode j 

and k-1 other failure modes, it has k-1 negative meta-actions on 

both 𝜆𝑖𝑗  and 𝑠𝑖𝑗 . Without loss of generality, for a negative 

correlation failure alliance with k failure modes, the distribution 

law of AVA on both 𝜆𝑖𝑗 and 𝑠𝑖𝑗  is formulated as Eq. (16).  

Pr(AVA = 1 − 𝑘) =
(𝑛−1)!

(𝑘−1)!∙(𝑛−𝑘)!∙(2𝑛−1−1)
, 𝑘 = 2, … , 𝑛 (16) 

Based on the classical model of probability and simplifying 

the question, it is supposed that three kinds of correlation failures 

for an undefined system have the equal occurrence probabilities. 

Considering synthetically three kinds of correlation failures, the 

expectation and variance of AVA on 𝜆𝑖𝑗  are calculated as 

following, respectively.  

𝐸(𝜀𝑜) = ∑ {(
(𝑘−1)+(𝑘−1)+(1−𝑘)

3
) ∙

(𝑛−1)!

(𝑘−1)!∙(𝑛−𝑘)!∙(2𝑛−1−1)
} > 0𝑛

𝑘=2 , 

𝐷(𝜀𝑜) = ∑ {(
2∙(𝑘−1−𝐸(𝜀𝑜))

2
+(1−𝑘−𝐸(𝜀𝑜))

2

3
) ∙𝑛

𝑘=2

(𝑛−1)!

(𝑘−1)!∙(𝑛−𝑘)!∙(2𝑛−1−1)
} > 0, 

where, 𝜀𝑜  denotes AVA on 𝜆𝑖𝑗 . 𝐸(∙)  and 𝐷(∙)  symbolize the 

variable expectation and variance, respectively.  

The expectation and variance of AVA on 𝑠𝑖𝑗  are calculated 

as following, respectively. 

𝐸(𝜀𝑠) = ∑ {(
(𝑘−1)+(1−𝑘)

3
) ∙

(𝑛−1)!

(𝑘−1)!∙(𝑛−𝑘)!∙(2𝑛−1−1)
} = 0𝑛

𝑘=2 , 

𝐷(𝜀𝑠) = ∑ {(
(𝑘−1−𝐸(𝜀𝑠))

2
+(0−𝐸(𝜀𝑠))

2
+(1−𝑘−𝐸(𝜀𝑠))

2

3
) ∙𝑛

𝑘=2

(𝑛−1)!

(𝑘−1)!∙(𝑛−𝑘)!∙(2𝑛−1−1)
} > 0, 

where, 𝜀𝑠 denotes AVA on 𝑠𝑖𝑗 .  

Hence, the actual risks of failure mode before and after 

improvement are given as Eq. (17) and Eq. (18), respectively. 

𝑅𝑖𝑗 = (𝜆𝑖𝑗 + 𝜀𝑜) ∙ (𝑠𝑖𝑗 + 𝜀𝑠),  (17) 

𝑅𝑖𝑗
∗ = (𝜆𝑖𝑗

∗ + 𝜀𝑜) ∙ (𝑠𝑖𝑗 + 𝜀𝑠).  (18) 

The disturbance risks of failure mode before and after 

improvement are also given as Eq. (19) and Eq. (20), 

respectively. 

𝜀𝑟𝑖𝑗 = 𝜆𝑖𝑗 ∙ 𝜀𝑠 + 𝜀𝑜 ∙ 𝑠𝑖𝑗 + 𝜀𝑜 ∙ 𝜀𝑠,  (19)  

𝜀𝑟𝑖𝑗
∗ = 𝜆𝑖𝑗

∗ ∙ 𝜀𝑠 + 𝜀𝑜 ∙ 𝑠𝑖𝑗 + 𝜀𝑜 ∙ 𝜀𝑠.  (20) 

3.2 Evaluation of system improvement revenue  

𝑅𝑠 is a random variable, and 𝐸(𝑅𝑠) reflects an average influence 

of all the potential adverse events on system. Hence, the first 

measure of system improvement revenue 𝐼1(𝜆, 𝜆∗) is proposed 

as Eq. (21).  

𝐼1(𝜆, 𝜆∗) = 𝐸(𝑅𝑠) − 𝐸(𝑅𝑠
∗)  (21) 

In addition, 𝐷(𝑅𝑠) is the overall degree of deviation for all 

the possible values of 𝑅𝑠 from 𝐸(𝑅𝑠). The larger 𝐷(𝑅𝑠) is, the 

more dispersive 𝑅𝑠 is. If the possible risk values of a system vary 

widely enough, the system would be uncontrollable. From the 

perspective of controlling ability, a large risk variance would 

lead to a terrible system risk. Therefore, the second measure of 

the system improvement revenue 𝐼2(𝜆, 𝜆∗)  is proposed as Eq. 

(22).  

𝐼2(𝜆, 𝜆∗) = 𝐷(𝑅𝑠) − 𝐷(𝑅𝑠
∗)  (22) 

In Eq. (17) and Eq. (18), both 𝜆𝑖𝑗  and 𝑠𝑖𝑗   are numerical 

variables, which are obtained by taking an exponential 

transformation of the ten-point linear scale and have definite 

dimensions. On the contrary, 𝜀𝑜 and 𝜀𝑠 are random variables and 

in meta-action, which is a contrived measurement scale of the 

action effect of correlation failure. Therefore, addition of the two 

kinds of variables have only formal meaning rather than 

practical meaning. In addition, the practical effects of one meta-

action for 𝜆𝑖𝑗 and 𝑠𝑖𝑗  are likely to be different. In order to avoid 

the dilemma that 𝐸(𝑅𝑠) and 𝐷(𝑅𝑠) are incalculable, the changes 

of  𝐸(𝑅𝑠)  and  𝐷(𝑅𝑠)  are replaced with the numerical 

characteristics of Δ𝑅𝑠 to evaluate the improvement revenue. Δ𝑅𝑠 

is given as following.  

Δ𝑅𝑠 = 𝑅𝑠 − 𝑅𝑠
∗ = ∑ ∑ {(𝜆𝑖𝑗 − 𝜆𝑖𝑗

∗ ) ∙ (𝑠𝑖𝑗 + 𝜀𝑠)}
𝑁𝑖
𝑗=1

𝑚
𝑖=1  (23) 

According to the property of expectation,  𝐸(Δ𝑅𝑠)  can be 

written as:  

𝐸(Δ𝑅𝑠) = 𝐸(𝑅𝑠) − 𝐸(𝑅𝑠
∗).   (24)  

Because 𝐸(𝜀𝑠) is equal to 0, 𝐸(Δ𝑅𝑠) can also be written as  

𝐸(Δ𝑅𝑠) = ∑ ∑ 𝐸 ((𝜆𝑖𝑗 − 𝜆𝑖𝑗
∗ ) ∙ 𝑠𝑖𝑗)

𝑁𝑖
𝑗=1

𝑚
𝑖=1 + ∑ ∑ 𝐸 ((𝜆𝑖𝑗 −

𝑁𝑖
𝑗=1

𝑚
𝑖=1

𝜆𝑖𝑗
∗ ) ∙ 𝜀𝑠) = ∑ ∑ {(𝜆𝑖𝑗 − 𝜆𝑖𝑗

∗ ) ∙ 𝑠𝑖𝑗}
𝑁𝑖
𝑗=1

𝑚
𝑖=1 ,   (25) 

where, 𝜆𝑖𝑗 ≥ 𝜆𝑖𝑗
∗ > 0.  

The less 𝜆𝑖𝑗
∗  is, the larger 𝐸(Δ𝑅𝑠) is. According to Eq. (24), 

the larger 𝐸(Δ𝑅𝑠) is, the more 𝐸(𝑅𝑠) − 𝐸(𝑅𝑠
∗) is. Considering 

the calculability of 𝐸(Δ𝑅𝑠), the first measure can be adjusted by 

a proposed criterion that the larger  𝐸(Δ𝑅𝑠)  is, the better the 

system improvement revenue is.  

According to Eq. (23),  

𝐷(Δ𝑅𝑠) = 𝐷(𝑅𝑠) + 𝐷(𝑅𝑠
∗) − 2𝐶𝑜𝑣(𝑅𝑠, 𝑅𝑠

∗)  (26) 

𝐷(Δ𝑅𝑠) = ∑ 𝐶𝑜𝑣 ((𝜆𝑖𝑗 − 𝜆𝑖𝑗
∗ ) ∙ 𝜀𝑠, (𝜆𝑝𝑞 − 𝜆𝑝𝑞

∗ ) ∙ 𝜀𝑠)1≤𝑖,𝑝≤𝑚
1≤𝑗,𝑞≤𝑁𝑖

=

∑ {(𝜆𝑖𝑗 − 𝜆𝑖𝑗
∗ ) ∙ (𝜆𝑝𝑞 − 𝜆𝑝𝑞

∗ ) ∙ 𝐷(𝜀𝑠)}1≤𝑖,𝑝≤𝑚
1≤𝑗,𝑞≤𝑁𝑖

 , (27)  

where, 𝐶𝑜𝑣(∙) symbolizes the covariance between variables.  

The less 𝜆𝑖𝑗
∗  (or 𝜆𝑝𝑞

∗ ) is, the larger 𝐷(Δ𝑅𝑠) is.  

According to Eq. (13), Eq. (17), and Eq. (18),  

𝐷(𝑅𝑠
∗) = ∑ 𝐶𝑜𝑣(𝑅𝑖𝑗

∗ , 𝑅𝑝𝑞
∗ )1≤𝑖,𝑝≤𝑚

1≤𝑗,𝑞≤𝑁𝑖

= ∑ 𝐶𝑜𝑣(𝜆𝑖𝑗
∗ ∙ 𝜀𝑠 +1≤𝑖,𝑝≤𝑚

1≤𝑗,𝑞≤𝑁𝑖

𝜀𝑜 ∙ 𝑠𝑖𝑗 + 𝜀𝑜 ∙ 𝜀𝑠, 𝜆𝑝𝑞
∗ ∙ 𝜀𝑠 + 𝜀𝑜 ∙ 𝑠𝑝𝑞 + 𝜀𝑜 ∙ 𝜀𝑠) (28) 

The covariance in Eq. (28) can be further decomposed and 

expressed as the sum of several covariance, where the 

covariance with respect to 𝜆𝑖𝑗
∗  (or 𝜆𝑝𝑞

∗ ) are shown as following.  

𝐶𝑜𝑣(𝜆𝑖𝑗
∗ ∙ 𝜀𝑠, 𝜆𝑝𝑞

∗ ∙ 𝜀𝑠) = 𝜆𝑖𝑗
∗ ∙ 𝜆𝑝𝑞

∗ ∙ 𝐷(𝜀𝑠) > 0, 

𝐶𝑜𝑣(𝜆𝑖𝑗
∗ ∙ 𝜀𝑠, 𝜀𝑜 ∙ 𝑠𝑝𝑞) = 𝜆𝑖𝑗

∗ ∙ 𝑠𝑝𝑞 ∙ 𝐶𝑜𝑣(𝜀𝑠, 𝜀𝑜) > 0, 

𝐶𝑜𝑣(𝜆𝑖𝑗
∗ ∙ 𝜀𝑠, 𝜀𝑜 ∙ 𝜀𝑠) = 𝜆𝑖𝑗

∗ ∙ 𝐶𝑜𝑣(𝜀𝑠, 𝜀𝑜 ∙ 𝜀𝑠) = 0, 
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𝐶𝑜𝑣(𝜀𝑜 ∙ 𝑠𝑖𝑗 , 𝜆𝑝𝑞
∗ ∙ 𝜀𝑠) = 𝑠𝑖𝑗 ∙ 𝜆𝑝𝑞

∗ ∙ 𝐶𝑜𝑣(𝜀𝑜, 𝜀𝑠) > 0, 

𝐶𝑜𝑣(𝜀𝑜 ∙ 𝜀𝑠, 𝜆𝑝𝑞
∗ ∙ 𝜀𝑠) = 𝜆𝑝𝑞

∗ ∙ 𝐶𝑜𝑣(𝜀𝑜 ∙ 𝜀𝑠, 𝜀𝑠) = 0. 

According to the above results, it can be derived that the less 

𝜆𝑖𝑗
∗  (or 𝜆𝑝𝑞

∗ ) is, the less  𝐷(𝑅𝑠
∗)  is. Simultaneously, 

because 𝐷(𝑅𝑠) is not subject to 𝜆𝑖𝑗
∗  (or 𝜆𝑝𝑞

∗ ) in Eq. (26), it can be 

further derived that the less 𝜆𝑖𝑗
∗  (or 𝜆𝑝𝑞

∗ ) is, the less 𝐶𝑜𝑣(𝑅𝑠, 𝑅𝑠
∗) 

is. Hence, the conclusion is drawn that a larger 𝐷(Δ𝑅𝑠) means  

a more reduction of  𝐷(𝑅𝑠) − 𝐷(𝑅𝑠
∗) . Considering the 

calculability of 𝐷(Δ𝑅𝑠), the second measure can be adjusted by 

another proposed criterion that the larger 𝐷(Δ𝑅𝑠) is, the better 

the system improvement revenue is.  

3.3 Evaluation of system improvement cost 

The series system is improved by decreasing 𝜆𝑖 to 𝜆𝑖
∗, and the 

cost of system improvement is calculated as the sum of costs of 

components improvement. The reduction of 𝜆𝑖 − 𝜆𝑖
∗  can be 

achieved fundamentally by decreasing 𝜆𝑖𝑗 to 𝜆𝑖𝑗
∗ , so the cost of 

component improvement is the sum of improvement costs of 

failure modes. Associated with 𝜆𝑖𝑗  and 𝜆𝑖𝑗 − 𝜆𝑖𝑗
∗ , the 

improvement cost of failure mode is formulated as the natural 

logarithm of (𝜆𝑖𝑗 𝜆𝑖𝑗
∗⁄ ) . Hence, the system improvement cost 

model at the failure mode level is proposed as follow.  

𝐶(𝜆, 𝜆∗) = ∑ ∑ {𝛿𝑖𝑗 ∙ 𝑙𝑛 (
𝜆𝑖𝑗

𝜆𝑖𝑗
∗ )}

𝑁𝑖
𝑗=1

𝑚
𝑖=1 ,  (29) 

where, 𝐶(∙)  symbolizes the improvement cost and 𝛿𝑖𝑗  is the 

difficulty coefficient for improving failure mode j of component 

i. 

3.4 Optimal allocation model based on PSO algorithm  

The optimal allocation of system reliability improvement target 

is aimed at maximizing the system improvement revenue and 

minimizing the system improvement cost under some 

constraints. An advanced optimal allocation model is proposed 

as follow based on the above demonstration.  

min   ∑ ∑ {𝛿𝑖𝑗 ∙ 𝑙𝑛 (
𝜆𝑖𝑗

𝜆𝑖𝑗
∗ )}

𝑁𝑖
𝑗=1

𝑚
𝑖=1 − ∑ ∑ {(𝜆𝑖𝑗 − 𝜆𝑖𝑗

∗ ) ∙ 𝑠𝑖𝑗}
𝑁𝑖
𝑗=1

𝑚
𝑖=1 −

∑ {(𝜆𝑖𝑗 − 𝜆𝑖𝑗
∗ ) ∙ (𝜆𝑝𝑞 − 𝜆𝑝𝑞

∗ ) ∙ 𝐷(𝜀𝑠)}1≤𝑖,𝑝≤𝑚
1≤𝑗,𝑞≤𝑁𝑖

,              (30) 

  s. t  {
0 < 𝜆𝑖𝑗

∗ + 𝜀𝑜 ≤ 𝜆𝑖𝑗 + 𝜀𝑜                            

∑ ∑ {(𝜆𝑖𝑗 + 𝜀𝑜) − (𝜆𝑖𝑗
∗ + 𝜀𝑜)} = Δ

𝑁𝑖
𝑗=1

𝑚
𝑖=1

 

The constraints in above model are associated with the 

random variables 𝜀𝑜 . According to the probability statistical 

characteristics of 𝜀𝑜, it is absolutely positively biased based on 

the “3σ ”principle. Simultaneously, compared with 𝜆𝑖𝑗  and 𝜆𝑖𝑗
∗  , 

the magnitude of 𝜀𝑜 is very small. Hence, within the error rang 

allowed, the constraints can be simplified via the scaling method 

as follow.  

s.t  {
0 < 𝜆𝑖𝑗

∗ ≤ 𝜆𝑖𝑗                     

∑ ∑ {𝜆𝑖𝑗 − 𝜆𝑖𝑗
∗ } = Δ

𝑁𝑖
𝑗=1

𝑚
𝑖=1

                          (31) 

Additionally, the constraints in optimal allocation model 

based on the PSO algorithm must be inequalities. Therefore, Eq. 

(31) is adjusted as follow [12].  

s.t    𝜆𝑖𝑗𝑚𝑖𝑛 ≤ 𝜆𝑖𝑗
∗ ≤ 𝜆𝑖𝑗𝑚𝑎𝑥,           (32)  

where, 

  {
𝜆𝑖𝑗𝑚𝑖𝑛 = 𝑚𝑎𝑥{0, ∑ ∑ {𝜆 − Δ − (𝜆11

∗ + 𝜆12
∗ + ⋯ + 𝜆𝑖(𝑗−1)

∗ ) − (𝜆𝑖(𝑗+1) + ⋯ + 𝜆𝑚(𝑁𝑚))}
𝑁𝑖
𝑗=1

𝑚
𝑖=1 }

𝜆𝑖𝑗𝑚𝑎𝑥 = 𝑚𝑖𝑛{𝜆𝑖𝑗 , ∑ ∑ {𝜆 − Δ − (𝜆11
∗ + 𝜆12

∗ + ⋯ + 𝜆𝑖(𝑗−1)
∗ ) − 0}

𝑁𝑖
𝑗=1

𝑚
𝑖=1 }                  

    

 

The principle of PSO algorithm is a swarm of particles 

looking for the global optimal solution in the n-dimensional 

space [5]. In the optimal allocation problem of system reliability 

improvement target, the fitness function is the objective function 

in Eq. (30), and the occurrence rates of 𝑛  failure modes 

constitute the n-dimensional space. Thereby, the calculation 

procedure of PSO algorithm for this optimal problem is shown 

as Fig.4.  

 
Fig. 4. Procedure of PSO algorithm. 

4. Numerical example and discussion  

4.1 Numerical example  

The schematic of 2-stage NGW planetary reducer in the large 

torque hub drive system is as Fig. 5. 

 
Fig. 5. Schematic of 2-stage NGW planetary reducer:a1-1st 

stage sun gear, b1-1st stage internal gear, c1-1st stage planet gear, 

d1-1st stage bearing, a2-2nd stage sun gear, b2-2nd stage internal 

gear, c2-2nd stage planet gear, d2-2nd stage bearing. 

In the reference [13], the allocation of system reliability 

design requirement is implemented for this reducer so that 

components are configured with 𝜆𝑖 . As a kind of empirical 

evaluation for 𝜆𝑖𝑗 , the occurrence conversion value is largely 
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proportional to 𝜆𝑖𝑗. Hence, 𝜆𝑖 may as well be decomposed into 

𝜆𝑖𝑗 in the proportion of occurrence conversion value. The full 

results of the allocation of system reliability design requirement 

are listed as Table 2. 

 

Table 2. Results of the allocation of system reliability design requirement. 
 Component Severity of component Failure rate  Failure mode Severity of failure mode Occurrence rate 

𝑖  𝑠𝑖 𝜆𝑖 j  𝑠𝑖𝑗 𝜆𝑖𝑗 

1 1st stage sun gear 601.85 0.000100 

1 FM11 Surface pitting 24.53 0.000079 

2 FM12 Surface gluing 270.43 0.000015 

3 FM13 Tooth fracture 601.85 0.000006 

2 1st stage internal gear 121.51 0.003807 
1 FM 21 Surface pitting 4.95 0.000276 

2 FM 22 Ring fracture 121.51 0.003531 

3 1st stage planet gear 403.43 0.000600 

1 FM31 Surface pitting 11.02 0.000351 

2 FM 32 Surface gluing 181.27 0.000151 

3 FM 33 Tooth fracture 403.43 0.000098 

4 1st stage bearing 270.43 0.030047 

1 FM 41 Fatigue exfoliation 11.02 0.010168 

2 FM 42 Wear out 4.95 0.015532 

3 FM 43 gluing 270.43 0.004347 

5 2nd stage sun gear 1 363.96 0.000100 

1 FM 51 Surface pitting 54.60 0.000093 

2 FM 52 Surface gluing 270.43 0.000003 

3 FM 53 Tooth fracture 1 363.96 0.000004 

6 2nd stage internal gear 121.51 0.002102 
1 FM 61 Surface pitting 4.95 0.000628 

2 FM 62 Ring fracture 121.51 0.001474 

7 2nd stage planet gear 403.43 0.000300 

1 FM 71 Surface pitting 11.02 0.000220 

2 FM 72 Surface gluing 181.27 0.000040 

3 FM 73 Tooth fracture 403.43 0.000040 

8 2nd stage bearing 270.43 0.037494 

1 FM 81 Fatigue exfoliation 11.02 0.008658 

2 FM 82 Wear out 4.95 0.020178 

3 FM 83 Gluing 270.43 0.008658 

 total  0.074550  total  0.074550 

During the optimal allocation of system reliability 

improvement target, referring to the mechanical failure 

distribution [18], 𝜆𝑖
∗ and 𝜆𝑖

∗∗ denote the component failure rates 

at the stable failure stage after improvement when Δ =

0.003630  and Δ = 0.006151  [18], respectively. 

Simultaneously, 𝜆𝑖𝑗
∗  and 𝜆𝑖𝑗

∗∗ denote the failure mode occurrence 

rates after improvement based on the above same condition.  

According to the conventional model,  𝜆𝑖
∗  and 𝜆𝑖

∗∗  are 

allocated to components based on Eq. (11). Because the 

assumption 𝑠𝑖 = 𝑠𝑖
∗ means 𝜆𝑖𝑗 𝜆𝑖⁄ = 𝜆𝑖𝑗

∗ 𝜆𝑖
∗⁄  for the component i, 

the full results of the conventional optimal allocation are shown 

in Table 3. It is generally believed that allocation results are 

sensitive to the difficulty coefficient, so 𝜆𝑖𝑗
∗  and 𝜆𝑖𝑗

∗∗ with respect 

to different 𝛿𝑖  are listed in Tables 3(a), (b), (c) and (d), 

respectively. 

Table 3. Results of conventional improvement target optimal allocation. 

(a)         (b) 

Component 
Difficulty 

coefficient 
Failure rate 

Failure 

mode 
Occurrence rate 

 
Component 

Difficulty 

coefficient 
Failure rate 

Failure 

mode 
Occurrence rate 

i 𝛿𝑖 𝜆𝑖
∗ 𝜆𝑖

∗∗  𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗  i 𝛿𝑖 𝜆𝑖
∗ 𝜆𝑖

∗∗  𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗ 

1 9 0.000100 0.000100 

FM11 0.000079 0.000079  

1 5 0.000100 0.000100 

FM11 0.000079 0.000079 

FM12 0.000015 0.000015  FM12 0.000015 0.000015 

FM13 0.000006 0.000006  FM13 0.000006 0.000006 

2 9 0.003807 0.003807 
FM 21 0.000276 0.000276  

2 6 0.003807 0.003807 
FM 21 0.000276 0.000276 

FM 22 0.003531 0.003531  FM 22 0.003531 0.003531 

3 9 0.000600 0.000600 

FM31 0.000351 0.000351  

3 2 0.000600 0.000600 

FM31 0.000351 0.000351 

FM 32 0.000151 0.000151  FM 32 0.000151 0.000151 

FM 33 0.000098 0.000098  FM 33 0.000098 0.000098 

4 9 0.030047 0.030047 

FM 41 0.010168 0.010168  

4 9 0.030047 0.030047 

FM 41 0.010168 0.010168 

FM 42 0.015532 0.015532  FM 42 0.015532 0.015532 

FM 43 0.004347 0.004347  FM 43 0.004347 0.004347 

5 9 0.000100 0.000100 

FM 51 0.000093 0.000093  

5 4 0.000100 0.000100 

FM 51 0.000093 0.000093 

FM 52 0.000003 0.000003  FM 52 0.000003 0.000003 

FM 53 0.000004 0.000004  FM 53 0.000004 0.000004 

6 9 0.002102 0.002102 
FM 61 0.000628 0.000628  

6 7 0.002102 0.002102 
FM 61 0.000628 0.000628 

FM 62 0.001474 0.001474  FM 62 0.001474 0.001474 

7 9 0.000300 0.000300 

FM 71 0.000220 0.000220  

7 1 0.000300 0.000300 

FM 71 0.000220 0.000220 

FM 72 0.000040 0.000040  FM 72 0.000040 0.000040 

FM 73 0.000040 0.000040  FM 73 0.000040 0.000040 

8 9 0.033864 0.031343 

FM 81 0.007820 0.007238  

8 9 0.033864 0.031343 

FM 81 0.007820 0.007238 

FM 82 0.018224 0.016868  FM 82 0.018224 0.016868 

FM 83 0.007820 0.007237  FM 83 0.007820 0.007237 

total  0.070920 0.068399  0.070920 0.068399    0.070920 0.068399  0.070921 0.068399 
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(c)        (d) 

Component 
Difficulty 

coefficient 
Failure rate 

Failure 

mode 
Occurrence rate 

 Component Difficulty 

coefficient 
Failure rate 

Failure 

mode 
Occurrence rate 

i 𝛿𝑖 𝜆𝑖
∗ 𝜆𝑖

∗∗  𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗  i 𝛿𝑖 𝜆𝑖
∗ 𝜆𝑖

∗∗  𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗ 

1 5 0.000100 0.000100 

FM 11 0.000079 0.000079  

1 5 0.000100 0.000100 

FM 11 0.000079 0.000079 

FM 12 0.000015 0.000015  FM 12 0.000015 0.000015 

FM 13 0.000006 0.000006  FM 13 0.000006 0.000006 

2 6 0.003807 0.003807 
FM 21 0.000276 0.000276  

2 6 0.003807 0.003807 
FM 21 0.000276 0.000276 

FM 22 0.003531 0.003531  FM 22 0.003531 0.003531 

3 3 0.000600 0.000600 

FM 31 0.000351 0.000351  

3 3 0.000600 0.000600 

FM 31 0.000351 0.000351 

FM 32 0.000151 0.000151  FM 32 0.000151 0.000151 

FM 33 0.000098 0.000098  FM 33 0.000098 0.000098 

4 8 0.030047 0.028889 

FM 41 0.010168 0.009776  

4 8 0.030047 0.028889 

FM 41 0.010168 0.009776 

FM 42 0.015532 0.014933  FM 42 0.015532 0.014933 

FM 43 0.004347 0.004180  FM 43 0.004347 0.004180 

5 4 0.000100 0.000100 

FM 51 0.000093 0.000093  

5 4 0.000100 0.000100 

FM 51 0.000093 0.000093 

FM 52 0.000003 0.000003  FM 52 0.000003 0.000003 

FM 53 0.000004 0.000004  FM 53 0.000004 0.000004 

6 7 0.002102 0.002102 
FM 61 0.000628 0.000628  

6 7 0.002102 0.002102 
FM 61 0.000628 0.000628 

FM 62 0.001474 0.001474  FM 62 0.001474 0.001474 

7 1 0.000300 0.000300 

FM 71 0.000220 0.000220  

7 2 0.000300 0.000300 

FM 71 0.000220 0.000220 

FM 72 0.000040 0.000040  FM 72 0.000040 0.000040 

FM 73 0.000040 0.000040  FM 73 0.000040 0.000040 

8 9 0.033864 0.032501 

FM 81 0.007820 0.007505  

8 9 0.033864 0.032501 

FM 81 0.007820 0.007505 

FM 82 0.018224 0.017491  FM 82 0.018224 0.017491 

FM 83 0.007820 0.007505  FM 83 0.007820 0.007505 

total  0.070920 0.068399  0.070920 0.068399  total  0.070920 0.068399  0.070920 0.068399 

From Tables 3(a) to (d), 𝛿𝑖 is adjusted continually and tends 

to be more reflective of the truth. In four improvement schemes 

with different 𝛿𝑖, the numbers in bold mark the items that have 

been changed. For the series system, 𝜆∗ = ∑ 𝜆𝑖
∗𝑚

𝑖=1   and 𝜆𝑖
∗ =

∑ 𝜆𝑖𝑗
∗𝑁𝑖

𝑗=1   hold [19, 25]. When Δ = 0.003630 , ∑ 𝜆𝑖
∗ = ∑ 𝜆𝑖𝑗

∗ =

0.070920, which is used to verify the correctness of solutions. 

Additionally, 𝜆𝑖
∗  and 𝜆𝑖𝑗

∗   is hardly sensitive to the changed 𝛿𝑖 

while Δ = 0.003630. The reason is that the improvement target 

of system is relatively small, and the optimal scheme for 

improvement is almost certain. When Δ = 0.006151 , ∑ 𝜆𝑖
∗∗ =

∑ 𝜆𝑖𝑗
∗∗ = 0.068399, and the correctness of solutions is verified. 

The sensitivity of 𝜆𝑖
∗∗  and 𝜆𝑖𝑗

∗∗  with respect to the different 𝛿𝑖 

would occur while Δ = 0.006151 . It is because different 

components have different improvement difficulties that the 

different improvement schemes would have different profits.  

According to the proposed model, 𝜆𝑖𝑗
∗  and 𝜆𝑖𝑗

∗∗ are allocated 

directly to failure modes, and the allocation results are shown in 

Table 4. Based on the sensitivity analysis, 𝜆𝑖𝑗
∗   and 𝜆𝑖𝑗

∗∗  with 

respect to different 𝛿𝑖𝑗 are listed in Tables 4(a), (b), (c) and (d), 

respectively. 

 

Table 4. Results of proposed improvement target optimal allocation. 

Failure mode 

(a)  (b)  (c)  (d) 

Difficulty 

coefficient 
Occurrence rate  

Difficulty 

coefficient 
Occurrence rate  

Difficulty 

coefficient 
Occurrence rate  

Difficulty 

coefficient 
Occurrence rate 

𝛿𝑖𝑗 𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗  𝛿𝑖𝑗 𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗  𝛿𝑖𝑗 𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗  𝛿𝑖𝑗 𝜆𝑖𝑗
∗  𝜆𝑖𝑗

∗∗ 

FM 11 9 0.000079 0.000079  5 0.000079 0.000079  5 0.000079 0.000079  5 0.000079 0.000079 

FM 12 9 0.000015 0.000015  6 0.000015 0.000015  7 0.000015 0.000015  7 0.000015 0.000015 

FM 13 9 0.000006 0.000006  4 0.000006 0.000006  4 0.000006 0.000006  4 0.000006 0.000006 

FM 21 9 0.000276 0.000276  5 0.000276 0.000276  5 0.000276 0.000276  5 0.000276 0.000276 

FM 22 9 0.003531 0.003531  6 0.003531 0.003531  6 0.003531 0.003531  6 0.003531 0.003531 

FM 31 9 0.000351 0.000351  2 0.000351 0.000351  3 0.000351 0.000351  3 0.000351 0.000351 

FM 32 9 0.000151 0.000151  3 0.000151 0.000151  3 0.000151 0.000151  4 0.000151 0.000151 

FM 33 9 0.000098 0.000098  1 0.000098 0.000098  1 0.000098 0.000098  1 0.000098 0.000098 

FM 41 9 0.010168 0.009742  8 0.010168 0.009166  8 0.010168 0.009166  8 0.010168 0.009166 

FM 42 9 0.011902 0.009807  9 0.011902 0.010383  9 0.011902 0.010383  9 0.011902 0.010383 

FM 43 9 0.004347 0.004347  7 0.004347 0.004347  7 0.004347 0.004347  7 0.004347 0.004347 

FM 51 9 0.000093 0.000093  4 0.000093 0.000093  5 0.000093 0.000093  5 0.000093 0.000093 

FM 52 9 0.000003 0.000003  4 0.000003 0.000003  4 0.000003 0.000003  4 0.000003 0.000003 

FM 53 9 0.000004 0.000004  4 0.000004 0.000004  4 0.000004 0.000004  4 0.000004 0.000004 

FM 61 9 0.000628 0.000628  7 0.000628 0.000628  7 0.000628 0.000628  7 0.000628 0.000628 

FM 62 9 0.001474 0.001474  8 0.001474 0.001474  8 0.001474 0.001474  8 0.001474 0.001474 

FM 71 9 0.000220 0.000220  1 0.000220 0.000220  1 0.000220 0.000220  1 0.000220 0.000220 

FM 72 9 0.000040 0.000040  2 0.000040 0.000040  2 0.000040 0.000040  2 0.000040 0.000040 

FM 73 9 0.000040 0.000040  3 0.000040 0.000040  3 0.000040 0.000040  2 0.000040 0.000040 

FM 81 9 0.008658 0.008658  8 0.008658 0.008658  7 0.008658 0.008658  7 0.008658 0.008658 

FM 82 9 0.020178 0.020178  9 0.020178 0.020178  9 0.020178 0.020178  9 0.020178 0.020178 

FM 83 9 0.008658 0.008658  7 0.008658 0.008658  7 0.008658 0.008658  7 0.008658 0.008658 

Total  0.070920 0.068399   0.070920 0.068399   0.070920 0.068399   0.070920 0.068399 
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From Tables 4(a) to (d), 𝛿𝑖𝑗 is adjusted continually and tends 

to be more reasonable and steady, and the numbers in bold mark 

the items that have been changed. When Δ = 0.003630, ∑ 𝜆𝑖
∗ =

∑ 𝜆𝑖𝑗
∗ = 0.070920, which is equal to 𝜆∗ and justifies the above 

allocation results. Because Δ = 0.003630  is relatively small, 

𝜆𝑖𝑗
∗   are almost insensitive to the variant of 𝛿𝑖𝑗 . When Δ =

0.006151, ∑ 𝜆𝑖
∗∗ = ∑ 𝜆𝑖𝑗

∗∗ = 0.068399, which equals the value 

of 𝜆∗∗. Therefore, the results of Table 4 prove to be justified. In 

addition, 𝜆𝑖𝑗
∗∗ are only sensitive to major change of 𝛿𝑖𝑗. To some 

extent, these phenomena reflect the maturity of the proposed 

optimization model. Moreover, when the same Δ  is 

accomplished, the fewer failure modes need to be improved in 

Table 4 compared with Table 3. That is to say that the 

improvement scheme in Table 4 is simpler and more refined.  

4.2 Discussion 

As a convex function of 𝜆𝑖
∗, the conventional optimal allocation 

model is solved based on the convex optimization theory in the 

reference [18]. However, the Eq. (30) as the proposed optimal 

allocation model is not the convex function under Kuhn-Tucker 

conditions, so it is difficult to solve directly by the convex 

optimization theory. In the numerical example, two kinds of 

optimal allocation models are solved based on the PSO 

algorithm, so the differences of performance of two models are 

shown in Tables 3 and 4. The detailed discussions are given as 

following.  

a) 

 
 

b) 

 
Fig. 6. Optimization processes with 𝛿𝑖 (and 𝛿𝑖𝑗)∈

(1,10):(a)Δ = 0.003630 in Table 3(d), (b)Δ = 0.006151 in 

Table 4(d). 

Additionally, in Tables 3 and 4, the above optimal allocation 

results are not very sensitive to the magnified 𝛿𝑖 and 𝛿𝑖𝑗, so the 

interval of (1, 10) may be more practical in the engineering. 

(1) The optimal allocation of system reliability improvement 

target belongs to multi-objective optimization problem, in which 

every single objective should be set the corresponding weight. 

In the conventional method, the system improvement cost is the 

weighted sum of the component improvement costs, and 𝛿𝑖 

playing the role of the weight is set in the interval of (0, 1). 

However, difficulty coefficients among (0, 1) would cause traps 

in some examples, such as no convergence of the algorithm. 

Considering the subjectivity of setting weight, the range of 

difficulty coefficients is adjusted in this study. As is shown in 

Tables 3 and 4, both 𝛿𝑖 and 𝛿𝑖𝑗 are set in the interval of (1, 10), 

so that the global optimal solutions of two kinds of models are 

obtained easily. The optimization processes based on Tables 3(d) 

and 4(d) with 𝛿𝑖 (and 𝛿𝑖𝑗)∈ (1,10) are shown in Fig. 6.  

(2) Based on Tables 3 and 4, the values of system 

improvement cost in different models and cases are shown in 

Table 5. 

 

 

Table 5. System improvement costs in different models and cases.  

Model type 
Δ = 0.003630 Δ = 0.006151 

(a) (b) (c) (d) (a) (b) (c) (d) 

In conventional model 0.916456 0.916456 0.916456 0.916456 1.612710 1.612710 1.600606 1.600606 

In proposed model 2.395764 2.395764 2.395764 2.395764 4.523446 4.454549 4.454549 4.454549 

As is shown in Table 5, all values of the cost in the proposed 

model are larger than those in the conventional model. Because 

𝜆𝑖 − 𝜆𝑖
∗  is accomplished by decreasing 𝜆𝑖𝑗  to 𝜆𝑖𝑗

∗  , the 

improvement cost of the component is the sum of the 

improvement cost of several failure modes. However, 

𝛿𝑖𝑙𝑛(𝜆𝑖 𝜆𝑖
∗⁄ ) not only cannot represent the improvement cost of 

component i under different improvement schemes, but also is 

less than the sum of 𝛿𝑖𝑗𝑙𝑛(𝜆𝑖𝑗 𝜆𝑖𝑗
∗⁄ ) . In the proposed formula, 

these drawbacks are overcome, and the improvement cost of 

different hierarchies are with definiteness and accumulativeness. 

In addition, the action of correlation failure leads to a greater 

complexity for improvement, which causes the higher 

improvement cost than the independent failure. Therefore, the 

proposed formula is more reasonable and practical.  

Based on Tables 3 and 4, the values of system improvement 

revenue in different models and cases are shown in Table 6. 
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Table 6. System improvement revenues in different models and cases. 

Model type 
Δ = 0.003630 Δ = 0.006151 

(a) (b) (c) (d) (a) (b) (c) (d) 

In conventional model 0.981661 0.981661 0.981661 0.981661 1.663415 1.663415 1.663415 1.663415 

In proposed model 0.018983 0.018983 0.018983 0.018983 0.035947 0.039443 0.039443 0.039443 

As is shown in Table 6, the system improvement revenue in 

the conventional model is larger than those in the proposed 

model. Due to 𝑠𝑖 = 𝑚𝑎𝑥(𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑁𝑖
) , the conventional 

model only considers the maximal 𝑠𝑖𝑗   of component 𝑖  to 

calculate the system improvement revenue. On the contrast, the 

proposed model considers all 𝑠𝑖𝑗  to calculate the expectation of 

Δ𝑅𝑠, and uses all 𝜆𝑖𝑗 to calculate the variance of Δ𝑅𝑠. In addition, 

the uncertain correlation makes the system risk be random, so it 

tends to be more difficult to get a high system improvement 

revenue than the independent failure. Hence, the proposed 

formula is completer and more reasonable.  

(3) On the premise of the correctness of the algorithm and 

model, the accuracy of the optimal allocation result can be 

guaranteed. In the proposed model, the unreasonable 

assumptions are abandoned, such as unique cost of component 

improvement, constant component severity, independent failure 

and deterministic risk. Simultaneously, the PSO algorithm 

allocates 𝜆𝑖𝑗
∗  to failure modes directly. As is shown in Table 4, Δ 

is accomplished by decreasing just a few of 𝜆𝑖𝑗 . Hence, the 

allocation result of the propose model is more specific, explicit 

and refined, and it is more efficient and feasible for the 

engineering and industry.  

5. Conclusions 

In this paper, considering multiple correlation failures and risk 

uncertainty, an optimal allocation of the system reliability 

improvement target is proposed. A numerical example is given 

to verify the validity of the proposed method. The conclusions 

are drawn as following.  

(a) By illustrating the concept that the uncertain correlation 

would cause the disturbance risk, a risk evaluation framework of 

“actual risk = basic risk + disturbance risk” is proposed under 

probability measure.  

(b) The three kinds of correlation failure are investigated 

based on the cooperative game theory, and the generalized risk 

models of the failure mode and system are developed.  

(c) Taking the variance of the reduction of the system risk as 

an additional objective, a multi-objective optimal allocation 

model is presented, which is solved by using the PSO algorithm.  

(d) Through the numerical example and results discussion, 

the proposed model is proved to be more reasonable, complete 

and practical, and the solutions of the proposed method are also 

proved to be more refined and effective. 
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