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For industrial and military applications, a sequence of missions would be performed with 
a limited break between two adjacent missions. To improve the system reliability, selective 
maintenance may be performed on components during the break. Most studies on selective 
maintenance generally use minimal repair and replacement as maintenance actions while 
break duration is assumed to be deterministic. However, in practical engineering, many 
maintenance actions are imperfect maintenance, and the break duration is stochastic due to 
environmental and other factors. Therefore, a selective maintenance optimization model is 
proposed with imperfect maintenance for stochastic break duration. The model is aimed to 
maximize the reliability of system successfully completing the next mission. The reinforce-
ment learning(RL) method is applied to optimally select maintenance actions for selected 
components. The proposed model and the advantages of the RL are verified by three case 
studies verify.
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1. Introduction
Maintenance can restore aging systems to better condition and extend 
the system’s life and is a crucial factor affecting industrial, military, 
and aerospace development. In many industrial and military applica-
tions, systems usually perform a sequence of missions with a finite 
break between two adjacent missions. Maintenance of the equipment 
is essential [39]. Maintenance actions can be performed during the 
break to guarantee the reliability of system successfully completing 
the next mission during subsequent production or missions. However, 
due to limited maintenance resources (time, manpower, spare parts, 
etc.), it may be impossible to perform maintenance on all components. 
Therefore, only some of the system components can be maintained 
during the limited break so that the reliability of the system meets the 
requirements or is maximized to complete subsequent production or 
missions successfully. In this case, managers need to decide which 
components to maintain based on the actual situation, rather than al-
ways following a fixed schedule for all components [4]. This mainte-
nance strategy is known as selective maintenance.

Selective maintenance is vital in balancing limited maintenance re-
sources with system performance. Rice et al [37] first introduced the 

selective maintenance problem by considering only one maintenance 
action to replace the failed components, assuming that all components 
are identical and that the lifetime follows an exponential distribution. 
Since 1998, many researchers have studied selective maintenance. 
Cassady et al [7] extended the model in Rice et al [37], assuming 
that the component life obeys Weibull distribution and considers three 
maintenance actions: minimal repair, preventive replacement and cor-
rective replacement, and takes the total maintenance time as the con-
straint to maximize the reliability of the system successfully complet-
ing the next mission. Rajagopalan et al [36], an improved enumeration 
method was used to solve the selective maintenance problem with the 
constraints of total maintenance time and cost and the objective func-
tion of maximizing the next mission reliability of the system, which 
improves computational efficiency. Xu et al [44] further improved the 
enumeration method based on Rajagopalan et al [36], significantly 
reducing the number of candidate solutions and improving computa-
tional efficiency. When the scale of the system is large, the number of 
different components of the system and the number of maintenance 
actions increase. The enumeration method does not apply to selective 
maintenance problems with large and complex solution spaces when 
the number of feasible solutions grows exponentially. Lust et al [27] 
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studied a multi-component system with a series-parallel general struc-
ture and proposed a selective maintenance optimization method based 
on a heuristic algorithm, which has a better solution efficiency and 
promotes the optimization of the selective maintenance model. For 
the time being, only three maintenance actions were considered in the 
above study, and imperfect maintenance was not considered. Howev-
er, in reality, imperfect maintenance is more realistic in engineering. 
Therefore, some researchers gradually considered imperfect mainte-
nance [11, 19, 33]. Pandey et al [33], it was proposed that introduc-
ing imperfect maintenance can describe the decision problem more 
accurately and was more in line with practical applications. Among 
other works, Diallo et al [11] was first to propose a selective mainte-
nance model for large k-out-of-n systems and an improved two-stage 
approach to improve computational efficiency, and Khatab et al [19] 
considered the stochastic of maintenance action quality.

Various uncertainties are inevitable in maintenance decisions of 
engineering systems, and ignoring these potential uncertainties may 
lead to inefficient optimization decisions, and the system may face the 
risk of not completing the mission [49]. Current studies on selective 
maintenance problems assume mainly deterministic values for break 
duration. In practice, unexpected events may lead to early termination 
or continuation of the mission, resulting in an increase or decrease in 
the break duration. For example, delays in flight departures or ship 
departures due to weather can lead to increased break duration. In the 
military, the time of the next mission start cannot be accurately deter-
mined, so the break between two adjacent missions is also uncertain. 
In similar situations, the break duration should be a random variable 
that obeys an appropriate distribution. Other literature [17, 18, 20, 
25] considered the stochastic break duration with the decision goal of 
reducing maintenance resources. Zhao et al [48] considered stochastic 
mission time and multiple maintenance workers with different capaci-
ties. However, in many engineering practices, when maintenance re-
sources cost, time, and manpower are limited, selective maintenance 
problems are often aimed at maximizing the reliability of system suc-
cessfully completing the next mission rather than minimizing mainte-
nance resources [6].

In recent years, selective maintenance optimization problems have 
been intensively studied. With the increasing complexity of selective 
maintenance optimization models, some advanced intelligent optimi-
zation algorithms, such as particle swarm algorithm [28], artificial 
bee colony [10], ant colony algorithm [25, 40], and genetic algorithm 
[5, 13, 43] have been widely adopted. As the scale of the system be-
comes larger, the factors considered become more comprehensive. 
Therefore the solution of large-scale selective maintenance decision-
making problems poses new challenges, and the efficiency of opti-
mization algorithms and global optimization capabilities need to be 
further improved [8]. Reinforcement learning belongs to machine 
learning methods, which have attracted more and more attention from 
researchers in solving decision problems [22]. Some reinforcement 
learning algorithms can be explored to obtain immediate payoffs and 
then select appropriate strategies to obtain the optimal solution of the 
model [14]. In recent years RL is effective in decision performance 
and computational efficiency. Other heuristic solution methods con-
tinuously iterate the algorithm randomly on the feasible solution space 
until the best solution is obtained or the number of iterations reaches 
the maximum. It may lead to problems such as complex model solv-
ing and limited computational efficiency [39]. In contrast, in RL, the 
agent continuously learns from each iteration and, in return, improves 
the result of the next iteration based on the previous one, and the op-
timal solution converges faster, thus improving the computational ef-
ficiency [31]. Although RL methods have been successfully applied to 
different problems and have significant advantages, they have not yet 
attracted sufficient attention in selective maintenance optimization.

In summary, this paper proposes a new selective maintenance 
model that considers the stochastic break duration. To maximize the 
reliability of the system successfully completing the next mission, 
each component has multiple optional maintenance actions, including 

minimal repair, imperfect maintenance, and replacement. The selec-
tive maintenance decision problem is modeled as a Markov decision 
process (MDP), and a RL approach is proposed to solve the model.

The rest of this paper is presented as follows. Section 2 is the re-
lated work about RL in other maintenance areas. Section 3 is the prob-
lem description and basic assumptions and describes the evaluation 
of imperfect maintenance and system reliability based on the Kijima 
type Ⅱ model. Section 4 presents the selective maintenance model 
and the solution method of this paper. Three case studies are given in 
Section 5 to verify the accuracy of the model and the validity of the 
method. Finally, a summary and an outlook for future works are given 
in Section 6.

2. Related work
The main objective of selective maintenance optimization is to maxi-
mize the reliability of the system successfully completing the next 
mission. As the number of components and optional maintenance ac-
tions increases, traditional solution methods may have the problems 
of difficult model solving and limited solving efficiency. In recent 
years RL has become an effective method for solving complex deci-
sion problems. RL has been applied to solve various decision prob-
lems such as scheduling, manufacturing and maintenance. In this sec-
tion, we briefly review the work of RL in other maintenance areas and 
selective maintenance.

Nooshin et al [47] proposed a dynamic condition-based mainte-
nance (CBM) model that considers components subject to degrada-
tion and random shocks. Instead of discretizing the degradation state, 
the exact degradation level was considered as the state of the system, 
and finally deep reinforcement learning (DRL) was used to derive the 
optimal maintenance action for each degradation level. Mahmoodza-
deh et al [29] studied CBM of dry gas pipeline and proposed a test 
bench to simulate pipeline corrosion while interacting with the RL 
to adjust the maintenance action and minimize maintenance costs. 
Peng et al [35] considered that RL can be effective in solving MDP 
problems with large state spaces, and models the CBM problem as a 
discrete-time continuous-state MDP rather than a discrete system with 
deterioration conditions. An RL algorithm was proposed to minimize 
the long-run average cost, and a Gaussian process regression func-
tion was used to model the state transfer and the value functions of 
the states in RL. Stephane et al [2] used MDP to model preventive 
maintenance for equipment consisting of multi-non-identical compo-
nents with different probability distributions of failure times, which 
has the advantage of not requiring to estimate the main parameters of 
the model. Finally, the optimal strategy was solved using Monte Carlo 
reinforcement learning, which was not restricted by mathematical for-
mulas. Huang et al [15] formulated the preventive maintenance(PM) 
decision for serial production lines as an MDP framework, considered 
the system production loss, and used DRL to solve the optimization 
model.

In addition to the above maintenance optimization, there are also 
some applications of RL for decision optimization problems. Andri-
otis et al [1] considered that in engineering systems management de-
cisions can be made with MDPs or partially observable MDPs. For 
large multi-component systems, the number of system states and 
actions grows exponentially with the number of components, and it 
is difficult to characterize the environmental dynamics of the whole 
system, which can only be obtained by expensive numerical simula-
tors. Therefore, a DRL algorithm was proposed to obtain an effective 
life cycle strategy. Ruan et al [38] studied the aircraft maintenance 
routing problem, where the objective was to generate maintenance 
feasible optimal routes for each aircraft under the constraints of maxi-
mum flight time, limitation on the number of takeoffs between two 
consecutive maintenance checks, and labor capacity maintenance. 
An RL approach was developed to solve the problem, by compar-
ing with common optimization software, RL can solve the problem 
quickly and efficiently. Panagiotis et al [34] studied the maintenance 
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problem of a stochastic production/inventory system producing a sin-
gle type of product, maximizing the total profit of the system when 
maintenance and repair duration as random variables. The commonly 
used dynamic programming methods were not suitable for solving the 
problem discussed in this paper, so a RL approach was proposed. Hu 
et al [16] proposed an RL framework with extreme learning machine 
optimization algorithm for aircraft life cycle maintenance, consider-
ing engine lifetime, performance degradation and random failures. It 
was found that the RL-driven maintenance strategy have a advantage 
compare to the CM, schedule Maintenance and prognostics and health 
driven strategies.

According to the above reviews, RL is effective in decision per-
formance and computational efficiency. To the best of our knowledge, 
the proposed approach is novel in dealing with the single-mission se-
lective maintenance problem.

3. Problem statements

3.1.	 Selective maintenance problem description for multi-
component systems

In many military and industrial environments, systems are scheduled 
to perform multiple sequential missions with a finite break between 
two adjacent missions. Maintenance actions can be performed during 
the break to restore the aging system to a better condition 
for subsequent missions. However, due to the constraints 
of maintenance resources such as time and manpower, 
it may not be possible to perform maintenance on all 
components and select only some for maintenance de-
pending on the situation. The basic process of selective 
maintenance decisions with stochastic break duration is 
shown in Fig. 1. As shown in Fig. 1, scenario 2 has a 
longer break compared to scenario 1, and only mainte-
nance action 3 is not completed. And in scenario 1, both maintenance 
actions 2 and 3 are not completed.

Fig. 1.	 Schematic diagram of selective maintenance decisions with stochastic 
break duration

To describe the selective maintenance problem, the basic assump-
tions are as follows:

Assume a series-parallel system, and the system consists of  (1)	
i (i = 1, 2, ... , m) independent subsystems in series, and 
each subsystem i consists of j (j = 1, 2, ... , n) independent 
components Cij in parallel, i and j denote the location of the 
components in the system. It is assumed that the components 
have only one failure mode, and the component’s states are 
either failure or functioning. Here the variables Xbreak,s(k) and 
Xbreak,e(k) are used to denote the state of component Cij at the 
beginning of kth break and the end of kth break, respectively, 
i.e., the state of component Cij at the beginning of kth break 
can be expressed as:

	 break,s
1, if functioning at the beginning of th break

( )
0,otherwise

ijC k
X k

= 


  (1)

The state of the component Cij at the end of the kth break can be 
expressed as:

	 break,e
1, if functioning at the end of th break

( )
0,otherwise

ijC k
X k

= 


      (2)

Assume that during the break, the set of optional maintenance (1) 
actions for the component is {do nothing(DN), minimal repair(MR), 
imperfect maintenance(IM), preventive replacement(PR), corrective 
replacement(CR)}, and the corresponding codes of maintenance ac-
tions are shown in Table 1. No maintenance means doing nothing, 
and no maintenance resources are consumed. The minimal repair can 
only be performed on failed components, consumes fewer resources, 
and can restore the failed components to functioning, but it does not 
change the reliability. The imperfect maintenance effect is between 
minimal repair and replacement. Preventive replacement can only be 
performed on functioning components, and corrective replacement 
can only be performed on failed components. When Xbreak,s(k)=0, the 
Cij optional maintenance actions are minimal repair, imperfect main-
tenance, and corrective replacement. When Xbreak,s(k)=1, the Cij op-

tional maintenance actions are imperfect maintenance and preventive 
replacement. Fig. 2 shows the correspondence between maintenance 
action and component state.

Fig. 2.	 Component state changes under different maintenance actions of com-
ponents

It is assumed that all maintenance actions can only be per-(2)	
formed during the break. If the current maintenance action is 
not completed by the beginning of next mission, then it is as-
sumed that the maintenance action has no repair effect on the 
component.
Assume that only two types of maintenance resource con-(3)	
straints, maintenance time and manpower are considered in 
this paper.
Assume that failure time of the component(4)	  Cij in the system 
obeys a two-parameter Weibull distribution.

3.2.	 Stochastic break duration
The break duration is stochastic because unexpected events may lead 
to early termination or continuation of production or mission such that 
the break duration decreases or increases randomly. In this study, the 
break duration Zk is a random variable that obeys f (Zk). Therefore, 
the number of maintenance actions that can be completed during the 

Table 1.	 Codes of different maintenance action l

Maintenance 
Action

Do 
Nothing

Minimal 
Repair

Imperfect 
Maintenance

Preventive 
Replacement

Corrective 
Replacement

Corresponding 
code l 0 1 2,…, Lij −2 Lij −1 Lij
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break is also uncertain. A binary decision variable Wij(l) is used to 
indicate whether the component Cij is maintained during the break, 
which is defined as follows:

	 ij
1, if the maintenance action  for component C

W ( )=
0,otherwise

ijl
l





    (3)

The maintenance time consumed during the break can be expressed 
as:

	
1 1 0

( ) ( )
m n L

ij ij
i j l

T t l w l
= = =

= ∑∑ ∑ 	 (4)

where tij(l) is the maintenance time of completing maintenance ac-
tion l.

The break duration Zk as a random variable obeying f(Zk), it is 
required that the probability of completing the maintenance action 
during the break should be greater than or equal to a predetermined 
critical value τ , the range of τ values is (0,1], which is expressed as 
follows:

	 ( )Pr kT Z τ≤ ≥ 	 (5)

3.3.	 Evaluating the reliability of system successfully com-
pleting the next mission

There are many imperfect maintenance models about imperfect main-
tenance action [3, 23, 32, 30, 41, 42]. In this paper, we use the Ki-
jima type Ⅱ model to represent the maintenance effect of maintenance 
action by age reduction. The effective age of the component can be 
expressed as:

	

( 1) ( ) ( )ij ij ijA k b l B k+ = 	 (6)

where Aij(k+1) is the effective age of component Cij after taking main-
tenance action l during the kth break. Bij(k) is the effective age of 
component Cij at the beginning of the kth break. bij(l) (0 ≤ bij(l) ≤ 1) 
is the age reduction factor, which is influenced by the number of 
maintenance resources invested, the more maintenance time required 
for the executed maintenance actions, the smaller bij(l) is, the better 
the maintenance effect.

Fig. 3 shows the relationship between the maintenance time of the 
component and effective age after the component is maintained dur-
ing the break. The age reduction factor bij(l) can be expressed as:

	
1

( )
( ) 1

( )

lij
ij

ij

t l
b l

t L

ζ 
= −   

 
	 (7)

where tij(l) is the maintenance time for component Cij to complete 
maintenance action l within the break. When the state of component 
Cij is 1, tij(L) is the time consumed for the preventive replacement of 
component Cij. When the state of component Cij is 0, tij(L) is the time 
consumed for corrective replacement of component Cij. ζl is a char-
acteristic constant reflecting the relationship between maintenance 
time and age reduction factor function. When the maintenance ac-
tion consumes the same time, the larger the ζl , the more obvious the 
maintenance effect.

According to the above effective age model, the conditional sur-
vival probability of a component after maintenance can be expressed 
as [21]:

	 r x Y A x Y A
P Y x A

P Y Aij ij ij
ij

ij
( ) Pr= − − ≤ >{ } =

> +{ }
>{ }

1 |
r

r
	 (8)

where the random variable Y represents the failure time. If the compo-
nent is functional at the beginning of the kth mission and has an effec-
tive age of Aij, then rij(x) represents the probability that the component 
does not fail at any moment x. Since the failure time of component Cij 
obeys the Weibull distribution, it is functioning at the beginning of the 
kth mission and has an effective age of Aij(k). The conditional survival 
probability of component Cij at the end of kth mission is:

	
( ) ( ) ( )

( ) exp

ij ij

ij ij
ij

ij ij

U k A k A k
r k

β β

η η

 
   + 

= − +           
 

	 (9)

where U(k) is the duration of the kth mission. ηij is the scale parameter 
in the Weibull distribution of component Cij. βij is the shape parameter 
in the Weibull distribution of component Cij. The reliability Rij(k) of 
component Cij in the kth mission depends on the conditional survival 
probability rij(k) and the component state Xbreak,e(k−1) at the end of 
the kth break. The expression for the reliability Rij(k) of component 
Cij as:

	 R k r k X kij ij( ) ( ) ( )= −break,e 1 	 (10)

The study in this paper is a complex series-parallel system, i.e. the 
system consists of subsystems in series and subsystems comprised of 
components in parallel. The reliability Ri(k) of subsystem i in kth mis-
sion can be expressed as:

	 ( )
1

( ) 1 1 ( )
n

i ij
j

R k R k
=

= − −∏ 	 (11)

The reliability Rsys(k) of the system in kth mission as:

	
1 1 1

( ) ( ) 1 (1 ( ))
m m n

sys i ij
i i j

R k R k R k
= = =

 
 = = − −
 
 

∏ ∏ ∏ 	 (12)

where m is the number of subsystems in the system and n is the 
number of components in the subsystem.

Fig. 3.	 Relationship between component working time and effective age in the 
Kijima Ⅱ model
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4. Selective maintenance model and optimization 
based on the stochastic break duration

4.1.	 Selective maintenance optimization model 
For a system performing sequential missions, using limited main-

tenance resources in a finite break to maximize the reliability of the 
system to complete the next mission is the key to maintenance de-
cisions. Assume that the states Xbreak,s(k) and effective age Bij(k) of 
each component in the system are known at the beginning of the kth 
break. Given the optional maintenance actions of each component, 
the selective maintenance problem can be described as follows: with 
limited maintenance time and manpower, select the components to 
be maintained and their corresponding maintenance action so that the 
reliability of the system to complete the next mission is maximized. 
When the break duration Zk is a random variable and the probability 
distribution function is known, the selective maintenance decision 
model can be expressed as:

	 max
, , ,

R R ksys
w w w A

ij
j

n

i

m

n1 2

1 1 1
11

[ ]∈ ==
= − − +( )( )











∏∏ 	 (13)

Subject to:

	
1 1 0

( ) ( )
m n L

ij ij k
i j l

p T t l W l Z τ
= = =

 
 = ≤ ≥
 
 

∑∑ ∑ 	 (14)

	
1 1 0

( ) 1
m n L

ij
i j l

W l
= = =

≤∑∑ ∑ 	 (15)

	 X k W lbreak e ij
l

L

j

n

i

m
, ( ) ( ) ≤

===
∑∑∑ 1

011
	 (16)

	 W l Y kij break s( ) ( ),≤ −1 	 (17)

	 X k Y k Y k W lbreak e break s break s ij, , ,( ) ( ) ( ( )) ( )= + − ⋅1 	 (18)

	 A k b l W l W l B kij ij ij ij ij( ) [ ( ) ( ) ( ( ))] ( )+ = ⋅ + − ⋅1 1 	 (19)

	 W l X k Y k b lij break e break s ij( ), ( ), ( ) { , }; ( ) [ , ], , ∈ ∈0 1 0 1 	 (20)

In the above selective maintenance decision model, Eq. (13) is the 
decision objective to maximize the reliability of system successfully 
completing the next mission. Eq. (14) is the chance constraint, when 
the break duration is a random variable, the probability of complet-
ing the selected maintenance action is required to be greater than or 
equal to τ , the range of τ  values is [0,1]. Eq. (15) illustrates that in 
each break, each maintenance action is selected at most once and can 
only be performed on one component. Eq. (16) shows that in each 
break, a component that is selected for maintenance can perform at 
most one maintenance action. Eq. (17) shows that minimal repair can 
only be performed on the failed component. Eq. (18) is used to update 
the state of the component Cij, for example, when the component Cij 
state Xbreak,s(k)=0 at the beginning of the kth break, after maintenance 
i.e. Wij(l)=1, the component Cij state Xbreak,e(k)=1. Eq. (19) is used 
to update the effective age of the component Cij, for example, when 
the component Cij after maintenance i.e. Wij(l)=1, then Aij(k+1)=bij(l)-
Bij(k). When the component Cij does not maintenance Wij(l)=0, then 
Aij(k+1)=Bij(k).

4.2.	 The reinforcement learning solution method for selec-
tive maintenance optimization

Fig. 4.	 Reinforcement learning framework for selective maintenance optimi-
zation

In this study, a reinforcement learning(RL) based framework is 
used to describe the selective maintenance decision process using 
MDP and solved using the Q-learning algorithm. According to this 
framework, the decision agent interacts with the system and selects a 
maintenance action at a specific time (decision period) to maximize 
the decision goal. The described framework is shown in Fig. 4. In 
MDP, the main factors that determine the decision process include the 
transfer law of states in the system and the maintenance action scheme. 
The interaction of these two factors leads to a particular reward for the 
decision-maker, usually represented by an objective function. MDP is 
an extension of the Markov chain, and its state space, action space, 
and reward are described as follows:

State space S: It defines a finite two-dimensional state space, each 
state represents the state of the system at a decision moment and 
the total maintenance time. The state space can be expressed as  
S={Xij; T}, where Xij consist of the states of all the components in the 
system, the component state is binary variables, and T is the total main-
tenance time. If the system consists of 5 components, the state space 
at a decision moment can be expressed as S= {01,1,11,2,02,1,02,2,12,3; 
0.5}, where 01,1 represents component C1,1 in failed , 11,2 represents 
component C1,2 in functioning, and 0.5 represents the total mainte-
nance time. The RL agent moves from the initial state to the termi-
nated state and assigns an ordinal number to each state.

Action space A: The action space consists of optional maintenance ac-
tions for all components, which can be expressed as A={lij}, l={DNij, 
MRij, IM1ij,..., IMnij, PRij, CRij}. Given the current state, the agent 
can select an action from the action space. By judging whether the 
selected action meets the constraint, the punishment or reward is ob-
tained in turn. It indicates which actions the agent can choose for each 
observed state. Given the current state of the system, if the agent is not 
terminated state, any action in action space can be selected.

Reward R: Rewards reflect the aptness of the RL agent for the cur-
rent maintenance action, so here the reward function is defined as the 
objective function. The objective function of this paper is to maximize 
the reliability of the system successfully completing the next mission. 
In this paper, a negative reward is used when the maintenance action 
selected by the agent does not meet the constraints. When the main-
tenance action selected by the agent satisfies the constraints and is 
not the terminated state, 0 is used as a reward. When the maintenance 
action selected by the agent satisfies the constraints and is the termi-
nated state, the Eq. (13) is used as a reward.

RL is a simulation-based dynamic programming algorithm mainly 
used to solve Markov decision problems and is an intelligent agent 
learning optimal control strategy. Compared with traditional dynamic 
programming, the RL approach does not require a state transfer prob-
ability matrix and avoids dynamic programming modeling dimen-
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sional disaster [46]. The state space size of this problem is 2N, and the 
action space size is LN, where N is the total number of components in 
the system. The Q-learning algorithm is one of the more commonly 
used RL algorithms. The optimal policy is derived by constructing a 
table of state-maintenance action Q. The Q-learning algorithms have 
been shown to eventually reach a convergence condition for each state 
through continuous learning in a stochastic environment [45]. In this 
study, the selective maintenance decision optimization problem is 
modeled as an MDP. The Q-learning algorithm in RL is used to solve 
it to obtain the optimal maintenance policy, as follows:

Step1: Initialize Q(s,a)=0, Q value table is a list of rows, the value of 
the nth row mth column represents the value of the action of m main-
tenance action in the state of Sn, set the maximum number of cycles 
max_episode.

Step2: Initialize the state S at the beginning of each cycle, the state of 
each component after the end of the kth mission and the current total 
maintenance time T=0.

Step3: Select the maintenance action wn according to the ε-greedy 
policy and get the reward r. Update the Q-value table using the above 
reward according to Eq. (21) .

Step4: Update the state S. Use Eq. (14) to determine whether the state 
reaches the termination state. If not, repeat the above steps from step 2.

Step5: When the number of cycles equals max_episode, stop the cycle 
to get the final Q-value table.

	 ( )( , ) ( , ) max ( ', ') ( , )Q s a Q s a r Q s a Q s aα γ← + + − 	 (21)

where α (0 < α < 1) is the learning rate and γ (0 < γ < 1) is the discount 
factor. The flow chart of the algorithm is shown in Fig. 5.

In RL, exploration and exploitation are the two core problems. 
The decaying ε-greedy policy is used here for the agent to learn a 

better policy. The ε-greedy policy is to select the current optimal 
action(a’=argmaxQ(s,a)) with probability 1 - ε , and randomly select 
the action among all available actions with probability ε. The conven-
tional ε-greedy strategy constantly explores the action space with the 
same probability of ε. When ε is small, the exploration is not thorough 
enough and may obtain the optimal local strategy. When ε is large, the 
agent may have long explored the optimal strategy but will continue 
to explore it, resulting in slow convergence. Therefore, the decaying 
ε-greedy strategy is used here, respectively, the agent starts exploring 
with a larger ε and gradually decreases ε as the number of iterations 
increases, and the iteration formula is:

	 _min_ (max_ min_ ) d eps Eeps eps eps eε ⋅= + − ⋅ 	 (22)

5. Case study
Three cases are given to test performance of the model and proposed 
method. The first case is a hydraulic system that is more typical of 
a real application, in which the key components are analyzed. The 
superiority of RL and the difference between the stochastic and de-
terministic break duration are analyzed. The second case is a two-
stage 5-component system in which the superiority of RL is verified 
by comparing the results with other literature. Then, the difference 
between the stochastic and deterministic break duration is analyzed 
to illustrate the impact of the stochastic break duration on the system 
reliability. Due to the redundancy of this case system compared to 
the first case, the sensitivity analysis of the component parameters 
is performed here. The third example is a five-stage 14-component 
coal transportation system, where the performance of the algorithm 
is compared and the difference between stochastic and deterministic 
break duration is analyzed. The impact of stochastic on system reli-
ability and the effectiveness of RL for larger scale complex systems 
are further verified.

5.1.	 Case 1: Hydraulic tension systems
A hydraulic tension system is known to consist of 16 components, 
which can be divided into two categories of components. The first cat-
egory is critical components, and the second category is non-critical 
components. In this paper, the key components pump, solenoid valve, 
accumulator and cylinder are analyzed, and these four components are 
connected in series. The parameters of each component are shown in 
Table 2, where the Weibull distribution shape and scale parameters are 
derived from the literature [12]. In Table 2, ζ denotes the characteristic 
constant of the age regression factor. β, η denote the shape and scale 
parameters of the Weibull distribution. B(k) denotes the effective age 
of the component at the beginning of the kth break. X(k) denotes the 
state of each component of the system at the beginning of the kth 
break. The maintenance actions that can be adopted for each compo-
nent and their corresponding maintenance times are shown in Table 3, 
where 0~4 represents the codes of different maintenance actions in 
order, where the fix is the fixed maintenance time.

5.1.1.	Algorithm performance analysis
To further verify the effectiveness of the RL algorithm, a compari-
son with the genetic algorithm(GA) algorithm used in most of the 
literature is conducted. Assuming that the kth mission is just com-
pleted now, the duration Zk of the break obeys a normal distribution 
of N(0.5, 0.04) with a range of [0.35, 0.65], τ =0.8, and the dura-
tion of the k+1th mission U=1500 days, all other component param-
eters are shown in Table 2. Among them, the parameters related to 
the GA algorithm, the number of populations NP=80, the crossover 
rate pc=0.8, the variation rate pm=0.05, and the maximum number of 
iterations iter=1000. The parameters related to Q-learning, the learn-
ing rate α=0.02, the discount rate γ=0.5, and the maximum number of 
iterations iter=10000. Due to the stochastic of the algorithm, 10 sets 
of simulations were performed for each method to find its optimal 

Fig. 5. Q-learning algorithm flowchart
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strategy Abest, the maintenance time for the optimal strategy Tbest, the 
average reliability Rmean, the maximum reliability Rbest, the variance 
Rstd and the average running time S as the comparison results. To 
compare the quality of RL and GA solutions, a parameter %QOS is 
introduced here as a performance metric, %QOS=(Rbest-Rmean)/Rbest. 
The comparison results and performance metric results are shown in 
Table 4.

From Table 4, we can see that the maximum reliabil-
ity Rbest=0.9878 solved by Q-learning and the total mainte-
nance time Tbest=0.446 days. The the maximum reliability 
Rbest=0.9792 solved by GA and the total maintenance time 
Tbest=0.46 days. From the analysis of the results, we can see 
that the optimal strategy solved by Q learning is better than 
GA and the reliability is 0.86% higher. The mean and variance 
of Q-learning results are better than GA in 10 solving results, 
which indicates that the stability of the Q-learning algorithm is 
better than GA. Regarding the computation time, running on a compu-
ter configured with Intel (R) Core (TM) i5 -6200U CPU @ 2.30GHz, 
12G RAM. Although RL has more iterations than GA, the average 
time spent by GA is 8.85s more than that of RL. Regarding the qual-
ity of the obtained solutions, the optimal solution of RL is better than 
GA, and the average solution of RL deviates from the optimal solu-
tion by only 0.09%, while the average solution of GA deviates from 
the optimal solution by 0.41%. Therefore, the RL algorithm can find 
higher quality solutions, which verifies the superiority of RL. In order 
to verify the superiority of this RL, tests on small-scale systems are 
not sufficient. Section 5.2.1 will further verify the superiority of RL 
by making comparisons with other literature, and Section 5.3.1 is a 
comparison of RL with GA in large-scale complex systems.

5.1.2.	Comparison between stochastic and deterministic of break 
duration

The difference between the stochastic and deterministic break dura-
tion is clarified by substituting the strategy derived from the RL-based 
deterministic model into the uncertainty model to obtain the reliabil-

ity R1. Then comparing the analysis 
with the reliability R2 obtained from 
the strategy derived from the RL-based 
uncertainty model, ΔR calculation 
schematic is shown in Fig. 6. When the 
break duration is stochastic, the opti-
mal maintenance policy A1=[4,2,0,4] 
solved by RL is known from section 
5.1.1, and the reliability R2=0.9878, 
and the maintenance time is 0.446 
days. When the break duration Z=0.5 is 
a fixed value with all other parameters 
held constant, the optimal maintenance 

policy A2=[4,3,0,4] solved by RL, the reliability R=0.9903 and main-
tenance time is 0.49 days. In order to compare the difference between 
the stochastic and deterministic break duration, the strategy A2 solved 
for the deterministic case is substituted into the uncertainty model to 
find the reliability R1=0.9795. Therefore, the difference between the 
deterministic strategy and the strategy substituted into the uncertainty 
model is 1.08%. As seen in Table 5 the maintenance policy consider-
ing uncertainty is better and system next mission reliability improve-
ment ΔR=0.83%. Based on the above observations, the reliability of 

the system successfully complete the 
next mission in the deterministic case 
will be overestimated if the uncertainty 
of the break duration is ignored.

5.2.  Case 2:Two-stage 5-component system
The two-stage 5-component system is studied with the structure dia-
gram shown in Fig. 7. The relevant parameters of each component 
are derived from the Chen et al [9], as shown in Table 6. In Table 6, ζ 
denotes the characteristic constant of the age reduction factor. β and 
η denote the shape and scale parameters of the Weibull distribution. 
B(k) denotes the effective age of component at the beginning of the 
kth break. X(k) denotes the state of each system component at the be-
ginning of the kth break. The different maintenance actions of various 
components consume different time, as shown in Table 7, and 0~5 
represent different codes of maintenance actions in order.

	
Fig. 7. Two-stage 5-component system structure diagram

Table 4.	 Comparison results of the two algorithms(time is in days)

Method Abest Tbest Rbest Rmean Rstd S %QOS

Q-learning [4,2,0,4] 0.446 0.9878 0.9869 0.0016 1.15 0.09

GA [3,2,2,2] 0.460 0.9792 0.9752 0.0032 10 0.41

Table 3.	 The maintenance time tij(l) of different maintenance actions l for 
components (time is in days)

ID
Maintenance actions l code

Fix
0 1 2 3 4

1 0 0.0186 0.0371 0.0557 0.0743 0.03

2 0 0.0443 0.0886 0.1330 0.1770 0.03

3 0 0.0471 0.0943 0.1410 0.1890 0.03

4 0 0.0457 0.0914 0.1370 0.1830 0.04

Table 5.	 Difference between stochastic and determined break duration(time is in days)

Case Policy Reliability Maintenance time

Stochastic [4,2,0,4] 0.9878 0.446

Deterministic strategy substitution 
in the uncertainty model [4,3,0,4] 0.9795 0.327

Table 2.	 Component parameters

Characteristic constant of 
age reduction factor

Shape and scale parameters of 
Weibull distribution 

Effective age
of component

Initial state 
of component

ID ζ β η B(k) X(k)

1 2.5 2.36 1850 3500 1

2 2.0 1.853 3657 2400 1

3 3.0 1.46 3304 4500 1

4 3.2 2.023 3501 3500 1

Fig. 6.	 Calculation schematic for system next mission reliability improve-
ment ΔR of the proposed stochastic model compared to the determined 
model
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5.2.1.	Comparison of Q-learning and GA
The studied case is introduced by the Chen et al [9], where the 
break duration Zk is a fixed 1.5 days and the k+1th mission dura-
tion U=5 days, which is solved using the GA. Under the condi-
tion of the same other parameters, the Q-learning algorithm is 
used to solve the problem, which is compared with the results of 
Chen et al [9], where the related Q-learning parameters α=0.02 
and γ=0.5. Using the PYTHON programming solution and ob-
tained the maintenance policy A(s)=[2,5,5,0,2] . The reliability 
R=0.983 compared to the result solved by the Chen et al [9] us-
ing GA is 0.1% larger, and both results are shown in Table 8. 

5.2.2.	 RL Results with stochastic break dura- 
	 tion
Assume that the kth mission is just completed 
now and the duration of the kth break Zk obeys a 
truncated normal distribution of N(1.5, 0.0225) 
with the range of [1.35, 1.65], τ =0.8, and the 
duration of the k+1th mission U=5 days. The 
maintenance policy A(s)=[2,5,2,2,2] solved 
using Q-learning, the reliability R=0.98 after 
maintenance. It can be seen that considering the 
determined break duration leads to an overesti-
mation of the reliability of the system success-
fully complete next mission. The Q-learning pa-
rameters are the same as section 5.2.1, and the 

Q-learning process is shown in Fig. 8. In the first 7000 iterations, the 
agent randomly explores the possible maintenance actions, and the 
Q matrix converges relatively slowly, after which the value of the Q 
matrix gradually converges and eventually reaches the convergence 
state.

5.2.3.	Comparison between stochastic and deterministic of break 
duration

When the break duration is a deterministic value of 1.5 days, the strat-
egy solved by RL is A1=[2, 5, 5, 0, 2]. Bringing this strategy into the 
uncertainty model, i.e., the break duration Zk is a truncated normal 
distribution N(1.5, 0.0225) with the range of [1.35, 1.65], the optimal 
reliability R1=0.969 under the constraint P(T ≤ Z) ≥ τ (τ= 0.8). The 
optimal maintenance policy A2=[2, 5, 2, 2, 2] solved by RL under the 
above uncertainty model has a reliability R2=0.98. Therefore, system 
next mission reliability improvement ΔR=0.011 shows that the main-
tenance policy considering stochastic is better than the deterministic 
one with 1.1% higher reliability.

The impact of stochastic break duration on the maintenance strategy 
is illustrated by comparing the system reliability between stochastic 
and determined break duration. Under the same chance constraint and 
other parameters, the sequential simulations obtain the system success-
fully completing the next mission reliability R2 with different mean 
and standard deviation by varying the break duration obeying distri-
bution in the uncertainty model. Mean M={1, 1.2, 1.4, 1.6, 1.8, 2}, 
standard deviation STD={0.01, 0.05, 0.1, 0.15, 0.2}, 30 combinations 
exist, and 30 sets of simulation experiments were implemented. The 
determined break duration T={1, 1.2, 1.4, 1.6, 1.8, 2}, respectively, 
are derived from the corresponding maintenance policy AT in the de-
terministic model by RL, and the system reliability R1 is derived by 
substituting the maintenance policy AT into the uncertain model with 
M=T. The results of system next mission reliability improvement ΔR 
are shown in Table 9 and Fig. 9 below.

As seen in Fig. 9, the overall trend of system next mission reli-
ability improvement ΔR increases with the mean value, indicating 

Table 7.	 The maintenance time tij(l) of different maintenance actions l for 
components (time is in days)

ID
Maintenance actions l code

0 1 2 3 4 5

1 0 0.12 0.21 0.35 0.43 0.51

2 0 0.15 0.25 0.30 0.42 0.58

3 0 0.14 0.24 0.32 0.41 0.53

4 0 0.16 0.23 0.38 0.42 0.56

5 0 0.13 0.18 0.35 0.43 0.48

Table 9.	 System next mission reliability improvement ΔR (%) at the different mean 
and standard deviation of the distribution of break duration

Distribution
mean

Distribution standard deviation

0.01 0.05 0.1 0.15 0.2

△R (%) between stochastic and deterministic break duration

1 0.0 0.0 0.0 0.5 0.5 

1.2 0.0 0.6 0.5 0.5 0.5 

1.4 0.1 1.2 1.2 0.6 0.5 

1.6 0.3 1.2 1.2 0.9 0.8 

1.8 0.3 1.4 1.4 1.2 1.2

2 0.1 2.3 2.2 2.1 2.1

Table 6.	 Component parameters

Characteristic constant 
of age reduction factor

Shape and scale parameters of 
Weibull distribution 

Effective age
of component

Initial state of
component

ID ζ β η B(k) X(k)

1 2.2 2.0 20 20 1

2 2.3 2.1 19 25 0

3 2.1 2.0 21 25 0

4 2.4 2.2 22 25 1

5 2.0 1.9 21 20 0

Table 8.	 RL vs. GA result(time is in days)

Method Maintenance policy Rsys Maintenance time 

RL [2,5,5,0,2] 0.983 1.5

GA [3,5,1,2,2] 0.982 1.48

Fig. 8. The training process of the proposed Q-learning algorithm
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that the difference between uncertainty and certainty is more evident 
with larger mean values. It is because the increase of the mean value 
leads to a relatively long break time, allowing to select some main-
tenance actions with higher code. And the higher-code maintenance 
action requires longer maintenance time and better maintenance ef-
fect. Since the strategy is derived when the break is deterministic, 
there is sufficient time to complete all maintenance actions. However, 
in the case of uncertainty, there may not be enough time to complete 
all maintenance actions due to the constraint of insufficient time. As a 
result, a maintenance action is performed only partially and not fully 
completed, in which case the component reliability is unchanged. The 
relatively high code of the selected maintenance action when the mean 
value is large leads to lower system reliability under the inability to 
complete all maintenance actions, resulting in a larger ΔR.

In addition, when the mean value is 1, and the standard deviation 
is less than 0.1, the ΔR is equal to 0 in the first period and increases 
with the standard deviation. When the mean value is 1, it is at the left 
end of the distribution range, and the break duration does not change 
much with the standard deviation increase in the first period. Then it 
increases more obviously so that there are more optional maintenance 
actions, and the final system reliability increases. When the mean val-
ue is other values, ΔR increases with the standard deviation increase 
and gradually becomes smaller. It is because, in the beginning, the 
standard deviation is small, the uncertainty case is close to the deter-
ministic case, and ΔR is small and close to 0. As the standard deviation 
increases, the duration of the break decreases relatively gradually, and 
the gap is the largest at the initial stage, leading to the largest ΔR, 
and then ΔR gradually decreases. The decrease in the break duration 
causes it as the standard deviation increases. It can be seen from the 
above figure that ΔR is greater than or equal to 0, and the maximum 
difference value reaches 2.3%. It shows that the model considering 
uncertainty is significantly better than the deterministic model. Con-
sidering a deterministic break duration can lead to an overestimation 
of reliability. In case of uncertainty encountered, it may lead to the 
inability of the system to complete subsequent mission.

5.2.4.	Sensitivity analysis of component parameters
The optimization objective of this paper is to maximize the reli-

ability of the system successfully completing the next mission. The 
mission duration U, the characteristic parameter ζ, and the Weibull 
distribution parameter β, η directly affect the optimization results. 
Sensitivity analysis is performed on the above parameters to verify 
the validity of the model, the feasibility of the method, and the influ-
ence of stochastic on the maintenance policy. For the selective main-
tenance decision model, the parameter U determines the mission dura-
tion, and the larger U is, the lower the reliability R. The characteristic 

parameter ζ reflects the relationship between the maintenance time 
and the age reduction factor. The larger ζ is, the more pronounced the 
maintenance effect of the same maintenance time is, i.e., the larger 
reliability R is. The shape and scale parameters β and η of the Weibull 
distribution obeyed by the component failure time, respectively, and 
the larger β and η are, the larger reliability R is. The following ex-
periments were conducted to verify the effects of U, ζ, β, and η on 
maintenance decisions.

Simulation tests are performed in three categories, U and ζ, U and 
β, and U and η. 25 combinations exist in each category, respectively. 
U={5, 6, 7, 8, 9}, ζ={1.8, 2, baseline(2.2, 2.3, 2.1, 2.4, 2.0), 2.4, 2.6}, 
β={1.7, 1.9, baseline(2.0, 2.1, 2.0, 2.2, 1.9), 2.2, 2.4}, and η={17, 19, 
baseline(20, 19, 21, 22, 21), 22, 24}. Except for the baseline param-
eter value in the table 6, the parameters of the remaining components 
are taken as shown in the above set and are the same, and all other 
model parameters and algorithm parameters are the same as in sec-
tion 5.2.2. Firstly, maintenance policy A is derived in the deterministic 
case. Then the reliability R1 is obtained by substituting maintenance 
policy A from the deterministic model into the uncertainty model. The 
reliability R1 is compared with the reliability R2 obtained in the un-
certainty case. The results of system next mission reliability improve-
ment ΔR for each type of experiment are shown in the following Table 
10-12 and Figs. 10-12.

Table 10.	System next mission reliability improvement ΔR(%) for different 
mission duration U and component characteristic constants ζ

characteristic 
constant ζ

Mission duration U

5 6 7 8 9

1.8 0.8 1.6 2.8 4.2 6.2

2 0.9 1.7 2.8 4.4 6.5

baseline 1.1 1.8 3.0 4.6 6.5

2.4 1.2 1.9 3.0 4.5 6.5

2.6 1.3 2.1 3.1 4.7 6.6

Table 11.	System next mission reliability improvement ΔR(%) for different 
mission duration U and Weibull distribution shape parameter β

Shape pa-
rameter β

Mission duration U

5 6 7 8 9

1.7 1.3 1.8 2.5 3.7 5.2

1.9 1.3 1.9 2.9 5.8 7.9

baseline 1.1 1.8 3.0 4.6 9.0

2.2 1.1 2.0 3.2 6.5 9.0

2.4 1.0 1.9 3.2 6.6 9.2

Fig. 9.	 System next mission reliability improvement ΔR at the different mean 
and standard deviation of the distribution of break duration

Table 12.	System next mission reliability improvement ΔR(%) for different 
mission duration U and Weibull distribution scale parameter η

Scale pa-
rameter η 

Mission duration U

5 6 7 8 9

17 2.1 3.9 6.2 10.6 14.8

19 1.2 2.4 4.0 6.0 8.8

baseline 1.1 1.8 3.0 4.6 9.5

22 0.7 1.2 2.0 3.2 4.7

24 0.6 0.9 1.3 2.0 3.2
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From Figs. 10-12, it can see that next mission reliability improve-
ment ΔR changes less with parameter ζ, and the overall ΔR gradually 
increases with the increase of parameter ζ. When parameter U is less 
than 7, ΔR is less affected by parameter β and almost unchanged, and 
ΔR is gradually increased by parameter β with the increase of pa-
rameter U. The larger parameter β is, the larger ΔR is. ΔR changes 

more obviously with the increase of parameter η, and ΔR gradually 
decreases with the increase of parameter η. The above figure shows 
that ΔR is influenced by parameter U the most, followed by parameter 
η, and parameter ζ has the least influence on ΔR. Among them, ΔR 
reaches a maximum of 14.8% when analyzing the effect of parameter 
η. Therefore, the superiority of uncertainty is mainly influenced by 
the component parameters β, η, and the mission duration U, relative 
to the deterministic break. And in the case of larger mission duration 
U, considering the superiority of stochastic break duration is more 
prominent. Indicating that the larger the parameter U, the greater the 
uncertainty influence is also.

In summary, the model and algorithm accurately reflect the differ-
ence between uncertainty and certainty under each parameter, verify-
ing the validity of the model and the feasibility of the method. This 
analysis also shows that the model and method apply to other systems. 
Through the above analysis, ignoring the uncertainty of the break du-
ration can significantly impact the reliability of system to complete 
the next mission. In the case of large relevant parameters, ignoring the 
uncertainty of the mission can lead to an overestimation of the system 
reliability. It can result in a high risk of not being able to complete the 
next mission.

5.3.	 Case 3: A complex multi-component coal transportation 
system

To further verify the the validity of the model and the method, which 
is also valid for large-scale systems, the coal transmission system of 
literature [24] is used here as an example. The system consists of 5 
subsystems connected in series and 14 components connected in par-
allels, and its structural sketch is shown in Fig. 13. The relevant pa-
rameters of each component are shown in Table 13, derived from the 
literature [24, 26]. In table 13, p

lm , f
lm denotes the characteristic con-

stants of the age reduction factor for preventive maintenance action 
and corrective maintenance action, respectively. 0

lt , p
lt , f

lt  denotes 
the fixed maintenance time, preventive maintenance time, and cor-
rective maintenance time, respectively. βl and ηl denote the shape and 
scale parameters of the Weibull distribution. B(k) denotes the effective 
age of the component at the beginning of the kth break. X(k) denotes 
the state of each system component at the beginning of the kth break. 

Fig. 13. Five-stage 14-element system structure sketch

Each component has 8 different of maintenance action l. L(l=7) 
represents the highest maintenance level, where l=0 and l=7 denote 
no maintenance and replacement, respectively. For functioning com-
ponents, l=1 ~6 indicates imperfect maintenance. For failed compo-
nents, l=1 indicates minimal repair, and l=2~6 indicates imperfect 
maintenance. When l>1, the time for maintenance action l is t=tij,l+tl0, 
where tij,l is expressed as follows:
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Fig. 11.	 System next mission reliability improvement ΔR with different weibull 
distribution shape parameter β

Fig. 12.	 System next mission reliability improvement ΔR with different weibull 
distribution scale parameter η

Fig. 10.	 System next mission reliability improvement ΔR with different compo-
nent characteristic constants ζ
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where tij,l denotes the maintenance time to perform action l on com-
ponent Cij. lij denotes the selected maintenance action for component 
Cij .

The age reduction factor bij,l is calculated as follows:
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5.3.1.	Algorithm performance analysis
 Assuming that the kth mission has just been completed now, the du-
ration Zk of the kth break obeys a truncated normal distribution of 
N(3, 0.0625) with range of [2.5, 3.5], τ = 0.8, and the duration of the 
k+1th mission U=10 days. All other component parameters are shown 
in Table 13. Among the parameters related to the GA algorithm, the 
number of populations NP=150, the crossover rate pc=0.8, the vari-
ation rate pm=0.05, and the maximum number of iterations equal to 
4000. The parameters related to Q-learning, the learning rate α=0.02, 
the discount rate γ=0.5, and the maximum number iterations equal to 
25000. Due to the stochastic of the algorithm, 10 sets of simulations 
are performed for each method to find its optimal maintenance policy 
Abest, the maintenance time for the optimal maintenance policy Tbest, 

the average reliability Rmean, the maximum reliability Rbest, the vari-
ance Rstd and the average running time S as the comparison results. 
In addition, a parameter %QOS is introduced here as a performance 
metric to compare the quality of RL and GA solution, %QOS=(Rbest-
Rmean)/Rbest. The comparison results and performance metric results 
are shown in Table 14.

From Table 14, we can see that the optimal maintenance policy 
solved by Q-learning is better than GA, and the maximum reliability 
Rbest is 1.23% higher. Furthermore, the mean and variance of Q-learn-
ing results are better than GA in 10 solving results, indicating that 
the Q-learning algorithm’s stability is better than GA. Combined with 
the experimental results in previous section, the Q-learning algorithm 
effectively solves the selective maintenance problem and can obtain 
better values than the GA algorithm. Regarding the computation time, 
the average time taken by GA is more than twice of RL. Regarding 
the quality of the obtained solutions, the optimal solution of RL is bet-
ter than that of GA, and the average solution of RL deviates from the 
optimal solution by only 1.1%, while the average solution of GA devi-
ates from the optimal solution by 1.38%. Therefore, the RL algorithm 
can find higher quality solutions and further verifies the effectiveness 
of the algorithm.This case also illustrates that the advantages of RL 
are more pronounced for more complex systems.

The iterative evolution of the proposed RL algorithm is shown in 
Fig. 14. During the initial 15000 iterations, the agent randomly ex-
plores all possible maintenance actions, and the Q matrix’s value con-
verges slowly. After the first 15,000 iterations of random exploration 
learning, the Q matrix gradually converges and can eventually reach 
the convergence state.

Table 15.	Difference between stochastic and determined break duration(time is in days)

Case Maintenance policy Reliability Maintenance time 

Stochastic [0,7,3,7,6,7,6,4,7,7,3,0,0,6] 0.9414 2.795

Deterministic strategy substitution in 
the uncertainty model [0,6,7,7,6,6,7,4,0,7,2,0,7,2] 0.924 2.703

Table 13.	Relevant parameter values for each component (time is in days)

ID lβ lη p
lm f

lm p
lt

f
lt

0
lt ( )B k ( )X k

1 1.5 25 2.5 2.5 0.13 0.25 0.03 35 1

2 2.4 38 2.2 2.0 0.2 0.31 0.03 24 0

3 1.6 28 2.6 3.0 0.2 0.33 0.03 45 0

4 2.6 40 2.2 3.2 0.12 0.32 0.04 35 0

5 1.8 28 1.8 4.0 0.21 0.34 0.02 28 1

6 2.4 34 2.4 3.2 0.14 0.19 0.03 36 1

7 2.5 26 2.8 3.0 0.2 0.27 0.05 44 0

8 2.0 28 2.3 2.8 0.17 0.31 0.05 28 0

9 1.2 26 2.0 2.5 0.18 0.26 0.04 38 1

10 1.4 35 2.5 2.8 0.2 0.32 0.05 15 0

11 2.8 40 3.2 3.0 0.21 0.31 0.07 30 0

12 1.5 35 2.6 2.2 0.23 0.33 0.04 22 1

13 2.4 30 2.8 2.8 0.16 0.35 0.06 38 1

14 2.2 45 2.2 2.6 0.14 0.35 0.05 35 0

Table 14.	Comparison results of the two algorithms(time is in days)

Method Abest Tbest Rbest Rmean Rstd S %QOS

Q-learning [0,7,3,7,6,7,6,4,7,7,3,0,0,6] 2.795 0.9414 0.9314 0.0031 71.3 1.1

GA [0,7,3,7,4,5,6,3,5,7,3,7,5,1] 2.745 0.9291 0.9171 0.0061 148.3 1.38
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certainty is better than the deterministic one with a reliability 1.74% 
higher. Based on the above observations, it can be concluded that the 
optimal solution in the deterministic case does not guarantee the max-

imum reliability for successful completion of the next mission in the 
uncertainty case if the uncertainty in the break duration is ignored.

6. Conclusions and future works
This paper presents a new selective maintenance model for a multi-
component system with the decision to maximize the system’s reliabil-
ity to complete the next mission. The components can be maintained 
during the break between two adjacent missions, each with several 
optional maintenance actions from minimal repair and imperfect 
maintenance to replacement. At the same time, this selective main-
tenance optimization model considers the break duration stochastic, 
represented by an appropriate probability distribution. The selective 
maintenance optimization problem is modeled as a Markov Decision 
Process (MDP). Based on the framework of the MDP, a RL approach 
is proposed to overcome the problems of complexity and low compu-
tational efficiency in solving the model by traditional methods. By an-
alyzing three cases, the accuracy of the model and the RL method are 
demonstrated to be effective in finding the optimal maintenance strat-
egy. By comparing with the GA method, the more complex the system 
the more obvious the advantage of RL. The RL can obtain a better 
maintenance policy making the system more reliable to successfully 
complete the next mission, and the computation takes much less time 
than GA. It is also demonstrated that the stochastic of the break dura-
tion affects the maintenance policy and the reliability of the system 
successfully complete the next mission. Ignoring the stochastic of the 
break duration the reliability of the system successfully complete the 
next mission will be overestimated and may prevent the system from 
completing the next mission. Therefore, it is necessary to investigate 
the optimization of selective maintenance under uncertainty.

In future works, we will explore several questions. Here we study 
systems consisting of two-state multiple components, where the break 
is the only uncertain maintenance resource. The process has several 
intermediate states in practical engineering from function to failure. 
In addition, the maintenance time required for different maintenance 
actions may be stochastic due to the different skill levels of differ-
ent technicians. In the future, we will conduct research for multi-state 
multi-component systems and other uncertain maintenance resources.

Fig. 14. The training process of the proposed Q-learning algorithm 
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