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Highlights  Abstract  
▪ The "bottom-up" procedure for evaluating the 

reliability of planetary gears. 

▪ The Weibull model is often considered the primary 

reliability model. 

▪ The competitive risk model was developed. 

▪ The competing risk model results in more accurate 

reliability estimates than modeling each failure 

mode separately. 

▪ Using a bottom-up approach in gear reliability 

modeling can provide guidance for the development 

and design of new planetary gear design solutions. 

 The reliability study is the most important part of the engineering design 

process, as it is the basis of analysis and assessment of future product 

performance in exploitation. Since performance cannot be predicted 

with absolute certainty, the application of reliability theory includes 

probability theory and unreliability modeling. The proposed approach 

has been applied to assess the reliability of gear planetary power 

transmissions. The assessment of system reliability was determined on 

the basis of the block diagram method, as a function of the reliability of 

individual components, calculated by statistical analysis. Using the 

Weibull model, the reliability of the planetary gear was defined on the 

basis of the probability of failure of the gear teeth and the results were 

interpreted to assess the reliability of the component and the entire 

planetary train. For a more precise assessment of reliability and to avoid 

modeling every failure and mode of occurrence, a competitive risk 

model was developed. The reliability assessment study was conducted 

with a “bottom-up” approach. Reliability has been assessed, for 

instantaneous, estimated and assigned failures rate of planetary train and 

component. 
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1. Introduction 

Constructions of planetary transmissions are compact 

structures, composed of parts with high specific load capacities. 

Their main disadvantages are uneven wear and destruction of the 

flanks of the gear teeth, small space for bearings and heating of 

the transmission due to the small dimensions of the elements that 

reduce heat radiation. The coupling of the flanks of the gear teeth 

in planetary transmissions is specific. The specificity consists in 

the fact that the sun gear is simultaneously connected to several 

satellite gears, so the load is divided among several teeth of the 

sun gear. If the sun gear is damaged, all components of the 

planetary gear are also damaged. The rule is that when one gear 

is damaged, it is impossible to replace only that gear, it is 

necessary to replace all of them. In the case of planetary gears, 

the entire set must be replaced when the sun gear is damaged. 

Since different types of damage are possible in planetary gears, 

and in order to prevent the occurrence of such damage, it is 

necessary to determine the distribution of damage over the 

failure rate of the gear teeth, as well as to estimate the failure 

rates for the most critical components. In this way, the reliability 

of the transmission can be increased, because it depends on the 

elemental reliability of the components. Unequal distribution of 

the failure rate of the flanks of the gear teeth in the planetary 
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transmission will be the focus of the research presented in the 

following text. Gears are the most important components of 

planetary power transmissions. Their reliability has the greatest 

impact on the durability and reliability of planetary gears as 

mechanical systems. Therefore, researchers have done a lot of 

work to assess the reliability of the gear system [2, 26, 30]. For 

example, the influence of the stress spectrum on the tooth and 

the number of changes coupling the flanks of the gear teeth is 

widely used to assess reliability [1, 19, 20, 28]. Reliability 

analysis is closely related to the concepts of the required service 

life of the system and unreliability. Thus, the concept of 

reliability has a different interpretation in each step of product 

design, use and product service [3, 7, 13, 18, 25]. 

Based on reliability, it is possible to define different 

products, such as two-speed automotive transmission systems. 

The analysis of failures in the planetary gearbox on the wind 

turbine [5, 12, 16, 29] provides the basis for the analysis of 

potential damage on other types of planetary gearboxes. The 

working life of the new design solutions of the planetary 

transmission will depend on the analysis of different types of 

damage and the possibility of their occurrence. 

The reliability of the transmission is affected by various 

parameters, such as the coupling of cylindrical gears [11], gear 

pitting fault [14, 22], assembly tolerances [21], bearing 

configuration [9] and can be detected by various methods such 

as (synchronous resample and adaptive variational mode 

decomposition) [31]. Detecting a large number of different 

parameters can increase the reliability of the system which was 

processed. By analyzing models of planetary gears, the authors 

[5] considered a large number of errors that may occur in the 

production process and therefore affect the functioning of 

planetary gears. The analysis of the dynamic model of reliability 

based on random lifetime [10] and disturbances [16, 24], as well 

as the destruction process [17] by monitoring the tests whether 

the tests are done in laboratory conditions or in the process of 

explotation [12] provide good guidelines for the development of 

planetary gears from the aspect of its reliability. According to 

the available literature, a certain number of authors dealt with 

predicting the reliability of wind turbines [4, 15, 23], Helicopter 

Main Gearbox Lubrication System using Influence Diagrams in 

a way that helped to analyze and define the reliability of 

planetary gears. 

It is almost impossible for engineers to design a product 

which operates with absolute certainty and without failures in its 

working life. That is due to limitations imposed to any product 

engineering procedure. However, performance satisfaction 

during the lifecycle in accordance with the appropriate 

requirements and standards must be ensured using engineering 

criteria. The unreliability of desired performance in the working 

life of design and unforeseen failures can be accompanied by 

significant costs and followed by serious risks.  

Reliability in the Mechanical Design Process is the sum of 

the all units failure rates. It simply means that whenever the 

failure rates of units are added, it is automatically assumed that 

the units are acting in series (i.e., if any one unit fails, the system 

fails). 

Reliability assessment is an engineering approach to predict 

the performance of a product during its design cycle, the testing 

of which is affected by several factors, such as: test length, 

speed, group homogeneity, item difficulty, objectivity, test-

retest interval, variation with test situations, etc. and for the 

successful implementation of testing, knowledge of a lot of data 

is necessary. 

The main goal of this work is reliability modeling and 

assessment, to predict the desired product performance for a 

predetermined service life with a small amount of required 

product data. 

In the available literature there is almost no data, or very 

rarely, that anyone has dealt with reliability analysis using the 

"bottom-up" approach on the example of planetary gears. In 

order to justify the application of the "bottom-up" approach, the 

analysis will be based on the fact that: failure modes are 

independent of each other, that the failure of one component 

causes the failure of the entire system, and that each failure mode 

has its own distribution failure in time. With this approach, a 

competitive model will be developed that component reliability 

represents failure mode and component failure rates represent 

the sum of failure rates, a "bottom-up" basis methodical 

approach for evaluating the reliability of gear planetary drive, 

which is another goal of this paper.  

The work is important because it provides a different 

approach than many others, to define values for the reliability of 

components of the planetary drive train and the train as a whole 

using a small amount of data. And that the results obtained in 

this way can be applied in the development of new design 

solutions for the planetary power unit.  

In order to achieve the goals set in this work, certain actions 

were preceded. For the wear period, instantaneous failure rates 

(IFR) and average failure rates (AFR) were calculated. 

Allocation methods were implemented and failure rates were 

assigned for all components. Reliability of planetary gear 

components are determined for instantaneous and average 

failure rate values. Mean time to failure (MTTF) values for two 

planetary sets are defined. The obtained reliability values of the 

components are tabulated and graphically presented. The failure 

rate functions are defined, calculated and displayed graphically. 

The reliability values of the first and second planetary set were 

calculated and graphically displayed. Reliabilities were 

calculated for the competitive risk model, and the values are 

illustrative, shown graphically.  

2. Reliability modelling based on real-time systems  

The reliability of planetary train, as machine systems, is a 

specific area based on the application of probability accounts 

and mathematical statistics. The legalities that are obtained by 

the application of these methods are of particular importance for 

the maintenance of machine systems but also for the design and 

development of new ones. The working conditions of machine 

systems are random, the process of failure and other types of 

damage are the result of random processes. In addition, other 

under-known processes whose impact can only be covered 

statistically are affected. In order to ensure complete safety in 

operation, without the possibility of malfunction (malfunction), 

the machine system would have to be either very expensive, too 

large dimensions and masses, irrational for exploitation, etc. 

Combining experiments, probability calculations and 

mathematical statistics make up for a whole range of under-

study processes and a lack of data on the processes on which the 

results of the design process directly depend. In the process of 
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constructing and maintaining machine systems, questions that 

theoretical science has failed to study cannot be circumvented. 

With the development of theoretical knowledge, the need for a 

statistical and experimental approach is diminished. In this 

sense, reliability or unreliability is a risk that can be accepted to 

obtain rational constructions without jeopardizing the function 

and quality of the system. In this regard, reliability is one of the 

indicators of the quality of the machine system. 

Faults can be very different. Most typical are all types of 

failure and damage, and incorrect processes. Reliability can be 

defined at the level of a complex machine system and 

hierarchically broken down to the level of components and 

machine parts. 

As a complex probability, the reliability of a physical 

machine system (Figure 1) is modeled to form a structure formed 

of elementary reliability (probabilities), presented in a block 

diagram of reliability. In the reliability structure (block diagram 

of reliability) of a machine system of elementary reliability, 

which represent the probability that a certain malfunction will 

not occur, can be connected in series (Fig.2a), in parallel 

(Fig.2b) and combined (Fig.2c.) Based on a certain probability 

of destruction until the occurrence of critical failure and certain 

failure rates of the considered groups of components and parts, 

their reliability was obtained. 

 

 
Figure 1. Reliability Block Modeling Process 

 

For any element or component of the system, the 

reliability is [3, 7, 18]: 

where 𝐹𝑖 is unreliability. The reliability of the entire 𝑅𝑆 system, 

if the components in the system are regularly connected, is equal 

to the product of the reliability of the components or elements: 

1=

=
n

S i

i

R R  (2) 

The reliability of a complex system consisting of series and 

parallel connected components, in any combination, is 

calculated on the basis of the previous equations 1 and 2, starting 

from the smallest groups of parallel or series connected 

components. The reliability of these groups is represented by 

one member of the next larger group of components, all the way 

to the final series, as a rule, of regularly bound elements of the 

group. In Figure 3, one such example is given arbitrarily selected 

connection elements - system components. 

 
Figure 2. Series, parallel and combined structure of elementary reliability 

 

 
Figure 3. Example of complexly connected components of a machine system 

1i iR F= −  (1) 
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The first task of reliability analysis is to find the value and 

reliability of the study. This task enables identification of 

properties and dependencies of a system reliability study. 

Reliability is defined in terms of probability, failure rate, mean 

time to failure (MTTF), and probability para¬meters, such as 

cumulative distribution functions. 

Failure rate, (t), is defined as the ratio between the failure 

probability in the time interval [𝑡1, 𝑡2] and the product of the 

failure probability at 𝑡1 and the time interval [3]: 

For most machine systems, the failure rate follows a “bathtub 

curve”, as shown in Fig. 4 [3, 7, 18]. The “bathtub-curve” can 

be divided into three different areas: I-for the occurrence of early 

failure - the period of running in, II-for accidental failure-the 

period of normal work and III-permanent failure-the period of 

accelerated failure. Area I is characterized by a reduction in the 

failure rate. The risk of a part failing decreases with increasing 

time. Such early failure is mainly caused by errors in assembly, 

production, material or certain design defects. The instantaneous 

rate is constant in II. Thus, the risk of failure remains the same. 

In most cases, this risk is also relatively low. Such failure is 

caused, for example, by failure to work or maintenance or dirt 

particles. It is usually difficult to avoid such failures. The failure 

rate increases rapidly in the edge failure section (III). The risk of 

a part failing increases rapidly over time. 

The reliability function becomes:  

𝑅(𝑡) = 𝑒−𝜆⋅𝑡 (4) 

 

 

 

 

where the expected mean time to failure-MTTF, is: 

𝑀𝑇𝑇𝐹 = ∫ 𝑡 ⋅ 𝑓(𝑡)
∞

0

𝑑𝑡 = ∫ 𝑡 [−
𝑑𝑅(𝑡)

𝑑𝑡
]

𝑡

0

⋅ 𝑑𝑡 (5) 

 

To realize the set goal, the reliability distribution, and display 

modeling parts of the "bathtub-curve" is a convenient feature of 

Weibull distribution. The function is nonlinear and if 

represented as exponential, for example (𝑡) = 1𝑡2 as shown 

in Figure 4, gives a good shape.  

In this model we note that if the exponent 𝑌 = 0 we are in 

the flat part of the "bathtub-curve" - the period of normal work, 

if is  𝑌 < 0, running-in period, if is 𝑌 > 1, a period of accele-

rated failure. Weibull's distribution is presented in a similar way, 

but instead of 𝑌, Weibull basically used 𝑌 = 𝛽 − 1, the 

complete two-parameter Weibull model [7]. 

For machine system applications, independent events are the 

failure or successful execution of the intended function of each 

of 𝑛 randomly selected, independently operating components. 

If we want the probability that all of them continue to 

function even after t hours, we apply the multiplication rule and 

form the product of 𝑛 𝑅(𝑡) terms. 

In other words, the probability that 𝑛 independent identical 

components, with the reliability 𝑅(𝑡), all survive in the 

execution of functions in 𝑡 hours is. [𝑅(𝑡)]𝑛. The probability that 

at least one of the 𝑛 components fails is obtained by subtracting 

the probability that they will all remain successful in performing 

the intended function from 1. Applying the complement rule, the 

probability that at least one of 𝑛 independent identical 

components fails to survive in time 𝑡 is: 1 − [𝑅(𝑡)]𝑛 = 1 −

[1 − 𝐹(𝑡)]𝑛 [24]. 

𝑅(𝑡) = 𝑒
−(

𝑡
𝜂

)
𝛽

 
(6) 

Figure 4. Bathtub curve  

 

 

 

 

𝜆(𝑡) =
𝑅(𝑡1) − 𝑅(𝑡2)

(𝑡1 − 𝑡2)𝑅(𝑡1)
=

𝑅(𝑡) − 𝑅(𝑡 + 𝛥𝑡)

𝛥𝑡𝑅(𝑡)
 (3) 
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In practice, the instantaneous and average failure rate is defined 

as the failure rate limit when the time interval is infinitesimally 

small, as given by [18]: 

𝜆(𝑡) =
𝛽

𝜂
⋅ (

𝑡

𝜂
)

𝛽−1

 (7) 

Instantaneous failure rate 𝜆(𝑡) = (
𝛽

𝑡63
) ∙ (

𝑡

𝑡63
)

𝛽−1

is for the 

reliability engineer generally higher than the average failure rate 

< 𝜆 >=
1

𝑡
∙ (

𝑡

𝑡63
)

𝛽

. 

In Fig. 4, the wear axis is shifted to zero time, which is 

essentially just a time change. Any reliability distribution can 

have a time lag, to be included in the popular Weibull model. 

The Weibull model is often considered the primary reliability 

model. This is due to the physical significance of 𝛽: the worn 

region is designated 𝛽 > 1, running-in region for 𝛽 < 1, and 

steady state for 𝛽 = 1, as illustrated in Fig. 4. 

3. Design reliability allocation and evaluation methods 

Over the years, many methods have been developed to 

assign reliability to components and evaluate for use during the 

design phase, [1, 19, 28,]. Reliability allocation and evolution, 

is a method and technique that is considered useful, especially 

in the design of new mechanical systems in order to achieve the 

goal set in this paper.  

This method deals with assigning a failure rate to system 

components when the required system failure rate is known. The 

basics of the method are [28]: 

- All system components fail independently.  

- Failed component rates are constant. 

- System components form a serial structure. 

System failure rate:  

𝜆𝑆(𝑡) = ∑ 𝜆𝑖

𝑡

𝑖=1

 (8) 

S  = system failure rate (Hazard rate), 

𝑚 = total number of system components,  

𝜆𝑖 = component failure rate 𝑖; for 𝑖 = 1,2,3, … , 𝑚. 

If the system failure rate is specified 𝜆𝑆𝑝, the allocated 

component failure rate should be ∑ 𝜆𝑖
∗ ≤𝑚

𝑖=1 𝜆𝑆𝑝Where 𝜆𝑖
∗ failure 

rate, assigned to the component 𝑖, for 𝑖 = 1,2,3, … , 𝑚. 

The following three steps are related to this approach:  

- Estimation of the failure rate of the system components 

(i.e., 𝜆𝑖  for 𝑖 = 1,2,3, … , 𝑚) using component data. 

- Calculate the relative weight, 𝛼𝑖, and components using the 

failure rate data in the previous step and the following 

expression: 

𝛼𝑖 =
𝜆𝑖

∑ 𝜆𝑖
∗𝑚

𝑖=1

for𝑖 = 1,2,3, . . . , 𝑚 (9) 

It should be noted that 𝛼𝑖 represents the relative failure 

sensitivity of component i and that  

∑ 𝛼𝑖

𝑚

𝑖=1

= 1 (10) 

- Assign the component failure rate also using the following 

equation: 

𝜆𝑖
∗ = 𝛼𝑖 ⋅ 𝜆𝑆𝑝for𝑖 = 1,2,3, . . . , 𝑚 (11) 

4. Validation of real-time reliability modelling 

The example of the selected planetary gear (Fig. 5 and Tab. 1) 

will show how, starting from individual models of failure 

regimes and using a competitive model of risk and ordinal 

connection as building blocks, the lower calculations of 

subassembly failure rates and/or system failure rates are done. 

(Fig. 6). Given that system-level testing is usually limited by 

time and cost constraints, this “bottom-up” approach is of great 

practical value for developed projected failure rates that can be 

used as indicators of gear tooth failure in the development of 

new shapes. 

 

 
Figure 5. Kinematic scheme of the considered planetary gear 

train 

 

Table 1. Experimental planetary gear train 

Planetary set I II 

Gears module 𝑚𝑛1 = 3.5  mm 𝑚𝑛2 = 4 

Number of teeth of the sun gear 𝑧𝑎1 = 12 𝑧𝑎1 = 13 

Number of teeth of planets gears 𝑧𝑔1 = 30 𝑧𝑔2 = 26 

Number of teeth of ring gear 𝑧𝑏1 = 72 𝑧𝑏2 = 65 

Torques 𝑇𝑎1 = 538 Nm 𝑇𝑎2 = 3766 Nm 

Speed of pinion gears 𝑛𝑎1 = 1108 min−1 𝑛𝑎2 = 158.286min−1 

Planet gears speed 𝑛𝑔1 = −221.6 min−1 𝑛𝑔2 = −39.573min−1 

Operating stress at the flanks of the teeth 𝜎𝐻𝑎1 = 𝜎𝐻𝑔1 = 1421
𝑁

mm2
 𝜎𝐻𝑎2 = 𝜎𝐻𝑔2 = 2412

𝑁

mm2
 

Number of planets gears 3 3 
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For planetary gear components (Fig. 5), were values  

determined for instantaneous failure rates (IFR), average 

instantaneous failure rates (AFR), assigned failure rates (𝜆𝑖
∗), 

mean time to failure (MTTF), and reliability (𝑅𝑖(𝑡)), for all 

failure rates for constituent components (Table 2). 

Error data sometimes cannot be modeled by a single failure 

time distribution. This is common in situations where the unit 

fails in different failure modes due to different failure 

mechanisms. In such situations, failure data can be modeled 

using competing risk models or a combination of failure rate 

models. Suppose that a non-repairable-replaceable component 

or unit n has different ways in which it can fail. Such failures are 

called cancellation regimes, and each of the cancellation modes 

is a failure mechanism. 

 

 

Figure 6. Decomposition of total reliability of planetary gear train 𝑅𝑎1,𝑅𝑎2-reliability of pinion of I and II sets, 𝑅𝑔𝐼 , 𝑅𝑔𝐼𝐼-total. 

Reliability of planet gear of I and II sets, 𝑅𝐵𝑔1, 𝑅𝐵𝑔2-total reliability of bearings of I and II sets, 𝑅𝑏1, 𝑅𝑏2-reliability of ring gear I 

and II sets, 𝑅𝑜𝑢𝑡-reliability output shaft 

Table 2. Determined values for instantaneous failure rates (IFR), average instantaneous failure rates (AFR), assigned failure rates 

(𝜆𝑖
∗), mean time to failure (MTTF), and reliability (𝑅𝑖(𝑡)), for all failure rates for constituent components 

 Za1 Zg1 Sum 𝜆   Zg1 Zb1 Za2 Zg2 Sum 𝜆   Zg2 Zb2 

rpm    min-1 1108 443.2  92.33 158.286 79.128  15.82 

𝑛𝛴𝑖 39.9e6 5.32e6  3.32e6 5.69e6 9.5e5  5.69e5 

A IFR𝜆 2.396e-9 8.75e-10 5.64e-14 6.91e-10 1.138e-7 1.9e-8 1.79e-11 1.138e-8 

B AFR𝜆 1.597e-9 5.83e-10 1.67e-14 4.60e-10 5.69e-8 9.5e-9 2.27e-12 5.69e-9 

∑ 𝜆𝑖

𝑚

𝑖=1

 
A  1.282e-7  1.282e-7 1.282e-7 1.282e-7  1.282e-7 1.282e-7 

B  7.415e-8  7.415e-8 7.415e-8 7.415e-8  7.415e-8 7.415e-8 

𝛼𝑖 =
𝜆𝑖

∑ 𝜆𝑖
𝑚
𝑖=1

 
A  1.868e-2  4.399e-7 5.393e-3 0.887  1.397e-4 0.088 

B  2.153e-2  2.260e-7 6.215e-3 0.767  3.073e-5 0.076 

𝜆𝑆𝑝, 
A  1.138e-7  1.138e-7 1.138e-7 1.138e-7  1.138e-7 1.138e-7 

B  5.69e-8  5.69e-8 5.69e-8 5.69e-8  5.69e-8 5.69e-8 

Assigned 

failure rates 

𝜆𝑖
∗ = 𝛼𝑖 ∙ 𝜆𝑆𝑝, 

A 

 
 2.125e-9  5.01e-14 6.13e-10 1.009e-7  1.59e-11 1.001e-8 

B  1.225e-9  1.28e-14 3.53e-10 4.364e-8  1.74e-12 4.324e-9 

∑ 𝜆𝑖
∗

𝑚

𝑖=1

≤ 𝜆𝑆𝑝 
A  1.136e-7  1.136e-7 1.136e-7 1.136e-7  1.136e-7 1.136e-7 

B  4.954e-8  4.954e-8 4.954e-8 4.954e-8  4.954e-8 4.954e-8 

𝑅𝑖(𝑡) = 

𝑒−𝜆𝑖∙𝑡  

A  0.908  0.999 0.997 0.523  0.999 0.993 

B  0.938  0.999 0.998 0.723  0.999 0.996 

𝑅𝑖(𝑡) = 

𝑒−𝜆𝑖
∗∙𝑡 

A  0.918  0.999 0.997 0.563  0.999 0.994 

B  0.952  0.999 0.998 0.780  0.999 0.997 

MTTF  

IFR and AFR 

A 4.173e8 1.142e9 2.093e9 1.447e9 8.787e6 5.263e7 1.024e11 8.787e7 

B 6.261e8 1.7152e9 1.996e13 2.173e9 1.757e7 1.052e8 8.075e11 1.757e8 

MTTF 

(For AFR) 

A 4.705e8  3.144e9 1.631e9 9.910e6  1.152e11 9.99e7 

B 8.163e8  1.432e14 2.832e9 2.291e7  5.747e11 2.312e8 
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There are three prerequisites for this model:   

(i) the failure modes are independent of each other,    

(ii) the unit fails when the first of failure mechanisms reaches 

the failure state, and   

(iii) each mode of cancellation has its own distribution of 

cancellation times. 

The model considers a unit with n failure modes and 

distribution function 𝐹𝑖(𝑡), 𝑖 = 1,2 … , 𝑛 for the time to failure 𝑇𝑖  

due to failure mechanism 𝑖. The failure time of the unit is the 

minimum of   {𝑇1, 𝑇2, … , 𝑇𝑛}, whereas the distribution function 

𝐹(𝑡) is: 

𝐹(𝑡) = 1 − [1 − 𝐹1(𝑡)] ⋅ [1 − 𝐹2(𝑡)] ⋅⋅⋅ [1 − 𝐹𝑛(𝑡)] (12) 

Reliability function is: 

𝑅(𝑡) = ∏ 𝑅𝑖

𝑛

𝑖=1

(𝑡) (13) 

Hazard function (rate) is: 

ℎ(𝑡) = ∑ ℎ𝑖(𝑡)

𝑛

𝑖

 (14) 

 

The competitive risk model should be understood as follows:  

- All the failure mechanisms are in a race to reach failure. 

- They are not allowed to see the progress of the other ones. 

They just go their own way as fast as they can and the first 

to reach "failure" causes the component to fail.         

- Under these conditions the component reliability is the 

product of failure mode reliabilities and the component 

failure rate is just the sum of failure rates. 

Note that this holds for any arbitrary life distribution model, 

if "independence" and "first mechanism failure causes the 

component to fail" holds.  The decomposition of the total 

reliability of the planetary gear (Fig. 6) is based on the procedure 

discussed in [19].  

5. Results and discussion 

During the processing of reliability data in the presence of 

instantaneous, estimated and assigned failure rates, specific 

operating environments and subject to time constraints, it is 

necessary to determine the order of testing the activities of the 

planetary gear as a machine system. The “bottom-up” approach 

proposed in this paper attempts to control changes in the failure 

rate during the operational time of each planetary gear 

component. 

Reliability model has been compiled and developed that 

allows to predict the evolution of the failure process when 

components are exposed to various changes in the number of 

duty cycles (𝑛𝛴𝑖) and loads. Results are shown in Tab 2. 

Bearings as integral components of planetary gears are not 

subject to the same failure modes as gears. Their reliability has 

already been determined on the basis of Weibull's probability 

distribution of damage for the characteristic service life () for 

which 63.2% of bearings will fail. For 𝑁𝐶 = 106  estimated 

Weibull distribution parameters  = 817277 rpm and 𝛽 =

0.7459, i.e. Weibull distribution function is: 𝑃𝑅 = 1 −

𝑒−(
𝑁

8172770
)

0,7459

. 

Values for the reliability of the bearings of the first and 

second planetary set 𝑅𝐵𝑔1 = 𝑅𝐵𝑔2 = 1 were estimated (They 

were not the subject of research in this paper).  

Reliability value 𝑅𝑜𝑢𝑡 = 1 was taken for the output shaft of 

the planetary gearbox, respectively. To verify the obtained 

results in Tab. 2, it was preceded by an experimental test of the 

planetary gear in a closed power circuit, according to the FZG 

method. The planetary gear is declared for certain nominal 

operating conditions, i.e., for a certain nominal torque and for a 

certain nominal speed of rotation. In exploitation, these 

conditions can appear occasionally, and as a rule, most of the 

working life will be easier working conditions, i.e., lower torque 

or lower rotation speed. Heavier operating conditions than the 

nominal ones are also possible, i.e., significantly higher torque 

or speed of rotation that occur occasionally and in shorter time 

intervals. 

Transmission is powered directly by a 1500 min-1 engine. 

This only contributed to shorten the testing time. The torque 

used for the test corresponds approximately to the maximum 

torque that can occur during operation. The next analysis will be 

performed under the assumption that the frequency of rotation 

of the sun gear of the first planetary set is 1108 min-1 and that 

the maximum torque on this gear is equal to that in the test of 

538 Nm. 

Zero thickness of worn layer corresponds to zero probability. 

Since the process of surface destruction of the tooth flanks is 

long-lasting and gradual, the Weibull function is also extended 

over a large interval of the number of stress changes, i.e., the 

number of gear teeth [32]. 

For the stress Ha1 = 1421 N/mm2, the pinion gear of the first 

planetary set, teeth number of teeth duty cycles, n = 39.9x106, 

and thickness of the worn layer of 0.2 mm (corresponds to 

0.06𝑚𝑛), the estimated parameters of the Weibull distribution 

could be  = 2.5𝑒108 and 𝛽 = 1.5, i.e.the Weibull distribution 

function is: 

 𝑃𝑅1 = 1 − 𝑒
−(

𝑁

2,5⋅108)
1,5

, 𝑃𝑅1 = 1 − 𝑒
−(

39.9𝑒6

2,5⋅108)
1,5

=0.0617. 
Reliability is: 𝑅𝑅1 = 1 − 𝑃𝑅1 = 1 − 0.0617 =0.9383. 

For the pinion gear of the second planetary set 𝜎𝐻𝑎2 = 2412 

N/mm2, for the determined of teeth number of teeth duty cycles 

𝑛 = 5.69𝑒6, and the thickness of the worn layer is about 0.6 

mm, i.e., 0.15𝑚𝑛. The estimated parameters of the Weibull 

distribution could be  = 106 and 𝛽 = 2, i.e., the Weibull 

distribution function is: 

 𝑃𝑅2 = 1 − 𝑒
−(

𝑁

106)
2

, 𝑃𝑅2 = 1 − 𝑒
−(

5.69𝑒6

106 )
2

=0.2765. 
Reliability is: 𝑅𝑅2 = 1 − 𝑃𝑅2 = 1 − 0.2765 =0.7235. 

Sun and satellite gears were made with level seven of 

manufacturing accuracy of heat treated steel Č4732 -20CrMo5 

(SRPS EN ISO 683-1:2018). Bevel gears were made of steel 

Č4732 - 42CrMo4 (SRPS EN ISO 683-1:2018). Oil with 

viscosity of 41.4 – 50.6 mm2/s was used for lubrication and 

cooling of the gearbox. Gears with internal toothing were made 

from a single piece with a cylindrical casing, [18]. In this part of 

the paper, several validation tests were performed. 

Figures 7-9 show the results of validation tests for 

instantaneous (IFR) and average failure rates (AFR), for gears 

𝑧𝑎1, 𝑧𝑎2, 𝑧𝑔1, 𝑧𝑔2, 𝑧𝑏1 and 𝑧𝑏2, whereas Figues 10-12 show mean 

times to damage (MTTF) for the same gears. Figures 13-14 show 

I and II sets of the reliability functions, 𝑅(𝑡)𝐼, 𝑅(𝑡)𝐼𝐼 , and the 

reliability function of the planetary gear- 𝑅(𝑡)𝑆. 
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For a system consisting of 𝑛 series-connected components 

(or having 𝑛 independent failure rates, each of which has an 

independent Weibull failure distribution with the form 

parameter 𝛽 and the parameter 
𝑖  - time (cycle), the system 

failure rate function can be determined from [27]:  

 

 
Figure 7. Instantaneous and average failure rates for pinion 

gears 𝑧𝑎1 and 𝑧𝑎2, 𝑛 = 1𝑒6 − 39.9𝑒6 

 
Figure 8. Instantaneous and average failure rates for planet 

gears 𝑧𝑔1 and 𝑧𝑔2, 𝑛 = 9.5𝑒5 − 5.32𝑒6 

 

 
Figure 9. Instantaneous and average failure rates 

 

 
Figure 10. MTTF for pinion gears 𝑧𝑎1 and 𝑧𝑎2, 𝑧𝑏1 and 𝑧𝑏2, 

𝑛 = 1𝑒5 − 3.32𝑒6 𝑛 = 5.69𝑒5 − 39.9𝑒6 

 
Figure 11. MTTF for planet gears 𝑧𝑔1 and 𝑧𝑔2 𝑛 = 9.5𝑒5 −

5.32𝑒6 

 
Figure 12. MTTF for ring gears 𝑧𝑏1 and 𝑧𝑏2, 𝑛 = 5.69𝑒6 −

3.32𝑒6 

 

𝜆(𝑡) = ∑
𝛽

𝜂𝑖

𝑛

𝑖=1

⋅ (
𝑡

𝜂𝑖
)

𝛽−1

= 𝛽 ⋅ 𝑡𝛽−1 ⋅ [∑ (
1

𝜂𝑖
)

𝛽𝑛

𝑖=1

] 𝜆(𝑡) = 

= ∑
𝛽

𝜂𝑖

𝑛

𝑖=1

⋅ (
𝑡

𝜂𝑖
)

𝛽−1

= 𝛽 ⋅ 𝑡𝛽−1 ⋅ [∑ (
1

𝜂𝑖
)

𝛽𝑛

𝑖=1

] 

(15) 
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Figure 13. Reliability system for the 𝑛 = 3.32𝑒6 − 39.9𝑒6 

 

Figure 14. Reliability system for the 𝑛 = 5.69𝑒6 − 39.9𝑒6 

 

Figure 6 (II) shows the ordinal connection of the 

components. The system consists of 𝑛 = 9 components, bearing 

reliability of the first and second planetary sets 𝑅𝐵𝑔1 = 𝑅𝐵𝑔2 =

1 and for the output shaft 𝑅𝑜𝑢𝑡 = 1. For the reliability 

components 𝑅𝑎1, 𝑅𝑔𝐼 and 𝑅𝑏1, the distribution of damage 

probabilities is given by the Weibull cumulative function 𝑃𝑅1 =

1 − 𝑒
−(

𝑁

2,5⋅108)
1,5

. For reliability components 𝑅𝑎2, 𝑅𝑔𝐼𝐼 and 𝑅𝑏2 

function is: 𝑃𝑅2 = 1 − 𝑒
−(

𝑁

106)
2

. 

The total failure rate of the Weibull distribution is valid only 

when each component has the same 𝛽 form parameter and if all 

failure rates are Weibull but with a different 𝛽 form parameter, 

then the system failure rate distribution will not be Weibull. This 

rule is characteristic for the distribution of the failure rate of the 

flanks of the teeth of the considered planetary gear. This 

demonstrates the convenience of a “bottom-up” approach for 

determining the reliability of planetary gears. And it leads us to 

the need to determine the MTTF and define the reliability 

function only on the basis of the number of stress changes- 𝑛, 

for the components 𝑅𝑎1, 𝑅𝑔𝐼 , 𝑅𝑏1, 𝑅𝑎2, 𝑅𝑔𝐼𝐼  and 𝑅𝑏2. The 

planetary gear of the first set has Weibull distribution of the 

failure rate with the shape parameter 𝛽 = 1.5 and the second 

with 𝛽 = 2. Characteristic "life"- 
𝑖
 (number of stress-cycle 

changes, number of teeth coupling changes), for the first and 

second planetary set, using the data from Tab. 2 are:                                               


𝐼

= [(
1

𝑛𝑎1

)
𝛽𝐼

+ (
1

𝑛𝑔𝐼

)
𝛽𝐼

+ (
1

𝑛𝑏1

)
𝛽𝐼

]

−1

𝛽𝐼

= [(
1

39.9𝑒6)
1.5

+

(
1

5.32e6)
1.5

+ (
1

3.32e6)
1.5

]

−1

1.5

=2.514e6 cycles, 
𝐼𝐼

= [(
1

𝑛𝑎2

)
𝛽𝐼𝐼

+

(
1

𝑛𝑔𝐼𝐼

)
𝛽𝐼𝐼

+ (
1

𝑛𝑏2

)
𝛽𝐼𝐼

]

−1

𝛽𝐼𝐼

= [(
1

5.69e6)
2

+ (
1

9.5e5)
2

+

(
1

5.69e5)
2

]

−1

2
=4.863e5 cycles. 

The mean time to failure-MTTF for the first and second sets 

are: 𝑀𝑇𝑇𝐹𝐼 = 
𝐼

∙ Γ (1 +
1

𝛽𝐼
) = 2.514𝑒6 ∙ Γ (1 +

1

1.5
) =

2.514𝑒6 ∙ 0.90167 = 2.266e6 cycles, 𝑀𝑇𝑇𝐹𝐼𝐼 = 
𝐼𝐼

∙ Γ (1 +

1

𝛽𝐼𝐼
) = 4.863𝑒5 ∙ Γ (1 +

1

2
) = 4.863𝑒5 ∙ 0.88623 =4.309e5 

cycles. For the gamma function at positive integer argument, see 

[6]. 

Therefore, medians are: 𝑡𝑚𝑒𝑑𝐼 = 
𝐼

∙ (0.69315)
1

𝛽𝐼 =

2.514𝑒6 ∙ (0.69315)
1

1.5 =1.969e6 cycles, 𝑡𝑚𝑒𝑑𝐼𝐼 = 
𝐼𝐼

∙

(0.69315)
1

𝛽𝐼𝐼 = (4.863𝑒5) ∙ (0.69315)
1

2 =4.048e5 cycles. 

To illustrate the application of a competitive risk model, we 

consider a product that has two different failure modes and for 

each Weibull distribution applies [27]. Product reliability is              

𝑅(𝑡) = 𝑅1(𝑡) ∙ 𝑅2(𝑡) = 𝑒
−(

𝑡

1
)

𝛽1

∙ 𝑒
−(

𝑡

2
)

𝛽2

 where 
𝑖  and 𝛽𝑖 are 

the scale and shape parameters, respectively, of failure mode i. 

The distribution density function is (Fig. 15):  

𝑓(𝑡) = 𝑅1(𝑡)𝑓2(𝑡) + 𝑅2(𝑡)𝑓1(𝑡) = 𝑅(𝑡) [
𝛽1

1

∙ (
𝑡

1

)
𝛽1−1

+
𝛽2

2

∙

(
𝑡

2

)
𝛽2−1

].  

and the function of the failure rate is (Fig.16):  

ℎ(𝑡) = ℎ1(𝑡) + ℎ2(𝑡) = 𝛽1 ∙ 
1

−𝛽1 ∙ 𝑡𝛽1−1 + 𝛽2 ∙ 
2

−𝛽2 ∙

𝑡𝛽2−1. 

The characteristics of the resulting f(t) and h(t) depend on the 

parameter values 
1

,
2
, 𝛽1and 𝛽2. 

 
Figure 15. Distribution density function 𝑓(𝑡) 
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Figure 16. Failure rate functions 

Hazard rate ℎ(𝑡) shows different characteristics: decreasing, 

constant and increasing depending on the value and the 

relationship between these parameters. Reliability function (Fig. 

17), for I, II set and planetary gear train, as a mechanical system 

based on the competing risk model, is: 

𝑅(𝑡)𝐼 = 𝑒𝑥𝑝 [− (
𝑡1

𝐼

)
𝛽𝐼

] = 𝑒𝑥𝑝 [− (
𝑡1

2.514e6)
1.5

],  

𝑅(𝑡)𝐼𝐼 = 𝑒𝑥𝑝 [− (
𝑡2

𝐼𝐼

)
𝛽𝐼𝐼

] = 𝑒𝑥𝑝 [− (
𝑡2

4.863e5)
2

], 

𝑅(𝑡)𝑆 = 𝑒𝑥𝑝 [− (
𝑡1

2.514e6
)

1.5

] ∗ 𝑒𝑥𝑝 [− (
𝑡2

4.863e5
)

2

] 

The reliability function of the planetary gear train is 

presented as a function of for the determined of teeth number 

duty cycles of gears I and II of the set. The reliability of the 

competitive risk model is shown in Fig.17. It is obvious that  

a competitive risk model results in more accurate reliability 

estimates than modeling each failure regime separately. 

Figure 17. Reliability of the competing risk model 

6. Conclusions 

The applied "bottom-up" approach in this research it was 

shown that it is possible rationally and quickly with the use of a 

small set of data to arrive at the reliability of the constituent 

components and the reliability of complete planetary gear 

transmissions. 

- For the realization of the set goal, by applying the Weibull 

function for the distribution of damage to the flanks of the 

gear teeth, specific values were determined for the 

components of the toothed planetary transmission, which 

was the subject of research. 

- For a more precise assessment of reliability and to avoid 

modeling every failure and its mode of occurrence,  

a competitive risk model was developed. 

- For established values for instantaneous failure rates (IFR), 

average instantaneous failure rates (AFR), assigned failure 

rates (𝜆𝑖
∗), established are mean time to failure (MTTF) and 

the reliability for the all components and planetary gear in 

the whole. The obtained results were numerically and 

graphically interpreted. 

- The characteristic "lifetime"- i (number of stress cycle 

changes, number of tooth coupling changes) was determined 

for the first and second planetary set. 

- The results obtained in this paper provide an attempt to 

contribute to the wider academic community, that they can 

be applied and/or verified, for use in determining the 

reliability of planetary transmissions in development, as new 

construction solutions or in exploitation. 

Guidelines for further research, consisting of further attempts to 

upgrade or supplement the work with new data, in order to 

confirm and/or verify the data obtained in this work. 
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